
Saimaa University of Applied Sciences 
Faculty of Technology, Lappeenranta 
Mechanical Engineering and Production Technology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Spencer Raisanen 
 

Semi-Automated Turning Simulation Production Using 
Catia V5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thesis 2015



2 
 

Abstract 
Spencer Warren Raisanen 
Semi- V5CatiaUsingProductionSimulationAutomated Turning , 105 pages, 2 
appendices  
Saimaa University of Applied Sciences 
Bachelor of Engineering, Lappeenranta 
Mechanical Engineering and Production Technology 
Thesis 2015 
Instructor:  Lecturer Jouni Könönen, Saimaa University of Applied Sciences 
 
The purpose of this thesis was to explore the possibility of using CAPP within a 
CAD/CAM program with an end goal of producing turning simulations for simple 
geometries. The system requires only simple geometrical input from the user and a user 
entered tool catalog. The end goal of this thesis was for CNC-code production to be 
possible with minimal human entry necessary through the CAM interface, but allowing 
for the user to check the simulation to ensure all parameters are correct and make 
minor adjustments as desired. The work was commissioned by Jouni Könönen of 
Saimaa University of Applied Sciences. 
 
The information of this thesis was collected from literature, internet sources, practical 
experience, and by conversations with people knowledgeable in either the field of 
machining or programming. The system works by logically deciding which machining 
operations are necessary, the toolholders needed, the desired insert shape and size, 
and the machining parameters. This information is all uploaded to Catia V5 which does 
the actual simulation, allowing the development to focus on the CAPP algorithms.  
  
The results of this study demonstrate that this is a very viable option for industry 
production of simple geometries produced by turning operations. It is recommended that 
more work be carried out to better integrate the system into one standalone program 
which has the capability of working with more complicated geometries. It is also 
recommended to see the possibility of full automation with different CAM programs. 

Keywords: Automated CNC-code generation, CAD/CAM, CAPP 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

 

Contents 

1   Introduction .............................................................................................................. 5 
1.1 Background ........................................................................................................ 5 
1.2 Objectives .......................................................................................................... 5 
1.3 Scope and Operations ....................................................................................... 6 
1.4 Thesis Format .................................................................................................... 6 

2    
   

  Theory Review  ........................................................................................................8 
2.1 Turning ............................................................................................................... 8 

2.1.1 Metal Cutting and Chip Formation ............................................................... 8 

2.1.2 Parameters ................................................................................................ 10 
2.1.3 Turning Operations .................................................................................... 12 
2.1.4 Stages of the Turning Process .................................................................. 13 

2.1.5 Turning Strategy ........................................................................................ 14 
2.2 CATIA V5 ......................................................................................................... 16 
2.3 Visual Basic for Applications ............................................................................ 17 

2.4 Catia V5 Programming ..................................................................................... 18 
2.4.1 Catia Machining Process Modelling ........................................................... 19 

2.4.2 Catia Programming within Excel ................................................................ 23 
3   Program Description .............................................................................................. 25 

3.1 Catalog ............................................................................................................. 26 

3.2 Process Planning ............................................................................................. 28 

3.3 Geometry Production ....................................................................................... 28 
3.4 Toolholder and Insert Selection ........................................................................ 28 
3.5 Exportation to Catia .......................................................................................... 29 

3.6 Report Production ............................................................................................ 29 
4   Program Demonstration ......................................................................................... 30 

5   Conclusion ............................................................................................................. 38 
5.1 Limitations ........................................................................................................ 38 
5.2 Recommendations ........................................................................................... 38 
5.3 Reflections ....................................................................................................... 39 
5.4 Final Conclusion ............................................................................................... 39 

 

 

  

 

 



4 
 

 

 

 

Terminology and Concepts 

   

  

   

   

   

   

   

    

   

   

   

   

   

  

API- Application Programming Interface 

CAD- Computer Aided Drawing

CAE- Computer Aided Engineering

CAM- Computer Aided Manufacturing

CAPP- Computer Aided Process Planning 

CNC- Computer Numerical Control

DLL- Dynamic Linked Library

IDE- Integrated Development Environment

NC- Numerical Control

OOP- Object Oriented Programming

RAD- Rapid Application Development 

UDF- User Defined Function

VB- Visual Basic

VBA- Visual Basic for Applications  

  

 



5 
 

1 Introduction 

This thesis investigates the feasibility of automating the production of turning simulations 

of simple geometry components within Catia v5 using CAPP algorithms with VBA as the 

programming language and Excel as the host program. The purpose of creating the 

turning simulation instead of just generating the NC code is that it allows the user to verify 

that the program’s output is suitable and to have the ability to adjust any parameters as 

desired in a way which does not require fine-tuning the actual NC code. Turning 

simulations are something that Catia does very well, but it is not something that has yet 

been able to be automated. While many companies, universities, and research groups 

are attempting to achieve completely automated CAPP, it is still outside of our grasp.  

1.1 Background 

There are an abundance of CAD, CAM, and CAE programs available on the market, yet 

there has been no single commercially successful CAPP program thus far. There have 

been many that have been made, with varying degrees of success and accuracy. These 

programs have not yet taken advantage of other CAD/CAM programs in order to allow 

the program to only focus on the CAPP; allowing the CAD program to make the 

geometries while allowing the CAM program to make a simulation of the manufacturing 

process. The simulation step is the real focus here, because it would allow the user to 

make any necessary changes and observe that everything is working correctly while still 

allowing the computer to do the bulk of the calculations. 

1.2 Objectives 

The objectives of this thesis are simple. First: that the program is able to produce turning 

simulations within CATIA, and from these simulations is able to produce NC for parts 

produced by turning with simple geometry. Secondly, that the program is able to produce 

simulations that will not require much, if any, user input afterwards due to errors within 

the CAPP logic. The third objective is that the general form of the written program will be 

easy to adapt to other types of turning operations and other CAM programs, and also 



6 
 

allows the program to be built and expanded upon to accommodate more complicated 

geometries. 

1.3 Scope and Operations 

Since this field is still relatively open and unfulfilled it is not realistic that the entire problem 

of CAPP be solved within the scope of this thesis. Rather, it is more important that the 

general manner of programming be resolved and that the program is able to solve the 

presented challenges. It is planned that the program should be able to solve the following; 

tool selection, tool path selection, and machining parameters selection for turned parts 

involving rather simple geometry which can be defined as composed of straight lines, 

notches, chamfers, and radii which are all performed by external turning. The program 

requires that the user enters in the necessary details which then creates the necessary 

geometries for the simulation. The program will first use the parameters of the machine, 

the billet size, and the geometries to determine which operations will be used and in which 

order. Next using a certain logic scheme the tools will be selected and applied along the 

proper tool path. After the program is finished running the simulation will be prepared 

using the parameters given by the program and can be tested for any errors. After the 

simulation has been verified, it is simply a matter of running the simulation generated 

through a post-processor corresponding to the turning machine which will be used in the 

machining process and generate the relevant NC code. 

1.4 Thesis Format 

 

In  order  to  carry  out  this  thesis  a  lot  of  preparatory  work,  particularly  in  the  field  of 

machining  and  programming  was  carried  out.  It  is  necessary  to  have  a  very  good

understanding  of  machining  in  order  to  understand  how  machining  parameters, 

machining  tools,  and  machining  tool  paths  are  selected  from  raw,  geometrical  data.  A

deep knowledge of programming is mandatory in order to be able to generate the 

proper  algorithms which encode this knowledge in a programming language; allowing the 

process to be automated as well as enabling the different applications used to pass 

information  to and from each other. This thesis contains necessary knowledge and 

preparatory work in the following fields: 



7 
 

 Turning 

 Catia V5 

 Computer Programming (VBA) 

 VBA programming with Catia V5 

The thesis is broken down into three main tasks: Theory Review, Program Description, 

and Program Demonstration. 

Task 1: Theory Review 

The theory involved within the thesis is reviewed: this involves every part of the turning 

process from turning parameters to tool path selection, how Catia works and why it is 

used so widely, basic programming with VBA, and VBA programming within Catia V5. 

Task 2: Program Description 

This section describes the thought process behind the formation of the program and how 

the program completes its tasks. 

Task 3: Program Demonstration 

The final selection goes through an example of the program in use and demonstrates the 

final output which the system gives using a real-life example. 

The thesis then concludes with observations and a final conclusion. 

 

 

 

 

 

 



8 
 

2 Theory Review 

This chapter provides a basic review of turning, Catia V5, computer programming with 

VBA, and the use of VBA within Catia V5. 

2.1 Turning 

Turning is a fairly simple metal cutting process which generates cylindrical forms with a 

single point tool during a process where the workpiece is usually rotating and the tool is 

stationary. Although the turning process is very simple, it is the most widely used 

machining process and thus has had lots of optimization which has led to turning having 

highly specialized tools and operations developed through, and based on, decades of 

experience (1, p. VI-2).  

2.1.1 Metal Cutting and Chip Formation 

Metal cutting is an intrinsically difficult process to fully understand. This is because it is 

such a dynamic process involving considerations such as material of the workpiece, 

material of the tool, high speeds, temperature, and pressure. Through decades of studies 

which have produced fantastic theoretical and empirical models describing the process it 

is possible to bring metal cutting to such a well-defined process that through logical 

process planning, cleverly designed cutting edges, and proper tool material selection it is 

possible to produce desired results from a workpiece. This is only possible through the 

combination of the strengths of both analytical results and theoretical knowledge. 



9 
 

 

Figure 1. Temperature Dissipation of Metal Cutting Processes 

The most critical part of the metal cutting process is the chip formation process. The 

reason for this is that the removed metal must be pushed away from the cutting area in 

order to not interfere with the process as well as to carry the majority of the heat produced 

away from the workpiece: preventing extra thermal stress to the workpiece. 

Understanding the chip formation process involves an accurate prediction of deformation, 

temperature, and forces as these are the dominant factors which have an effect upon the 

chip formation process. Temperatures affect the cutting process itself and can negatively 

affect the materials of the tool and the workpiece if enough of it is not properly evacuated. 

The forces affect how much power and strength is necessary within the process. 

There are many different factors which affect how the chips are actually formed. Factors 

such as depth of cut, entering angle, feed, material, and tool geometry all have an effect 

Figure 2. Chip formation factors. 



10 
 

as noted within Figure 2. While these all have important effects upon the chip formation 

process, it is sufficient if these are only understood as having an effect and instead 

following the recommendations of companies which are producing machining tools in 

order to select the correct tools for each process. These recommendations are based 

upon empirical data and allow the machinist to concentrate less upon the tool design and 

chip breaking aspect and more upon the planning of the process as a whole. 

(1, p I2-3; 2, p A6-7) 

2.1.2 Parameters 

There are several parameters in turning which are vital to having the operation go 

smoothly and without fault. These parameters are: spindle speed, cutting speed, feed 

speed, cutting depth, entering angle, nose radius, specific cutting force, metal removal 

rate, and power consumption. Selection of these parameters generally comes from tool 

manufacturers’ recommendations, but it is important to understand these concepts. 

   

Figure 3. Example of Vc, ƒ, ap, and n. 

Spindle speed (n) is defined as the speed at which the workpiece rotates within the lathe 

and is given in rotations per minute (rpm). 

Ƒ, vƒ 



11 
 

Cutting speed (Vc) is the speed at which the cutting edge of the tool is moving along the 

workpiece. Cutting speed generally stays constant, but in operations moving towards or 

away from the center of the workpiece it can change as it is dependent on the diameter 

of the cut. Cutting speed is expressed in meters per minute (m/min) and is defined by the 

following equation. 

Vc =
D × π × n

1000
            (1) 

 

 

 

 

 

 

 

 

 

Feed speed (vƒ) is the speed at which the machine feeds the tool along at. Feed speed 

is  expressed  in  meters  per  minute  (m/min).  Feed  per  rev  (ƒ)  is  an  important  subset  of

feed  speed  and  is  the  amount  of  feed  per  revolution  of  the workpiece  expressed  in 

millimeters per revolution (mm/rev).

Cutting depth (ap) is the depth of the cut which the tool is making. It is always measured 

as perpendicular from the feed direction and expressed in millimeters (mm).

Entering angle (κ) is the angle between the direction of the feed and the cutting edge

(degrees).

Nose  radius  (rε)  is  the  radius  that  exists  on  the  ‘point’  of  the  tool.  It  exists  in  order  to 

remove the weakness from the point. The nose radius means that there will always be

some kind of radius when there is any type of angle along the finished workpiece. A larger 

nose radius means that there are less vibrations and a higher feed rate can be used. A

smaller nose radius allows the machining process to be of higher quality. Nose radius is 

expressed in millimeters (mm).

Specific cutting force (kc) is defined as the force in the cutting direction needed to chip off

the certain area being removed. It is generally based off of kc1 which is the specific force 

needed to remove 1 mm2. The manufacturers’ handbooks generally contain the 

specific cutting force which is equal to the max area which can be removed. The units 

used for  specific cutting force are Newtons per square millimeter (N/mm2). 



12 
 

Metal Removal Rate (Q) is another important factor. This allows the user to compare the 

rate at which material is removed for each tool. By comparing the Q for different tools, it 

can be possible to select a tool which will allow the operation to be finished in less time. 

Q is calculated by the following formula and displayed in cubic millimeters per minute 

(mm3/min).103 

 𝑄 = Vc × ap × ƒ (2) 

Power consumption (Pc) is another important factor to keep track of. This is because often 

a machine may have a limiting power which can be used and it is not possible to go over 

this power. This means that sometimes power may be the limiting factor in an operation. 

Power can be calculated by the following formula and displayed in kilowatts (kW). 

Pc =
Vc × ap × ƒ ×  kc

60000
        (3) 

These parameters are all vital components and if one is incorrect than it can easily throw 

off the entire operation (1, p VI.2-20). 

2.1.3 Turning Operations 

In order to simplify the tool applications the basic turning operations will first be described 

as any other turning operations are combinations of these basic operations. The most 

basic operation is longitudinal turning which is when the lathe is removing material 

horizontally. Facing is when the lathe is moving along the vertical face along the end of 

the workpiece. Profiling is when the lathe is following along whatever profile the desired 

output in one direction. Plunging is when it is necessary for a tool to ‘plunge’ into the side 

of the workpiece creating what is known as a notch (2, p A30). 



13 
 

 

 

2.1.4 Stages of the Turning Process 

There are different stages of almost every turning process. These stages can be broken 

down into the roughing, semi-finishing, and finishing stages.  

The roughing stage consists of when it is the most important to remove as much material 

as possible in the quickest time possible. When doing roughing it is not seen as important 

for the surface quality that is being produced to be very accurate or smooth. The name 

actually derives from the rough surface which it leaves behind. Of course when doing a 

roughing process it is important to recall that you should always leave sufficient space 

between the roughing surface and the desired finished surface unless the finished surface 

desired surface quality is reachable by the roughing process.  

Figure 4. Visual Description of Turning Operations 



14 
 

The semi-finishing stage is when the tool is still quite productive but has a higher accuracy 

than the roughing stage and can allow for material to be removed that was too dangerous 

to be removed during the roughing stage. 

The finishing stage consists of the final pass along the part which gives the piece the 

desired surface texture. 

 

Figure 5. Comparison of Stage Priority Factors 

As demonstrated by Figure 5, the secondary feature of each stage is according to the 

process, but chip control is still the number one priority for any metal cutting process due 

to the high percentage of heat staying within the chips (1, p I19). 

2.1.5 Turning Strategy 

One of the key components of having a competitive business, especially a business with 

a lot of competition, is to keep costs low per worked piece. It thus serves the end line of 

any business if they can cut worked hours per piece as they will also cut cost at the same 

time; thus boosting competitiveness. Optimization of process planning is an aspect of 

machining in which a company can improve its profit margin by having an increased 

production rate while at the same time not increasing use of expensive tools too much.  



15 
 

Sandvik Coronant (1, p VI-37) describes the following as the main factors which influence 

the tools application during the turning process: 

1. Workpiece material- machinability, condition, properties, etc.   

2. Workpiece design- shape, dimensions and working allowance. 

3. Limitations- accuracy, surface texture, etc. 

4. Machine- type, power, condition and specifications. 

5. Stability- from cutting edge to foundation. 

6. Set-up- accessibility, holding, changing. 

7. Tool Program- the right tool. 

8. Performance- cutting data, tool-life and economics. 

9. Quality- tool delivery and service. 

There are certainly many different methods to use while selecting tools, tool holders, and 

parameters, but the general method used in the thesis is as charted out in Figure 6. 

The general idea of selection is quite simple as there are almost always many different 

combinations of inserts, toolholders, and cutting parameters which will end up giving the 

desired results. The only difference is that some will give the results in a much quicker 

manner than the others and most likely end up being cheaper when applied to many 

pieces even though the inserts and toolholders themselves may end up being much more 

expensive.  

The process can be described as follows. First of all, gather all of the necessary data for 

the part. Second, using critical thinking decide which type of operation will be done and 

whether positive or negative geometry will be used. This step can either be extremely 

obvious or quite complicated: the general idea is to limit the amount of tool changes as 

they usually take quite a bit of time and to do all of the work which is possible with the tool 

while it is in use. The next step is to look at the operation desired and choose the insert 

and then the toolholder taking into account the following factors: shape, size, geometry, 

application type, nose radius, and grade. After this the cutting parameters can be selected 

according to the manufacturer’s recommendations. Then it is always advisable to check 

that all of the values resulting from these parameters are within the acceptable values for 



16 
 

the machine. If they are not acceptable, then maybe it is possible to slightly modify some 

of the cutting values, or it may be necessary to change the insert. 

 

 

Figure 6. Workflow for Tool, Toolholder, and Cutting Parameters Selection. 

2.2 CATIA V5 

Catia (Computer Aided Three-dimensional Interactive Application) developed by Dassault 

Systemes, a French company, is a CAD/CAM/CAE commercial software suite. Catia has 

been developed in the C++ programming language and is the foundation of Dassault 

Systemes. Catia was first developed around the start of the 1980's with an intent of using 

it in the aerospace industry.  



17 
 

Catia has been referred to as a PLM (Project Lifecycle Management) system as the scope 

of the program is so large it can be used to model every part of the manufacturing process 

of a product. An example of Catia use could be the following: first the product itself is 

modelled, then the product is tested, then the manufacturing processes are simulated, 

and finally the factory itself is simulated. The entire process is done and all of the 

documentation is properly contained within Catia. Catia is used for many different types 

of disciplines and can be used for mechanical, electrical, fluid, and systems engineering. 

This versatility has led to Catia being used in most engineering industries. Catia is widely 

used in the automotive, aerospace, industrial equipment, plant design, packaged goods, 

life science, civil, architecture, process power, petroleum, and other related industries.                                                                                                    

(3) 

2.3 Visual Basic for Applications 

For decades, BASIC has been used as a programming language as a ‘basic’ interface 

between man and machine and is a relatively low-level programming language. BASIC 

eventually evolved into VB which was used as a RAD and had the capacity of quickly 

creating applications which could run independently of other programs. VB forked into 

two directions, one of which was .NET which is still used today to create standalone 

applications, and the other which was VBA and transferred most of the functionality of VB 

into an easy to use language which is hosted inside of other applications. Examples of 

applications which can host this language are most of the wide range of Microsoft Office 

products available , notably Excel, and other applications such as CATIA V5 (4).  

VBA, as noted, contains many of the elements of VB; such as an IDE which is almost the 

same as the original VB IDE. This contains important components such as a debugging 

window, a properties window, and so on (5). Inside of this environment it is possible for 

the developer to interact and access the object model of not only the host application, but 

other applications as well allowing VBA to work across several independent applications. 

The introduction of VBA allowed several other macro languages used within applications 

for simple automation to be retired as VBA does, in general, a quicker, better job while it 

is quite user-friendly as well.  



18 
 

VBA has the ability for the user to create UDFs, to automate simple tasks, and to be able 

to use DLLs to access low-level functions such as the Windows API. The user will create 

different macros which contain all of the actual functionality but do need to be within 

another application in order to run. Some of the common uses of VBA are as follows: 

Automating a Task 

Automating Repetitive Tasks 

Creating Custom Sequences 

Custom Commands 

Creating Applications (Macro Based) 

The most important thing to realize about VBA is that it is an event driven language. This 

means that in order for the program to start doing its work it must be triggered by some 

certain event. If the event driving the macro is not run, then the macro will simply stay 

silent. This means that it is important for the developer to ensure that the macro will 

always be triggered when the macro should start running (5). 

2.4 Catia V5 Programming 

Programming with Catia V5 could be done for many different reasons. For instance, a 

company could want to take information from either word or excel documents, write 

information to these applications, automate tasks, or use the computing power to do 

calculations and generate outputs within Catia automatically.  

There are three different programming language options for Catia V5: VBscript, VBA, and 

VB6. VBscript is a simple subset of VBA which is the only Catia programming language 

usable in both Unix and Windows operating systems. It is used for very simple macros. 

The downsides of VBscript is that it is quite difficult to program in because its editor is 

very weak, it is sequential programming, and the user interface tools are not very good. 

VBA is, as mentioned before, a subset of BASIC which needs to be hosted within an 

application. The positives of VBA is that the IDE is quite good, the programming is event 

based, it allows collaboration with other VBA applications, and the UI (User Interface) is 

good. The downsides are that the security is not very strong and it is difficult to export the 



19 
 

program. VB6 has all of the advantages of VBA as well as code protection, the possibility 

to create DLLs, and the possibility to create servers. The only downside is that the 

software requires another license purchase from Microsoft and that VB6 is very outdated 

nowadays and does not work very well on a newer Microsoft OS.  

Within this thesis, VBA was utilized. There are many reasons for this selection. First of 

all, as the thesis is simply the testing of an idea and not actually the full implementation 

the functionality of VBA will be sufficient. VBscript is simply too basic to be used in any 

easy manner, plus it lacks the functionality to connect to other applications outside of 

Catia. VB6 would be a good fit, other than the fact that VB6 is simply not available from 

Microsoft anymore because of the abandonment of its use in favor of .NET which is simply 

an expanded version of VB but is unfortunately not completely compatible with Catia v5. 

If the CAD/CAM program being used was Catia V6 then .NET would definitely be the best 

choice for the programming language. However, Catia v5 was utilized and that left one 

real choice for this thesis: VBA. (6) 

2.4.1 Catia Machining Process Modelling 

Now before the programming goes into detail, it is necessary for an explanation of how 

to model the machining process within Catia. 

First of all, before anything else gets done it is necessary for the user to have a 3D model 

of the finished part, a 3D model of the billet being used, and a preselection of the details 

of the manufacturing process. For the 3D models it is always recommended to have the 

Z axis pointing away from the chuck so that the default axis for the machine does not 

need to be adjusted. It is also recommended to draw an extra sketch upon the 3D model 

of the finished part for each phase of the manufacturing process as this makes the tool 

path selection an extremely simple process. Once the 3D models are prepared it is 

necessary to put them all into one product and line them up in the way the finished product 

will be relative to the billet. Then it is necessary to put the origin of the product where the 

desired (0,0,0) point of the operation is. If it has not been specified for any operations it 

is put in the center of the billet on the face which faces away from the chuck. An example 

product is shown in Figure 7. 



20 
 

 

Figure 7. Product Ready for Manufacturing Process. Note the Origin on the Billet Face. 

Once the product is ready the user clicks on start, then machining, and finally lathe 

machining. This opens up a process. The process has three main parts within what it calls 

the PPR and these are processes, products, and resources. This is because it may be 

necessary to have more than one process to finish a part and the product may need to 

be changed slightly between each process to include extra sketches. The resources 

include whatever resources are used in the manufacturing process.  

The next step is to click on Part Operation.1 and add the relevant information. This 

includes machine type, default machining axis, design part, stock, tool changing point, 

and so on.  

Then once this information is all filled out the user can select what type of operation is 

desired. The options are roughing, grooving, recessing, profile finishing, groove finishing, 

threading, ramp roughing, recess roughing, and drilling operations. Inside each different 

type of operation the options are roughly the same.  

First of all the stock and the element to be machined are selected. This is when the 

sketches are extremely useful because they can be selected as the element to be 



21 
 

machined and the program will follow their geometries. Things such as the offset can be 

set so that the geometry used can be as close to the actual finished part as possible.  

The strategy can be selected next which gives the options as to how the tool will be 

directed along the piece, what the depth of cut will be, what the tool compensation will be, 

and so on.  

Figure 8. Tool Path Selection 



22 
 

 

Figure 9. Operation Strategy 

Next is the option to select the toolholder and the insert type. During this stage it is also 

necessary to enter in the feed and speed for the insert. The next window then can be set 

to run automatically off of the information entered during this part of the process. 

 

Figure 10. Toolholder, Insert, and Cutting Parameter Selection 

The final screen allows the user to set up macros enabling the user to predefine methods 

of tool entry/exit. This allows the user to specifically design how the operation will work 

and ensure that the operation will not collide with anything during the entry/exit.  



23 
 

After all of the operations have been completed it is possible to simulate the operation 

from the tool path because the NC code has not yet been generated. This thesis will focus 

on getting to this point as the NC code generation simply requires setting the correct 

postprocessor for the machine being used and clicking generate NC code. (7) 

2.4.2 Catia Programming within Excel 

It is not completely necessary for the programming to be done within Excel but it was 

chosen for this thesis because it allows the selections to be made before everything else 

is done as the insert and toolholder catalogs are also contained within Excel. This means 

that only Excel needs to be run at the beginning and Excel will do the heavy work before 

opening Catia and exporting all of the selected data to the machining process. As Catia 

uses a lot of computing power it is advisable to only open it when it is needed. Before 

anything else is done it is mandatory for the user to go to the References within Excel 

and enable anything coming from Catia as this allows Catia functions, properties, and 

types to be used. 

Catia uses OOP which means it consists of objects which all have certain attributes or 

data that make it a certain, unique object. Each object also can do certain actions which 

are called methods. The key point of object oriented programming is the ability to create 

so-called classes under which similar things can be placed. For instance under the class 

of computer there could be objects such as Apple, Microsoft, Asus, Toshiba, etc.  

An object can be defined as an entity. Examples within Catia include things such as lines, 

points, shafts, and so on. Objects utilize aggregation to set the relations between different 

objects. For instance a line is simply an aggregation of the two points which make it up, 

while a point is simply the aggregation of the plane it is set upon and its coordinates. 

Objects within Catia can be worked upon by using two different ways: Property and 

Method. The property is the characteristic of an object and the method is an action of an 

object. An example of a property would be the name it is given such as Point.1. An action 

is obviously when some form of action happens such as when a sketch opens via 

sketch.Open. 



24 
 

Another great help within Catia is there is a Macro Recorder tool which records and 

exports to code everything done within Catia while the tool is running. This is helpful in 

gaining the names of different objects, properties, and methods. However, it is not really 

recommended to use code generated by the Macro Recorder within personally developed 

code as it has a different set of preferences than a human developer and may change 

names of objects, may only work in certain situations, and numerous other issues which 

can come from trying to mix different developers’ code together when they are both using 

a completely different system (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

3 Program Description 

This program’s purpose is to demonstrate the possibility of using CAPP to producing 

turning simulations within Catia V5 and thus will have some limitations. In the 

Observations section there will be descriptions of possible manners of implementing the 

program with less limitations.  First of all, since the catalogs all need to be created by 

hand, there will be a limited number of toolholders and inserts available. This is because 

each catalog coming from the manufacturer has 1000+ pages and this is simply too much 

information for one person to transfer for the sake of a thesis project. Second, in order to 

allow the catalog to be smaller only one type of material was selected as the type of 

material being machined. Once again, this is because otherwise the data transfer would 

be overwhelming. Third, the geometry used will be fairly simple. Of course it is possible 

to adjust this program to deal with more complicated geometries, but that is something to 

build towards and not to start with. These limitations are only for the extent of this thesis 

and are not things that are impossible with this type of program, but simply would require 

more than one developer and/or an extended period of time in order to produce macros 

which can dig through catalogs or deal with complicated geometries. 

The program can be broken down into several semi-independent sections which each 

contain a critical part of the overall program. Each section will be thoroughly explained 

and documented. The sections are as follows: 

o Catalog  

o Process Planning 

o Geometry Production 

o Tool holder and Insert Selection 

o Excel exportation to Catia 

o Report Production 

The general workflow of the program is as demonstrated in Figure 11. 

 



26 
 

 

 

Figure 11. Program Workflow 

3.1 Catalog 

In order for the program to have the necessary information regarding toolholders, inserts, 

and cutting parameters it is necessary for the user to create a catalog which Catia can 



27 
 

use and contains all of the necessary items for the operations. This catalog has been 

created in Excel and uploaded into Catia. If this program was analyzing the process for 

different materials the recommended cutting parameters would have to be actively linked 

to the VBA macro and then the catalog would have to be altered within Catia to permit 

the correct cutting parameters to be used. As mentioned earlier, this catalog is a bit 

simpler just for purposes of time saving. There are well defined processes for making tool 

catalogs within Catia and the process used for the purpose of this thesis does not deviate 

greatly from this normalized process. It involves making a CSV sheet and uploading it 

into Catia through VBScript and then placing the created library where it can be accessed 

upon start-up by Catia. A brief look at the tool catalog is shown in Figure 12. 

 

Figure 12. Part of the tool catalog 



28 
 

3.2 Process Planning 

The process planning part of this program leans heavily upon the strengths of Catia. Since 

Catia has many machining safeguards in place, such as collision protection, it is possible 

to create a rough outline and take advantage of the work which Catia does for the 

program. For instance it is always normal that the first operation will be a roughing 

operation. The program simply produces a roughing sketch which serves as the tool path 

and then selects toolholder and insert according to the geometry of the final piece and 

how much can actually be machined during the roughing phase. The same general 

process can be used for the finishing process; a simple sketch used as the path for the 

machining to follow. For the notch feature the logic is exactly the same. There are of 

course many different options and variables which may improve the machining process 

but they are very easily entered via the Catia Lathe Machining Workbench. 

3.3 Geometry Production 

The original input geometry production is quite simple and always starts at the (0,0,0) 

point and moves lengthwise towards the positive direction of the Z-axis which simplifies 

our exportation to Catia afterwards. The input gives a section view of the part which will 

then be revolved around the main axis creating a cylindrical part. 

The geometrical input is as follows. First the user is asked to specify billet length, billet 

diameter, and finished piece length. These are all mandatory for the geometry creation. 

Then the user enters information regarding how the geometry will change. There are 

possibilities of line, chamfer, radius, and notch features. Inside each feature the code is 

outputting the correct points to the Excel worksheet and they are combined into lines 

when exported to Catia. There is also the possibility to edit the values which have already 

been entered through the userform which makes it quite userfriendly. 

3.4 Toolholder and Insert Selection 

Once the process has been selected it is a simple manner to select the toolholder and 

the insert. The toolholder must be selected first, and simply involves matching the process 

with the correct sort of toolholder. The program for this thesis will select one of each 



29 
 

toolholder that is possible with the geometry of the process and then select the insert 

which will have the fastest machining time with this insert. This generally means the part 

which has the largest cutting depth, but not always. Using practical knowledge the 

program will only use tools that are effective for the geometries demanded as changing 

tools too often can mean a longer machining time. Effectively this means that the program 

looks at the volume to be machined and makes a case on what type of tool should be 

selected according to how well that certain tool can machine that area.  

3.5 Exportation to Catia 

The exportation to Catia will only occur once all of the values that are necessary have 

been preselected for each process. Unfortunately, there is no accessible library for the 

lathe machining workbench within Catia. This means that everything will be produced, up 

until the point where the machining workbench would be opened. The user can utilize the 

report which is produced in order to enter the relevant values in the machining workbench. 

In the Program Demonstration chapter the entire process will be shown as one without 

any real difficulties. This also allows some human knowledge to come within the process 

and ensure a highly optimized process is produced on the first time. 

3.6  Report Production 

The production of a final report is a simple process as the relevant parameters were 

already resolved before any exportation to Catia. The report contains a list of toolholders 

and inserts used, processes, power used, and all of the relevant machining values. This 

is the necessary information for any machining process so although the values will not be 

entered automatically it spares the user from having to sift through the massive metal 

cutting tool catalogs in order to collect all of the relevant data. 

 

 



30 
 

4 Program Demonstration 

This chapter will mostly just consist of pictures demonstrating the process which must be 

gone through in order for the simulation to be produced 

The first step is to introduce the data. Figure 13 demonstrates how the program writes 

the necessary points to Excel. First the user must enter in all the information above the 

Geometry Entry box. Then the user can select which kind of feature to introduce and 

follow the instructions given. The Z and X coordinates are placed into an Excel sheet but 

are also able to be edited within the userform by clicking the edit button, making the 

necessary change in the Points section, and then clicking save edit. This will update all 

coordinates which are affected by the change both within the userform and within the 

Excel sheet as well. 

 

Figure 13. Excel Userform 



31 
 

Figure 14 demonstrates the points which have been uploaded into the Excel file. It also 

shows some of the extra cells which are filled that give information on features which will 

be enacted once the data is sent to Catia. The third column represents origin points for 

instance, while the fourth represents a radius value. 

 

Figure 14. Excel Points 

Figure 15 is the geometrical output. This output contains everything needed for the piece 

to be placed in the lathe machining workbench and be prepared for simulation and 

eventual NC code output. It consists of the final piece placed within the billet which it will 

be machined out of. This way it is possible for the machining simulation to keep track of 

what has been machined and what has not been. 

 



32 
 

 

Figure 15. Prepared Product: Ready for Machining 

 

 

Figure 16. Part Operation 1 Preparation 

Once the lathe machining workbench is open the user must insert a part operation. From 

the part operation setup screen they will select the machine to be used. In this case the 

Catia predetermined Horizontal Lathe Machine is being used. Then the user places the 



33 
 

default reference machining axis upon the other axis which is shown in the product 

already. This is very important as it tells the machine where the part is and where to 

change tools. If the axis is accidentally on the wrong end then the machine may designate 

a tool changing point which is inside the part’s geometry. After the Origin is selected; Part 

1 is inserted as the design piece and Part 2 as the billet. After these all have been entered 

then it is already time to start entering the machining parameters. 

 

 

 

  

 

   

 

Figure 17. Excel Machining Report

This report is produced by clicking the button export 2 and it shows the two part operations 

which will be needed to manufacture the finished piece. There may be some pieces which

only need to be manufactured from one side and for those it is advised to simply mark the 

center point on the other end of the billet so that the program does not want to 

machine anything on that end. It is also important to realize that the user will need to 

enter in the correct tool compensation when selecting the toolholder and insert or else 

the piece will not be machined in the anticipated manner. The user should also do a 

quick computation of the tool path just for a quick verification that the process is 

proceeding correctly.

 

 

Figure 18. Roughing Process 



34 
 

Once all of the operations have been entered into the program then the user can right 

click on the part operation and click on ‘Start Video Simulation Using Tool Path’. This will 

go through each component of the part operation and enable the user to verify that the 

desired output is being produced. This is the main point of producing the simulations; the 

ability to be able to verify that all parts of the machining operation are going smoothly.  

 

Figure 19. Part Operation 1 Finalized  

 

Figure 20. Part Operation 2 Preparation 



35 
 

When setting up the second side everything is identical as when setting up the first side, 

except that when setting up the axis system it is critical that one marks the z axis as 

negative so that the tool changing point is once again in the correct position away from 

the piece. 

 

Figure 21. Tool Path Selection Using Pre-Defined Sketches 

Here is an example of how easy it is to set up the machining processes when the sketches 

have already been defined. One simply selects the sketches for both the stock element 

and the input stock and then marks an end limit. The end limit can be defined as having 

a certain offset so that it is not necessary to make any new lines within the sketch. All one 

does is find the end limit which is perpendicular to the desired end limit and then define 

the offset as desired. 



36 
 

 

Figure 22. Part Operation 2 Finalized 

 

Figure 23. Tool Changes and Machining Operations 

If there is multiple changing geometries within an operation then it may be necessary for 

the user to have two of the roughing and finishing operations with different tool 

compensations. For simple geometries the part operations should look something similar 

to Figure 23. 



37 
 

 

Figure 24. NC Code Generation 

As mentioned earlier, producing the NC code once the simulation has been run is a very 

simple task. With a right click upon the manufacturing program it is possible to get to the 

menu to generate NC code. With this the purpose of the simulation is done and the part 

can be ready to be manufactured provided everything has been entered correctly. 

 

 

 

 

 

 



38 
 

5 Conclusion 

The conclusion section states the limitations of this project, makes recommendations on 

how to further improve upon this program, reflects on the program and the process of 

creating it, and closes with a final conclusion. 

5.1 Limitations 

One limitation for this project is the fact that the tool catalog is so small. This is something 

that could easily be remedied. For instance, if a machine shop already knows which 

inserts and tools they are usually using then it is simple to enter these and add new ones 

as necessary.  

Another issue with this program is it can hang up if the geometry starts to get more 

complicated and then takes a rather long time to solve the geometries and machining 

parameters or it will simply end up shutting down Excel. This may have something to do 

with the programming not being done professionally or by someone with a lot of 

experience. 

Obviously the biggest issue with this project has been the fact that it is not possible to 

write VBA macros that allow one to manipulate the data within the machining workbench. 

This has meant that the process planning part has fallen far short of what it could be and 

the simulation process has not been able to be automated. 

5.2 Recommendations 

It is recommended that whoever is expanding upon this program expand the catalog and 

link all the necessary information regarding the cutting parameters. 

 Another upgrade that would improve the project immensely would be the availability of a 

way to read geometry and plot points directly from either a 2D drawing or a 3D model as 

it would really streamline the process.  

The process planning situation could definitely be improved since it does not have the 

Catia capabilities to depend on to perform automatically, but it is suitable for simple 



39 
 

 

  

 

 

 

  

 

geometries at the moment. If the program is to be expanded to tackle more complicated 

geometries then it is necessary to take a more exhaustive approach.

It would likely be nicer to be able to program in .Net which would require an upgrade to 

Catia v6. It would be nice to program in .Net because then the user can have a bit more

flexibility and would also be able to create a proper, standalone application. Excel VBA 

works, but sometimes its limitations are quite obvious and things just do not work 

correctly. It also requires some very interesting workarounds at points where it just 

does not have  the functions which some other, more advanced programming languages 

will have.

Another recommendation is to look into using a different CAM program which allows one 

to fully program within the machining workbench. This could allow the program to be able

to be fully fleshed out if the proper CAM program is found which effectively produces high 

quality machining simulations and that can be fully accessed via programming.

 

5.3 Reflections 

This thesis project has in some ways been disappointing, but in other ways very eye-

opening and educational. Despite the author not having much programming experience, 

everything has been able to be programmed. Although it is certain that some of the 

solutions are not optimal and could be improved, this programming has helped lead to a 

different way to look at the machining process as well as how CAD/CAM programs are 

structured and operate.  

5.4 Final Conclusion 

In closing, this is definitely a type of system that could be improved upon and adapted to 

more difficult geometries, but it should not solely be an individual project as the amount 

of work is rather large and errors are difficult to spot and resolve with just one person. 

This program would definitely be a help to any machine shop which is making these sort 

of simple turning geometries because it will enable the user to quickly reach the simulation 

verification point and NC production. These simulations enable the user to ensure the 

process is running smoothly and the Catia lathe machining workbench offers a lot of ways 

to easily adjust and optimize the machining program and produce NC code. 



40 
 

This thesis work has resulted in a much better understanding of programming, machining, 

and CAD/CAM programs and has still succeeded in fulfilling two out of three objectives. 

The process does not require too much user input and also will be easy to adopt for more 

complicated geometries, but of course it falls short on one objective which was the fully 

automated turning simulation. In conclusion the program is a success, but not a complete 

success: it is something that enables the engineer to save time and concentrate on 

optimizing the turning process while being easy and quick to use. 

Figures 

Figure 1. Temperature Dissipation of Metal Cutting Processes (2) 

Figure 2. Chip formation factors. (2) 

Figure 3. Example of Vc, ƒ, ap, and n. (2) 

Figure 4. Visual Description of Turning Operations (2) 

Figure 5. Comparison of Stage Priority Factors (3) 

Figure 6. Workflow for Tool, Toolholder, and Cutting Parameters Selection. 

Figure 7. Product Ready for Manufacturing Process. Note the Origin on the Billet Face. 

Figure 8. Tool Path Selection 

Figure 9. Operation Strategy 

Figure 10. Toolholder, Insert, and Cutting Parameter Selection 

Figure 11. Program Workflow 

Figure 12. Part of the tool catalog 

Figure 13. Excel Userform 

Figure 14. The Ready Product 

Figure 15. Prepared Product: Ready for Machining 

Figure 16. Part Operation 1 Preparation 

Figure 17. Excel Machining Report 

Figure 18. Roughing Process 



41 
 

Figure 19. Part Operation 1 Finalized 

Figure 20. Part Operation 2 Preparation 

Figure 21. Tool Path Selection Using Pre-Defined Sketches 

Figure 22. Part Operation 2 Finalized 

Figure 23. Tool Changes and Machining Operations 

Figure 24. NC Code Generation 

List of references 

1. Sandvik Coromant Technical Editorial Dept, p. 1994. Modern Metal Cutting. 
Sandviken: Idereklam, 1994. Print. 

2. Sandvik Coromant Technical Editorial Dept. Sandvik General Turning. Sandvik 
Coromant: 2007. Sandvik Coromant English. Web. 16 Oct 2015. 

3. Balci, Tolga. "Getting Started with Microsoft Excel Visual Basic for Applications 
(VBA)." Bright Hub. Ed. Michele McDonough. N.p., 28 Feb. 2010. Web. 6 Oct. 
2015. <http://www.brighthub.com/computing/windowsplatform/articles/32278.asp 
x>. 

4. Chi, Cheung Ching. Semi-automated Process Planning and Cost Estimation of 
Turned Components Based on CATIA V5 Machining. Thesis. Jönköping 
University, 2008. Web. 10 Oct. 2015. 

5. Lomax, P., (1998) “VB & VBA in a Nutshell: The Language”, O'Reilly Media, Inc., 
Boston, USA. 

6. Lefebvre, Gerald. "Introduction to CATIA V5 Automation." Web log post. CATIA V5 
Design & Automation. N.p., n.d. Web. 08 Oct. 2015. 

7. Dassault Sistemes. “Catia NC Programming.” Catia Resources.   Vélizy-
Villacoublay: Dassault Sistemes. 2003. Catia. Web. 8 Oct. 2015. 

Appendices 

A. VBA Script 

'********************************************************* 
'*This sub marks the center point according to the user's desire. 
'********************************************************** 
Private Sub Center_Click() 
 
Sheet1.Activate 
LastRowA = Cells(Rows.Count, "A").End(xlUp).Row 
Cells(LastRowA, 9) = 1 
End Sub 
 
Private Sub Edit_Click() 
'********************************************************* 



42 
 

'*This sub allows the Editing field to be activated 
'********************************************************** 
Points.Enabled = True 
End Sub 
 
Private Sub EnterEdit_Click() 
'******************************************************** 
'*This sub puts out the proper output from any editing which has occured 
'*Closes the editing process upon the succesful upload of variables 
'********************************************************** 
 
Sheet1.Activate 
 
'Declaration 
Dim arrayz(15) 
'Storing values in the array 
    arrayz(1) = z1.Value 
    arrayz(2) = z2.Value 
    arrayz(3) = z3.Value 
    arrayz(4) = z4.Value 
    arrayz(5) = z5.Value 
    arrayz(6) = z6.Value 
    arrayz(7) = z7.Value 
    arrayz(8) = z8.Value 
    arrayz(9) = z9.Value 
    arrayz(10) = z10.Value 
    arrayz(11) = z11.Value 
    arrayz(12) = z12.Value 
    arrayz(13) = z13.Value 
    arrayz(14) = z14.Value 
    arrayz(15) = z15.Value 
 
'Declaration 
Dim arrayx(15) 
'Storing values in the array 
    arrayx(1) = x1.Value 
    arrayx(2) = x2.Value 
    arrayx(3) = x3.Value 
    arrayx(4) = x4.Value 
    arrayx(5) = x5.Value 
    arrayx(6) = x6.Value 
    arrayx(7) = x7.Value 
    arrayx(8) = x8.Value 
    arrayx(9) = x9.Value 
    arrayx(10) = x10.Value 
    arrayx(11) = x11.Value 



43 
 

    arrayx(12) = x12.Value 
    arrayx(13) = x13.Value 
    arrayx(14) = x14.Value 
    arrayx(15) = x15.Value 
 
 
'Declaration 
Dim arrayf(15) 
'Storing values in the array 
    arrayf(1) = f1.Value 
    arrayf(2) = f2.Value 
    arrayf(3) = f3.Value 
    arrayf(4) = f4.Value 
    arrayf(5) = f5.Value 
    arrayf(6) = f6.Value 
    arrayf(7) = f7.Value 
    arrayf(8) = f8.Value 
    arrayf(9) = f9.Value 
    arrayf(10) = f10.Value 
    arrayf(11) = f11.Value 
    arrayf(12) = f12.Value 
    arrayf(13) = f13.Value 
    arrayf(14) = f14.Value 
    arrayf(15) = f15.Value 
 
 
'Declaration 
Dim arrays(15) 
'Storing values in the array 
    arrays(1) = s1.Value 
    arrays(2) = s2.Value 
    arrays(3) = s3.Value 
    arrays(4) = s4.Value 
    arrays(5) = s5.Value 
    arrays(6) = s6.Value 
    arrays(7) = s7.Value 
    arrays(8) = s8.Value 
    arrays(9) = s9.Value 
    arrays(10) = s10.Value 
    arrays(11) = s11.Value 
    arrays(12) = s12.Value 
    arrays(13) = s13.Value 
    arrays(14) = s14.Value 
    arrays(15) = s15.Value 
'closes the ability to edit until the edit button is once again pressed 
Points.Enabled = False 



44 
 

 
End Sub 
 
'********************************************************* 
'* 
'*This sub sets up the product. It first creates the geometry of the finished piece according 
to the points entered 
'*Using geometrical methods, the sketch is completely produced. 
'*Then it produces the geometry of the billet 
'*Next it produces a product of the two combined 
'*Finally it places an axis which will be used for machining on the product 
'* 
'*********************************************************** 
 
Private Sub Export_Click() 
 
'*********************************************************** 
'* 
'*Set up connection between Catia and Excel 
'*If Catia is not on, then it will be started 
'* 
'*********************************************************** 
Dim CATIA As Object 
 
On Error Resume Next 
Set CATIA = GetObject("CATIA.Application") 
If Err.Number <> 0 Then 
 Set CATIA = CreateObject("CATIA.Application") 
 CATIA.Visible = True 
End If 
On Error GoTo 0 
 
'********************************************************* 
'* 
'*Connect to the relevant Catia libraries 
'*Create the finished piece geometry 
'*Import all points 
'*Connect points with lines or radius as desired 
'*Rotate sketch around center axis to create revolved shape 
'* 
'********************************************************** 
Dim myDocument As Documents 
Set myDocument = CATIA.Documents 
 
Dim partDocument1 As PartDocument 
Set partDocument1 = myDocument.Add("Part") 



45 
 

 
Dim part1 As Part 
Set part1 = partDocument1.Part 
 
Dim bodies1 As Bodies 
Set bodies1 = part1.Bodies 
 
Dim body1 As Body 
Set body1 = bodies1.Item("PartBody") 
 
Dim sketches1 As sketches 
Set sketches1 = body1.sketches 
 
Dim originelements1 As OriginElements 
Set originelements1 = part1.OriginElements 
 
Dim reference1 As Reference 
Set reference1 = originelements1.PlaneZX 
 
Dim sketch1 As Sketch 
Set sketch1 = sketches1.Add(reference1) 
 
Dim factory2D1 As Factory2D 
Set factory2D1 = sketch1.OpenEdition 
 
'********************************************************* 
'import all points 
'********************************************************** 
Sheet1.Activate 
LastRowA = Cells(Rows.Count, "A").End(xlUp).Row 
Dim i As Integer 
i = 1 
Do While i < (LastRowA + 1) 
Dim point2D1 As Point2D 
Set point2D1 = factory2D1.CreatePoint(Cells(i, 1).Value, Cells(i, 2).Value) 
i = i + 1 
Loop 
 
'********************************************************* 
'Connect all points with line or radius as desired 
'********************************************************* 
Dim j As Integer 
j = 2 
Do While j < (LastRowA - 1) 
Dim line2D1 As Line2D 



46 
 

Set line2D1 = factory2D1.CreateLine(Cells(j, 1).Value, Cells(j, 2).Value, Cells(j + 1, 
1).Value, Cells(j + 1, 2).Value) 
j = j + 1 
Loop 
 
'********************************************************* 
'Close sketch along the axis 
'********************************************************* 
Set line2D1 = factory2D1.CreateLine(Cells(2, 1).Value, Cells(2, 2).Value, 
Cells(LastRowA - 1, 1).Value, Cells(LastRowA - 1, 2).Value) 
 
sketch1.CloseEdition 
 
'********************************************************* 
'Revolve sketch to create finished part 
'********************************************************* 
Dim My_Shaft As Shaft 
Set My_Shaft = part1.ShapeFactory.AddNewShaft(sketch1) 
Dim geometricElements1 As GeometricElements 
Set geometricElements1 = sketch1.GeometricElements 
Dim axis2d1 As Axis2D 
Set axis2d1 = geometricElements1.Item("AbsoluteAxis") 
Dim reference2 As Reference 
Set reference2 = axis2d1.GetItem("HDirection") 
My_Shaft.RevoluteAxis = reference2 
 
Dim sketches11 As sketches 
Set sketches11 = body1.sketches 
 
Dim originelements11 As OriginElements 
Set originelements11 = part1.OriginElements 
 
Dim reference11 As Reference 
Set reference11 = originelements11.PlaneZX 
 
Dim sketch11 As Sketch 
Set sketch11 = sketches11.Add(reference11) 
 
Dim factory2D11 As Factory2D 
Set factory2D11 = sketch11.OpenEdition 
 
'********************************************************* 
'Sketches Notch sketches 
'********************************************************* 
Dim k As Integer 
k = 1 



47 
 

Do While k <= LastRowA 
 If Cells(k, 10).Value = 1 Then 
    Dim sketch12 As Sketch 
    Set sketch12 = sketches1.Add(reference1) 
 
    Dim factory2D12 As Factory2D 
    Set factory2D12 = sketch12.OpenEdition 
    '********************************************************* 
    'The following creates an open 'U' shape which the Catia Lathe Machining Workbench          
uses for notch operations 
    '********************************************************* 
    Dim line2D12 As Line2D 
    Set line2D12 = factory2D12.CreateLine(Cells(k, 1).Value, Cells(k, 2).Value, Cells(k + 
1, 1).Value, Cells(k + 1, 2).Value) 
    Set line2D12 = factory2D12.CreateLine(Cells(k + 1, 1).Value, Cells(k + 1, 2).Value, 
Cells(k + 2, 1).Value, Cells(k + 2, 2).Value) 
    Set line2D12 = factory2D12.CreateLine(Cells(k + 2, 1).Value, Cells(k + 2, 2).Value, 
Cells(k + 3, 1).Value, Cells(k + 3, 2).Value) 
    k = k + 3 
    sketch12.CloseEdition 
    Else 
    End If 
 
    k = k + 1 
    Loop 
 
 
'********************************************************* 
'* 
'*The following will create a sketch which can be used for both Roughing and Finishing 
operations 
'*Catia will automatically detect collisions if you enable it 
'*This allows the program to use the strengths of Catia 
'* 
'********************************************************** 
 
'********************************************************* 
'Find roughing and finishing sketch 
'********************************************************* 
LastRowA = Cells(Rows.Count, "A").End(xlUp).Row 
Dim l As Integer 
l = 2 
Dim sketch13 As Sketch 
Set sketch13 = sketches1.Add(reference1) 
 
Dim factory2D13 As Factory2D 



48 
 

Set factory2D13 = sketch13.OpenEdition 
Dim line2D13 As Line2D 
Do While l < LastRowA 
    '********************************************************* 
    'Creates a straight line over the notch feature 
    '********************************************************* 
      If Cells(l, 10).Value = 1 Then 
 
      Set line2D13 = factory2D13.CreateLine(Cells(l, 1).Value, Cells(l, 2).Value, Cells(l + 
3, 1).Value, Cells(l + 3, 2).Value) 
      l = l + 3 
      Else 
      End If 
      '********************************************************* 
      'This gets the rest of the sketch from the Excel sheet allowing the sketch to be 
connected 
      '********************************************************* 
      Set line2D13 = factory2D13.CreateLine(Cells(l, 1).Value, Cells(l, 2).Value, Cells(l + 
1, 1).Value, Cells(l + 1, 2).Value) 
      l = l + 1 
      '********************************************************* 
      'This calls the radius creation 
      'This feature is still not always bug free 
      'If the program does not execute correctly then add radius in manually 
      '********************************************************* 
      If Cells(l + 1, 4) > 0 Then 
      Set line2D13 = factory2D13.CreateLine(Cells(l, 1).Value, Cells(l, 2).Value, Cells(l + 
1, 1).Value, Cells(l + 1, 2).Value) 
      Dim lc1 As line2D13 
      Set line2D13 = factory2D13.CreateLine(Cells(l + 1, 1).Value, Cells(l + 1, 2).Value, 
Cells(l + 2, 1).Value, Cells(l + 2, 2).Value) 
      Dim lc2 As line2D13 
 
        Dim hybridBodies1 As HybridBodies 
        Set hybridBodies1 = part1.HybridBodies 
 
        Dim hb1 As HybridBody 
        Set hb1 = hybridBodies1.Item("Geometrical Set.1") 
 
        sketch13 = hb1.HybridSketches.Add(BasePlane) 
        spa As SPAWorkbench 
        spa = CATIA.ActiveDocument.GetWorkbench("SPAWorkbench") 
        Dim c1(1), c2(1) 
        Dim b1(1), b2(1) 
        Dim vRef = spa.GetMeasurable (Line1).GetMinimumDistance (Line2) 
 



49 
 

        Dim refPoint1 As Point2D 
        Dim refPoint2 As Point2D 
 
        Dim C As Constraint 
        Line1.StartPoint.GetCoordinates (c1) 
        Line1.EndPoint.GetCoordinates (c2) 
 
        Line2.StartPoint.GetCoordinates (b1) 
        Line2.EndPoint.GetCoordinates (b2) 
 
        If 
Math.Round(spa.GetMeasurable(Line1.StartPoint).GetMinimumDistance(Line2.StartPoi
nt) - vRef, 4) = 0 Then 
            refPoint1 = Line1.StartPoint 
            refPoint2 = Line2.StartPoint 
        ElseIf 
Math.Round(spa.GetMeasurable(Line1.StartPoint).GetMinimumDistance(Line2.EndPoin
t) - vRef, 4) = 0 Then 
            refPoint1 = Line1.StartPoint 
            refPoint2 = Line2.EndPoint 
        ElseIf 
Math.Round(spa.GetMeasurable(Line1.EndPoint).GetMinimumDistance(Line2.StartPoin
t) - vRef, 4) = 0 Then 
            refPoint1 = Line1.EndPoint 
            refPoint2 = Line2.StartPoint 
        ElseIf 
Math.Round(spa.GetMeasurable(Line1.EndPoint).GetMinimumDistance(Line2.EndPoint
) - vRef, 4) = 0 Then 
            refPoint1 = Line1.EndPoint 
            refPoint2 = Line2.EndPoint 
        End If 
 
        c1(0) = (c1(0) + b1(0) + c2(0) + b2(0)) / 4 
        c1(1) = (c1(1) + b1(1) + c2(1) + b2(1)) / 4 
 
        Dim Fix1 As Constraint 
        Fix1 = sketch13.Constraints.AddMonoEltCst(catCstTypeReference, Line1) 
        Dim Fix2 As Constraint 
        Fix2 = sketch13.Constraints.AddMonoEltCst(catCstTypeReference, Line2) 
 
 
        Dim CenterPoint As Point2D 
        CenterPoint = factory2D13.CreatePoint(c1(0), c1(1)) 
        CenterPoint.Construction = True 
 
        C = sketch13.Constraints.AddBiEltCst(catCstTypeDistance, CenterPoint, Line1) 



50 
 

        C.Dimension.Value = Radius 
 
        C = sketch13.Constraints.AddBiEltCst(catCstTypeDistance, CenterPoint, Line2) 
        C.Dimension.Value = Radius 
 
        CenterPoint.GetCoordinates (c1) 
 
        Dim Arc As Circle2D 
        Arc = factory2D13.CreateCircle(c1(0), c1(1), Radius, 0, 1) 
        C = sketch13.Constraints.AddMonoEltCst(catCstTypeRadius, Arc) 
        C.Dimension.Value = Radius 
 
        C = sketch13.Constraints.AddBiEltCst(catCstTypeTangency, Arc, Line1) 
        C = sketch13.Constraints.AddBiEltCst(catCstTypeTangency, Arc, Line2) 
 
        Dim ct1 As Constraint 
        ct1 = sketch13.Constraints.AddBiEltCst(catCstTypeOn, Arc.StartPoint, Line1) 
        Dim ct2 As Constraint 
        ct2 = sketch13.Constraints.AddBiEltCst(catCstTypeOn, Arc.EndPoint, Line2) 
 
 
        If spa.GetMeasurable(Arc).Length > 3.14 * Radius Then 
            Change = True 
            sketch13 = Clear() 
            sketch13.Add (ct1) 
            sketch13.Add (ct2) 
            sketch13 = Delete() 
            ct1 = sketch13.Constraints.AddBiEltCst(catCstTypeOn, Arc.EndPoint, Line1) 
            ct2 = sketch13.Constraints.AddBiEltCst(catCstTypeOn, Arc.StartPoint, Line2) 
        End If 
        sketch13 = Clear() 
        sketch13.Add (Fix1) 
        sketch13.Add (Fix2) 
        sketch13 = Delete() 
       Loop 
sketch13.CloseEdition 
 
part1.Update 
 
'********************************************************* 
'save finished piece as "part1.CATPart" 
'to save in a different location this must be changed manually 
'********************************************************* 
CATIA.ActiveDocument.SaveAs "C:\Users\Raisanen\Documents\CATIA\Raisanen 
Thesis\part1" 
'********************************************************* 



51 
 

'* 
'*Create the billet geometry 
'*Create all points 
'*Connect points with lines 
'*Rotate sketch around center axis to create revolved shape 
'* 
'********************************************************** 
 
Dim myDocument2 As Documents 
Set myDocument2 = CATIA.Documents 
 
Dim partDocument2 As PartDocument 
Set partDocument2 = myDocument.Add("Part") 
 
Dim part2 As Part 
Set part2 = partDocument2.Part 
 
Dim bodies2 As Bodies 
Set bodies2 = part2.Bodies 
 
Dim body2 As Body 
Set body2 = bodies2.Item("PartBody") 
 
Dim sketches2 As sketches 
Set sketches2 = body2.sketches 
 
Dim originelements2 As OriginElements 
Set originelements2 = part2.OriginElements 
 
Dim reference3 As Reference 
Set reference3 = originelements2.PlaneZX 
 
Dim sketch2 As Sketch 
Set sketch2 = sketches2.Add(reference3) 
 
Dim factory2D2 As Factory2D 
Set factory2D2 = sketch2.OpenEdition 
 
'********************************************************* 
'Enter necessary points according to the billet geometry 
'********************************************************* 
Dim point2D2 As Point2D 
Set point2D2 = factory2D2.CreatePoint(0, 0) 
Set point2D2 = factory2D2.CreatePoint(0, BilletDia / 2) 
Set point2D2 = factory2D2.CreatePoint(BilletLength, BilletDia / 2) 
Set point2D2 = factory2D2.CreatePoint(BilletLength, 0) 



52 
 

 
'********************************************************* 
'Set up all lines for the billet 
'********************************************************* 
Dim line2D2 As Line2D 
Set line2D2 = factory2D2.CreateLine(0, 0, 0, (BilletDia / 2)) 
Set line2D2 = factory2D2.CreateLine(0, (BilletDia / 2), BilletLength, (BilletDia / 2)) 
Set line2D2 = factory2D2.CreateLine(BilletLength, (BilletDia / 2), BilletLength, 0) 
Set line2D2 = factory2D2.CreateLine(BilletLength, 0, 0, 0) 
 
sketch1.CloseEdition 
 
'********************************************************* 
'Create the revolved solid 
'********************************************************* 
Dim My_Shaft2 As Shaft 
Set My_Shaft2 = part2.ShapeFactory.AddNewShaft(sketch2) 
Dim geometricElements2 As GeometricElements 
Set geometricElements2 = sketch2.GeometricElements 
Dim axis2d2 As Axis2D 
Set axis2d2 = geometricElements2.Item("AbsoluteAxis") 
Dim reference4 As Reference 
Set reference4 = axis2d2.GetItem("HDirection") 
My_Shaft2.RevoluteAxis = reference4 
 
 
'********************************************************* 
'* 
'*Create the proper axis system for the first phase of machining 
'*Involves defining a new axis 
'*Similar process will have to occur once more for the second phase 
'* 
'********************************************************** 
    Dim oPartDocument As PartDocument 
    Dim oPart As Part 
    Dim oAxis As Object 'Actual type is AxisSystem, but some properties & methods are 
marked "restricted" unless we late bind the type. 
 
    'Get the part document and part objects 
    Set oPartDocument = CATIA.ActiveDocument 
    Set oPart = oPartDocument.Part 
 
    'Create the axis, configure how the vectors & origin are defined 
    Set oAxis = oPart.AxisSystems.Add 
    oAxis.Type = catAxisSystemStandard 
 



53 
 

    Dim oReference As Reference 
    Set oReference = 
oPart.CreateReferenceFromObject(oPart.HybridBodies.Item(1).HybridShapes.Item("Poi
nt.10")) 
 
    oAxis.OriginType = catAxisSystemOriginByPoint '0 
    oAxis.OriginPoint = oReference 
 
    oAxis.XAxisType = catAxisSystemAxisSameDirection '0 
    oAxis.YAxisType = catAxisSystemAxisSameDirection '0 
    oAxis.ZAxisType = catAxisSystemAxisSameDirection '0 
 
    'Set the Z-Axis by coordinates 
    Set oReference = 
oPart.CreateReferenceFromObject(oPart.HybridBodies.Item(1).HybridShapes.Item("Axi
s.1")) 
 
    oAxis.ZAxisDirection = oReference 
 
    'Update the axis system 
    oPart.UpdateObject oAxis 
    oPart.Update 
     
'********************************************************* 
'Save billet part as "part2.CATPart" 
'To save in a different location this must be changed manually 
'********************************************************* 
part2.Update 
CATIA.ActiveDocument.SaveAs "C:\Users\Raisanen\Documents\CATIA\Raisanen 
Thesis\part2" 
 
'********************************************************* 
'* 
'*This saves the product which contains the new axis system as "product1.CATProduct" 
'*The path must be manually changed to save in a different location 
'* 
'********************************************************** 
Set documents1 = CATIA.Documents 
Set productDocument1 = documents1.Add("Product") 
Set product1 = productDocument1.Product 
Set products1 = product1.Products 
Dim arrayOfVariantOfBSTR1(0) 
 
arrayOfVariantOfBSTR1(0) = "C:\Users\Raisanen\Documents\CATIA\Raisanen 
Thesis\part1.CATPart" 
products1.AddComponentsFromFiles arrayOfVariantOfBSTR1, "All" 



54 
 

 
 
Dim arrayOfVariantOfBSTR2(0) 
 
arrayOfVariantOfBSTR2(0) = "C:\Users\Raisanen\Documents\CATIA\Raisanen 
Thesis\part2.CATPart" 
products1.AddComponentsFromFiles arrayOfVariantOfBSTR2, "All" 
 
CATIA.ActiveDocument.SaveAs "C:\Users\Raisanen\Documents\CATIA\Raisanen 
Thesis\product1" 
 
End Sub 
 
'********************************************************* 
'* 
'*This sub calculates which tools should be used for which operation 
'*Outputs to a small report form in Sheet3 
'*The data comes from the tool catalog 
'* 
'********************************************************** 
Private Sub Export2_Click() 
 
Sheet1.Activate 
Sheet2.Activate 
LastRowA = Cells(Rows.Count, "A").End(xlUp).Row 
 
'********************************************************* 
'calculate if round inserts will work for the roughing and if it is worth using 
'volume to be removed if it is high proportionwise then circle insert will be used, high>33% 
'then applies tools for finishing and notch features as appropriate 
'********************************************************* 
Dim m As Integer 
m = 1 
Dim Catalog As Worksheet 
Dim Report As Worksheet 
Dim sourceRange As Range 
Dim destRange As Range 
 
' Define worksheet object variables 
Set wscat = Worksheets("Sheet2") 
Set wsrep = Worksheets("Sheet3") 
 
If BilletDia - Sheets("Sheet1").Range("B" & 3) > BilletDia / 3 And BilletDia - 
Sheets("Sheet1").Range("B" & 4) > BilletDia / 3 And Sheets("Sheet1").Range("A" & 3) - 
Sheets("Sheet1").Range("A" & 4) > 25 Then 
    If BilletDia - Sheets("Sheet1").Range("B" & 4) > 30 Then 



55 
 

        With wsrep 
        Set destRange = .Range(.Cells(2, 1), .Cells(2, 12)) 
        End With 
        With wscat 
        Set sourceRange = .Range(.Cells(3, 1), .Cells(3, 12)) 
        End With 
        destRange.Value = sourceRange.Value 
    Else 
        With wsrep 
        Set destRange = .Range(.Cells(2, 1), .Cells(2, 12)) 
        End With 
        With wscat 
        Set sourceRange = .Range(.Cells(2, 1), .Cells(2, 12)) 
        End With 
        destRange.Value = sourceRange.Value 
    End If 
    Else 
    With wsrep 
    Set destRange = .Range(.Cells(2, 1), .Cells(2, 12)) 
    End With 
    With wscat 
    Set sourceRange = .Range(.Cells(5, 1), .Cells(5, 12)) 
    End With 
    destRange.Value = sourceRange.Value 
End If 
    With wsrep 
    Set destRange = .Range(.Cells(3, 1), .Cells(3, 12)) 
    End With 
    With wscat 
    Set sourceRange = .Range(.Cells(4, 1), .Cells(4, 12)) 
    End With 
    destRange.Value = sourceRange.Value 
 
If BilletDia - Sheets("Sheet1").Range("B" & LastRowA - 2) > BilletDia / 3 And BilletDia - 
Sheets("Sheet1").Range("B" & LastRowA - 3) > BilletDia / 3 And 
Sheets("Sheet1").Range("A" & LastRowA - 2) - Sheets("Sheet1").Range("A" & LastRowA 
- 3) > 25 Then 
    If BilletDia - Sheets("Sheet1").Range("A" & LastRowA - 2) > 30 Then 
        With wsrep 
        Set destRange = .Range(.Cells(5, 1), .Cells(5, 12)) 
        End With 
        With wscat 
        Set sourceRange = .Range(.Cells(3, 1), .Cells(3, 12)) 
        End With 
        destRange.Value = sourceRange.Value 
    Else 



56 
 

        With wsrep 
        Set destRange = .Range(.Cells(5, 1), .Cells(5, 12)) 
        End With 
        With wscat 
        Set sourceRange = .Range(.Cells(2, 1), .Cells(2, 12)) 
        End With 
        destRange.Value = sourceRange.Value 
    End If 
    Else 
    With wsrep 
    Set destRange = .Range(.Cells(5, 1), .Cells(5, 12)) 
    End With 
    With wscat 
    Set sourceRange = .Range(.Cells(5, 1), .Cells(5, 12)) 
    End With 
    destRange.Value = sourceRange.Value 
End If 
    With wsrep 
    Set destRange = .Range(.Cells(6, 1), .Cells(6, 12)) 
    End With 
    With wscat 
    Set sourceRange = .Range(.Cells(4, 1), .Cells(4, 12)) 
    End With 
    destRange.Value = sourceRange.Value 
    With wsrep 
    Set destRange = .Range(.Cells(7, 1), .Cells(7, 12)) 
    End With 
    With wscat 
    Set sourceRange = .Range(.Cells(6, 1), .Cells(6, 12)) 
    End With 
    destRange.Value = sourceRange.Value 
     
 
End Sub 
 
'********************************************************* 
'* 
'*This sub sends the user entered data to the Excel sheet as coordinates 
'*It automatically solves for radius, chamfer, and notch features 
'*Solves for correct point placement 
'* 
'********************************************************* 
Private Sub SendData_Click() 
Dim emptyRow As Long 
 
'********************************************************* 



57 
 

'*Enters in the first few values which are only dependent on finished length and billet 
length 
'********************************************************* 
Sheet1.Activate 
Cells(1, 1).Value = 0 
z1 = 0 
Cells(1, 2).Value = 0 
x1 = 0 
Cells(1, 3).Value = 1 
s3 = "Origin" 
i = (BilletLength - FinishedLength) / 2 
Cells(2, 1).Value = i 
z2 = i 
Cells(2, 2).Value = 0 
x2 = 0 
Dim arrayz(15) 
Dim arrayx(15) 
Dim arrayf(15) 
Dim arrays(15) 
emptyRow = WorksheetFunction.CountA(Range("A:A")) + 1 
LastRowA = Cells(Rows.Count, "A").End(xlUp).Row 
Dim z As Integer 
Const radians As Double = 3.14159265358979 / 180 
 
'********************************************************* 
'Automatically detects if the piece has finished already 
'*Check 1 
'********************************************************* 
If Cells(LastRowA, 2).Value = 0 And Cells(LastRowA, 1).Value > 0 And Cells(LastRowA 
- 1, 1).Value > 0 Then 
    Instructions.Text = "Geometry is now closed, Press Export to produce simulation and 
Excel Report" 
    Cells(emptyRow, 1).Value = FinishedLength 
    arrayz(emptyRow) = FinishedLength 
    Cells(emptyRow, 2).Value = 0 
    arrayx(emptyRow) = 0 
    Cells(emptyRow, 1).Value = BilletLength 
    arrayz(emptyRow) = BilletLength 
    Cells(emptyRow, 2).Value = 0 
    arrayx(emptyRow) = 0 
    Cells(emptyRow, 3).Value = 1 
    arrayf(emptyRow) = "Origin" 
Else 
End If 
 
'********************************************************* 



58 
 

'Solves for the line feature depending on the length and the angle entered 
'Second check if the piece is finished 
'Angle is taken as 0 degrees coming from the clamping system in the Z direction 
'********************************************************* 
If UserEntry = "Line" Then 
    '********************************************************* 
    'Checks if there is a chamfer feature. If there is then the distance 
    'is counted from the line from where the chamfer begins. 
    'This first if statement is for a positive angled chamfer 
    '********************************************************* 
    If Cells(LastRowA, 5).Value > 0 Then 
    Cells(emptyRow, 1).Value = ((Cells(LastRowA, 1).Value - Cells(LastRowA, 5).Value) 
+ Cos(Angles.Value * radians) * Dimensions.Value) 
    Cells(emptyRow, 2).Value = (Cells(LastRowA, 2).Value + Sin(Angles.Value * radians) 
* Dimensions.Value) 
    arrayz(emptyRow) = Cells(emptyRow, 1).Value 
    arrayx(emptyRow) = Cells(emptyRow, 2).Value 
    Else 
    End If 
    '********************************************************* 
    'Checks if there is a chamfer feature. If there is then the distance 
    'is counted from the line from where the chamfer begins. 
    'This second if statement is for a negative angled chamfer 
    '********************************************************* 
    If Cells(LastRowA, 5).Value < 0 Then 
    Cells(emptyRow, 1).Value = (Cells(LastRowA, 1).Value + Cos(Angles.Value * radians) 
* Dimensions.Value) 
    Cells(emptyRow, 2).Value = ((Cells(LastRowA, 2).Value + Cells(LastRowA, 5)) + 
Sin(Angles.Value * radians) * Dimensions.Value) 
    arrayz(emptyRow) = Cells(emptyRow, 1).Value 
    arrayx(emptyRow) = Cells(emptyRow, 2).Value 
    Else 
    End If 
    '********************************************************* 
    'Normal line entry 
    '********************************************************* 
    If Cells(LastRowA, 5).Value = 0 Then 
    Cells(emptyRow, 1).Value = (Cells(LastRowA, 1).Value + Cos(Angles.Value * radians) 
* Dimensions.Value) 
    Cells(emptyRow, 2).Value = (Cells(LastRowA, 2).Value + Sin(Angles.Value * radians) 
* Dimensions.Value) 
    arrayz(emptyRow) = Cells(emptyRow, 1).Value 
    arrayx(emptyRow) = Cells(emptyRow, 2).Value 
    Else 
    End If 
    UserEntry = "" 



59 
 

    If Cells(LastRowA, 2).Value = 0 And Cells(LastRowA - 1, 2).Value > 0 Then 
    Instructions.Text = "Geometry is now closed, Press Export to produce simulation and 
Excel Report" 
    Cells(emptyRow, 1).Value = FinishedLength 
    Cells(emptyRow, 2).Value = 0 
    Cells(emptyRow, 3).Value = 1 
    arrayz(emptyRow) = Cells(emptyRow, 1).Value 
    arrayx(emptyRow) = Cells(emptyRow, 2).Value 
    arrayf(emptyRow) = "Origin" 
    Else 
    End If 
 
Else 
End If 
 
'********************************************************* 
'Marks that for this point a radius must be produced within Catia when doing the sketches 
'********************************************************* 
If UserEntry = "Radius" Then 
    Cells(LastRowA, 4).Value = Dimensions 
    UserEntry = "" 
    arrayf(LastRowA) = "Radius" 
    arrays(LastRowA) = Cells(LastRowA, 4).Value 
Else 
End If 
 
'********************************************************* 
'Solves for the Chamfer 
'Modifies the last row to reflect the new end point 
'Adds the second point according to the length 
'********************************************************* 
If UserEntry = "Chamfer" Then 
    Dim m As Double 
    Dim n As Double 
    If Angles > 0 Then 
    '***************************************************** 
    '*Positive geometry 
    '***************************************************** 
    m = Cells(LastRowA, 1).Value 
    n = Cells(LastRowA, 2).Value 
    Cells(LastRowA, 2).Value = n - (Cos(Angles) * Dimensions) 
    arrayx(LastRowA) = Cells(LastRowA, 2).Value 
    Cells(emptyRow, 1).Value = m + (Sin(Angles) * Dimensions) 
    arrayz(emptyRow) = Cells(emptyRow, 1).Value 
    Cells(emptyRow, 2).Value = n 
    arrayx(emptyRow) = Cells(emptyRow, 2).Value 



60 
 

    Cells(emptyRow, 5).Value = (Sin(Angles) * Dimensions) 
    arrays(emptyRow) = Cells(emptyRow, 5).Value 
    arrayf(emptyRow) = "Chamfer" 
    Else 
    '***************************************************** 
    '*Negative geometry 
    '***************************************************** 
    m = Cells(LastRowA, 1).Value 
    n = Cells(LastRowA, 2).Value 
    Cells(LastRowA, 1).Value = m - (Sin(Angles) * Dimensions) 
    arrayz(LastRowA) = Cells(LastRowA, 1).Value 
    Cells(emptyRow, 1).Value = m 
    arrayz(emptyRow) = Cells(emptyRow, 1).Value 
    Cells(emptyRow, 2).Value = n - (Cos(Angles) * Dimensions) 
    arrayx(emptyRow) = Cells(emptyRow, 2).Value 
    Cells(emptyRow, 5).Value = (Cos(Angles) * Dimensions) 
    arrays(emptyRow) = Cells(emptyRow, 5).Value 
    arrayf(emptyRow) = "Chamfer" 
    UserEntry = "" 
    End If 
End If 
 
'********************************************************* 
'Solves for the notch feature based on length and depth 
'********************************************************* 
If UserEntry = "Notch" Then 
    Cells(LastRowA, 10).Value = 1 
     arrayf(LastRowA) = "Notch" 
    Cells(emptyRow, 1).Value = Cells(LastRowA, 1).Value 
     arrayz(emptyRow) = Cells(emptyRow, 1).Value 
    Cells(emptyRow, 2).Value = Cells(LastRowA, 2).Value - Angles 
     arrayx(emptyRow) = Cells(emptyRow, 2).Value 
    Cells(emptyRow, 10).Value = 1 
     arrayf(emptyRow) = "Notch" 
    Cells(emptyRow + 1, 1).Value = Cells(emptyRow, 1).Value + Dimensions 
     arrayz(emptyRow + 1) = Cells(emptyRow + 1, 1).Value 
    Cells(emptyRow + 1, 2).Value = Cells(emptyRow, 2).Value 
     arrayx(emptyRow + 1) = Cells(emptyRow + 1, 2).Value 
    Cells(emptyRow + 1, 10).Value = 1 
     arrayf(emptyRow + 1) = "Notch" 
    Cells(emptyRow + 2, 1).Value = Cells(emptyRow + 1, 1).Value 
     arrayz(emptyRow + 2) = Cells(emptyRow + 2, 1).Value 
    Cells(emptyRow + 2, 2).Value = Cells(emptyRow + 1, 2).Value + Angles 
     arrayx(emptyRow + 2) = Cells(emptyRow + 2, 2).Value 
    Cells(emptyRow + 2, 10).Value = 1 
     arrayf(emptyRow + 2) = "Notch" 



61 
 

    UserEntry = "" 
 
Else 
End If 
 
'Storing values in the array 
For z = 1 To LastRowA 
    arrayz(z) = Cells(z, 1).Value 
Next 
For z = LastRowA + 1 To 15 
      arrayz(z) = 0 
Next 
 
'Storing values in the array 
For z = 1 To LastRowA 
    arrayx(z) = Cells(z, 2).Value 
Next 
For z = LastRowA + 1 To 15 
      arrayx(z) = 0 
Next 
 
'definition of all textboxes in the edit section 
z1 = arrayz(1) 
z2 = arrayz(2) 
z3 = arrayz(3) 
z4 = arrayz(4) 
z5 = arrayz(5) 
z6 = arrayz(6) 
z7 = arrayz(7) 
z8 = arrayz(8) 
z9 = arrayz(9) 
z10 = arrayz(10) 
z11 = arrayz(11) 
z12 = arrayz(12) 
z13 = arrayz(13) 
z14 = arrayz(14) 
z15 = arrayz(15) 
 
x1 = arrayx(1) 
x2 = arrayx(2) 
x3 = arrayx(3) 
x4 = arrayx(4) 
x5 = arrayx(5) 
x6 = arrayx(6) 
x7 = arrayx(7) 
x8 = arrayx(8) 



62 
 

x9 = arrayx(9) 
x10 = arrayx(10) 
x11 = arrayx(11) 
x12 = arrayx(12) 
x13 = arrayx(13) 
x14 = arrayx(14) 
x15 = arrayx(15) 
 
f1 = arrayf(1) 
f2 = arrayf(2) 
f3 = arrayf(3) 
f4 = arrayf(4) 
f5 = arrayf(5) 
f6 = arrayf(6) 
f7 = arrayf(7) 
f8 = arrayf(8) 
f9 = arrayf(9) 
f10 = arrayf(10) 
f11 = arrayf(11) 
f12 = arrayf(12) 
f13 = arrayf(13) 
f14 = arrayf(14) 
f15 = arrayf(15) 
 
s1 = arrays(1) 
s2 = arrays(2) 
s3 = arrays(3) 
s4 = arrays(4) 
s5 = arrays(5) 
s6 = arrays(6) 
s7 = arrays(7) 
s8 = arrays(8) 
s9 = arrays(9) 
s10 = arrays(10) 
s11 = arrays(11) 
s12 = arrays(12) 
s13 = arrays(13) 
s14 = arrays(14) 
s15 = arrays(15) 
 
 
End Sub 
 
 
Private Sub UserEntry_Change() 
 



63 
 

'********************************************************* 
'Depending on the operation chosen will give different instructions to the user 
'********************************************************* 
 
If UserEntry = "Line" Then 
    Instructions.Text = "Enter length in mm and angle in degrees in the boxes below. Hit 
SEND when done." 
Else 
End If 
 
If UserEntry = "Radius" Then 
    Instructions.Text = "Enter the radius value in mm in the appropriate box below. Hit 
SEND when done." 
Else 
End If 
     
If UserEntry = "Chamfer" Then 
    Instructions.Text = "Enter length of the chamfered surface in mm and the angle in 
degrees in the boxes below. Hit SEND when done." 
Else 
End If 
     
If UserEntry = "Notch" Then 
    Instructions.Text = "Enter length in mm in the first box and the depth in mm in the 
second box. Hit SEND when done." 
Else 
End If 
 
End Sub 
 
'********************************************************* 
'* 
'Initalizes the UserForm for use 
'* 
'********************************************************* 
Private Sub UserForm_Initialize() 
 
'Empty MachineType 
MachineType.Clear 
 
'Fill MachineType 
With MachineType 
    .AddItem "Catia predetermined(max n=10000rpm)" 
    .AddItem "Only Catia predetermined currently available" 
End With 
 



64 
 

'Empty MaterialType 
MaterialType.Clear 
 
'Fill MaterialType 
With MaterialType 
    .AddItem "Aluminum alloy" 
    .AddItem "Only Alumnimum alloy with current catalog" 
End With 
 
'Empty BilletDia 
BilletDia.Value = "" 
 
'Empty BilletLength 
BilletLength.Value = "" 
 
'Fill FinishQuality 
With FinishQuality 
    .AddItem "ISO 2768-mK" 
    .AddItem "Only ISO 2768-mK with current catalog" 
End With 
 
'Empty Finished Length 
FinishedLength.Value = "" 
 
'Fill UserEntry 
With UserEntry 
    .AddItem "Line" 
    .AddItem "Radius" 
    .AddItem "Chamfer" 
    .AddItem "Notch" 
    .AddItem "" 
End With 
 
'Empty Dimensions 
Dimensions.Clear 
 
End Sub 
 
'********************************************************* 
'* 
'Allows the user to edit the variables without having to exit the macro 
'There is one sub for each textbox with the 'Z' variable 
'Only the first will be explained 
'* 
'********************************************************* 
Private Sub z3_AfterUpdate() 



65 
 

Dim val As Long 
 
'array as an efficient way to store the data already entered 
Dim arrayz(14) As Variant 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
'Each if loop edits the value by the change entered in the textbox 
'if the previous value was zero then the if loop will not execute 
val = arrayz(2) - Cells(3, 1).Value 
    If arrayz(2) <> 0 Then 
    z3 = arrayz(2) + val 
    arrayz(2) = z3 
    End If 
    If arrayz(3) <> 0 Then 
    z4 = arrayz(3) + val 
    arrayz(3) = z4 
    End If 
    If arrayz(4) <> 0 Then 
    z5 = arrayz(4) + val 
    arrayz(4) = z5 
    End If 
    If arrayz(5) <> 0 Then 
    z6 = arrayz(5) + val 
    arrayz(5) = z6 
    End If 
    If arrayz(6) <> 0 Then 
    z7 = arrayz(6) + val 
    arrayz(6) = z7 
    End If 
    If arrayz(7) <> 0 Then 
    z8 = arrayz(7) + val 
    arrayz(7) = z8 



66 
 

    End If 
    If arrayz(8) <> 0 Then 
    z9 = arrayz(8) + val 
    arrayz(8) = z9 
    End If 
    If arrayz(9) <> 0 Then 
    z10 = arrayz(9) + val 
    arrayz(9) = z10 
    End If 
    If arrayz(10) <> 0 Then 
    z11 = arrayz(10) + val 
    arrayz(10) = z11 
    End If 
    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
'loads the array values to the excel sheet 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
 
End Sub 
 
Private Sub z4_AfterUpdate() 
Dim val As Double 
Dim arrayz(14) As Variant 
 
 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 



67 
 

arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(3) - Cells(4, 1).Value 
If arrayz(3) <> 0 Then 
    z4 = arrayz(3) + val 
    arrayz(3) = z4 
    End If 
    If arrayz(4) <> 0 Then 
    z5 = arrayz(4) + val 
    arrayz(4) = z5 
    End If 
    If arrayz(5) <> 0 Then 
    z6 = arrayz(5) + val 
    arrayz(5) = z6 
    End If 
    If arrayz(6) <> 0 Then 
    z7 = arrayz(6) + val 
    arrayz(6) = z7 
    End If 
    If arrayz(7) <> 0 Then 
    z8 = arrayz(7) + val 
    arrayz(7) = z8 
    End If 
    If arrayz(8) <> 0 Then 
    z9 = arrayz(8) + val 
    arrayz(8) = z9 
    End If 
    If arrayz(9) <> 0 Then 
    z10 = arrayz(9) + val 
    arrayz(9) = z10 
    End If 
    If arrayz(10) <> 0 Then 
    z11 = arrayz(10) + val 
    arrayz(10) = z11 
    End If 



68 
 

    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
 
End Sub 
 
Private Sub z5_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
 
 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 



69 
 

val = arrayz(4) - Cells(5, 1).Value 
    If arrayz(4) <> 0 Then 
    z5 = arrayz(4) + val 
    arrayz(4) = z5 
    End If 
    If arrayz(5) <> 0 Then 
    z6 = arrayz(5) + val 
    arrayz(5) = z6 
    End If 
    If arrayz(6) <> 0 Then 
    z7 = arrayz(6) + val 
    arrayz(6) = z7 
    End If 
    If arrayz(7) <> 0 Then 
    z8 = arrayz(7) + val 
    arrayz(7) = z8 
    End If 
    If arrayz(8) <> 0 Then 
    z9 = arrayz(8) + val 
    arrayz(8) = z9 
    End If 
    If arrayz(9) <> 0 Then 
    z10 = arrayz(9) + val 
    arrayz(9) = z10 
    End If 
    If arrayz(10) <> 0 Then 
    z11 = arrayz(10) + val 
    arrayz(10) = z11 
    End If 
    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 



70 
 

 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
 
End Sub 
 
Private Sub z6_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
 
 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(5) - Cells(6, 1).Value 
    If arrayz(5) <> 0 Then 
    z6 = arrayz(5) + val 
    arrayz(5) = z6 
    End If 
    If arrayz(6) <> 0 Then 
    z7 = arrayz(6) + val 
    arrayz(6) = z7 
    End If 
    If arrayz(7) <> 0 Then 
    z8 = arrayz(7) + val 
    arrayz(7) = z8 
    End If 
    If arrayz(8) <> 0 Then 
    z9 = arrayz(8) + val 
    arrayz(8) = z9 
    End If 



71 
 

    If arrayz(9) <> 0 Then 
    z10 = arrayz(9) + val 
    arrayz(9) = z10 
    End If 
    If arrayz(10) <> 0 Then 
    z11 = arrayz(10) + val 
    arrayz(10) = z11 
    End If 
    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
Next 
End Sub 
 
Private Sub z7_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
 
 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 



72 
 

arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(6) - Cells(7, 1).Value 
    If arrayz(6) <> 0 Then 
    z7 = arrayz(6) + val 
    arrayz(6) = z7 
    End If 
    If arrayz(7) <> 0 Then 
    z8 = arrayz(7) + val 
    arrayz(7) = z8 
    End If 
    If arrayz(8) <> 0 Then 
    z9 = arrayz(8) + val 
    arrayz(8) = z9 
    End If 
    If arrayz(9) <> 0 Then 
    z10 = arrayz(9) + val 
    arrayz(9) = z10 
    End If 
    If arrayz(10) <> 0 Then 
    z11 = arrayz(10) + val 
    arrayz(10) = z11 
    End If 
    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 



73 
 

 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
End Sub 
Private Sub z8_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(7) - Cells(8, 1).Value 
    If arrayz(7) <> 0 Then 
    z8 = arrayz(7) + val 
    arrayz(7) = z8 
    End If 
    If arrayz(8) <> 0 Then 
    z9 = arrayz(8) + val 
    arrayz(8) = z9 
    End If 
    If arrayz(9) <> 0 Then 
    z10 = arrayz(9) + val 
    arrayz(9) = z10 
    End If 
    If arrayz(10) <> 0 Then 
    z11 = arrayz(10) + val 
    arrayz(10) = z11 
    End If 
    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 



74 
 

    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
End Sub 
 
 
Private Sub z9_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(8) - Cells(9, 1).Value 
    If arrayz(8) <> 0 Then 
    z9 = arrayz(8) + val 
    arrayz(8) = z9 
    End If 
    If arrayz(9) <> 0 Then 



75 
 

    z10 = arrayz(9) + val 
    arrayz(9) = z10 
    End If 
    If arrayz(10) <> 0 Then 
    z11 = arrayz(10) + val 
    arrayz(10) = z11 
    End If 
    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
End Sub 
 
Private Sub z10_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 



76 
 

arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(9) - Cells(10, 1).Value 
    If arrayz(9) <> 0 Then 
    z10 = arrayz(9) + val 
    arrayz(9) = z10 
    End If 
    If arrayz(10) <> 0 Then 
    z11 = arrayz(10) + val 
    arrayz(10) = z11 
    End If 
    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
 
End Sub 
 
Private Sub z11_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 



77 
 

arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(10) - Cells(11, 1).Value 
    If arrayz(10) <> 0 Then 
    z11 = arrayz(10) + val 
    arrayz(10) = z11 
    End If 
    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
 
End Sub 
Private Sub z12_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 



78 
 

arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(11) - Cells(12, 1).Value 
    If arrayz(11) <> 0 Then 
    z12 = arrayz(11) + val 
    arrayz(11) = z12 
    End If 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
 
End Sub 
Private Sub z13_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 



79 
 

arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 
arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(12) - Cells(13, 1).Value 
    If arrayz(12) <> 0 Then 
    z13 = arrayz(12) + val 
    arrayz(12) = z13 
    End If 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
 
End Sub 
 
Private Sub z14_AfterUpdate() 
Dim val As Long 
Dim arrayz(14) As Variant 
arrayz(0) = z1.Value 
arrayz(1) = z2.Value 
arrayz(2) = z3.Value 
arrayz(3) = z4.Value 
arrayz(4) = z5.Value 
arrayz(5) = z6.Value 
arrayz(6) = z7.Value 
arrayz(7) = z8.Value 
arrayz(8) = z9.Value 
arrayz(9) = z10.Value 
arrayz(10) = z11.Value 
arrayz(11) = z12.Value 



80 
 

arrayz(12) = z13.Value 
arrayz(13) = z14.Value 
arrayz(14) = z15.Value 
Sheet1.Activate 
val = arrayz(13) - Cells(14, 1).Value 
    If arrayz(13) <> 0 Then 
    z14 = arrayz(13) + val 
    arrayz(13) = z14 
    End If 
    If arrayz(14) <> 0 Then 
    z15 = arrayz(14) + val 
    arrayz(14) = z15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("A1") 
Set Destination = Destination.Resize(UBound(arrayz), 1) 
Destination.Value = Application.Transpose(arrayz) 
 
End Sub 
 
Private Sub z15_AfterUpdate() 
Dim arrayz(15) 
 
    arrayz(15) = z15.Value 
     
    For z = 15 To LastRowA 
    Cells(z, 1).Value = arrayz(z) 
     
End Sub 
 
'********************************************************* 
'* 
'Allows the user to edit the variables without having to exit the macro 
'There is one sub for each textbox with the 'X' variable 
'Only the first will be explained 
'* 
'********************************************************* 
Private Sub x3_AfterUpdate() 
Dim val As Long 
 
'array as efficient way to store all previously entered values 
Dim arrayx(14) As Variant 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 



81 
 

arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
'increments each value by the change necessary 
'if previous value was 0 then the if loop does not execute 
val = arrayx(2) - Cells(3, 2).Value 
    If arrayx(2) <> 0 Then 
    x3 = arrayx(2) + val 
    arrayx(2) = x3 
    End If 
    If arrayx(3) <> 0 Then 
    x4 = arrayx(3) + val 
    arrayx(3) = x4 
    End If 
    If arrayx(4) <> 0 Then 
    x5 = arrayx(4) + val 
    arrayx(4) = x5 
    End If 
    If arrayx(5) <> 0 Then 
    x6 = arrayx(5) + val 
    arrayx(5) = x6 
    End If 
    If arrayx(6) <> 0 Then 
    x7 = arrayx(6) + val 
    arrayx(6) = x7 
    End If 
    If arrayx(7) <> 0 Then 
    x8 = arrayx(7) + val 
    arrayx(7) = x8 
    End If 
    If arrayx(8) <> 0 Then 
    x9 = arrayx(8) + val 
    arrayx(8) = x9 
    End If 
    If arrayx(9) <> 0 Then 



82 
 

    x10 = arrayx(9) + val 
    arrayx(9) = x10 
    End If 
    If arrayx(10) <> 0 Then 
    x11 = arrayx(10) + val 
    arrayx(10) = x11 
    End If 
    If arrayx(11) <> 0 Then 
    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
'uploads the array to the excel sheet 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x4_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 



83 
 

arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(3) - Cells(4, 2).Value 
    If arrayx(3) <> 0 Then 
    x4 = arrayx(3) + val 
    arrayx(3) = x4 
    End If 
    If arrayx(4) <> 0 Then 
    x5 = arrayx(4) + val 
    arrayx(4) = x5 
    End If 
    If arrayx(5) <> 0 Then 
    x6 = arrayx(5) + val 
    arrayx(5) = x6 
    End If 
    If arrayx(6) <> 0 Then 
    x7 = arrayx(6) + val 
    arrayx(6) = x7 
    End If 
    If arrayx(7) <> 0 Then 
    x8 = arrayx(7) + val 
    arrayx(7) = x8 
    End If 
    If arrayx(8) <> 0 Then 
    x9 = arrayx(8) + val 
    arrayx(8) = x9 
    End If 
    If arrayx(9) <> 0 Then 
    x10 = arrayx(9) + val 
    arrayx(9) = x10 
    End If 
    If arrayx(10) <> 0 Then 
    x11 = arrayx(10) + val 
    arrayx(10) = x11 
    End If 
    If arrayx(11) <> 0 Then 
    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 



84 
 

    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x5_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(4) - Cells(5, 2).Value 
    If arrayx(4) <> 0 Then 
    x5 = arrayx(4) + val 
    arrayx(4) = x5 
    End If 
    If arrayx(5) <> 0 Then 
    x6 = arrayx(5) + val 
    arrayx(5) = x6 



85 
 

    End If 
    If arrayx(6) <> 0 Then 
    x7 = arrayx(6) + val 
    arrayx(6) = x7 
    End If 
    If arrayx(7) <> 0 Then 
    x8 = arrayx(7) + val 
    arrayx(7) = x8 
    End If 
    If arrayx(8) <> 0 Then 
    x9 = arrayx(8) + val 
    arrayx(8) = x9 
    End If 
    If arrayx(9) <> 0 Then 
    x10 = arrayx(9) + val 
    arrayx(9) = x10 
    End If 
    If arrayx(10) <> 0 Then 
    x11 = arrayx(10) + val 
    arrayx(10) = x11 
    End If 
    If arrayx(11) <> 0 Then 
    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x6_AfterUpdate() 



86 
 

Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(5) - Cells(6, 2).Value 
    If arrayx(5) <> 0 Then 
    x6 = arrayx(5) + val 
    arrayx(5) = x6 
    End If 
    If arrayx(6) <> 0 Then 
    x7 = arrayx(6) + val 
    arrayx(6) = x7 
    End If 
    If arrayx(7) <> 0 Then 
    x8 = arrayx(7) + val 
    arrayx(7) = x8 
    End If 
    If arrayx(8) <> 0 Then 
    x9 = arrayx(8) + val 
    arrayx(8) = x9 
    End If 
    If arrayx(9) <> 0 Then 
    x10 = arrayx(9) + val 
    arrayx(9) = x10 
    End If 
    If arrayx(10) <> 0 Then 
    x11 = arrayx(10) + val 
    arrayx(10) = x11 
    End If 
    If arrayx(11) <> 0 Then 



87 
 

    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x7_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(6) - Cells(7, 2).Value 
    If arrayx(6) <> 0 Then 



88 
 

    x7 = arrayx(6) + val 
    arrayx(6) = x7 
    End If 
    If arrayx(7) <> 0 Then 
    x8 = arrayx(7) + val 
    arrayx(7) = x8 
    End If 
    If arrayx(8) <> 0 Then 
    x9 = arrayx(8) + val 
    arrayx(8) = x9 
    End If 
    If arrayx(9) <> 0 Then 
    x10 = arrayx(9) + val 
    arrayx(9) = x10 
    End If 
    If arrayx(10) <> 0 Then 
    x11 = arrayx(10) + val 
    arrayx(10) = x11 
    End If 
    If arrayx(11) <> 0 Then 
    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x8_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 



89 
 

 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(7) - Cells(8, 2).Value 
    If arrayx(7) <> 0 Then 
    x8 = arrayx(7) + val 
    arrayx(7) = x8 
    End If 
    If arrayx(8) <> 0 Then 
    x9 = arrayx(8) + val 
    arrayx(8) = x9 
    End If 
    If arrayx(9) <> 0 Then 
    x10 = arrayx(9) + val 
    arrayx(9) = x10 
    End If 
    If arrayx(10) <> 0 Then 
    x11 = arrayx(10) + val 
    arrayx(10) = x11 
    End If 
    If arrayx(11) <> 0 Then 
    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 



90 
 

    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x9_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(8) - Cells(9, 2).Value 
    If arrayx(8) <> 0 Then 
    x9 = arrayx(8) + val 
    arrayx(8) = x9 
    End If 
    If arrayx(9) <> 0 Then 
    x10 = arrayx(9) + val 
    arrayx(9) = x10 
    End If 
    If arrayx(10) <> 0 Then 
    x11 = arrayx(10) + val 
    arrayx(10) = x11 



91 
 

    End If 
    If arrayx(11) <> 0 Then 
    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x10_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 



92 
 

val = arrayx(9) - Cells(10, 2).Value 
    If arrayx(9) <> 0 Then 
    x10 = arrayx(9) + val 
    arrayx(9) = x10 
    End If 
    If arrayx(10) <> 0 Then 
    x11 = arrayx(10) + val 
    arrayx(10) = x11 
    End If 
    If arrayx(11) <> 0 Then 
    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x11_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 



93 
 

arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(10) - Cells(11, 2).Value 
    If arrayx(10) <> 0 Then 
    x11 = arrayx(10) + val 
    arrayx(10) = x11 
    End If 
    If arrayx(11) <> 0 Then 
    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x12_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 



94 
 

arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(11) - Cells(12, 2).Value 
    If arrayx(11) <> 0 Then 
    x12 = arrayx(11) + val 
    arrayx(11) = x12 
    End If 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x13_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 



95 
 

arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 
arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(12) - Cells(13, 2).Value 
    If arrayx(12) <> 0 Then 
    x13 = arrayx(12) + val 
    arrayx(12) = x13 
    End If 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x14_AfterUpdate() 
Dim val As Long 
Dim arrayx(14) As Variant 
 
 
arrayx(0) = x1.Value 
arrayx(1) = x2.Value 
arrayx(2) = x3.Value 
arrayx(3) = x4.Value 
arrayx(4) = x5.Value 
arrayx(5) = x6.Value 
arrayx(6) = x7.Value 
arrayx(7) = x8.Value 



96 
 

arrayx(8) = x9.Value 
arrayx(9) = x10.Value 
arrayx(10) = x11.Value 
arrayx(11) = x12.Value 
arrayx(12) = x13.Value 
arrayx(13) = x14.Value 
arrayx(14) = x15.Value 
Sheet1.Activate 
val = arrayx(13) - Cells(14, 2).Value 
    If arrayx(13) <> 0 Then 
    x14 = arrayx(13) + val 
    arrayx(13) = x14 
    End If 
    If arrayx(14) <> 0 Then 
    x15 = arrayx(14) + val 
    arrayx(14) = x15 
    End If 
 
 
Dim Destination As Range 
Set Destination = Range("B1") 
Set Destination = Destination.Resize(UBound(arrayx), 1) 
Destination.Value = Application.Transpose(arrayx) 
 
End Sub 
Private Sub x15_AfterUpdate() 
Dim arrayx(15) 
 
    arrayx(15) = x15.Value 
     
    For z = 15 To LastRowA 
    Cells(z, 1).Value = arrayx(z) 
     
End Sub 
 
'********************************************************* 
'* 
'Allows the user to edit the variables without having to exit the macro 
'There is one sub for each textbox with the feature 'f' variable 
'Only the first will be explained 
'for the special 's' variable the process is essentially the same 
'this is because the event only happens if either 's' changes or 'f' and 's' both change 
'* 
'********************************************************* 
Private Sub f3_AfterUpdate() 
Dim val As Double 



97 
 

    'checks if the user has entered chamfer and if the chamfer value is different 
    If f3.Value = "Chamfer" And CDbl(s3.Value) <> Cells(3, 5).Value Then 
        val = CDbl(s3.Value) - Cells(3, 5).Value 
        'positive geometry chamfer 
        If Cells(3, 6).Value > 0 Then 
            z3 = CDbl(z3.Value) + val 
            End If 
        'negative geometry chamfer 
        If Cells(3, 6).Value < 0 Then 
             x3 = CDbl(z3.Value) + val 
            End If 
        End If 
    'changes radius value 
    If f3.Value = "Radius" And CDbl(s3.Value) <> Cells(3, 4).Value Then 
        Cells(3, 4).Value = s3.Value 
        End If 
    'if 'f' has been emptied then 's' is also emptied 
    If f3.Value = "" Then 
        s3 = "" 
End Sub 
Private Sub f4_AfterUpdate() 
Dim val As Double 
    If f4.Value = "Chamfer" And CDbl(s4.Value) <> Cells(4, 5).Value Then 
        val = CDbl(s4.Value) - Cells(4, 5).Value 
        If Cells(4, 6).Value > 0 Then 
            z4 = CDbl(z4.Value) + val 
            End If 
        If Cells(4, 6).Value < 0 Then 
             x4 = CDbl(z4.Value) + val 
            End If 
        End If 
    If f4.Value = "Radius" And CDbl(s4.Value) <> Cells(4, 4).Value Then 
        Cells(4, 4).Value = s4.Value 
        End If 
    If f4.Value = "" Then 
        s4 = "" 
End Sub 
Private Sub f5_AfterUpdate() 
Dim val As Double 
    If f5.Value = "Chamfer" And CDbl(s5.Value) <> Cells(5, 5).Value Then 
        val = CDbl(s5.Value) - Cells(5, 5).Value 
        If Cells(5, 6).Value > 0 Then 
            z5 = CDbl(z5.Value) + val 
            End If 
        If Cells(5, 6).Value < 0 Then 
             x5 = CDbl(z5.Value) + val 



98 
 

            End If 
        End If 
    If f5.Value = "Radius" And CDbl(s5.Value) <> Cells(5, 4).Value Then 
        Cells(5, 4).Value = s4.Value 
        End If 
    If f5.Value = "" Then 
        s5 = "" 
End Sub 
Private Sub f6_AfterUpdate() 
Dim val As Double 
    If f6.Value = "Chamfer" And CDbl(s6.Value) <> Cells(6, 5).Value Then 
        val = CDbl(s6.Value) - Cells(6, 5).Value 
        If Cells(6, 6).Value > 0 Then 
            z6 = CDbl(z6.Value) + val 
            End If 
        If Cells(6, 6).Value < 0 Then 
             x6 = CDbl(z6.Value) + val 
            End If 
        End If 
    If f6.Value = "Radius" And CDbl(s6.Value) <> Cells(6, 4).Value Then 
        Cells(6, 4).Value = s4.Value 
        End If 
    If f6.Value = "" Then 
        s6 = "" 
End Sub 
Private Sub f7_AfterUpdate() 
Dim val As Double 
    If f7.Value = "Chamfer" And CDbl(s7.Value) <> Cells(7, 5).Value Then 
        val = CDbl(s7.Value) - Cells(7, 5).Value 
        If Cells(7, 6).Value > 0 Then 
            z7 = CDbl(z7.Value) + val 
            End If 
        If Cells(7, 6).Value < 0 Then 
             x7 = CDbl(z7.Value) + val 
            End If 
        End If 
    If f7.Value = "Radius" And CDbl(s7.Value) <> Cells(7, 4).Value Then 
        Cells(7, 4).Value = s7.Value 
        End If 
    If f7.Value = "" Then 
        s7 = "" 
End Sub 
Private Sub f8_AfterUpdate() 
Dim val As Double 
    If f8.Value = "Chamfer" And CDbl(s8.Value) <> Cells(8, 5).Value Then 
        val = CDbl(s8.Value) - Cells(8, 5).Value 



99 
 

        If Cells(8, 6).Value > 0 Then 
            z8 = CDbl(z8.Value) + val 
            End If 
        If Cells(8, 6).Value < 0 Then 
             x8 = CDbl(z8.Value) + val 
            End If 
        End If 
    If f8.Value = "Radius" And CDbl(s8.Value) <> Cells(8, 4).Value Then 
        Cells(8, 4).Value = s8.Value 
        End If 
    If f8.Value = "" Then 
        s8 = "" 
End Sub 
Private Sub f9_AfterUpdate() 
Dim val As Double 
    If f9.Value = "Chamfer" And CDbl(s9.Value) <> Cells(9, 5).Value Then 
        val = CDbl(s9.Value) - Cells(9, 5).Value 
        If Cells(9, 6).Value > 0 Then 
            z9 = CDbl(z9.Value) + val 
            End If 
        If Cells(9, 6).Value < 0 Then 
             x9 = CDbl(z9.Value) + val 
            End If 
        End If 
    If f9.Value = "Radius" And CDbl(s9.Value) <> Cells(9, 4).Value Then 
        Cells(9, 4).Value = s9.Value 
        End If 
    If f9.Value = "" Then 
        s9 = "" 
End Sub 
Private Sub f10_AfterUpdate() 
Dim val As Double 
i = 10 
    If f10.Value = "Chamfer" And CDbl(s10.Value) <> Cells(i, 5).Value Then 
        val = CDbl(s10.Value) - Cells(i, 5).Value 
        If Cells(i, 6).Value > 0 Then 
            z10 = CDbl(z10.Value) + val 
            End If 
        If Cells(i, 6).Value < 0 Then 
             x10 = CDbl(z10.Value) + val 
            End If 
        End If 
    If f10.Value = "Radius" And CDbl(s10.Value) <> Cells(i, 4).Value Then 
        Cells(i, 4).Value = s10.Value 
        End If 
    If f10.Value = "" Then 



100 
 

        s10 = "" 
End Sub 
Private Sub f11_AfterUpdate() 
Dim val As Double 
i = 11 
    If f11.Value = "Chamfer" And CDbl(s11.Value) <> Cells(i, 5).Value Then 
        val = CDbl(s11.Value) - Cells(i, 5).Value 
        If Cells(i, 6).Value > 0 Then 
            z11 = CDbl(z11.Value) + val 
            End If 
        If Cells(i, 6).Value < 0 Then 
             x11 = CDbl(z11.Value) + val 
            End If 
        End If 
    If f11.Value = "Radius" And CDbl(s11.Value) <> Cells(i, 4).Value Then 
        Cells(i, 4).Value = s11.Value 
        End If 
    If f11.Value = "" Then 
        s11 = "" 
End Sub 
Private Sub f12_AfterUpdate() 
Dim val As Double 
i = 12 
    If f12.Value = "Chamfer" And CDbl(s12.Value) <> Cells(i, 5).Value Then 
        val = CDbl(s12.Value) - Cells(i, 5).Value 
        If Cells(i, 6).Value > 0 Then 
            z12 = CDbl(z12.Value) + val 
            End If 
        If Cells(i, 6).Value < 0 Then 
             x12 = CDbl(z12.Value) + val 
            End If 
        End If 
    If f12.Value = "Radius" And CDbl(s12.Value) <> Cells(i, 4).Value Then 
        Cells(i, 4).Value = s12.Value 
        End If 
    If f12.Value = "" Then 
        s12 = "" 
End Sub 
Private Sub f13_AfterUpdate() 
Dim val As Double 
i = 13 
    If f13.Value = "Chamfer" And CDbl(s13.Value) <> Cells(i, 5).Value Then 
        val = CDbl(s13.Value) - Cells(i, 5).Value 
        If Cells(i, 6).Value > 0 Then 
            z13 = CDbl(z13.Value) + val 
            End If 



101 
 

        If Cells(i, 6).Value < 0 Then 
             x13 = CDbl(z13.Value) + val 
            End If 
        End If 
    If f13.Value = "Radius" And CDbl(s13.Value) <> Cells(i, 4).Value Then 
        Cells(i, 4).Value = s13.Value 
        End If 
    If f13.Value = "" Then 
        s13 = "" 
End Sub 
Private Sub s3_AfterUpdate() 
Dim val As Double 
    If f3.Value = "Chamfer" And CDbl(s3.Value) <> Cells(3, 5).Value Then 
        val = CDbl(s3.Value) - Cells(3, 5).Value 
        If Cells(3, 6).Value > 0 Then 
            z3 = CDbl(z3.Value) + val 
            End If 
        If Cells(3, 6).Value < 0 Then 
             x3 = CDbl(z3.Value) + val 
            End If 
        End If 
    If f3.Value = "Radius" And CDbl(s3.Value) <> Cells(3, 4).Value Then 
        Cells(3, 4).Value = s3.Value 
        End If 
    If f3.Value = "" Then 
        s3 = "" 
End Sub 
Private Sub s4_AfterUpdate() 
Dim val As Double 
    If f4.Value = "Chamfer" And CDbl(s4.Value) <> Cells(4, 5).Value Then 
        val = CDbl(s4.Value) - Cells(4, 5).Value 
        If Cells(4, 6).Value > 0 Then 
            z4 = CDbl(z4.Value) + val 
            End If 
        If Cells(4, 6).Value < 0 Then 
             x4 = CDbl(z4.Value) + val 
            End If 
        End If 
    If f4.Value = "Radius" And CDbl(s4.Value) <> Cells(4, 4).Value Then 
        Cells(4, 4).Value = s4.Value 
        End If 
    If f4.Value = "" Then 
        s4 = "" 
End Sub 
Private Sub s5_AfterUpdate() 
Dim val As Double 



102 
 

    If f5.Value = "Chamfer" And CDbl(s5.Value) <> Cells(5, 5).Value Then 
        val = CDbl(s5.Value) - Cells(5, 5).Value 
        If Cells(5, 6).Value > 0 Then 
            z5 = CDbl(z5.Value) + val 
            End If 
        If Cells(5, 6).Value < 0 Then 
             x5 = CDbl(z5.Value) + val 
            End If 
        End If 
    If f5.Value = "Radius" And CDbl(s5.Value) <> Cells(5, 4).Value Then 
        Cells(5, 4).Value = s4.Value 
        End If 
    If f5.Value = "" Then 
        s5 = "" 
End Sub 
Private Sub s6_AfterUpdate() 
Dim val As Double 
    If f6.Value = "Chamfer" And CDbl(s6.Value) <> Cells(6, 5).Value Then 
        val = CDbl(s6.Value) - Cells(6, 5).Value 
        If Cells(6, 6).Value > 0 Then 
            z6 = CDbl(z6.Value) + val 
            End If 
        If Cells(6, 6).Value < 0 Then 
             x6 = CDbl(z6.Value) + val 
            End If 
        End If 
    If f6.Value = "Radius" And CDbl(s6.Value) <> Cells(6, 4).Value Then 
        Cells(6, 4).Value = s4.Value 
        End If 
    If f6.Value = "" Then 
        s6 = "" 
End Sub 
Private Sub s7_AfterUpdate() 
Dim val As Double 
    If f7.Value = "Chamfer" And CDbl(s7.Value) <> Cells(7, 5).Value Then 
        val = CDbl(s7.Value) - Cells(7, 5).Value 
        If Cells(7, 6).Value > 0 Then 
            z7 = CDbl(z7.Value) + val 
            End If 
        If Cells(7, 6).Value < 0 Then 
             x7 = CDbl(z7.Value) + val 
            End If 
        End If 
    If f7.Value = "Radius" And CDbl(s7.Value) <> Cells(7, 4).Value Then 
        Cells(7, 4).Value = s7.Value 
        End If 



103 
 

    If f7.Value = "" Then 
        s7 = "" 
End Sub 
Private Sub s8_AfterUpdate() 
Dim val As Double 
    If f8.Value = "Chamfer" And CDbl(s8.Value) <> Cells(8, 5).Value Then 
        val = CDbl(s8.Value) - Cells(8, 5).Value 
        If Cells(8, 6).Value > 0 Then 
            z8 = CDbl(z8.Value) + val 
            End If 
        If Cells(8, 6).Value < 0 Then 
             x8 = CDbl(z8.Value) + val 
            End If 
        End If 
    If f8.Value = "Radius" And CDbl(s8.Value) <> Cells(8, 4).Value Then 
        Cells(8, 4).Value = s8.Value 
        End If 
    If f8.Value = "" Then 
        s8 = "" 
End Sub 
Private Sub s9_AfterUpdate() 
Dim val As Double 
    If f9.Value = "Chamfer" And CDbl(s9.Value) <> Cells(9, 5).Value Then 
        val = CDbl(s9.Value) - Cells(9, 5).Value 
        If Cells(9, 6).Value > 0 Then 
            z9 = CDbl(z9.Value) + val 
            End If 
        If Cells(9, 6).Value < 0 Then 
             x9 = CDbl(z9.Value) + val 
            End If 
        End If 
    If f9.Value = "Radius" And CDbl(s9.Value) <> Cells(9, 4).Value Then 
        Cells(9, 4).Value = s9.Value 
        End If 
    If f9.Value = "" Then 
        s9 = "" 
End Sub 
Private Sub s10_AfterUpdate() 
Dim val As Double 
i = 10 
    If f10.Value = "Chamfer" And CDbl(s10.Value) <> Cells(i, 5).Value Then 
        val = CDbl(s10.Value) - Cells(i, 5).Value 
        If Cells(i, 6).Value > 0 Then 
            z10 = CDbl(z10.Value) + val 
            End If 
        If Cells(i, 6).Value < 0 Then 



104 
 

             x10 = CDbl(z10.Value) + val 
            End If 
        End If 
    If f10.Value = "Radius" And CDbl(s10.Value) <> Cells(i, 4).Value Then 
        Cells(i, 4).Value = s10.Value 
        End If 
    If f10.Value = "" Then 
        s10 = "" 
End Sub 
Private Sub s11_AfterUpdate() 
Dim val As Double 
i = 11 
    If f11.Value = "Chamfer" And CDbl(s11.Value) <> Cells(i, 5).Value Then 
        val = CDbl(s11.Value) - Cells(i, 5).Value 
        If Cells(i, 6).Value > 0 Then 
            z11 = CDbl(z11.Value) + val 
            End If 
        If Cells(i, 6).Value < 0 Then 
             x11 = CDbl(z11.Value) + val 
            End If 
        End If 
    If f11.Value = "Radius" And CDbl(s11.Value) <> Cells(i, 4).Value Then 
        Cells(i, 4).Value = s11.Value 
        End If 
    If f11.Value = "" Then 
        s11 = "" 
End Sub 
Private Sub s12_AfterUpdate() 
Dim val As Double 
i = 12 
    If f12.Value = "Chamfer" And CDbl(s12.Value) <> Cells(i, 5).Value Then 
        val = CDbl(s12.Value) - Cells(i, 5).Value 
        If Cells(i, 6).Value > 0 Then 
            z12 = CDbl(z12.Value) + val 
            End If 
        If Cells(i, 6).Value < 0 Then 
             x12 = CDbl(z12.Value) + val 
            End If 
        End If 
    If f12.Value = "Radius" And CDbl(s12.Value) <> Cells(i, 4).Value Then 
        Cells(i, 4).Value = s12.Value 
        End If 
    If f12.Value = "" Then 
        s12 = "" 
End Sub 
Private Sub s13_AfterUpdate() 



105 
 

Dim val As Double 
i = 13 
    If f13.Value = "Chamfer" And CDbl(s13.Value) <> Cells(i, 5).Value Then 
        val = CDbl(s13.Value) - Cells(i, 5).Value 
        If Cells(i, 6).Value > 0 Then 
            z13 = CDbl(z13.Value) + val 
            End If 
        If Cells(i, 6).Value < 0 Then 
             x13 = CDbl(z13.Value) + val 
            End If 
        End If 
    If f13.Value = "Radius" And CDbl(s13.Value) <> Cells(i, 4).Value Then 
        Cells(i, 4).Value = s13.Value 
        End If 
    If f13.Value = "" Then 
        s13 = "" 
End Sub 
 

2)VBScript 
‘**************************************** 
‘*This simply uploads the Catalog File into Catia 
‘*Catia produces a catalog file 
‘*It then must be placed within the proper folder 
‘******************************************* 
 
Language="VBSCRIPT" 
 
Sub CATMain() 
 
InputFile="C:\Users\Raisanen\Documents\CATIA\Raisanen Thesis\Catalog.csv" 
 
OutputFile="C:\Users\Raisanen\Documents\CATIA\Tool_Library.catalog" 
 
Dim Catalog As Document 
 
set Catalog=CATIA.Documents.Add("CatalogDocument") 
 
Catalog.CreateCatalogFromcsv InputFile, OutputFile 
 
Catalog.Close 
 
End Sub 




