

Implementing Continuous Integration and Cloud Server Infra-

structure for an International Enterprise Based In Finland

06 October 2015

1

Author(s)
Rudy Joel Lopez Reyes

Degree programme
Business Information Technology

Report/thesis title
Implementing Continuous Integration and Cloud Server Infrastructure for an

International Enterprise Based In Finland

Number of pages and
appendix pages
73

This project consists of 3 parts. The first one is the migration of the company’s website project’s reposito-
ry from SVN to Git, which involves the migration of the project itself plus the transition of the develop-
er’s team from working with an SVN workflow and guidelines designed for SVN to Git workflow and
guidelines for working with Git.

The second part is the migration of the project from a set of on-premise hosted servers that had expired
their recommended life span of 3 years to a brand-new set of servers provided by a third-party cloud host-
ing service.

This part involves the decision process of selecting a cloud hosting server provider, the migration of the
project from on-premise hosting to cloud hosting and a discussion on the advantage of cloud hosting over
on-premise hosting.

The third parts connects the first with the second part consisting of the built automation and continuous
integration that now clones the repository from Git to a build sever that builds the project and then the
project is transferred to the new servers to make it available over the internet.

Keywords
SVN to Git migration, SVN, Git, Continuous Integration, Cloud Server Hosting, Build Automation

2

Table of contents

1 Introduction ... 4

2 Source Code Migration from SVN to GIT .. 5

2.1 Background .. 5

2.2 SVN Structure.. 6

2.3 SVN Branches ... 7

2.4 The SVN Workflow.. 8

2.4.1 From development to staging .. 8

2.4.2 From staging to production ... 8

2.5 General Rules to work with SVN ... 9

2.6 Issues with original plan ... 10

2.7 Migrating to Git ... 11

2.7.1 Preparing the environment .. 12

2.7.2 Downloading the migration script .. 12

2.7.3 Mounting a case-sensitive disk image ... 13

2.7.4 Extracting the author information .. 14

2.7.5 Convert the SVN repository to a local Git repository 15

2.7.6 Synchronizing the local Git repository when the SVN repository

changes ... 17

2.7.7 Sharing the Git repository with your developers via Bitbucket 17

2.7.8 Migrating to Git ... 19

2.8 Git Workflow ... 20

2.9 Git workflow guidelines (original plan) ... 24

2.10 Issues with original plan ... 24

2.11 New and improved Git workflow guidelines ... 25

2.12 Discussion .. 26

2.12.1 Centralized vs Distributed Version Control System 26

2.12.2 Experiences in our developers team ... 27

2.12.3 Popular and suggested Git workflows .. 28

2.12.4 Centralized Workflow ... 28

2.12.5 Feature Branch Workflow .. 29

2.12.6 Gitflow Workflow ... 29

2.12.7 Fork workflow ... 30

2.12.8 Developers Team Experience .. 31

2.12.9 Git benefits according to a developer on the project 32

3 Part 2: Migration from onsite hosting to the cloud ... 33

3

3.1 Background .. 33

3.2 Migration Tasks ... 34

3.3 Setting up the necessary IIS modules .. 35

3.4 Migrating all necessary files from the old servers to the new ones ... 37

3.5 Exporting all sites .. 40

3.6 Creating virtual directories ... 42

3.7 Directing logs to new locations .. 47

3.8 Configuring the IIS logs location ... 47

3.9 Configuring the HTTP error logs location ... 47

3.10 Configure FTP server ... 48

3.11 DNS Resolution .. 50

3.12 Testing... 50

3.13 Migration .. 50

3.13.1 GO LIVE on stage .. 51

3.13.2 GO LIVE on production ... 52

3.14 Results ... 53

3.15 Discussion .. 53

3.15.1 Hosted vs on premise advantages and disadvantages 53

3.15.2 Comparing virtual hosting providers .. 57

3.15.3 Customer’s choice ... 58

3.15.4 Experience with chosen provider: ... 59

4 Part 3: Setting up build automation .. 60

4.1 Installation of CruiseControl.NET and other required software .. 60

4.2 Git client Installation .. 62

4.3 Creating and configuring the project ... 62

4.4 Setting the build automation tasks ... 65

5 Results and Conclusions ... 68

6 References ... 70

4

1 Introduction

The project consisted of three parts, the migration of the project’s repository from

SVN to Git, the migration of the server environment from on-premise to the cloud,

and setting the continuous integration and build automation that would clone the re-

pository, build it and serve it on the new cloud server environment.

The main purpose of the project was setting up an improved continuous integration,

build automation and deployment to the cloud process by actualizing the process to

the newest technology available.

Before the project, the technologies and processes used were presenting challenges that

could be overcome by more recent ones.

On the side of version control systems, SVN was presenting challenges regarding the

integration of new development into the used branches causing visibility and stability

issues.

On the side of the server environment, the servers were already too old and their rec-

ommended life span had already been over utilized, meanwhile the build process was

done mostly manually which compromised the efficiency and reliability of the process.

On order to solve these presented challenges the project was designed so that a migra-

tion to Git had to be done including the redefinition of version control workflows,

processes, guidelines and habits, incorporation of feature branches and pull request to

increase the visibility and stability of the project.

Also a new server environment infrastructure had to be designed and implemented so

that the project could be served from the cloud and server resources would be scalable.

Lastly, the build was planned to be automated enough so that time spending building

and deploying the latest code would be reduced, increasing the efficiency of the de-

ploying process.

5

2 Source Code Migration from SVN to GIT

2.1 Background

Up to November of 2014 Subversion (SVN) was the version control system utilized in

for the company’s project. (Kiril Jovchev 15 May 2015)

In November of 2014 the decision was made to move the source code from SVN to a

Git repository, namely Bitbucket.

Before taking the decision for the migration most other projects handled by the com-

pany were already using Git, although the repository of choice was Gitlab.

One of the main reasons for making the migration to Git and specifically to Bitbucket

was that there was a need for having a multivendor environment so that partners out-

side the company’s network could easily access the project’s source code. (Kiril

Jovchev 15 May 2015)

Bitbucket is a cloud based repository that makes making customers and partners ad-

ministrators possible in comparison to Gitlab or SVN which were on-site repositories

inside the company’s firewall to which customers and partners are denied access.

Another strong reason to move to Git was that SVN is a centralized version control

system while Git is a distributed version control system.

Having a distributed version control system would give the developers’ team many

advantages (mentioned below) over SVN. (Giancarlo Lionetti February 14, 2012)

This was important because there were at the time many paths of development includ-

ing new features development and Sitefinity upgrades.

http://blogs.atlassian.com/author/glionetti/

6

2.2 SVN Structure

The structure of the SVN repository (Figure 1) was the following (Avaus Consulting

Oy, 2014):

 Branches: 36 different branches

 DatabaseBackups: SQL binary backups

 Design: HTML & PSD designs

 Sitefinity: Sitefinity source code

 Tags: tags created by CCnet builds

 Trunk: project source files that are compiled into releases

Figure 1. Project’s SVN Structure

7

2.3 SVN Branches

The SVN repository had about 36 branches (Figure 2) including branches with the

source code for deploying to the staging and production environments, different ver-

sions of the Sitefinity source code, Sitefinity upgrades, tags and the trunk folder which

was used to deploy to the development environment. (Avaus Consulting Oy, 2014)

Figure 2. Project’s SVN Branches

8

2.4 The SVN Workflow

There was a well stablished workflow procedure to get the work done from the devel-

opment environment to the production environment.

The workflow had to go first from the development environment to the staging envi-

ronment and after this finally to the production environment.

The protocol dictated the following rules:

2.4.1 From development to staging

 make sure that you have both trunk (development) and staging branch
checked out in your local workspace

 do merging from trunk into staging branch from the desired revisions or revi-
sion range(s)

 do staging build using CCnet console
 copy and unzip the compressed build package from the development server in-

to both staging servers at the location D:\temp
 stop all web sites on the IIS instance on the current server and then stop the

whole IIS as well
 remove / copy the original D:\staging\Inetpub
 copy the folders from the uncompressed folder into D:\staging\Inetpub,

usually only the PortalConfigs and Website folders should be overwritten in
case WAS module is being left intact

 NOTE! Some folders like Website\AppData must be shared amongst the
cluster deployments so copy also Website\AppData folders from the deploy-
ment into folder D:\root\shared\Website\App_Data

 start IIS and the desired websites and do the QA testing

(Avaus Consulting Oy, 2014)

2.4.2 From staging to production

Once the staging build has passed the QA process successfully in the production envi-
ronment, follow these steps:

 rename and move production branch as produc-
tion.before.<YYYYMMDD> under archive branch

9

 make a copy of the staging branch into production branch so that CCnet
build integration has access for that

 do production build using CCnet console
 copy and unzip the compressed build package from development server to both

production servers into folder D:\temp
 stop all web sites on the IIS instance on the current server and then stop the

whole IIS as well
 remove / copy the original D:\production\Inetpub
 copy the folders from the uncompressed folder into D:\production\Inetpub,

usually only the PortalConfigs and Website folders should be overwritten in
case WAS module is being left intact

 NOTE! Some folders like Website\AppData must be shared amongst the
cluster deployments so copy also Website\AppData folders from the deploy-
ment into folder D:\root\shared\Website\App_Data

 start IIS and the desired websites and do the QA testing

(Avaus Consulting Oy, 2014)

2.5 General Rules to work with SVN

One of the issues encounter when using SVN in contrast with using a source control

management system like TFS is that due to the fact the .proj file is changing constantly

and there are multiple developers making changes, the developer is very likely to en-

counter conflicts when committing the file. (Avaus Consulting Oy, 2014)

In general conflicts like the above mentioned were avoided by committing changes as

often as possible, and making commits as atomic as possible.

This means that each commit should contained only one fix or feature as a change.

Another important rule is to give proper and descriptive messages to each commit, this

plus atomicity in each commit will make picking which fixes and features go from the

development to the staging and finally to the production environment. (Avaus Con-

sulting Oy, 2014)

When dealing with commits that fix an issue reported using the issue tracking system,

the ticket id most be provided in the commit message.

Example of good commit message:

10

FIX JIRA-123: Example issue. Provide also a brief description about the fix for the problem.

It should be taken into account that each environment has different Sitefinity configu-

ration files and these have to be branched out per environment basis and merged from

the trunk when needed.

One of the configuration files which is the one containing the connection string should

be put in the SVN ignore list.

All the right configuration files will be deployed to the right environment and servers,

this will be ensured at the time of copying the files from the development server to the

staging and production environments. (Avaus Consulting Oy, 2014)

2.6 Issues with original plan

The plan described above worked until continuous development was introduced to the

workflow.

One problem that continuous development posed was that at the end of a spring only

a subset of features in the development branch was ready therefore the whole devel-

opment branch could not be merge to the staging branch. (Kiril Jovchev 15 May 2015)

Before the introduction of continuous development the development branch was used

for all new development and the stage branch started to be used for user acceptance

testing.

At this point in time the features were very well specified and defined so that all fea-

tures had to pass the user acceptance testing if they followed the specifications, this

meant that the whole staging branch could be merged into production. (Kiril Jovchev

15 May 2015)

11

When continuous integration testing was introduced the definitions and requirements

of new features was not very well specified and therefore many features developed

were not accepted so therefore only a subset of the features could go to production

and so the staging branch could not be completely merged into the production branch.

To solve this problem, at the time of merging branches changes were cherry picked

and merged into next branched in the workflow.

This cherry picking method raised the issue that different changes may depend on oth-

er changes that may not be picked and therefore features may got broken.

To tackle this issue regression testing was introduced. One issue was there was not a

new environment for a release candidate where regression testing could be done, be-

cause of this staging environment became also release candidate. (Kiril Jovchev 15 May

2015)

2.7 Migrating to Git

At the time the source code was decided to be migrated to Git, other projects had al-

ready been migrated the Gitlab, but this time the repository of choice was Bitbucket.

Atlassian offers a tutorial to migrate a repository from SVN to Git that was used to do

the migration. (Atlassian 2014)

The tutorial is divided into 5 steps:

 Prepare your environment for the migration.

 Convert the SVN repository to a local Git repository.

 Synchronizing the local Git repository when the SVN repository changes.

 Share the Git repository with your developers via Bitbucket.

 Migrating to Git

12

When doing the migration it is highly recommended to do a “one-way synchroniza-

tion”, meaning that developers would commit only to the SVN and not to Git until the

migration is overs. (Atlassian 2014)

In order for the migration to go smoothly without any major complications it was de-

cided that developers would stop making commits until the migration was done and

afterwards they would be pushing to Bitbucket.

2.7.1 Preparing the environment

Preparing the environment consists of 3 steps:

 Downloading the migration script

 Mounting a case-sensitive disk image (if necessary)

 Extracting the author information

There are several elements that must be installed before we can do the migration,

namely:

 Java Runtime Environment

 Git

 Subversion

 Git-Svn utility

2.7.2 Downloading the migration script

The migration script is a JAR file created by Atlassian that contains functionality that is

not found in Git and it is necessary to make the migration.

The script can be found at https://bitbucket.org/atlassian/svn-migration-

scripts/downloads. It is recommended to download this script to the home directory.

(Atlassian 2014)

The script contains a command that is able to verify if we are missing any of the tools

needed for the migration. In case we have the tool installed the version will appear, and

if we don’t have the tool installed we will get an error “unable to determine version”

(Figure 3).

https://bitbucket.org/atlassian/svn-migration-scripts/downloads
https://bitbucket.org/atlassian/svn-migration-scripts/downloads

13

Figure 3. Git-SVN migration error

2.7.3 Mounting a case-sensitive disk image

The tutorial says that the migration must be done on a case-sensitive file system in or-

der to avoid the corruption of the repository. (Atlassian 2014)

The tutorial warns that this will be a problem when making the migration on an OS X

computer because it is not case-sensitive and they provide a workaround with a script

that will turn a directory into a virtual case-sensitive file system where the migration

can be performed.

In our case we tried doing the migration on a Windows 7 OS and we found some is-

sues that made the migration very difficult.

In later steps when trying to convert the SVN repository into a Git one we found the

following error:

Git - fatal: Unable to create '/path/my_project/.git/index.lock': No such file or directory read tree xxxx com-

mand returned error: 128

This error which was not descriptive enough ended up being a case sensitivity issue

because the reason of this error was that some branches’ name had spaces and win-

dows was unable to read the whole branch’s name but just the first word and therefore

didn’t find the branch which in turn may the whole conversion process stop.

Changing the name of the branch proved to be very difficult so instead the migration

was tried again on a virtual machine (using virtual box) with Ubuntu where we didn’t

find the issue.

14

2.7.4 Extracting the author information

While SVN only uses the username of the person who makes the commits (the author)

Git uses the name and email address, therefore we need to extract this information

from SVN.

The migration script comes with the following command that allow us to generate a

text file with all the authors:

cd ~/GitMigration

java -jar ~/svn-migration-scripts.jar authors <svn-repo> > authors.txt

After running this command we will have a text file called authors looking like the fol-

lowing (Figure 4):

Figure 4. Project’s SVN Structure

We then can edit this file and input the name and email address of the authors to later

use them in Git.

15

2.7.5 Convert the SVN repository to a local Git repository

After preparing the environment we had to convert our SVN repository into a local

Git repository. For this we used the git svn utility we had acquired earlier.

The tutorial mentioned 2 ways of using this command depending on whether we had a

standard SVN layout or not. (Atlassian 2014)

The standard SVN layout is:

 Repository
o Branches
o Tags
o Trunk

In our case we didn’t have a standard SVN lay out so we used a command where we

had the option to specify the location of all these.

The command we used was the following:

git svn clone --trunk=<trunk location> --branches=/branches --tags=<tags location> --authors-file=authors.txt

<svn-repo>/<project> <git-repo-name>

This commands goes through each branch and each commit and transforms this into a

Git repository with its history. In our case we had branches with as many as 5000

commits, this made the converting process last for about 6 hours.

As mentioned above we tried this process on a windows machine but we had difficul-

ties due to some branches having spaces in their names, this in turn cost us some hours

of trial and error.

When we ran this command on Ubuntu we didn’t have any difficulties and the process

was finished in about 6 hours after which we had a Git repository in the local comput-

er.

16

Figure 5. Git migration folder contents

Figure 6. Git migration repository contents

At first our local Git repository had all branches as remote SVN branches. The process

is designed this way to ensure one-way synchronization.

17

We had to run the following script to convert the SVN branches into local Git branch-

es:

java -Dfile.encoding=utf-8 -jar ~/svn-migration-scripts.jar clean-git –force

2.7.6 Synchronizing the local Git repository when the SVN repository changes

Despite there was an SVN freeze we noticed that there were about 70 commits missing

in our local Git repository. This were not new changes but rather some commits that

for some reason didn’t get through the conversion process.

In this case we decided to synchronize the SVN repository with our local Git one.

First we fetch the SVN commits missing using the command: git svn fetch and after we

integrated the commits into our local Git repository with the command: java -

Dfile.encoding=utf-8 -jar ~/svn-migration-scripts.jar sync-rebase.

There was the option of “Merging” instead of “Rebasing” the commits. The difference

between the two is that Merging integrates the commits without its history so the se-

quential order of what committed was before or after what commit is lost. Rebasing

integrates the commits in a sequential order so the history is preserved.

At last we re-ran the command: java -Dfile.encoding=utf-8 -jar ~/svn-migration-scripts.jar clean-git –

force to delete the obsolete remote SVN branches and tags that could be still on the

SVN repository.

2.7.7 Sharing the Git repository with your developers via Bitbucket

Now that we had a Git repository with our project on our local machine we created a

Bitbucket repository where we were going to push our local one.

18

Creating a Bitbucket repository was really easy and we had the options between creat-

ing a Git repository or a Mercurial one, making it private or public one and selecting

the programming language.

We created a private Git repository with C# programming language.

Figure 7. Bitbucket new repository creation menu

After creating the repository there was an option between starting the repository from

scratch or starting with an existing repository.

Since we had our converted Git repository in our local machine we selected the latter

option.

19

Figure 8. Git repository migration to Bitbucket instructions

In order to push our local Git repository to Bitbucket we used the Git Bash tool to

navigate to our repository, add the http address of our Bitbucket repository as origin

with the command: git remote add origin <http address> and use the git push –u origin -- all,and git

push –u origin –-tags, to push the repository and its tags for the first time.

After we had our repository on Bitbucket every developer created a Bitbucket account

so that we could add them to our private Git repository and give them access to it and

share the http address with them.

Figure 9. Git migration repository contents

2.7.8 Migrating to Git

20

After the Bitbucket contained the local Git repository there was no need to synchro-

nize it with the SVN one therefore the only steps left was to deactivate the SVN ac-

count and start committing to Git.

There was also a small Git training for all developers involved in the project.

2.8 Git Workflow

After working with SVN for several years some working habits were kept after the mi-

gration to Git that needed to be change because of differences in the way SVN and Git

are designed.

One such habit was to use the trunk branch in SVN as development branch or in case

of Git the branch Master as development branch, this was later change to using Master

branch as the production branch.

At first the plan was to direct the merging workflow from development to production,

the general idea was that new feature branches would be created from the development

branch then merged into stage and lastly into production. (Kiril Jovchev 15 May 2015)

The following diagrams described the original plan for the Git workflow:

21

Figure 10. Git workflow from Master branch to Stage branch

Master

Accepted?

Branch F-XXX1234-New feature

Merge request - Code
review

Branch F-XXX1245-New feature 2

Feature dev 1a

Feature dev 1b

Code review fix

No

QA

Yes

Accepted?

QA Fix

No

Yes

Merge
Feature XXX-1234

Stage

Merge
Feature XXX-1245

Merge Master for UAT
Release 2.23

Git Tag:UAT.2.23.0
Deploy to Staging
Environment UAT

2.23.0 Merge Master for UAT
Release 2.24

Merge Master for UAT
Release 2.25

Git Tag:UAT.2.25.0
Deploy to Staging
Environment UAT

2.25.0

Remove Branch F-
XXX1234-New
feature

22

Figure 11. Stage branch Git workflow

Staging

Accepted?

Branch UAT-XXX1234

Merge request - Code
review

XXX1234 dev 1a

YIT1234 dev 1b

Code review fix

No

QA

Yes

Accepted?

QA Fix

No

Yes

Merge
UAT XXX-1234

Git Tag:UAT.2.23.1
Deploy to Staging

Environment UAT 2.23.1

Merge Master for UAT
Release 2.23

Master

UAT 2.23 XXX
Sprint 23 (24&25 – 2.25, see not deployed

changes from previous slide)
UAT XXX-1234

UAT-XXX1245

Merge back to master UAT
XXX-1234

Remove Branch UAT-
XXX1234

23

Figure 12. Git workflow from Stage branch to Production branch

Production

Accepted?

Branch Hotfix-XXX1234-
Fix URL

Merge request -
Code review

XXX1234 dev
1a

XXX1234 dev
1b

Code review fix

No

QA

Yes

Accepted?

QA Fix

No

Yes

Merge
Hotfic XXX-
1234

Git Tag: 2.23.1
Deploy to Production

Environment 2.23.1 (increment version
because of patch)

Merge Stageing for
UAT Release 2.23.0

Staging

Issue found

Support Jira tick-
et XXX-1234

Hotfix-XXX1245

Merge back Hotfix
XXX-1234 to Staging

and Master

Remove Branch
Hotfix-XXX1234

Master

24

2.9 Git workflow guidelines (original plan)

New feature development:

 Master is the development branch

 Feature branches are branched from master

 After the feature is developed on the feature branch it is submitted for a code
review

 If the code review is not passed it has to be fixed

 When the code review is passed it is submitted for QA testing

 If QA testing is not passed then it needs to be fixed

 If QA testing is accepted the feature branch is merged into master branch (de-
velopment)

 development is merged into stage

 In stage there is user acceptance testing

 If an issue is found a branch is created from staging for fixing the issue

 The issue is resolved in that branch

 After the issue is fixed on the branch it is submitted for a code review

 . If the code review is not passed it has to be fixed

 When the code review is passed it is submitted for QA testing

 If QA testing is not passed then it needs to be fixed

 If QA testing is accepted the feature branch is merged into staging branch

 staging is merged back into master

 After staging branch has passed the user acceptance testing it is merged into
production

Hot fixes:

 If there is a need to perform hot fixes a branch is created from production

 After the hot fix is done it is submitted for a code review

 If the code review is not passed it has to be fixed

 When the code review is passed it is submitted for QA testing

 If QA testing is not passed then it needs to be fixed

 If QA testing is accepted the branch is merged into production

 production is merged into staging and master

2.10 Issues with original plan

After the creation of the above described plan, many of the same issues previously en-

counter when working with SVN workflow started to re-appear.

25

It was noticed that there were many difficulties when working from development to-

wards the production branch.

The main issue was that in many cases the whole branch could not be merged into the

next branch in the workflow but rather only some features were ready or accepted to

be merged.

Merging only some but not all features into the next branch in the workflow very likely

breaks other features dependent on the features not merged.

In order to solve this issue the workflow was reverted from production to develop-

ment, and instead of merging new branches with fixes to production, the branches

themselves become the production branch and the older production branch become

history. (Kiril Jovchev 15 May 2015)

A new plan and workflow guidelines were designed.

2.11 New and improved Git workflow guidelines

When working with Git we will use three main branches, namely: Production, Devel-
opment, and Release candidate (Stage).

The following guidelines must be followed when working with branches:

• Production will be the master branch

• Development and Release candidate will be branched from production

• Whenever a new feature will be developed or a fix will be made a feature
branch will be created from production

• After the feature is developed or a Fix is done the feature branch will be
merged into development branch and a UAT functional test will be
performed

• If the test is not passed then work will continue to be done in the feature
branch and merge again into Development until the functional test is
passed

• After the test is passed the Feature branch will be merged into the Release
candidate branch and a Regression testing will be performed

• If the Regression testing is not passed this will have to be fixed in the fea-
ture branch again and merge back into the Release candidate branch
and development branch

26

• After the regression testing is passed production will be branched into a
branch named as production plus the date and hour of creation, this
branch will be used as history in case we need to go back to a previous
state of the production branch and the original production branch will
be deleted

• After the original production branch is deleted a new production branch
will be created from the Release candidate branch

• The feature branch is deleted

When doing hot fixes the following guidelines must be followed:

• A hot fix branch will be created from production for each hot fix to be
made

• The hot fix branch will be merged into Release Candidate for regression
testing

• If the Regression testing is not passed this will have to be fixed in the hot
fix branch again and merge back into the Release candidate branch

• After the regression testing is passed a copy of the production branch will
be created and named as production plus the date and hour of crea-
tion, this branch will be used as history in case we need to go back to a
previous state of the production branch and the original production
branch will be deleted

• After the original production branch is deleted a new production branch
will be created from the Release candidate branch

• After the hot fix is in production, the hot fix branch will be merged into
the development branch

• The hot fix branch is deleted

2.12 Discussion

In this section I discuss the advantages of centralized vs distributed version control

system, how our developers team beneficiate from switching from SVN to Git, I also

expose four different popular Git workflows and how we evolved in our team from

popular Git workflow to our own unique workflow that works the best for us.

2.12.1 Centralized vs Distributed Version Control System

Centralized version control systems like SVN follow a model in which there is a single

“central” repository to which all developers commit changes to.

27

Other developers can then “pull” the latest version of the central repository that will

contain all changesets committed by all developers.

Although the latest version of the repository can be pulled to the developers’ hard

drive, the full history of the repository will remain in the central repository. (Giancarlo

Lionetti February 14, 2012)

In the case of distributed version control systems, the developer can clone a copy of

the repository containing its full history. (Giancarlo Lionetti February 14, 2012)

The advantages of having a distributed version control system are:

 The system only needs to access the hard drive and not the remote repository
to perform actions which makes them very fast to perform

 Changes can be committed to the local copy of the repository first and pushed
to the remote repository when ready

 There is no need for internet connection when committing changes to the local
repository which makes developers not to be forced to pushed changes directly
to the remote repository

 Changes committed to local repository can be shared with a some developers
for feedback before showing them to the whole team

The disadvantages of having a distributed version control system are:

 If there repository has many large files that cannot be compressed easily having
many different versions of such files would take a lot of space

 If the repository has a long history it may consume an unacceptable time to
download it and too much space.

2.12.2 Experiences in our developers team

In the case of our company’s customer, the project has more than 5000 thousand revi-

sions which means that we encounter challenges at the time of cloning since it may

take a long time and it occupy a lot of space.

Nevertheless the advantages are greater than the downsides since it only takes too

much time the first time the repository is downloaded but afterwards the process of

http://blogs.atlassian.com/author/glionetti/
http://blogs.atlassian.com/author/glionetti/
http://blogs.atlassian.com/author/glionetti/

28

committing and performing actions become so much faster because the repository is

now on the local environment.

The fact that the repository takes a lot of space is a fact that has been decided to be

acceptable and manageable by spending on disk space resources.

After allocating enough disk space on local environments and allocating enough time

for cloning the repository locally, the team is satisfied with the advantages of been able

to commit to the local repository before pushing to the server-side one and the faster

time to perform actions locally.

2.12.3 Popular and suggested Git workflows

Atlassian, a company that produces IT services that we as a company have greatly uti-

lized, suggests in an article four different Git workflows that our developers’ team took

into consideration:

 Centralized workflow

 Feature Branch workflow

 Gitflow workflow
 Fork workflow

Our team considered these 4 workflows and developed rules and behaviors based on

the Feature branch workflow that evolved into a unique workflow. Here I expose the

four considered workflows and our evolution to a unique workflow that works the best

for us.

2.12.4 Centralized Workflow

The normal workflow in Git starts by initializing a repository on the server-side. Each

developer now can clone the repository to their local environment and work inde-

pendently from each other by committing changes only to their local repository.

29

When a developer finishes his feature he can commit to the server-side repository by

“pushing” his local commitments.

Now that a developer has integrated his changes into the server-side repository, if a

second developer tries to push his changes to it he won’t be able to do it unless he first

pulls the updated version of the server-side repository to his local repository.

If there are conflicts between the first and second developer then the second developer

must resolve the conflicts in his own local environment before he can push into the

server-side.

2.12.5 Feature Branch Workflow

The idea of the feature branch workflow is that there must be a branch created from

master for every single feature in which the feature will be developed in.

Every developer must create a new branch (“feature branch”) and make changes con-

cerning a feature only to this branch. The developer can work independently on this

branch without the need to push it to the server-side repository before the feature is

complete, but instead the developer can commit to his local repository.

When a feature is ready the developer can make a pull request that lets the team know

that the feature is ready. The feature is examined and the developer in charge of the

master branch may request some changes done to the feature branch before it is merge

into master.

If everything is ok then the feature is merged into master, while other developers are

working in the same way for new features.

2.12.6 Gitflow Workflow

30

The main idea behind Gitflow workflow is to have a branch that contains all of the

release versions as a history and a branch from which feature branches can be created

from.

In contrast with other workflows feature branches are created from the “develop”

branch while the “master” branch is the one that will contain the releases history.

The develop branch is first created from the master branch. Feature branches are cre-

ated from and merged back into develop. When develop has enough features for a re-

lease, a release branch is created from develop to use for production.

The release branch is then merged back into develop and into master to mark a release

version.

2.12.7 Fork workflow

The fork workflow is fundamentally different from the above mentioned workflows in

that instead of each developer cloning the main repository on their local environments,

each developer get their own server side repository which it is later cloned to their local

environments.

Developers work on their local environments and commit and push to their own serv-

er-side repositories.

When and update is ready to be integrated into the project, the official repositories’

maintainer pulls from the developer’s server-side repository and merges into his own

local environment, checks that everything is ok and pushes to the official repository.

After changes are integrated into the main repository developers can pull from it to

their local can be shared changes.

31

One important thing to take into account is that although issues are been isolated into

different server-side repositories it is still important to isolate different features into

different branches.

2.12.8 Developers Team Experience

The experience of our developers’ team starts when the customer’s source code was in

SVN. The workflow used at this point in time was similar to the centralized workflow

described above.

Features were worked on development branch, then when development contained all

features for a sprint development branch was merged into staging branch where tests

were performed and later in theory when features would passed the test, staging

branch would be merged into production.

Several problems where discovered with this approach:

1. Not all the features passed the test which left development branch containing
some features ready for implementation and some features not ready.

2. Development branch could not be merged into production as a whole but the
features ready for implementation had to be cherry picked and merged into
production.

3. Cherry picking features cannot assure the stability of production because some
features may depend on others from proper functioning

One solution was to force all of the features to pass the customer’s test by starting with

higher levels of the quality of definitions of customer’s requirements, so that by adher-

ing to the well-defined requirements the customer would be compelled to accept the

features produced, this in turn would allow to merge the entire development branch

into production.

After the migration to Git, another proposed solution was to start implementing the

feature branch workflow that meant that feature branches would be spawned from the

production branch and later merged into development and staging branch for testing.

32

This solved part of the problem because features developed on feature branches would

only merge into development branch after the feature is finished, meaning that the de-

velopment branch would always be ready to merge into staging.

The problem that persisted was again that some features would pass the test and others

would not pass the test making it impossible to merge the whole development branch

into production.

This problem was solved by merging and testing one feature branch at a time into mas-

ter and then into a release candidate branch for regression testing and after all testing is

performed, the branch that has passed all the testing would become the new produc-

tion branch instead of been merge into the already existing production branch.

This is the current model of workflow which has proven to be effective and stable.

2.12.9 Git benefits according to a developer on the project

“The biggest benefit of the new workflow is that the entire process is now much more

transparent and controlled than earlier.

This is mainly because we are now using pull requests - no code will end up in the mas-

ter branch before someone else has reviewed it. There is no doubt that this has positive

effects on the code quality, because all the developers have to critically evaluate their

own and each other's code, and the most obvious bugs and problems are likely to be

caught early on. This is also a very good way to learn and discuss the good coding

practices with the other developers.

In the old workflow, everything was directly committed to the master branch and some

code review was maybe done when features were cherry-picked for the deployment

probably not always even then.” (Project’s developer, 2015)

33

3 Part 2: Migration from onsite hosting to the cloud

3.1 Background

For the last 4 years the company has been hosting their websites’ applications on-site.

The architecture started with:

 2 Active Directory Servers

 4 application servers (2 for staging environment and 2 for production environ-
ment)

 1 SQL cluster

Active directories and applications servers were virtualized on top of VMware where

the SQL cluster runs directly on the hardware. (Kiril Jovchev 15 May 2015)

VMware was running on our server cluster, there were 4 hardware machines.

The server environment supported 14 sites from which 12 were corporate sites and 2

were business sites.

In the last 4 years since the project started the number of sites increased to 28 from

which 15 were business sites. This expansion put extra load on the servers and not on-

ly because the mere increase in the number of sites but also because an increase in the

percentage of business sites which consume 3 times more resources than corporate

sites. (Avaus Consulting Oy, 2015)

The increased demand for resources on the servers represented a big problem since

there was a continuous lack of disk space that had to be expanded and high CPU us-

age. (Kiril Jovchev 15 May 2015)

The company decided to migrate to the cloud due to the fact that the severs’ life time

had expired already. The company decided to run a one year long analysis to decide

which cloud hosting service to use. (Kiril Jovchev 15 May 2015)

34

The life span of the servers was passed (over 3 years).

There were 3 major candidates with their advantages:

 Amazon Web Services – The advantage was that they are the market leader.

 Azure- The advantage was that they had an enterprise agreement that would
make the hosting very cheap.

 Enterprise Cloud – The advantage was that they felt more secure if their web-
sites were hosted in Finland.

The decision was taken in favor of a enterprise cloud service based in Finland.

The agreement was that the enterprise cloud service company would copy the old envi-

ronment and create a new environment with the same number of servers according to

the architectural specification and that Avaus consulting was in charge of the migration

of the sites from the current servers to the new servers. (Kiril Jovchev 15 May 2015)

The architecture is designed so that for each of the production and staging environ-

ments there is a load balancer that keeps the servers belonging to the same environ-

ment in sync. (Avaus Consulting Oy, 2014)

Each server contains multiple websites which have the same web root but different

configuration files and virtual directories. Each of the sites belonging to the same envi-

ronment connect to the same database. (Avaus Consulting Oy, 2014)

3.2 Migration Tasks

In order to successfully migrate the company’s websites to the new servers the follow-

ing tasks must be performed:

 Installing the necessary IIS modules

 Migrating all necessary files from the old servers to the new ones

 Exporting all sites

 Creating virtual directories

35

 Directing logs to new locations

 Configure FTP server

 DNS Resolution

 Testing

 Migration

3.3 Setting up the necessary IIS modules

IIS comes with a set of core functionalities and the option of installing additional sets

of functionalities called modules.

In order to serve or websites successfully I needed to install the following IIS modules

which are required to run a Sitefinity application (Telerik, 2015):

1. Dynamic Content Compression: Enables dynamic compression which makes
for a more efficient use of bandwidth, although it may increase the load on CPU.
(Microsoft. TechNet. 2015)

2. Request Filtering: Filters incoming requests using defined sets of rules. (Mi-
crosoft. TechNet. 2015)

3. Basic Authentication: It provides a basic security level by requiring a user ID

and a password to use as credentials. (Microsoft. TechNet. 2015)

4. IP and Domain Restrictions: It makes IIS restrict the access to defined IPs
and/or domains. (Microsoft. TechNet. 2015)

5. Windows Authentication: It provides a high level of security by transferring

user authentication over a network as a Kerberos ticket. (Microsoft. TechNet.
2015)

6. .NET Extensibility 4.5: Infrastructure that enables developers to modify and
add functionality to the Web server and support ASP.NET (Microsoft. IIS.
2015)

7. Application Initialization: Allows for the performance of Web application ini-
tialization tasks previous to serving pages. (Microsoft. IIS. 2015)

36

8. ASP.NET 4.5: Supports communication for server applications that were creat-
ed with IIS 8.x and ASP.NET 4.5. (Microsoft. IIS. 2015)

9. ISAPI Extensions: Supports dynamic Web content development. (Microsoft.
IIS. 2015)

10. ISAPI Filter: It allows for the modification and addition of IIS functionality by
reviewing and processing each request sent to IIS. (Microsoft. IIS. 2015)

11. Web Sockets: Provides communication channels for server applications created
with IIS 8.x and ASP.NET 4.5. (Microsoft. IIS. 2015)

12. HTTP Activation 4.5: Allows WFC services to run on IIS/ASP.net over
HTTP (Microsoft. MSDN. 2015)

13. URL Rewrite: Allows the creation of rules to define URL rewriting behavior
like redirections and custom responses. (Microsoft. IIS. 2015)

14. ARR Module: It forwards HTTP requests to content servers (Microsoft. IIS.
2015)

Most above mentioned modules with the exception of the URL rewrite module can be

installed using the following powershell code (Microsoft. MSDN. 2013):

add-windowsfeature web-webserver, Web-Dyn-Compression, Web-ODBC-Logging, Web-Filtering, Web-Basic-

Auth, Web-IP-Security, Web-Windows-Auth, Web-Net-Ext45, Web-AppInit, Web-Asp-Net45, Web-ISAPI-Ext,

Web-ISAPI-Filter, Web-WebSockets, RSAT-SMTP, SMTP-SERVER, Web-WMI, NET-WCF-HTTP-

Activation45

The url Rewrite module has to be downloaded from:

http://www.iis.net/downloads/microsoft/url-rewrite and installed. (Microsoft. IIS.

2015)

In addition to the URL Rewrite module, The URL Rewrite Extensibility Samples

which can be downloaded from http://www.iis.net/learn/extensions/url-rewrite-

module/using-custom-rewrite-providers-with-url-rewrite-module has to be installed.

(Microsoft. IIS. 2015)

http://www.iis.net/downloads/microsoft/url-rewrite
http://www.iis.net/learn/extensions/url-rewrite-module/using-custom-rewrite-providers-with-url-rewrite-module
http://www.iis.net/learn/extensions/url-rewrite-module/using-custom-rewrite-providers-with-url-rewrite-module

37

3.4 Migrating all necessary files from the old servers to the new ones

The file system was improved and designed to avoid running out of space which is a

constant problem in the current environments. (Kiril Jovchev 15 May 2015)

The new servers’ architecture was designed so that there would be a better organiza-

tion for the important files and folders needed to run all aspects of the websites and

for improved scalability of the resources. (Kiril Jovchev 15 May 2015)

The important files and folders of the websites are:

 Web root folder: This is the folder containing the application to which the all

company’s sites direct on IIS server (all of these sites use the same web root

folder but different configuration files).

 Configuration files: Contains the configuration files for each of the different

websites. There is a different configuration folder for each of all sites.

 WAS folder: Contains web services application that support the website, like

POI and image recognition services

 Integrations site: The importer site is a duplicate of the web root folder

against which the imports are ran.

 Logs: The logs folder contains the IIS logs, Sitefinity logs and HTTP error

logs.

 ASP.NET temporary files

 Shared files

 Importer dump folders: These folders receives the XML files sent by the im-

porter

 File System: This folder contains the images used on the site

 Scripts folder: Folder containing various utility scripts like scripts to start and

stop all sites, deployment scripts, monitoring scripts etc.

 Reverse proxy sites folder: containing the web.config of 4 of the sites which

are reverse proxy ones.

38

The old servers consisted of 3 drives. The C: drive was used for the operating system

and the D: drive contained the application root folder, configuration files, WAS folder

Logs and share folder. (Avaus Consulting Oy, 2014)

Figure 13. Old servers’ drives

In the old environment the D: drive contained most of the application folders. The

new environment was designed to compartmentalize the different files needed to run

the project.

The new servers contain 6 drives each:

 C: drive for the Operating system

 D: drive to store the application

 E: drive for different kinds of logs

 F: drive for temporary ASP.NET files

 G: drive for temporary deployment files

 H: drive for DFS

Figure 14. New servers’ drives

The Web root folder, Configuration files, WAS folder, Importer site where moved

from the old server to the new one under a folder named IIS on the D: drive.

39

Figure 15. D drive contents

All the files that were to be shared between the two nodes were moved to the H:

drive including:

XML Importer dump folder, the storage file system and different folders contain-

ing PowerShell scripts and services.

Figure 16. DFS drive contents

Figure 17. DFS drive contents

There were 4 folders created on the E: drive to save different kinds of logs, namely:

 HTTP Error logs

40

 IIS logs

 Importer logs

 Sitefinity logs

Figure 18. Logs drive contents

3.5 Exporting all sites

After having the necessary files and folders in place, the next step was to create all the

sites on the IIS. To make this task simple and effective the application pools and sites

nodes where copied from the applicationhostconfig file on the old server to the one in

the new server.

41

Figure 20. Project sites on IIS

After copying the sites to the new servers we had created 30 sites in the new servers’

IIS:

 1 FTP server (BizTalk dump folder)

 1 site for the importer

 1 Site to direct to the WAS folder

 27 Company sites from which 4 where proxy servers

42

3.6 Creating virtual directories

The application pools and sites’ nodes copied from the old servers to the new ones had

virtual directories with locations that do not applied any longer in the new server’s en-

vironment.

New virtual directories’ locations needed to be created. (Microsoft 2015)

 The virtual directories needed to be created were:

−
Figure 19. Virtual directories

Figure 20. Virtual directories

 Sitefinty Configuration Files – Each site has different Sitefinity configurations, thus we had
to create a configuration files folder for each of the different sites to keep them organized.

Inside each folder we had 3 different folders to server as virtual directories,

namely: Configurations, ErrorPages, and NLB.

The Configuration folder contains all the Sitefinity configuration files needed by each

site. (Telerik, 2015)

43

Figure 21. Sitefinity configuration files

 Error Pages – The error pages directory contains custom error pages for 404 and 500 error
messages.

Figure 22. Error pages files

 Global Resources – The global resources directory contains Sitefinity resources used by each
and site. In this case global resources are not separated by different folders per site but they
are all in the same virtual directory. (Telerik, 2015)

44

Figure 23. Global Resources Files

 Sitefinity Logs – This folder contains the sitefinity error logs.

−
Figure 24. Error log files

−

 Search – Contains Sitefinity search indexes.

45

Figure 25. Search folders

 Sitefinity Temp folder – Contains Sitefinity temporary files.

Figure 26. Sitefinity temp folder contents

 Storage / File System – Contains image files used by Sitefinity.

Figure 27. Files system contents

 Files

46

−
Figure 28. Files folder contents

Figure 29. Virtual directories on IIS UI

47

3.7 Directing logs to new locations

Besides the Sitefinity and the importer logs which are virtual directories and which’s

locations where configured when other virtual directories’ locations where configured,

The IIS logs and the HTTP error logs’ had to be change from their default location.

(Microsoft. Technet. 2015)

3.8 Configuring the IIS logs location

For each of the sites the IIS logs where change to the location

E:\IISLogs\production\LogFiles using the IIS console.

Figure 30. IIS’s logging menu

3.9 Configuring the HTTP error logs location

HTTP error log is changed to the location E:/HTTPERR/logs with the following

PowerShell script:

$myRegKeyBase =

"HKLM:\SYSTEM\CurrentControlSet\services\HTTP\Parameters" $myRegKey-

Name = "ErrorLoggingDir" $myRegKeyVal = "E:\HTTPERR\logs" # Create

48

Key property if it doesn't already exist $myRC = New-ItemProperty $myRegKey-

Base -Name $myRegKeyName -Value $myRegKeyVal -PropertyType String -

ErrorAction SilentlyContinue # Update Key property to $iisLogFileDir if it already

exists Set-ItemProperty $myRegKeyBase -Name $myRegKeyName -Value

$myRegKeyVal -ErrorAction SilentlyContinue $myProperties = Get-ItemProperty

$myRegKeyBase -ErrorAction SilentlyContinue Write-Host "regKeyPath:

$($myRegKeyBase) regKeyName: $($myRegKeyName) value: $($myProper-

ties.$myRegKeyName)"

For logging we are using 2 toolsets, one is Log4net and the otherone is sys-

tem.diagnostics from the .NET framework.

To direct Log4net to Logs drive Log4net.config file was updated and the sys-

tem.diagnostics the settings are changes in web.config.

3.10 Configure FTP server

BizTalk generates XML files containing integration data that is retrieved for the pro-

duction environment at the cloud service provider’s Links via FTP connection periodi-

cally.

In order to stablish a FTP connection an FTP server was created on the IIS and a

username and password was created and shared with the cloud service provider. (Mi-

crosoft. IIS. 2015)

The FTP server contains several virtual directories where the XML files that contain

integration data are dumped.

49

Figure 31. FTP server’s folders

Figure 32. FTP server folder contents

Transfer process:

1. The Source system generates a transfer data file(s) based on the manual trigger
or internal scheduler of the Source.

2. The transfer data file(s) generated by the Source are pushed into FTP directory
at the Destination.

3. XML Preprocessor is triggered manually or based on the scheduler at the Des-
tination.

4. Import process is triggered manually or based on the scheduler at the Destina-
tion.

5. After a successful import, the transfer data file(s) are moved into archive direc-
tory.

XML Preprocessor:

XML Preprocessor is a standalone application that is used to prepare the XML file
pushed into FTP in way that will optimize the import process. The XML Preprocessor
could be triggered manually or by a scheduler on the Destination machine.

XML Preprocessor workflow:

50

1. Load the base(archived XML) and the one pushed into FTP;
2. Compare the differences between the two XMLs:

1. Detect changes over the data;
2. Insert new data (Projects, Apartments, Attachments, etc.);
3. Remove missing data.

3. Download all the attachments in the new generated file and create:
1. AttachmentID – hash of the attachment location;
2. Hash – hash of the binary content;
3. UpdatedAt – add the current date in UTC, XML formatted if there is a

difference between the base and the new xml.
4. Save the final file that is containing the specific information that need to be im-

ported.

3.11 DNS Resolution

The last step for the websites to be able to be browsed was adding the bindings to the

hosts file. This is a simple procedure that requires simply to open the hosts file which

can be done with the command: notepad C:\Windows\System32\drivers\etc\hosts on the win-

dows command prompt and add the DNS to it.

3.12 Testing

Each of the 27 company sites was smoke tested by browsing the sites inside the server

using the IIS console for each binding.

Figure 33. Website URL bindings

After successfully browsing each site with their bindings without getting any errors, the

migration was completed and the servers were ready to go live.

3.13 Migration

51

After the stage and production were ready to be migrated there was a plan stablished to

be followed on the migration day.

The migration protocol went as following:

3.13.1 GO LIVE on stage

E.g. starting on Mon 23.3.2015.

1. 16:00, Content freeze starts*, importers shut down

a. Notifications to ALL when done

2. 16:10, Contents of the production DFS copied to the new servers

a. Time consuming task (4h)

b. Notifications to ALL when done

3. 16:00, Add stage3 and stage4 to the load balancer – can be done earlier during

the day, if more convenient

a. Notifications to ALL when done

4. 16:00, Switch BizTalk to send data to stage3 – can be done earlier during the

day, if more convenient

a. Notifications to ALL when done

Following Day:

5. 10:00, Smoke testing (Manual)

a. For each site, start on front3 and front4

b. For each site – shut down front1 and front2

c. Verify each server – front3 and front4

6. 15:00, Smoke testing completed

a. Notifications to ALL when done, if OK continue to next step, if Not

OK, telco (15:00) about next actions

b. 15:00, Importer smoke testing

c. test data to be secured

d. Notifications to ALL when done

7. 15:00, CRF service check from BizTalk/VIP

a. Check all VIP sites

b. Notifications to ALL when done

8. 16:00, GO decision from all parties via email

a. if OK from ALL, continue to next step, if Not OK, telco about next ac-

tions

9. 16:00, Content freeze over, importers resumed

*) Content freeze not 100% necessary, stage can be used during the operation.

52

On the following week (date to be agreed on weekly 1.4) remove stage1 and stage two

from the load balancer, see section 4 for the procedure.

3.13.2 GO LIVE on production

10. E.g. starting on Fri 27.3.2015.

11. 19:00, Content freeze starts, importers shut down

12. Notifications to ALL when done

13. 19:10, Contents of the production DFS copied to the new servers (Risk)

14. Time consuming task (4h)

15. Notifications to ALL when done

16. 12:00, Add Front3 and Front4 to the load balancer

17. Notifications to ALL when done

18. 19:00, Switch BizTalk to send data to front3 (Risk)

19. Notifications to ALL when done

Following Day:

20. 10:00, Smoke testing

21. For each site, start on front3 and front4

22. For each site – shut down front1 and front2

23. Verify each server – front3 and front4

24. 15:00, Smoke testing completed

25. Notifications to ALL when done, if OK continue to next step, if Not OK, telco

about next actions

26. 15:00, Importer smoke testing

27. test data to be secured

28. Notifications to ALL when done

29. 15:00, CRF service check from BizTalk/VIP

30. Check all VIP sites

31. Notifications to ALL when done

32. 16:00, GO decision from all parties via email (no requirement from cloud ser-

vice provider but availability yes)

33. if OK from ALL, continue to next step, if Not OK, telco about next actions

34. 16:00 – 18:00 Monitoring the sites, cloud service provider to designate a specific

contact for this time in case of issues and/or rapid revert needed

35. 16:00, Content freeze over, importers resumed

36. 18:00 – 21:00 On call for emergencies

53

3.14 Results

The migration was successful although there were some delays with the schedule.

There were some misconfigurations of the load balancing settings from the part of the

cloud hosting service provider that didn’t allowed the web server to serve some sites

which were fixed after the testing.

There was also some firewall setting problems with the FTP server connection that

were fixed as well.

At the end the customer was satisfied with the migration. The issues with performance

and stability that existed in the old database servers disappeared which was a main

concern in the old server environment. (Matti Kiviluoto, 2015)

The team was expecting a performance boost on the front-end servers due to the up-

grade of resources provided by the new server but unfortunately there was no signifi-

cant boost on site performance. (Matti Kiviluoto, 2015)

After the migration was completed there were some downsides identified by our team

regarding the service provided by the cloud hosting service.

Mainly, the problem was the delayed response time when something was requested

from them. In contrast the availability of resources is immediate in other projects that

use Amazon Web Services due to the fact that we have access to the console. (Matti

Kiviluoto, 2015)

3.15 Discussion

3.15.1 Hosted vs on premise advantages and disadvantages

When deciding between hosting a project on premise or online the specific needs of

the company must be taken into account. There is not one solution that fits all cases

and therefore the advantages and disadvantages of both options have to be considered.

54

On premise advantages:

 Control over systems and data: The advantages of hosting a project on prom-
ise are first of all, control over the whole system and data. Data can be retrieved
on demand and decisions can be taken internally expediting the results.

 Corporate data is stored and handled internally: Retaining privacy of sensi-
tive information is another advantage of on premise hosting. Since the data is
not given to a third-party to handle the privacy of the data is safer.

 Optimal utilization of existing hardware: Hardware owned by the company
is can be utilized more optimally when projects are hosted internally. If the
company owns the required hardware costs can be saved by avoiding paying for
hardware used by third parties.

 High level of compliance with company's standards: The level of compli-
ance with the company’s criteria is higher when the company itself is handling
the project internally.

 On-demand provisioning of resources: Resources can be provided on de-
mand around the company since there are not intermediaries between the re-
sources and someone needing them inside the company.

(Salam, Gilani, Ul Haq. 2015)

On premise disadvantages:

 Extra resource management load: one of the main disadvantages to on
premise project hosting is that the management becomes more complex and
more resources are required. Moving the project hosting to a third party service
greatly decreases the load of management and the resources required.

 Need for special skills in cloud solution: The Company will have to invest in
looking and hire people with special skills to handling the project. This can in-
crease the cost of managing the project.

 Additional costs for infrastructure: The infrastructure can also increase the
cost of running things internally since there is an additional need for hardware,
software and work involved in setting up and maintaining the infrastructure.
(Salam, Gilani, Ul Haq. 2015)

55

Taking into account the advantages of on premise hosting it is best suit for large com-

panies with hardware resources under-utilized.

It may be the case for and enterprise to have hardware resources that could be not in

use and could supply all the hardware need to host their projects.

In this case using those resources could end up been cheaper than paying extra to a

third-party service.

Having the necessary hardware resources is not enough to go for on premise hosting,

the company needs to take into consideration that it will have to invest in long-term

expertise to run the resources.

Hiring cloud computing and infrastructure experts could be a smart investment in the

case the company has many projects or big enough projects so that employees can be

utilized at maximum capabilities.

If the project is too small it hiring experts to manage it can be inefficient and outsourc-

ing it to a third party service may be more cost-effective.

In case a company has not the hardware resources, it must have a reason to want in-

vest in infrastructure resources and human resources.

The truth is that the amount of companies that will beneficiate from hosting their own

projects is reduced to large corporations with already possession infrastructure re-

sources, having large projects, and with the budget to hire people with special skills in

cloud computing and infrastructure.

Virtual Hosting advantage:

 No software licensing costs: Usually the costs for software and tools re-
quired to manage a project falls under the responsibility of the hosting service
provider, therefore the costs of buying software are saved. In addition the
workload of choosing the right software is saved as well.

 No new infrastructure requirements: Project hosting providers supply all the
infrastructure needed to manage a project (hardware and interfaces). Since they

56

specialize in providing this services the cost of infrastructure is cheaper and
there is no set up cost.

 Low cost for services: Getting the service from a provider can be many times
cheaper and more efficient than running all the infrastructure on premise,
avoiding the costs not only of infrastructure but also of specialized personnel.

 Minimum vendor lock-in concerns: Thanks to a wide array of competitors
and options available and the easy technology provides for the migration of a
project from one hosting provider to another the risk of locking-in with

 No management requirements: The maintenance and management of the
project hosting infrastructure is also a responsibility of the service provider al-
lowing the company to rip all the benefits of the service without major speciali-
zation in the issue.

 On-demand provisioning of resources with no cost: A good service provid-
er will provide resources accessibility around the clock and without extra cost.

 Strong levels of security, privacy, standards and regulations: Data may in
certain cases be more secure in hands of a service provider and the infrastruc-
ture may be more reliable and secure as well. Thanks to the service provider’s
specialization in the industry there is a higher level of compliance with the in-
dustry’s standards and regulations.
(Salam, Gilani, Ul Haq. 2015)

Disadvantages

 Additional compliances maybe required: The third party service provider usually
will have its own terms and conditions that have to be followed as well. In some
cases these will conflict with the company’s standards and regulations and on
some others they will give extra considerations and requirements to manage.

 Customers of company may have security concerns: Customers of the company
may have concerns about the trustworthiness of the third-party service provider
and this in turn can compromise the trustworthiness of the company as well.
(Salam, Gilani, Ul Haq. 2015)

Taking into account the advantages and disadvantages of virtual hosting, we can say

that virtual hosting works best for organizations that don’t want to invest in private

infrastructure and private human resources or don’t want to maintain their own hard-

ware and software.

57

Another aspect to consider is that a company will beneficiate from virtual hosting if

they don’t want to manage the compliance with standards, regulations, privacy and

security policies.

When a company is handling highly sensitive and confidential information it also may

be best to entrust this information to a dedicated company with higher competence in

dealing with this kind of data, in this case a disadvantage may be that customers may

have trust issues with third-party service providers. (Salam, Gilani, Ul Haq. 2015)

3.15.2 Comparing virtual hosting providers

The Gartner’s 2015 Cloud Iaas Magic Quadrant ranks cloud providers by using two

criteria: Ability to Execute and Completeness of Vision. (Joseph Tzidulko, 2015)

The Quadrant categorizes providers into four categories:

 Leaders: High on both criteria

 Visionaries: High on vision but low on ability to execute

 Challengers: High ability to execute but low on vision

 Niche Players: Low on both criteria

Out of 15 vendors considered only two are considered leaders, namely Amazon Web

Services, and Microsoft Azure. (Joseph Tzidulko, 2015)

AWS strengths are:

 Extensive network of partners providing expertise, managed and professional
services

 Greatest variation of IaaS and Platform-as-a-Service capabilities
 (Joseph Tzidulko, 2015)

AWS weaknesses

 Customers must manage right level of sales and solution architecture they need

 Amazon new features compete with own partners

58

(Joseph Tzidulko, 2015)

Microsoft Azure strengths

 IaaS and PaaS are greatly integrated with one another as a whole

 Features are increasing very fast
(Joseph Tzidulko, 2015)

Microsoft Azure Weaknesses

 It lacks necessary security, availability, performance, networking flexibility and
user management features for enterprises

 Azure has suffered more downtime than its main competitors which may re-
quire a third party disaster recovery solution

 The partner ecosystem is still lacking with many Microsoft partners still lacking
the expertise needed to provide the quality required by customers
(Joseph Tzidulko, 2015)

3.15.3 Customer’s choice

Our customer’s choice took about a year of analysis. The main reason they wanted to

change servers was that the servers used at the time had expired their recommended

life span of three years.

They knew that they needed to take a step from on-premise to virtual hosting. This

decision was easy to take as they don’t possess a strong IT department able to provide

with all the infrastructure and hardware/software maintenance or the human expertise

needed to provide with high levels of quality hosting service.

They also knew that they would benefit from costs reductions, service quality im-

provement and higher adherence to industry standards.

The problem now was to find the right third-party service. Naturally the first services

considered were the industry leaders: Amazon Web Services and Microsoft Azure.

59

Taking into account Gartner’s Magic quadrant we can see that Amazon Web Services

has a clear advantage margin over Azure (Joseph Tzidulko, 2015), although Azure had

the added benefit of significantly lower costs thanks to the partnership between the

company and Microsoft.

In addition to all of the previously mentioned consideration the company had issues

with relying with non-Finnish companies because they would not be bounded by Finn-

ish legislation.

At the end the company decided that having a Finnish service provider bounded by

Finnish legislation would be more beneficial that higher quantity of features services

like Microsoft Azure or AWS would provide.

3.15.4 Experience with chosen provider:

At the beginning of the analysis concerning which cloud hosting service to choose, our

team suggested Amazon Web Services as a first option and Azure as a second one. The

reason behind was our extensive experience working with Amazon Web Services, the

amount of features and the first-hand accessibility. (Matti Kiviluoto, 2015)

The team was not able to convince the customer which had a concern with the data

not being stored inside Finnish boundaries nor protected by Finnish laws if they chose

a global hosting provider. (Matti Kiviluoto, 2015)

After the migration our team experienced the downsides of choosing a local cloud

hosting provider, such as the inability for cost optimization, server optimization and

fast resource scalability. (Matti Kiviluoto, 2015)

This was all due to the fact that the third-party service provider had the control over

the resources and in order to make a change our team had to get in contact with them

instead of accessing a console ourselves.

On top of this was the fact that the customer had always been very reluctant to make

changes to the environment, and liked to keep the settings fixed with little room for

60

flexibility, so that every development or improvement had to be negotiated with the

customer and arranged with the cloud hosting provider. This delayed very much the

project’s planning and implementation. (Matti Kiviluoto, 2015)

The main disadvantages identified were delayed reaction time to requests and not get-

ting the flexibility that we get from global cloud providers.

On the positive side, having a local cloud hosting provider meant that we had person-

alized service and a named person present in the meetings involved in the planning and

execution of the project. (Matti Kiviluoto, 2015)

4 Part 3: Setting up build automation

After having the customer’s source code migrated from SVN to Git and having mi-

grated the project’s infrastructure to a new virtual servers hosting environment, the

next step was to set up the build automation for the project.

The build automation was set up in a build server owned by our company that is used

to build several different projects of different customers using CruiseControl.NET.

CruiseControl.NET is an automated continuous integration server that uses the .NET

Framework. In order to set the automated build there are the following steps we took:

 Installation of CruiseControl.NET and other required software

 Installation of Git

 Creating and configuring the project

 Setting the build automation tasks

4.1 Installation of CruiseControl.NET and other required software

61

CruiseControl.NET requires the .NET framework installed in the build server. The

version of the framework must match the visual studio version used to create and de-

velop the project.

CC.NET also requires IIS server with ASP.NET enabled to serve the user interface.

(CruiseControl.Net, 2015)

After installing the CruiseControl.NET software we get:

 CCNet server: contains the core of the project, configuration files, executables,
dependencies and project files

 WebDashboard: contains user interface files

After installation we have a site running on IIS containing the CC.NET dashboard.

Figure 34. CCNET site on IIS

 Figure 35. CrouseControl.NET Dashboard

62

4.2 Git client Installation

The Git client will allow us to clone the Git repository from Bitbucket to the build

server so that we can build the project.

Git can be downloaded from https://git-scm.com/downloads and it is a good idea to

install the Git- bash command line so we can test and troubleshoot the cloning manu-

ally.

4.3 Creating and configuring the project

To create a project we must open the ccnet.config which is an xml file and add a new

<project> tag in the following way:

<project name="[PROJECT NAME]">

</project>

Every other configuration must be inside the <project> tags.

We can now define the working directory where we have the project files and the arti-

fact directory which is mean for anything we want to save from the results of the build,

like build logs, distributables, etc.(CruiseControl.Net, 2015)

<project name="[PROJECT NAME]">

 <workingDirectory>D:\Builds\[PROJECT NAME\[BRANCH NAME]</workingDirectory>

 <artifactDirectory>D:\Builds\[PROJECT NAME\[BRANCH NAME]\Artefacts</artifactDirectory>

</project>

Next we can add a “source control” section where we can configure values like: source

control type, repository URL, branch name, whether to sync the latest changes before

https://git-scm.com/downloads

63

the build (autoGetSource), whether to fetch git submodules, where to find the Git exe-

cutable, set tags, set working directory and timeout limit. (CruiseControl.Net, 2015)

<project name="[PROJECT NAME]">

…

 <sourcecontrol type="git">

<repository>[REPOSITORY URL]</repository>

 <branch>[BRANCH NAME]</branch>

 <autoGetSource>true</autoGetSource>

 <fetchSubmodules>true</fetchSubmodules>

 <executable>C:\Program Files (x86)\Git\bin\git</executable>

 <tagOnSuccess>false</tagOnSuccess>

 <commitBuildModifications>false</commitBuildModifications>

 <commitUntrackedFiles>false</commitUntrackedFiles>

 <tagCommitMessage>CCNet Build {0}</tagCommitMessage>

<tagNameFormat>CCNet-Build-{0}</tagNameFormat> <working-

Directory> D:\Builds\[PROJECT NAME\[BRANCH NAME]</workingDirectory>

 <timeout>600000</timeout>

 </sourcecontrol>

…

</project>

We can also set automated pulls and builds of the project at specific times in the day

and specific days of the week as following:

<project name="[PROJECT NAME]">

…

 <triggers>

 <scheduleTrigger time="07:30" buildCondition="ForceBuild" name="Scheduled">

<weekDays>

 <weekDay>Sunday</weekDay>

 <weekDay>Monday</weekDay>

 <weekDay>Tuesday</weekDay>

 <weekDay>Wednesday</weekDay>

64

 <weekDay>Thursday</weekDay>

 </weekDays>

 </scheduleTrigger>

 </triggers>

…

</project>

After setting the source control values and the triggers we can set a task which will ex-

ecute MS build to build the project.

Here we must set the location of the MS build executable, the location of the “.proj”

file which is an XML file containing the MS build task we want to execute, the name of

the “.proj” file, the parameters to pass to the file, the timeout limit of the MS build and

the logging settings.

<project name="[PROJECT NAME]">

…

 <tasks>

 <msbuild>

 <executable>

C:\Windows\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe

 </executable>

 <workingDirectory>

D:\Builds\[PROJECT NAME\[BRANCH NAME]\

 </workingDirectory>

 <buildArgs>

UomaYITWebBuild.proj /noconsolelogger /t:Debug

/p:Configuration=Release

/p:Environment=Release

/p:CopyToIIS=$[CopyToIIS|Yes]

/p:BuildZip=$[BuildZip|No] /p:CleanDeployFolder=$[CleanDeployFolder|No]

/p:HostingEnvironment=development_Git

 </buildArgs>

 <timeout>1800</timeout>

 <logger>

C:\Program Files(x86)\CruiseControl.NET\... serv-

er\ThoughtWorks.CruiseControl.MSBuild.dll

 </logger>

65

 </msbuild>

 </tasks>

…

</project>

The last step is to add a logging location as following:

<project name="[PROJECT NAME]">

…

 <publishers>

<xmllogger logDir="D:\Builds\[PROJECT NAME]\Logs\[Branch NAME]" />

 </publishers>

…

</project>

4.4 Setting the build automation tasks

MS build is a framework to build projects, it tasks that can be called and modify to cus-

tomize the build process.

The “.proj” file is a file containing XML markup that contains the MS build tasks’

specifications. The location and name of the .proj file is referenced in the ccnet.config

configuration file to be used during the build of the project.

A collection of tasks is called a target. Our project’s .proj file contains the following

targets:

NugetExe: Executes the nuget.exe, a program that downloads .Net dependencies

over the internet needed to build the project successfully.

66

The Nuget application is also configured in our project to download sitefinity depend-

encies.

By downloading all the dependencies at the time of the build instead of having them

already in the repository makes the repository lighter and faster to clone.

Clean: Cleans the build which means that all the intermediate and output files are de-

leted and only the project and component files are left. New intermediate and output

files will be created after the build. (Microsoft. MSDN, 2015)

Publish: Builds and publishes the project to a specified system’s file location.

CleanDeployFolder: Deletes the contents of the deploy folder which contains a copy

of website, services, and configurations.

Figure 36. Deploy Folder

CopyAssemblies: Copies DLL and PDB files from the project pulled from Git to the

published project.

CopyServicesWebsite: Copies the services according to the environment from the

project pulled from Git to the published project.

CopyPortalConfigs: Copies Sitefinity configurations according to the environment

from the project pulled from Git to the published project.

67

CopyTimeZones: Copies time zone configurations according to the environment

from the project pulled from Git to the published project.

CopyOnServer: Copies the published project to a location in the server where IIS will

be configured to serve it on the localhost.

MergeTimeZoneSettings: Each site in the project has different time zone settings

that are merged into a single file by this task.

MergeLoadBalancingConfigs: Each site in the project has different load balancing

settings settings that are merged into a single file by this task.

<Target Name="Debug">

 <CallTarget Targets="NugetExe" />

 <CallTarget Targets="Clean" />

 <CallTarget Targets="Publish" />

 <CallTarget Targets="CleanDeployFolder" Condition="$(CleanDeployFolder)=='Yes'" />

 <CallTarget Targets="CopyAssemblies" />

 <CallTarget Targets="CopyServicesWebsite" />

 <CallTarget Targets="CopyPortalConfigs" />

 <CallTarget Targets="CopyTimeZones"/>

 <CallTarget Targets="CopyOnServer" Condition="$(CopyToIIS)=='Yes'" />

 <CallTarget Targets="MergeTimeZoneSettings" Condition="$(CopyToIIS)=='Yes'" />

 <CallTarget Targets="MergeLoadBalancingConfigs"/>

 </Target>

The projects can now be built by simply pressing the “force” button on the ccnet

dashboard.

Figure 37. CCNET dashboard with projects

68

After the project is build and published the project can be downloaded from an URL

and manually copied into the servers and configured to be served over the internet.

The build automation’s infrastructure is scheduled to be developed further so that the

project gets to the servers automatically.

5 Results and Conclusions

The SVN to Git migration was a success with all of the revisions and all the important

branches transferred to Git. There were some problematic branches that were decided

to be left behind because they were not necessary anymore.

After the migration the source code was able to be downloaded and run against a Site-

finity database and served with IIS.

The Git workflow implemented in the beginning proved to be flawed and old prob-

lems that the team had while working on SVN recurred while implemented the Git

workflow. One of the most persisting problem was that of the team being force to

“cherry-pick” features that would go into production which created an instability in the

code.

Nevertheless the Git workflow was modified and redesign to prevent the challenges

encounter with the first implementation and at the end the Git workflow was success-

ful in providing a reliably and effective way of managing the continuous integration.

The migration of the project from on premise server environment to the cloud hosting

environment had challenges of its own. The main challenge was choosing a cloud host-

ing provider and coordinating the migration with a third party server provider.

One of the main issues was concerns with the quality of the service provided which

proved to be challenging in some cases where some aspects of the migration where

69

unsuccessful due to flawed configuration settings from the third-party cloud hosting

provider.

Sometimes there were problems with the load balancing settings that made the website

unavailable over the internet and some others were network setting problems that

didn’t allow us to connect to the servers.

We would have preferred to use a service like Amazon Web Services or Microsoft’s

Azure instead of the chosen by our customer but at the end we could not affect their

decision.

The migration was a success nevertheless although we have encounter some problems

with the quality of the service provided from time to time.

The build automation has given us no major challenges or issues and has been running

successfully from months without any human intervention in the configuration.

The reason behind the smooth success of the built automation is due to a year and a

half of design and implementation in virtually all the customer’s projects.

The build process has been refined by testing it in many projects and making im-

provements and fixes along the way, therefore the implementation of the build process

on this project didn’t present any challenges.

The development team overall has been experienced improvements in the efficiency of

integrating developments into the Git repository and faster deployment time with the

build automation.

70

6 References

Abdul Salam, Zafar Gilani, Salman Ul Haq, 2015. Deploying and Managing a Cloud

Infrastructure. SYBEX.

URL:https://books.google.fi/books?id=f_clBgAAQBAJ&pg=PR23&dq Accessed:

June 15 2015

Atlassian 2014. Migrate to Git from SVN. URL:

https://www.atlassian.com/git/tutorials/migrating-overview/ Accessed: November

2014

Atlassian 2015.Comparing Workflows. URL:

https://www.atlassian.com/git/tutorials/comparing-workflows/ Accessed: Septem-

ber, 05 2015

Avaus Consulting Oy, 2014. Customer’s project documentation. Intranet. Project In-

frastructure. Accessed: May, 22 2015

CruiseControl.Net, 2015. Documentation. Project Configuration Block. URL:

http://cruisecontrolnet.org/projects/ccnet/wiki/Project_Configuration_Block Ac-

cessed: September, 15 2015

CruiseControl.Net, 2015. Wiki. Install. URL:

Http://www.cruisecontrolnet.org/projects/ccnet/wiki/Install Accessed: September,

15 2015

CruiseControl.Net, 2015. Wiki. Install. URL:

Http://www.cruisecontrolnet.org/projects/ccnet/wiki/Install Accessed: September,

15 2015

Giancarlo Lionetti February 14, 2012. URL:

http://blogs.atlassian.com/2012/02/version-control-centralized-dvcs/ Accessed: May,

18 2015

https://books.google.fi/books?id=f_clBgAAQBAJ&pg=PR23&dq
https://www.atlassian.com/git/tutorials/migrating-overview/
http://cruisecontrolnet.org/projects/ccnet/wiki/Project_Configuration_Block
http://www.cruisecontrolnet.org/projects/ccnet/wiki/Install
http://www.cruisecontrolnet.org/projects/ccnet/wiki/Install
http://blogs.atlassian.com/author/glionetti/
http://blogs.atlassian.com/2012/02/version-control-centralized-dvcs/

71

Joseph Tzidulko, 2015. Here's Who Made Gartner's 2015 Cloud IaaS Magic Quadrant.

URL: http://www.crn.com/slide-shows/cloud/300076877/heres-who-made-gartners-

2015-cloud-iaas-magic-quadrant.htm Accessed: June 17 2015

Kiril Jovchev, 15 May 2015. Solutions Architect, Team Leader. Avaus Consulting Oy /

Siili Solutions Plc. Interview. Helsinki.

Matti Kiviluoto, 23 September 2015. Team Leader. Avaus Consulting Oy / Siili Solu-

tions Plc. Interview. Helsinki.

Microsoft 2013. MSDN. Add-WindowsFeature. URL

https://msdn.microsoft.com/en-us/library/ee662309.aspx Accessed: September, 05

2015

Microsoft 2015. IIS. Binding. URL:

https://www.iis.net/configreference/system.applicationhost/sites/site/bindings/bindi

ng Access: June 10 2015

Microsoft 2015. IIS. Configure FTP with IIS manager. URL:

http://www.iis.net/learn/publish/using-the-ftp-service/configure-ftp-with-iis-

manager-authentication-in-iis-7 Accessed: June 10 2015

Microsoft 2015. IIS. URL Rewrite.

URL:http://www.iis.net/downloads/microsoft/url-rewrite Accessed: September, 05

2015

Microsoft 2015. IIS. Using the application request routing module. URL:

http://www.iis.net/learn/extensions/planning-for-arr/using-the-application-request-

routing-module Accessed: September, 05 2015

Microsoft 2015. MSDN. WCF 4.5 HTTP Activation. URL:

https://msdn.microsoft.com/en-us/library/jj979362%28v=winembedded.81%29.aspx

Accessed: September, 05 2015

http://www.crn.com/slide-shows/cloud/300076877/heres-who-made-gartners-2015-cloud-iaas-magic-quadrant.htm
http://www.crn.com/slide-shows/cloud/300076877/heres-who-made-gartners-2015-cloud-iaas-magic-quadrant.htm
https://msdn.microsoft.com/en-us/library/ee662309.aspx
https://www.iis.net/configreference/system.applicationhost/sites/site/bindings/binding
https://www.iis.net/configreference/system.applicationhost/sites/site/bindings/binding
http://www.iis.net/learn/publish/using-the-ftp-service/configure-ftp-with-iis-manager-authentication-in-iis-7
http://www.iis.net/learn/publish/using-the-ftp-service/configure-ftp-with-iis-manager-authentication-in-iis-7
http://www.iis.net/downloads/microsoft/url-rewrite
http://www.iis.net/learn/extensions/planning-for-arr/using-the-application-request-routing-module
http://www.iis.net/learn/extensions/planning-for-arr/using-the-application-request-routing-module
https://msdn.microsoft.com/en-us/library/jj979362%28v=winembedded.81%29.aspx

72

Microsoft 2015. TechNet. Checking the HTTP Error Log (IIS 6.0). URL:

https://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/

bcabdcfb-2421-eab-b5fb-777c791daaa9.mspx?mfr=true Access: June, 10 2015

Microsoft, 2015. IIS. Installing IIS 8.5 on Windows Server 2012 R2. URL:

http://www.iis.net/learn/install/installing-iis-85/installing-iis-85-on-windows-server-

2012-r2 Accessed: September, 05 2015

Microsoft, 2015. Support. How to Create a Virtual Directory in Internet Information

Services (IIS). URL: https://support.microsoft.com/en-us/kb/172138 Accessed: July, 02

2015

Microsoft, 2015. TechNet. Customizing IIS 7.0 Roles and Modules.

Project’s Developer, 23 September 2015. Web Developer. Avaus Consulting Oy / Siili

Solutions Plc. Interview. Helsinki.

Telerik 2015. Administration settings and configuration. URL:

http://docs.sitefinity.com/administration-settings-and-configurations Access: June, 10

2015

Telerik, 2015. Configure the IIS to host Sitefinity projects, URL:

http://docs.sitefinity.com/configure-the-iis-to-host-sitefinity-projects Accessed: June,

02 2015

CruiseControl.Net, 2015. Configuration Examples. URL:

http://ccnet.sourceforge.net/CCNET/Perforce%20Source%20Control%20Block.htm

l Accessed: September, 15 2015

CruiseControl.Net, 2015. Wiki. Git Source Control Block. URL:

http://cruisecontrolnet.org/projects/ccnet/wiki/Git Accessed: September, 15 2015

Microsoft 2013. MSDN. How to Clean a Build. URL

https://msdn.microsoft.com/en-us/library/ms171480.aspx Accessed: September,

16 2015

https://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/bcabdcfb-2421-eab-b5fb-777c791daaa9.mspx?mfr=true
https://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/bcabdcfb-2421-eab-b5fb-777c791daaa9.mspx?mfr=true
http://www.iis.net/learn/install/installing-iis-85/installing-iis-85-on-windows-server-2012-r2
http://www.iis.net/learn/install/installing-iis-85/installing-iis-85-on-windows-server-2012-r2
https://support.microsoft.com/en-us/kb/172138
http://docs.sitefinity.com/administration-settings-and-configurations
http://docs.sitefinity.com/configure-the-iis-to-host-sitefinity-projects
http://ccnet.sourceforge.net/CCNET/Perforce%20Source%20Control%20Block.html
http://ccnet.sourceforge.net/CCNET/Perforce%20Source%20Control%20Block.html
http://cruisecontrolnet.org/projects/ccnet/wiki/Git
https://msdn.microsoft.com/en-us/library/ms171480.aspx

73

