

___. ___. ______ ________________________________

Bachelor’s degree (UAS)

Implementation and Evaluation of
eCodicology Web Portal - CodiHub

Kayrat Saginaev

Bachelor’s Thesis

SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS
 Abstract

Field of Study
Technology, Communication and Transport
 Degree Programme
Degree Programme in Information Technology

Author(s)
Kayrat Saginaev
 Title of Thesis

Implementation and Evaluation of eDocicology Web Portal

Date 1 December 2015 Pages/Appendices 61/5

Supervisor(s)
Mr. Arto Toppinen, Lecturer (Savonia UAS), Ms. Swati Chandna, Ph.D. Student (KIT)

Client Organization/Partners
Karlsruhe Institute of Technology

Abstract

The eCodicology is a project which is developing, testing and improving new algorithms to identify
macro- and micro structural layout features of medieval manuscript pages. Together with another
set of services the eCodicology project was made for humanities scholars in order to enhance and
simplify the process of analyzing medieval manuscripts.

Because all the services are separated from each other, there was a need to develop a web-portal
which would become a central point for them and would combine all their features in a single
user-friendly web interface.

The eCodicology Web portal was developed with the Java programming language with the help of
the Vaadin framework. All the source data, including digitized manuscripts and their metadata,
were ingested to the repository. The web portal was provided with a connection to the repository
and then it was extended with a visualization framework, which was developed with the help of
the D3 JavaScript library. In the end, the project was tested and evaluated among twelve employ-
ees of IPE department in Karlsruhe Institute of Technology.

The results were summarized and reviewed and it was concluded that the project showed great
potential and reached the majority of the goals which were set at the point of project planning.

Keywords
eCodicology, Web Portal, Web Design, Java, Vaadin, D3, Data-Driven Documents, JavaScript, CSS

http://d3js.org/

ACKNOWLEDGEMENTS

First of all, I would like to thank Mr. Rainer Stotzka and Mr. Thomas Jejkal for offering

me the opportunity to get involved with the eCodicology project and to write the thesis

on this particular topic in KIT. It is also worth saying that without their supervision and

help, it would have been difficult to go through any important step towards the finaliza-

tion of the project and the thesis itself.

My special thanks to Ms. Swati Chandna, my supervisor, without whose support and

guidance I would never have been able to complete the project and solve the majority of

issues during the thesis writing process.

I am also grateful to Mr. Arto Toppinen, my supervisor, for the help and guidance during

my internship in KIT.

I would also like to express my appreciation to Ms. Francesca Rindone and Mr. Ajinkya

Prabhune, the persons, who were inspiring me and whose ideas made a great influence

on the project appearance.

Finally, I would like to thank the entire Software Methods Group for the friendliness and

pleasant atmosphere in the office.

CONTENTS

1 INTRODUCTION ... 6

2 MOTIVATION ... 8

3 GOALS ... 9

4 STATE OF THE ART ... 10

4.1 KIT Data Manager ... 10

4.2 Software Workflow for the Automatic Tagging of Medieval Manuscript Images

(SWATI) ... 11

4.2.1 Stage A: Data Handling .. 12

4.2.2 Stage B: Extraction of Manuscript Layout Features 12

4.2.3 Stage C: Statistical and Visual Analysis .. 13

4.3 Requirements towards existing solutions ... 14

4.4 The British MS Viewer .. 14

4.5 The Reichenau and St. Gall virtual library .. 14

4.6 Scriptorium: Medieval and Early Modern Manuscripts Online (MEMMO) 15

4.7 DFG Viewer .. 15

5 SYSTEM DIAGRAM ... 17

6 CONCEPT PLANNING ... 20

7 IMPLEMENTATION OF ‘CodiHub’ ... 22

7.1 Connection to the repository and accessing the data 22

7.1.1 Connection to the repository ... 22

7.1.2 Data access ... 24

7.2 Implementation of the first UI version with viewing features (CodiView) 26

7.2.1 Main view ... 26

7.2.2 Reading view ... 31

7.3 Improvement of the first CodiView version .. 35

7.3.1 Search field ... 35

7.3.2 Tabs ... 39

7.3.3 Downloads .. 40

7.3.4 Column layout ... 43

7.3.5 Browser window width ... 44

7.3.6 Switch .. 45

7.4 Integration of the visualization framework based on D3 (CodiVis) 47

7.4.1 Creating a server-side component ... 48

7.4.2 Creating a Vaadin state object .. 49

7.4.3 Adding a connector to the main JavaScript file 49

7.4.4 Obtaining and transmission the data from the CSV file 49

8 RESULTS AND EVALUATION .. 53

8.1 Task-based evaluation results .. 53

8.2 Overall impression evaluation results .. 55

9 DISCUSSION .. 56

10 CONCLUSION AND FUTURE SCOPE .. 58

11 REFERENCES .. 60

APPENDICES

Appendix 1 Task-based evaluation survey

Appendix 2 Overall impression evaluation survey

 6

1 INTRODUCTION

Trier City Research Library is one of the treasuries of the rich heritage of rare books

and manuscripts, produced in the Trier monasteries in medieval times. A collection of

them has the greatest value and international ranking, among which the UNESCO

world heritage “Codex Egberti”, the “Ada-Evangeliar” and the “Trierer Apokalypse”.

Trier City Research Library together with Trier Center for Digital Humanities has rec-

reated the holdings of medieval books of Benedictine Abbey of St. Matthias: more

than 450 manuscripts, created between the 8th and 16th centuries, have been digit-

ized and kept in a database of “Virtual Scriptorium St. Matthias” (Embach, Moulin,

Rapp, Sabine, & Philipp, 2011-2012). These digital copies are re-used in “eCodicol-

ogy”1 project, which aims to retrieve new codicological data from the existing digitized

images of medieval manuscripts (Busch, Vanscheidt, Krause, Chandna, Rapp,

Moulin, & Stotzka, 2010-2014).

eCodicology is a joint research project of Technical University of Darmstadt, Karls-

ruhe Institute of Technology and the University of Trier. At the moment, the project

eCodicology is developing, testing and improving new algorithms to identify macro-

and micro structural layout features of medieval manuscript pages (Figure 1).

The project uses image processing and feature extraction algorithms, which make it

possible to detect and extract various layout features and enrich metadata of the im-

ages. Firstly, basic parameters, such as written and pictorial spaces, number of writ-

ten lines, margins, etc. have been identified (Figure 2). Then, the results of these

measurements are automatically stored in TEI XML files, which are created based on

a metadata schema, developed according to TEI P5 guidelines (The Text Encoding

Initiative Consortium, 2015). Afterwards, statistical analysis can be performed, by

which humanities scholars are able to get a new look at individual manuscripts and

find new hidden relationships in the manuscript collection.

 7

FIGURE 1. Set of algorithms for automatic extraction of the layout features (Busch, et

al., 2010-2014)

FIGURE 2. Examples of medieval manuscripts showing various layout features:

page size, written space, pictorial space (Chandna, Tonne, Jejkal,

Stotzka, Krause, Vanscheidt, Busch & Prabhune, 2015, 2)

 8

2 MOTIVATION

Currently, there are several services developed for humanities scholars in order to

enhance and simplify the process of analyzing medieval manuscripts. Firstly, there

are more than 440 digitized manuscripts with 170,000 pages in total, provided by Vir-

tual Scriptorium of St. Matthias and available for humanities scholars through the in-

ternet connection. Secondly, since each page was processed by feature extraction

algorithms, humanities scholars have an access to large amounts of metadata, which

is kept in XML files. And lastly, the main features of the manuscripts were extracted

from the XML files and, afterwards, visualized in order to show hidden relationships

between the manuscripts.

The main problem lies in the fact that accessing the features of these three individual

services is very inconvenient for humanities scholars as well as for any users, unfa-

miliar with their technical part. Therefore, there is a need in developing a new web-

portal that will become a central point for these individual services and will combine

all their features in a single user-friendly web interface.

 9

3 GOALS

The main goal consists of developing a new user interface, which combines a set of

existing solutions in order to provide humanities scholars an effective way to study

high dimensional datasets of digitized medieval manuscripts.

There are several subtasks which were set at the point of project planning. Firstly,

like any other project related to the development of a new user interface (UI), the

eCodicology Web Portal has to have a sketch of the future layout. Secondly, the first

version of the web portal has to be implemented which will provide a visual access to

the digitized medieval manuscripts. Then, the results of image processing steps as

well as image metadata have to be included and displayed in the first version of the

UI. Afterwards, the service, which provides the visualization of the metadata of the

manuscripts, has to be integrated into the project. At the end, the project has to be

evaluated and tested in terms of ‘usability’, ‘performance’ and ‘stability’.

 10

4 STATE OF THE ART

As it was mentioned in ‘MOTIVATION’ (Chapter 2), there are several solutions which

are already involved in the project.

4.1 KIT Data Manager

“A repository is a managed location in which collections of digital data objects are

registered preserved, made accessible and retrievable, and are curated. It is essen-

tial that data in a digital data object is accompanied by metadata describing the data

contents and organization to enable their reuse in the future. Thus repositories are

the mandatory building component for long-term archives.” (Jejkal, Vondrous, Kop-

mann, Stotzka & Hartmann 2014, 9).

In the field of humanities arts there is a need to keep a huge variety of data which will

be accessible over the centuries. Thus, KIT Data Manager, as a software for building

up repository systems for research data, is one of the solutions which is applied in

this project. A basic concept of internal architecture of KIT Data Manger is presented

in Figure 3.

FIGURE 3. Architecture of KIT Data Manager (Jejkal, et al., 2014, 10)

The architecture includes a set of Basic Services and Adapters, which are, basically,

building blocks for High-Level Services. A collection of High-Level Services offers re-

 11

pository functionality, like storing, accessing and sharing data and metadata; ser-

vices, like lifecycle management, data processing and policy enforcement. An access

to the High-Level Services can be gained via top Access Layer. Based on the user’s

requirements, different methods are provided, e.g. RESTful Services, Web UIs or

plain Java APIs.

In this case KIT Data Manager has been used to build up a repository for storing and

accessing digitized medieval manuscripts, provided by Virtual Scriptorium of St. Mat-

thias, as well as their metadata.

4.2 Software Workflow for the Automatic Tagging of Medieval Manuscript Images

(SWATI)

A working principle of the SWATI workflow has already been mentioned in Chapter 1.

Nevertheless, this subchapter will present a working principle of the workflow in de-

tail.

“As a starting point, the workflow uses medieval manuscripts digitized within the

scope of the project “Virtual Scriptorium St. Matthias”. Firstly, these digitized manu-

scripts are ingested into a data repository. Secondly, specific algorithms are adapted

or designed for the identification of macro- and micro-structural layout elements like

page size, writing space, number of lines etc. And lastly, a statistical analysis and sci-

entific evaluation of the manuscripts groups are performed. The workflow is designed

generically to process large amounts of data automatically with any desired algorithm

for feature extraction. As a result, a database of objectified and reproducible features

is created which helps to analyze and visualize hidden relationships of around

170,000 pages.” (Chandna, et al., 2015, 1)

The workflow consists of three main stages which are described and illustrated in Fig-

ure 4.

 12

FIGURE 4. System diagram of the SWATI workflow (Chandna, et al., 2015, 4)

4.2.1 Stage A: Data Handling

The first stage handles uploading and downloading the data from the data repository.

4.2.1.1 Data Ingest

This step takes care of uploading more than 450 digitized manuscripts, created be-

tween the 8th and 16th centuries, into the repository, using the service stack of re-

pository software of KIT Data Manager.

4.2.1.2 Data Access

The second step provides an access to the ingested manuscripts for further pro-

cessing and analysis using KIT Data Manager.

4.2.2 Stage B: Extraction of Manuscript Layout Features

The second stage deals with extracting layout features of the manuscripts with the

help of different processing algorithms.

4.2.2.1 Pre-processing

In order to make images, obtained from different kind of hardware, to be more suita-

ble for further analysis and to reduce amount of imperfections, there is a pre-pro-

cessing step, which consists of methods, like Color Calibration, Spatial Calibration,

Noise Removal and Scaling.

Because images have been obtained by different kinds of scanners, having different

color spaces, it makes digitized images dependent on the hardware. Color Calibration

method transforms different color spaces to a standard color space.

 13

Spatial Calibration method correlates pixels of the image to the real world units, like

centimeters, millimeters and inches. This helps to measure an amount of pixels in

one centimeter.

Noise Removal method filters the noise, obtained during the scanning process. Thus,

textures of digitized images are enhanced and accuracy of the following steps is in-

creased.

Lastly, in order to decrease the computing time for subsequent steps, the images are

scaled down to various resolutions.

4.2.2.2 Segmentation

Segmentation is a process of dividing an image into its composite object and a back-

ground. During this step various features of the images are classified, e.g. written

area, page area, pictorial area, lines, etc. (Figure 2), and the image is segmented.

4.2.2.3 Feature Extraction

Using the images, obtained from the segmentation part, the corresponding layout fea-

tures are extracted during this step, including page dimensions, written space dimen-

sions and pictorial areas.

4.2.2.4 Data Storage

In this step the measurement results are stored within the metadata of the medieval

manuscripts in an XML file according to TEI P5 guidelines.

4.2.3 Stage C: Statistical and Visual Analysis

The last stage helps to find similarities between different parameters of bigger groups

of manuscripts and presents complex information about them in a statistical way.

Specifically in out project the most important part of the SWATI workflow is the sec-

ond stage, which takes care of extraction of manuscript layout features. The interme-

diate results after each of the processing methods as well as the final XML metadata

files are going to be widely used and presented in the future user interface.

 14

4.3 Requirements towards existing solutions

Searching for existing solutions was carried out with the following criteria and require-

ments:

1. Because this project uses the service stack of KIT Data Manager for access-

ing the data and metadata, an existing project should have a connection to

the repository which is able to handle large amounts of data (~5 Tb)

2. An existing UI has to display digitized images of medieval manuscripts as well

as their metadata

3. An existing solution has to provide an ability to download such source infor-

mation as metadata (in XML format) and digitized pages (as an image file)

4. The project has to support external JavaScript libraries and functions, CSS

styles and HTML web pages, in order to be able to integrate a standalone pro-

ject, which is based on these languages and provides a visualization over the

features of the manuscripts

4.4 The British MS Viewer

The British Library contains more than 7300 kinds of manuscripts, archives and docu-

ments. Most of the content available has been digitized as part of the British Library’s

digitization projects (The British Library, 2003).

The project provides an advanced search through the database, providing us an abil-

ity to find a particular manuscript according to its title, author, keywords, creation

date, etc. Among other advantages of this project are worth noting:

 Brief view of properties and content of the book

 An overview of the book in three different views (Single page, Open book, Fo-

lio), complemented by a full-screen mode

4.5 The Reichenau and St. Gall virtual library

The Reichenau and St. Gall virtual library has about 170 digitized manuscripts

(Geary, Hendrix, Chiong, Davison, Ghorpade, McAulay, Pollard, Westgard, 2012).

 15

Due to the moderate amount of data, the developers decided not to implement a

‘search by manuscripts’. Instead they provided a whole list of available manuscripts.

The graphical user interface is quite simple, but contains all the necessary elements

for reading and investigating the manuscripts. The left panel contains cable of con-

tents, bibliography and description of the manuscript. On the right hand side there are

navigation controls and an open manuscript view.

4.6 Scriptorium: Medieval and Early Modern Manuscripts Online (MEMMO)

MEMMO is a project, funded by Arts & Humanities Research Council and created by

the Faculty of English at the University of Cambridge (The University of Cambridge,

2006-2009). The project focuses on creating a digital archive of manuscripts and

commonplace books from the period 1450-1720.

This project looks very promising, successfully performing most of the tasks which

were set earlier and even more:

 Advanced search (by keywords, date range and topic)

 Single page and ‘open book’ views

 Clearly understandable navigation

 A lot of information about the manuscripts: table of contents, full description,

bibliography

 Downloading metadata stored in XML format according to TEI5 standards

4.7 DFG Viewer

DFG-Viewer is a web service which provides a unified interface for viewing digitized

media from remote library repositories (The Saxon State and University Library

Dresden, 2010). As a result, users can browse documents, view and download indi-

vidual digitized representations in different resolutions and use other functionality if

the library provides additional data.

The DFG-Viewer is based on CMS TYPO3 and the Digital Library Framework of

Goobi.Presentation, which can be used freely.

 16

For the visual analysis of the manuscripts with extracted features manuscripts, manu-

scripts may have to be processed again to get the new results. To analyze the fea-

tures, the project has to be linked to the data, which is not possible with the DFG-

Viewer.

In principle, it is feasible to use existing user interfaces but, due to the set of require-

ments, such have not been found. This is why the idea to create a project "from

scratch" was the most reasonable solution.

 17

5 SYSTEM DIAGRAM

There are several projects and solutions which have been involved into eCodicology

Web Portal development. Most of them have already been described earlier. To sum-

marize, an overall system diagram of this project has been created (Figure 5).

FIGURE 5. System diagram of the eCodicology Web Portal.

The eCodicology Web portal, a project combining all the constituents mentioned be-

low, was called CodiHub.

CodiStore is a repository system which has been created with the help of the service

stack of repository software of KIT Data Manager. All the digitized medieval manu-

scripts including their metadata have been ingested into the CodiStore repository

(Figure 6). For each page of every single manuscript there are:

1. Thumbnail JPEG-image (preview format)

2. JPEG-image in minimal resolution

3. JPEG-image in default resolution

4. JPEG-image in maximal resolution

5. PDF-document (containing the image in maximal resolution)

 18

Different resolutions are made for different representation of the same data in differ-

ent viewers: one viewers accept small resolutions and another ones accept bigger

resolutions.

And for each manuscript there is a TEI XML-file (manuscript metadata file), which

was ingested to the repository as well.

FIGURE 6. File structure of the CodiStore

The repository system provides several High-Level services which can be accessed

via RESTful Services or Java API. Because the future web portal will run locally on

the same machine as CodiStore, the usage of Java API provides much more flexibil-

ity than general REST interfaces.

The MetaData service provides an access to relational database. The Data Organiza-

tion service contains information how the data is organized and where it is located.

The Data Processing service takes care of data processing, stored in KIT Data Man-

ager. Currently, this service is under development, but it already contains the func-

tionality of the SWATI workflow (Chapter 4.2), which can be triggered in the near fu-

ture.

SWATI workflow is an automated system consisting of several processing steps,

which help to extract various features from digitized images of medieval manuscripts

CodiStore

Manuscript #1

Page #1

Thumbnail .jpg
image

.jpg image in
minimal

resolution

.jpg image in
default resolution

.jpg image in
maximal

resolution

PDF-document

Page #2

...

TEI .xml file

Manuscript #2

...

 19

(Chapter 4.2). After the last processing step the workflow produces XML and CSV

files which contain the information about features of the manuscripts. The CSV file is

used as a file containing a source data for another project – CodiVis.

CodiVis is a visualization framework, based on data-driven documents (D3), which

visualizes extracted features of the manuscripts using different kinds of diagrams. D3

is a JavaScript library made for data visualization using HTML, SVG and CSS.

 20

6 CONCEPT PLANNING

The very first version of the web portal layout was supposed to provide a basic view-

ing functionality of the manuscripts. The layout of the main page was separated into

three sections (Figure 7). The “header” contains the project logo and its title. The

“footer” has logos of the project partners. These two sections of the layout always re-

main the same regardless of at which point of the UI the user is.

Due to the fact that there are thumbnails of every page of each of the manuscript, it

was decided to give the users a preview of their cover pages together with their

names in the main “body” section of the UI.

FIGURE 7. eCodicology Web Portal layout: main view.

The actual viewing features should become available by clicking on one of the thumb-

nails (Figure 8). Now the “body” section would contain a view over the pages of the

manuscript alongside with its metadata. The navigation controls will allow the user to

turn the pages and give him extra functions, like viewing current page number, zoom-

ing and a quick selection of the specific page.

 21

FIGURE 8. eCodicology Web Portal layout: reading view.

 22

7 IMPLEMENTATION OF ‘CodiHub’

The implementation of the eCodicology web portal was divided into several parts:

1. Establishing connection to the repository and accessing the data

2. Implementation of the first UI version with viewing features (CodiView)

3. Integration of the visualization framework developed based on D3 (CodiVis)

The above mentioned parts are detailed below.

7.1 Connection to the repository and accessing the data

7.1.1 Connection to the repository

Based on the fact that the application will work on the server-side, it was reasonable

to use Java Persistence API (JPA) instead of REST Services.

In order to establish the connection to the repository a few configuration files had to

be located in the web application folder:

 META-INF/persistence.xml – contains all JPA persistence units for database

access

 datamanager.xml – contains all KIT Data Manager settings

 logback.xml – the configuration file of logging framework

The database structure was predefined by several tables (Figure 9). Base Metadata

service of KIT Data Manager provides an access to such tables as ‘Study’, ‘Investiga-

tion’ and ‘DigitalObject’.

1. ‘Study’ table is an entry point of data access. In this case the term ‘study’ is

the unified St. Matthias Scriptorium

2. Each entry in ‘Investigation’ table represents a single manuscript

3. Every single manuscript has related pages and metadata. ‘Digital Object’ is,

basically, a digital representation for each of these objects

An important part of the Base Metadata is Object Identifier (OID) which identifies

each Digital Object and can be used as a link to additional metadata entities, e.g. to

https://ru.wikipedia.org/wiki/Java_Persistence_API

 23

Data Organization Metadata. The Data Organization Metadata contains information

about how the data belonging to Digital Objects is organized and where it is located.

As it was mentioned before, every page has several copies: four images in different

resolutions and one image in PDF-format. Data Organization Node table is made for

categorizing and mapping these files to corresponding digital objects.

FIGURE 9. Schematic relationship between the tables

Base Metadata

Data Organiza-

tion Metadata

 24

7.1.2 Data access

In order to get a list of available manuscripts (e.g. the list of their abbreviated names),

it was necessary to query the respective ‘Investigation’ table (Figure 10).

List<String> imported_ms = new ArrayList<>();
IMetaDataManager mdm_Core = null;
try {
 // Get IMetaDataManager instance
 mdm_Core =
 MetaDataManagement.getMetaDataManagement().getMetaDataManager();

 // Set AuthorizationContext (ctx)

 mdm_Core.setAuthorizationContext(ctx);

 // Querying the ‘Investigation’ table to retrieve the list of

 // mauscripts

 imported_ms = mdm_Core.findResultList(
 "SELECT inv.note FROM Investigation inv WHERE "+
 "inv.study.studyId=5", String.class);

} catch (UnauthorizedAccessAttemptException ex) {
 Logger.getLogger(GeneralModeView.class.getName()).log(
 Level.SEVERE, null, ex);
}

// Closing the MetaDataManager connection
finally {
 if (mdm_Core != null)
 {
 mdm_Core.close();
 }
}

FIGURE 10. Obtaining the list of manuscripts from the database

The list of the pages of the manuscript can be retrieved in the same way as the man-

uscript itself (Figure 10). The only difference is that in this case it would be necessary

to query the “DigitalObject” table instead of “Investigation” and to provide a desired

name of the manuscript.

Based on the fact that all images of the manuscripts and their metadata were in-

gested to the repository, the data obtaining process was reduced to retrieving their

respective URLs. The process of getting URLs is divided by several steps. A code

snippet is presented in Figure 11.

 25

private String GetURL(String file_name) {

 String url = "";

 // Create IMetaDataManager instances
 IMetaDataManager mdm_Core =
 MetaDataManagement.getMetaDataManagement().getMetaDataManager();
 IMetaDataManager mdm_DataOrganizationPU =

 MetaDataManagement.getMetaDataManagement().getMetaDataManager(
 "DataOrganizationPU");

 // Set AuthorizationContext (ctx)
 mdm_Core.setAuthorizationContext(ctx);
 mdm_DataOrganizationPU.setAuthorizationContext(ctx);

 try {

 // Querying the ‘DigitalObject’ table to retrieve the

 // Digital Object ID

 String dobj_id =
 mdm_Core.findSingleResult("SELECT "
 + "d.digitalObjectIdentifier FROM DigitalObject d "
 + "WHERE d.label='" + file_name + "'",
 String.class);

 // Querying the ‘DataOrganizationNode’ table with the dobj_id

 // to get a File Node object
 FileNode fileNode =
 mdm_DataOrganizationPU.findSingleResult("SELECT d"
 + "FROM DataOrganizationNode d "
 + "WHERE d.digitalObjectIDStr LIKE '" + dobj_id
 + "'", FileNode.class);

 // Obtaining the logical filename
 String uriAsString = fileNode.getLogicalFileName().asString();

 // Converting the logical filename to external form (URL)
 url = new URL(uriAsString).toExternalForm();

 // Closing the MetaDataManager connections
 finally {
 if (mdm_Core != null)
 {
 mdm_Core.close();
 }
 if (mdm_DataOrganizationPU != null)
 {
 mdm_DataOrganizationPU.close();
 }
 }
 return url;
}

FIGURE 11. Retrieving URLs from the database

 26

These steps are done in order to obtain any kind of data (images, XML-files, etc.),

which has to be displayed in the graphical user interface.

7.2 Implementation of the first UI version with viewing features (CodiView)

The usage of KIT Data Manager services involves the use of Java programming lan-

guage. In order to implement such project on the server side, there is a need in hav-

ing a powerful tool, such as Vaadin, which provides a large set of built-in UI compo-

nents, customizable CSS styles and third party extensions. This is why it was decided

to start the development in the Java programming language with the use of the Vaa-

din framework (Vaadin Ltd., 2009).

7.2.1 Main view

The first version of the main view was developed according to its mockup (Chapter

6).

In Vaadin all interface components can be divided in two groups: components the

user can interact with and layout components for placing other components to spe-

cific positions of the UI. VerticalLayout and HorizontalLayout are ordered

layouts for placing the components either vertically or horizontally, respectively. An

implementation started with separating the page into several sections (Figure 11).

// Set the root layout for the UI

VerticalLayout vl_main = new VerticalLayout();
setContent(vl_main);

// Add a horizontal layout for the header.

HorizontalLayout hl_header = new HorizontalLayout();
vl_main.addComponent(hl_header);

// Add a vertical layout for the body

VerticalLayout vl_body = new VerticalLayout();
vl_main.addComponent(vl_body);

// Add a horizontal layout for the footer.

HorizontalLayout hl_footer = new HorizontalLayout();
vl_main.addComponent(hl_footer);
...

FIGURE 12. Main view layout management

 27

The next task is based on presenting to the user a set of tiles, having both the IDs of

the manuscripts and their cover page thumbnails. This was done via a standard Vaa-

din component, a Panel, which is, basically, a simple container with the frame and a

caption. The content of the panel can have any web element, including images. Thus,

it was decided to put thumbnail images as an inner content of the panels, and manu-

script IDs as their captions. The process of obtaining the thumbnail is described be-

low (Figure 13):

private Image GetThumbnailImage(String ms_name) {
 // Creating an image object
 Image image = new Image();
 try {
 // Obtaining image url
 String url_str = GetURL(ms_name);
 if (!url_str.isEmpty()) {

 URI uri = new URI(url_str);

 // Creating a file resource based on URL
 FileResource resource = new FileResource(new File(uri));

 // Applying a file resource to the image object
 image.setSource(resource);
 }
 } catch (URISyntaxException ex) {
 Logger.getLogger(GeneralModeView.class.getName()).log(
 Level.SEVERE, null, ex);
 }
 // Removing image caption
 image.setCaption("");

 // Setting alternative text in case if image wasn’t found
 image.setAlternateText("No image found");
 return image;
}

FIGURE 13. Thumbnail image obtaining

With the help of the above mentioned method, the panel itself could be implemented

via following code (Figure 14):

 28

// Creating a new panel

Panel new_panel = new Panel(ms_name);

// Obtaining the image

Image new_thumbnail = GetThumbnailImage(ms_name);

if (new_thumbnail == null) {
 new_panel.setCaption("No image available");
} else {
 // Setting the image to full size
 new_thumbnail.setSizeFull();

 // Setting the panel to undefined size so it will “wrap” around
 // the image
 new_panel.setSizeUndefined();

 // Setting image as a content of the panel
 new_panel.setContent(new_thumbnail);

 // Creating a mouse click event listener
 new_panel.addClickListener(new MouseEvents.ClickListener()
 {
 @Override

 public void click(MouseEvents.ClickEvent event) {
 // Getting the manuscript's caption (its ID)
 String caption = event.getComponent().getCaption();
 // Opening a manuscript
 OpenManuscript(caption);
 }
 });
}

FIGURE 14. Implementation of the panel with the thumbnail image

An implementation of “OpenManuscript” method is described in details in Chapter

7.3.2 (Figure 26).

Thus, the layout now can be filled with the set of panels. In order to use the layout

space rationally, it was decided to place the panels inside the GridLayout with the

fixed amount of columns. GridLayout is a container which placed the inner compo-

nents on a grid, specified by amount of columns and rows. When the actual imple-

mentation of this idea was finished, the project was tested on the local Apache

Tomcat server (The Apache Software Foundation, 1999). The result is presented in

Figure 15.

 29

FIGURE 15. A set of panels with the thumbnails of the front cover pages

The first problem faced at this point was the lack of performance. There are cover

pages from more than 440 manuscripts and the application was trying to handle them

all at once. This situation was causing quite big time delays before the actual UI was

displayed for the user.

In order to solve the performance issue, it was decided to add lazy-loading features

to the existing UI. The idea was quite simple: if the UI had a special “Load more” but-

ton, which could add a few more rows of panels to the grid layout whenever the user

clicks on the button, the problem would be solved. Of course, in this case it is neces-

sary to limit the amount of panels, which will be added by default.

The implementation of this idea has been started with a simple method, which checks

whether there are more manuscripts which can be presented for the user (Figure 16).

The variable “items_shown” holds an amount of panels which has already been

presented for the user.

// Checks if there are some more manuscripts to be shown

private boolean HasMoreMS(List<String> ms_list) {
 return ms_list.size() - items_shown > 0;
}

FIGURE 16. Checking the availability of manuscripts which can be added to the UI

Then, it was necessary to implement the method which would be triggered every time

the user clicks the “Load more” button (Figure 17). The variable “gal-

lery_size_cols” holds the information about the current amount of columns which

 30

were set for the grid layout. The variable “load_more_rows” contains the amount of

rows which should be added after each click on the button.

// Adds a few more row of tiles of books to the grid layout

private void GetMoreMS() {

 // Checking whether there are more manuscripts that can be added
 if (HasMoreMS(imported_ms))
 {
 int counter = 0;
 int i = items_shown;

 // Checking if the amount of added items does not exceed
 // the size of the array list or size of the next few rows
 while (i < imported_ms.size() &&
 counter < gallery_size_cols * load_more_rows)
 {
 // Adding one more thumbnail to the grid layout
 AddOneThumbnail(imported_ms.get(i));
 counter++;
 i++;
 }
 }
 else
 {
 // Disable the button if no more manuscripts can be added
 btn_load_more.setEnabled(false);

 }
}

FIGURE 17. Implementation of the method for “Load more” button click event

The result of this implementation part is presented in Figure 18.

FIGURE 18. Result of “Load more” button implementation

 31

7.2.2 Reading view

In the very first version this view was developed very close to its concept (Chapter 6).

The ‘Reading view’ should substitute the contents of the body section with another

set of elements which will give the user an ability to view and turn the pages and see

the metadata of the manuscripts. The simplified version this view implementation is

presented in Figure 19.

An element, containing the page image was done via the same Panel component as

was used for the preview images of the manuscript. By default, every layout in Vaa-

din gives the inner components the space with equal proportions. In order to change

the expand ratio there is an eponymous method, which is called “setExpandRatio”.

With the help of this method it is possible to give more space for the page of the man-

uscript and less space for the navigational elements. Methods, like “setSpacing“,

‘setMargin”, allow to set the spacing between the components of the layout and its

margin, respectively. Methods, like “setHeight”, “setWidth”, are used in order to

change the height or the width of the components or layouts.

 32

// Panel containing the current page

Panel pnl_book = new Panel();
// Layout containing navigation buttons

HorizontalLayout hl_navigation = new HorizontalLayout();
// Layout containing panel and navigation

VerticalLayout vl_BookPlusNavigation = new VerticalLayout();
// Panel containing the features of the page

Panel pnl_properties = new Panel();
// Layout for the properties

VerticalLayout vl_properties = new VerticalLayout();
// Main layout

HorizontalLayout hl_main = new HorizontalLayout();

/* Navigation controls */
Button btn_zoom = new Button("+"); // Zoom in/out button
Button btn_next = new Button(">"); // Next page button
Button btn_prev = new Button("<"); // Previous page button
Button btn_last = new Button("<<"); // Last page button
Button btn_first = new Button(">>"); // First page button
TextField txt_page = new TextField(); // Text field with page num.
Slider sld_page = new Slider(); // Slider for navigation

hl_navigation.addComponent(txt_page);
hl_navigation.addComponent(sld_page);
hl_navigation.addComponent(btn_first);
hl_navigation.addComponent(btn_prev);
hl_navigation.addComponent(btn_next);
hl_navigation.addComponent(btn_last);
hl_navigation.addComponent(btn_zoom);
hl_navigation.setSpacing(true);

vl_BookPlusNavigation.addComponent(pnl_book);
vl_BookPlusNavigation.addComponent(hl_navigation);
vl_BookPlusNavigation.setComponentAlignment(pnl_book,
 Alignment.TOP_CENTER);
vl_BookPlusNavigation.setComponentAlignment(hl_navigation,
 Alignment.BOTTOM_CENTER);
vl_BookPlusNavigation.setExpandRatio(pnl_book, 620);
vl_BookPlusNavigation.setExpandRatio(hl_navigation, 40);
pnl_book.setWidth("100%");
hl_navigation.setWidth("100%");

vl_properties.setMargin(true);
vl_properties.setSpacing(true);
pnl_properties.setContent(vl_properties);

hl_main.addComponent(vl_BookPlusNavigation);
hl_main.addComponent(pnl_properties);

hl_main.setWidth("100%");
hl_main.setHeight("680px");
hl_main.setSpacing(true);
hl_main.setMargin(true);
setCompositionRoot(hl_main);

FIGURE 19. Implementation of the Reading View layout

 33

Afterwards, it was necessary to get the list of pages of the manuscript. An example of

implementation of this method can be found in Chapter 7.1.2.

As soon as the list of pages was obtained, the images can be presented to the user.

The process of page turning is based on several steps:

1. Getting the desired page name from the list

2. Obtaining the image from the database Chapter 7.2.1 (Figure 13)

3. Setting the image as a content of the panel Chapter 7.2.1 (Figure 14)

The next important step was displaying the features of the manuscript. The challeng-

ing part of this task consisted in extracting these features from the XML file, which

were placed under various “tags”. Because of the fact that given XML document has

a “tree” structure with large amount of nodes and “branches”, the decision to go

through the each node in search of specific feature was destined to fail due to the

time consumption.

In order to find the necessary information efficiently, the functionality of Jsoup was

applied (Hedley, 2010). Jsoup is a Java library which provides an API for extracting

and manipulating the data from HTML/XML documents. In this case it helps to read

the contents of an XML file from the String and use jQuery-like syntax in order to find

XML elements. The implementation of the solution is presented below (Figure 20).

 34

// Getting url from the database

String xml_url = GetURL(ms_xml_name);
// Converting URL to URI

URI uri = new URI(xml_url);
// Reading contents of the file

String xml_contents = readFile(new File(uri));
// Parsing the contents of the file

Document doc = Jsoup.parse(xml_contents, "", Parser.xmlParser());

// Selecting the element with the first "idno" tag in "tei" namespace

Element id_num = doc.select("tei|idno").first();
// Selecting the element with the first "material" tag

Element material = doc.select("tei|material").first();
// Selecting elements with "material" tag

Elements measurements = doc.select("tei|measure");
// Getting the attribute value from the last matched element

String script_type = measurements.last().attr("type");

Label lbl; // temporary label
// Layout for the left column, containing features' titles

VerticalLayout vl_metadata_col1 = new VerticalLayout();
// Layout for the right column, containing the features

VerticalLayout vl_metadata_col2 = new VerticalLayout();
// Main layout which puts both columns together

HorizontalLayout hl_metadata = new HorizontalLayout();

// Filling the left column with features' titles

lbl = new Label("ID:");
vl_metadata_col1.addComponent(lbl);
lbl = new Label("Material:");
vl_metadata_col1.addComponent(lbl);
lbl = new Label("Leaves amount:");
vl_metadata_col1.addComponent(lbl);
lbl = new Label("Page dimensions:");
vl_metadata_col1.addComponent(lbl);
lbl = new Label("Script type:");
vl_metadata_col1.addComponent(lbl);

// Filling the right column with features

lbl = new Label(id_num.text());
vl_metadata_col2.addComponent(lbl);
lbl = new Label(material.text());
vl_metadata_col2.addComponent(lbl);
lbl = new Label(measurements.get(0).text());
vl_metadata_col2.addComponent(lbl);
lbl = new Label(measurements.get(1).text());
vl_metadata_col2.addComponent(lbl);
lbl = new Label(script_type);
vl_metadata_col2.addComponent(lbl);

// Positioning both layouts alongside to each other

hl_metadata.addComponent(vl_metadata_col1);
hl_metadata.addComponent(vl_metadata_col2);
hl_metadata.setSpacing(true);

// Setting the main layout as a content of the panel

pnl_properties.setContent(hl_metadata);

 35

FIGURE 20. Extraction of features of the manuscript with Jsoup XML-parser

The final result of the Reading View implementation is presented in Figure 21.

FIGURE 21. Reading View implementation result

7.3 Improvement of the first CodiView version

There were many ideas how to improve an existing UI or how to solve one or another

issue faced during the development process. Some of them have already been de-

scribed earlier (e.g. “Load more” button, XML-parser), but most of the improvements

were realized later. This subchapter will present a set of solutions, which made Co-

diView come to its final stage.

7.3.1 Search field

In order to provide the users an easier way to find specific manuscript, it was decided

to develop a search field with such features as a drop-down suggestion list with and

incomplete request search.

The solution was found in the native Vaadin component – ComboBox, which has a

built-in drop down list and a set of its filtering rules. Since these features perfectly suit

to the project, the ComboBox component plays the role of the “search field”. It was

customized and added to the main page of the CodiView (Figure 21).

 36

During the initialization of the General View, the ComboBox is filled with the list of IDs

of the manuscript. Once it has a set of items, the search field can immediately pro-

vide suggestions in a drop-down list as soon as the user starts typing. The filtering

mode customizes this list, so that the search suggests only those manuscript IDs that

contain a string given by the user. Thus, the application does not interact with the da-

tabase, but looks for an appropriate manuscript(s) inside the search field, and, thus,

increases the performance.

ComboBox cmb_search = new ComboBox();
// Setting an input prompt

cmb_search.setInputPrompt("find a manuscript");
cmb_search.setNullSelectionAllowed(true);
// Setting the filtering mode to "contains the given string"

cmb_search.setFilteringMode(FilteringMode.CONTAINS);
cmb_search.setWidth("200px");
// Adding the custom CSS style

cmb_search.addStyleName("SearchBox");
// Allowing the user to add new items,

// so the search will be able to keep the user input

// regardless if the results were found or not

cmb_search.setNewItemsAllowed(true);
// Setting the focus on the search,

// so the user can start typing as soon as the UI is displayed

cmb_search.focus();

cmb_search.addValueChangeListener(new ComboBox.ValueChangeListener() {

 @Override

 public void valueChange(Property.ValueChangeEvent event) {
 if (event.getProperty().getValue() != null) {
 // Getting the value and converting it to string
 String selection =
 event.getProperty().getValue().toString();
 if (!selection.isEmpty()) {
 // Selecting desired manuscript(s)
 GetSelectedMS(selection);
 // Showing clear-the-search button
 btn_clear_search.setVisible(true);
 }
 } else {
 // Resetting the view if zero-selection was made
 ResetCodiView();
 }
 }
});

FIGURE 22. Search field implementation

The main task of “btn_clear_search” button is to call the “ResetCodiView”

method, which resets entire view of the main page. The most important method in

 37

this case is “GetSelectedMS”, which takes the user input as a parameter and pre-

sents the results, if matches were found (Figure 23).

 38

private void GetSelectedMS(String user_input) {
 // Removing all thumbnails from the page
 ClearThumbnailsView();
 // Disabling the "Load more" button
 btn_load_more.setEnabled(false);
 if (imported_ms.contains(user_input)) {
 // Adding one thumbnail in case if the user input
 // fully matches one of the manuscripts
 AddOneThumbnail(user_input);
 } else {
 // Otherwise showing all the manuscripts
 // which contain the given string
 List<String> searched_ms = new ArrayList<>();
 for (String nxt_ms : imported_ms) {
 // Matching the given string to manuscripts' IDs
 if (nxt_ms.toLowerCase().contains(
 user_input.toLowerCase()))
 {
 // Collecting results in the list
 searched_ms.add(nxt_ms);
 }
 }
 // Showing the manuscripts which were found
 FillGallery(searched_ms);
 }
 if (items_shown == 0) {
 // Finally, if no items were shown
 // showing the "no items were found" text
 NoItemsFound();
 }
}

FIGURE 23. Implementation of the method which presents the search results

The result of implementing the search functionality is presented below (Figure 24).

FIGURE 24. Result of the search implementation

 39

7.3.2 Tabs

An idea of having multiple manuscripts opened was not set as the main objective of

the web portal functionality. But, still, if this feature could be implemented, the human-

ities scholars would be able to explore different manuscripts and compare them with-

out any need to go back to main page. Thus, it was decided to include the functional-

ity of native “TabSheet” component into the existing user interface (Figure 25).

// Amount of tabs which is currently shown

int tabs_shown = 0;
// Tab sheet component

TabSheet tab_sheet = new TabSheet();
// Adding the first tab, which contains body seaction of the main page

tab_sheet.addTab(current_view, "Home");
// The first tab should not be closable

tab_sheet.getTab(current_view).setClosable(false);
// Adding the tab sheet to the root layout of the main page

vl_main.addComponent(tab_sheet);

// Implementation of tab-closing event

tab_sheet.setCloseHandler(new TabSheet.CloseHandler() {
 @Override

 public void onTabClose(TabSheet tabsheet, Component tabContent) {
 // Getting the tab which has to be closed
 TabSheet.Tab tab = tabsheet.getTab(tabContent);
 // Removing the tab from the tab sheet
 tab_sheet.removeTab(tab);
 // Decreasing an amount of shown tabs
 tabs_shown--;

 if (tabs_shown == 0) {
 // If there are no tabs left (except "Home" one)
 // then select the "Home" tab
 tab_sheet.setSelectedTab(0);
 }
 }
});

FIGURE 25. Implementation of the tab sheet

 40

In order to force the application to open the manuscripts in a new tab whenever the

user clicks on the thumbnail, the “OpenManuscript” method has been developed

(Figure 26).

private void OpenManuscript(String ms_name) {
 // Creating a new Readin View layout for the manusript
 read_view = new ReadingModeView(ms_name);
 // Adding a new tab to the tab sheet
 tab_sheet.addTab(read_view, ms_name);
 // Making the new tab closable
 tab_sheet.getTab(read_view).setClosable(true);
 // Selecting the new tab
 tab_sheet.setSelectedTab(read_view);
 // Increasing amount of tabs which is shown
 tabs_shown++;
}

FIGURE 26. Implementation of the method for manuscript opening

The result of the implementation of this idea is presented in Figure 27.

FIGURE 27. Implementation of tab sheet

7.3.3 Downloads

For humanities scholars it was essential to be able to save the source files of the

manuscript pages and its metadata. Therefore an existing user interface had to be

extended by several links which will trigger the download process of the source files.

 41

For this reason, it was decided to add one more “TabSheet” component to the Read-

ingView layout, which will contain both “Properties” and “Downloads” sections instead

of a single “Properties” panel.

An implementation of the new “TabSheet” component was quite similar to the one,

which was realized previously. The most crucial part consisted in developing a set of

links which lead to the source files (Figure 28).

// Creating a new link (to the thumbnail image)

Link link_to_thumb_jpg = new Link();

// Getting the name of the page which currently displayed

String current_page_name = ms_pages.get(current_page-1);
// Creating variables for the filename and url

String filename = current_page_name + "-THUMB.jpg";
String url = GetURL(current_page_name);

if (!url.isEmpty()) {
 FileDownloadResource file_res;
 try {
 // Creating a file variable
 File image_file = new File(new URI(url));
 // Creating a file download resource:
 // the first variable is the actual file,
 // the second one is the name uder which it will be saved
 file_res = new FileDownloadResource(image_file, filename);
 // Setting a description of the link
 link_to_thumb_jpg.setDescription(
 GetLinkToImageDescription(image_file));
 // Setting the link resource
 link_to_thumb_jpg.setResource(file_res);
 // Setting the link caption
 link_to_thumb_jpg.setCaption("Preview resolution");
 // Making it visible
 link_to_thumb_jpg.setVisible(true);
 } catch (URISyntaxException ex) {
 Logger.getLogger(ReadingModeView.class.getName()).log(
 Level.SEVERE, null, ex);
 }
} else {
 // If the URL was not obtained, the link is not visible
 link_to_thumb_jpg.setVisible(false);
}

FIGURE 28. An example of link implementation

A code snippet, presented above is just an implementation example of one of the

links. Since there are at least 6 kinds of files that can be downloaded by the user, the

code should be extended six times, but the main idea will remain the same.

 42

One of the interesting parts is the link description, which in this case contains the res-

olution of the image to be downloaded via method. The method

“GetLinkToImageDescription”, which determines the size of the image in pixels

and generates the description for the link, is described below (Figure 29).

private String GetLinkToImageDescription(File file)
{
 int img_height, img_width;

 // Getting image resolution
 try {
 BufferedImage image = ImageIO.read(file);
 img_height = image.getHeight();
 img_width = image.getWidth();

 } catch (IOException ex) {
 Logger.getLogger(ReadingModeView.class.getName()).log(
 Level.SEVERE, null, ex);
 }

 // Creating a description string
 String descr = "Resolution: "
 +img_width+"x"+img_height;

 return descr;
}

FIGURE 29. Method returning link description containing image’s resolution

The result of this task realization is presented in Figure 30.

FIGURE 30. Result of the downloads section implementation

 43

7.3.4 Column layout

Initially, the layout of CodiView had a fixed size, which was chosen according to the

list of the current statistics of the most popular screen resolutions (W3Schools, 2015).

The reason for such kind of implementation consisted in the fact that the “GridLay-

out”, which contains thumbnail images, should have a certain amount of columns

set. Because of the fact that there was not any information about the display sizes,

which humanities scholars may have in use, it was necessary to find a solution, which

will make the UI being properly displayed almost at all kinds of computer screens.

To manage this problem, a Vaadin add-on, which is called “ColumnLayout”, was in-

tegrated in the user interface (Figure 31) (Viitanen, 2014). It is a custom layout com-

ponent, which has a grid structure. The main difference between “ColumnLayout”

and “GridLayout” lies in fact, that the first one may have any amount of columns,

which do not have to be defined. Moreover, each time the browser window is resized,

the “ColumnLayout” reorganizes its columns. So in case if the width of the window

is decreased, the rightmost columns are placed under the first one in the same order

they used to be. And in case if the width is increased, the columns are placed back

on their positions.

ColumnLayout cl_thumbs = new ColumnLayout();
int thumb_panel_width = 162;

// Getting an amount of manuscripts

int num_of_items = imported_ms.size();
if (num_of_items > 0) {
 // Enabling the margin
 cl_thumbs.setMargin(true);
 // Setting full width
 cl_thumbs.setWidth("100%");
 // Setting undefined height
 cl_thumbs.setHeight(null);
 // Restricting columns distribution
 cl_thumbs.setExpandingColumns(false);
 // Setting column width
 cl_thumbs.setColumnWidth(thumb_panel_width);
 // Adding the Columnlayout to the UI
 thumbnail_view.setContent(cl_thumbs);
} else {
 cl_thumbs = null;
}

FIGURE 31. Creation of the ColumnLayout component

 44

The process of filling the column layout with a set of panels is pretty simple: after cre-

ation of the each panel (Chapter 7.2.1, Figure 14), it is added to the ColumnLayout as

described below (Figure 32):

// Adding the panel to a new column

// Amount of columns equals to the amount of show items

cl_thumbs.addComponent(new_panel, items_shown);
// Increasing an amount of shown items

items_shown++;

FIGURE 32. Adding a panel to the ColumnLayout

7.3.5 Browser window width

Since the UI can be properly displayed on any kind of computer screens, some other

elements have to be resized relatively to the size of the client’s browser window.

Among these elements there are the main logo and the main title. The way how to

determine the size of the browser window and resize these elements according to it is

described in Figure 33.

 45

Page.getCurrent().addBrowserWindowResizeListener(new
 Page.BrowserWindowResizeListener() {
 @Override

 public void browserWindowResized(
 Page.BrowserWindowResizeEvent event) {
 // Getting browser window width (in pixels)
 screen_width = event.getWidth();
 // Getting CSS styles of the main page
 Page.Styles styles = Page.getCurrent().getStyles();
 if (screen_width <= 1090 && font_size != 22) {
 // Setting the new font size
 font_size = 22;
 // Changing the height of the logo
 img_eco_logo.setHeight("60px");
 // Changing CSS style for the font
 styles.add(".v-label-Logo { font-size: "+font_size
 +"px !important; }");
 } else if (screen_width > 1090 && screen_width < 1270
 && font_size != 28) {
 font_size = 28;
 img_eco_logo.setHeight("70px");
 styles.add(".v-label-Logo { font-size: "+font_size
 +"px !important; }");
 } else if (screen_width >= 1270 && font_size != 34) {
 font_size = 34;
 img_eco_logo.setHeight("80px");
 styles.add(".v-label-Logo { font-size: "+font_size
 +"px !important; }");
 }
 }
});

FIGURE 33. Determination of the browser window size

7.3.6 Switch

Before starting with the integration process of CodiVis, it was necessary to develop a

switching method between CodiView and CodiVis. Due to Vaadin having no standard

switching component, it was decided to integrate another add-on, a “Switch”, which

will provide the required functionality (Figure 35) (Pöntelin, 2012). This add-on was

customized via CSS and a hand drawn pattern. Thus, this component fits into the

“medieval” scheme of the user interface and provides a switching functionality at the

same time.

 46

// Creating a true/false flag to detect if CodiVis mode is ON

boolean codi_vis_enabled = false;
// Creating a switch

Switch mode_switch = new Switch(null, codi_vis_enabled);
// Creating a CodiVis layout

VisualizationView codi_viz_view = new VisualizationView();

mode_switch.setAnimationEnabled(true);
mode_switch.setHeight("40px");
mode_switch.setWidth("155px");

// Handling the 'switching' event

mode_switch.addValueChangeListener(new Property.ValueChangeListener()

{

 @Override

 public void valueChange(Property.ValueChangeEvent event) {
 // Getting the true/false value
 codi_vis_enabled = mode_switch.getValue();
 if (codi_vis_enabled)
 {
 // If CodiVis is ON,
 // then substitute tabsheet (thumbnails) with CodiVis
 vl_main.removeComponent(tab_sheet);
 vl_main.addComponent(codi_viz_view, 2);
 codi_vis_enabled = true;
 }
 else
 {
 // If CodiVis is OFF,
 // then substitute CodiVis with thumbnails
 vl_main.removeComponent(codi_viz_view);
 vl_main.addComponent(tab_sheet, 2);
 codi_vis_enabled = false;
 }
 }
});

FIGURE 34. Implementation of the Switch component and the switching event

 47

7.4 Integration of the visualization framework based on D3 (CodiVis)

‘CodiVis’ was done as a standalone project, based on data-driven documents (D3).

The main objective was to integrate this project into the first UI version of the web

portal.

The ‘CodiVis’ project consists of following files:

1. index.html – a template for CodiVis layout

2. main.css – customization file for inner elements of CodiVis

3. d3.v3.min.js – a D3 library

4. main.js – a JavaScript file, which provides CodiVis functionality

5. cen2rgb.js – a JavaScript file, which applies different colors to the manu-

scripts according to their centuries

6. manuscript.csv – a CSV file, containing all the data to be processed by D3

All files, except the first one, were placed inside the Vaadin ‘resource’ project folder

for a better access. In order to apply a given template it was necessary to create a

“CustomLayout” based on it. For this reason, the HTML file was placed inside ‘lay-

outs’ folder, which was created under a theme folder of the project.

The process of integration comprises of following steps (Paul, 2012):

1. Creating a server-side component

2. Creating a Vaadin state object

3. Adding a connector to the main JavaScript file

4. Obtaining and transmission the data from the CSV file

 48

7.4.1 Creating a server-side component

This component is added inside the UI just as any other Vaadin component (Figure

35).

package com.kit.viztool;

import com.vaadin.annotations.JavaScript;
import com.vaadin.annotations.StyleSheet;
import com.vaadin.ui.AbstractJavaScriptComponent;

@StyleSheet("main.css")
@JavaScript({"d3.v3.min.js", "main.js","cen2rgb.js"})

public class Diagram extends AbstractJavaScriptComponent{

 public void setData(String data) {
 getState().data = data;
 }

 @Override

 public DiagramState getState() {
 return (DiagramState) super.getState();
 }
}

FIGURE 35. Structure of the server-side component

The “@JavaScript” and “@StyleSheet” annotations inform Vaadin about the CSS

and JavaScript files which have to be involved. Due to Same-origin policy

(Ruderman, 2015) the JavaScript function cannot access CSV files from another do-

main, unless they support CORS (Wikipedia, 2015). The easiest way of solving this,

is to retrieve the contents of the CSV file and transmit it into corresponding JavaScript

function (Chapter 7.4.4). The “setData” method is used to provide the contents of

CSV file to a “Diagram” component. This data is transferred to a corresponding

“data” field of “DiagramState” class. In order to inform Vaadin which state class

should be used, the “getState” method was overridden and specified with the cus-

tom state class.

 49

7.4.2 Creating a Vaadin state object

The main task of the class, which is defined below, is to provide ‘communication’ fea-

ture between Vaadin and JavaScript (Figure 36).

public class DiagramState extends JavaScriptComponentState{

 public String data;
}

FIGURE 36. Structure of state class

The only field of this class is the actual data transferring variable during the communi-

cation process.

7.4.3 Adding a connector to the main JavaScript file

In order to force Vaadin to execute a proper JavaScript function when the Diagram

component is attached, the function needs to have a specific name. To be exact, it

has to have a fully qualified class name of Diagram component (Figure 35), where all

the dots are replaced with underscores (Figure 37).

window.com_kit_viztool_Diagram = function ()

FIGURE 37. The general rule of naming the first JavaScript function

7.4.4 Obtaining and transmission the data from the CSV file

To obtain the source data, a “ReadCSV” function is called. Its body structure is look-

ing as follows (Figure 38):

private String ReadCSV(String path) {

 InputStream IS =VisualizationView.class.getResourceAsStream(path);
 String content = new Scanner(IS).useDelimiter("\\Z").next();

 return content;
}

FIGURE 38. Implementation of the function for data obtaining

 50

As soon as the data is read, it has to be transferred to the JavaScript function. For

this reason, it is necessary to assign contents of the CSV file to the data variable of

Diagram component (Figure 39), and then, retrieve this data inside the JavaScript

function (Figure 40).

diagram.getState().data = content;

FIGURE 39. Assigning the data to the component

var csv_content = this.getState().data;

FIGURE 40. Retrieving the data inside JavaScript function

To summarize, after implementation process the final version of CodiHub has a fol-

lowing look (Figure 41-44).

FIGURE 41. Implementation results: main page of the CodiView

 51

FIGURE 42. Implementation results: tab with a manuscript

FIGURE 43. Implementation results: downloads section

 52

FIGURE 44. Implementation results: CodiVis

 53

8 RESULTS AND EVALUATION

Among the main goals, which were set at the stage of project planning, one of the

tasks was an evaluation of the project. Like any other software, which is going to be

used by scientists, the CodiHub had to be tested and evaluated in terms of usability,

performance and stability before the actual releasing.

There were two kinds of surveys which were conducted among twelve employees of

IPE department in Karlsruhe Institute of Technology. The first survey is based on four

tasks (Appendix 1), which simulates ordinary activities of humanities scholars and,

thus, helps to test the project in terms of real applicability. The second survey con-

tains 14 general questions (Appendix 2), which help to evaluate the project in terms

of overall impression.

All the participants were given a live demonstration of the project and were able to

test and evaluate it using their own personal computers. It is also worth mentioning

that all participants are working in various fields of computer science and do not be-

long to the group of humanities scholars. The results of evaluation activities are pre-

sented below.

8.1 Task-based evaluation results

During this test, the participant goes through the four sequential tasks. Each task rep-

resents an ordinary activity of humanities scholars.

Based on the results (Figure 45), it can be concluded that, in sum, about 91% of par-

ticipants have successfully completed the given tasks. It also means that about 9%

(e.g. 1/12 participants) made a mistake in the third task. According to the participant’s

feedback, the reason was inaccuracy while choosing the right answer.

 54

FIGURE 45. The success rate of task completion

All respondents were asked to measure and record the time spent on each task (Fig-

ure 46). As can be seen, the most challenging question was the last one, which offers

to find a particular manuscript and determine one of its properties. Based on the par-

ticipant’s reviews, the main difficulty consisted of finding the right item among hun-

dreds of visualized manuscripts: some users simply did not notice the “quick search”

field and this led to growth in completion time.

FIGURE 46. The average speed of tasks completion

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

1 2 3 4

P
e

rc
e

n
ta

ge
 o

f
co

rr
e

ct
n

e
ss

Tasks

0,00

5,00

10,00

15,00

20,00

1 2 3 4

A
ve

ra
ge

 t
im

e
 t

ak
e

n
 (

s)

Tasks

 55

8.2 Overall impression evaluation results

During this test every participant had to express his general opinion by answering 14

basic questions. All questions were divided into six groups based on their belonging

to a particular impression. Afterwards, all results were categorized and taken into ac-

count as well (Figure 47).

After reviewing the results, it can be concluded that the project made a good overall

impression of itself. In terms of project logicality and enjoyment of its usage it is diffi-

cult to expect higher results because most of participants work in spheres different

from those to which the project initially aims at.

FIGURE 47. The scale of the overall impressions

0,00%

25,00%

50,00%

75,00%

100,00%

Fast Stable Logical Simple Fun Usable

P
e

rc
e

n
ta

ge
 o

f
p

o
si

ti
ve

 v
o

te
s

Impression type

 56

9 DISCUSSION

The project has fulfilled the majority of the goals, which were set during the project

planning part:

1. Accessing the digitized medieval manuscripts and providing a basic viewing

features

2. Integrating the CodiVis visualization framework

3. Project testing and evaluation

However, not all the objectives were achieved. Because CodiHub is a complex sys-

tem, which is based on such services, as KIT Data Manager, SWATI Workflow, etc.,

the implementation of one or another functionality has many dependencies. Due to

the absence of ingested images, which were processed by the SWATI workflow, the

viewing of its intermediate results was not possible. For this reason, the integration of

the workflow results is still among one of the goals for near future. Nevertheless, the

basic concept and interface elements are already implemented and ready to be ap-

plied (Chapter 10, Figure 48).

According to the project evaluation results, it worth saying, that the CodiHub web por-

tal has shown a great potential. The major part of the participants were successfully

able to perform all ordinary actions, which will be done by humanities with the help of

CodiHub. Besides, most of these activities can be performed in less than 10 seconds,

which means that the user can easily interact with the UI and get familiar with it in a

short time.

Based on participants’ feedback, there are some shortcomings, which are also worth

mentioning.

 The IDs of the manuscripts in CodiView and CodiVis are different, which may

confuse the user

 It is necessary to develop a clear linking between CodiView and CodiVis in or-

der to switch between the views viewing the same manuscript(s) which was

(were) previously selected

 One more zooming level could be helpful while browsing the pages

 57

Some of these points have been targeted in a future scope (Chapter 10). Neverthe-

less, CodiHub has already been supplemented by several features which made it

more applicable and usable for the target audience:

 Searching the digitized medieval manuscripts

 Opening multiple manuscripts and switching between them without any loss of

a previous layout state

 Dynamical switching between CodiView and CodiVis modes

 58

10 CONCLUSION AND FUTURE SCOPE

Summing up, firstly, the humanities scholars are now provided with an access to

large amounts of data, including manuscripts and their metadata, with only one re-

quirement: the internet connection. Secondly, users are now having an easier way to

study the features of the manuscripts without any need to search across the

metadata files, when looking for the information they need. Lastly, due to the suc-

cessful integration of visualization framework, users now can analyze all properties of

the manuscripts from the bird's-eye perspective. Altogether, the functionality of Codi-

Hub provides all the necessary functionality to gain new insights and find hidden rela-

tionships among the manuscript collection.

Looking to the future, it is necessary to say that some features of the web portal still

need to be improved or developed. Among of them there are:

 Integration of intermediate results of the SWATI workflow

 Creating a naming convention for the manuscripts

 Linking the manuscripts across the CodiVis and CodiView modes

 Integration of ‘Elasticsearch’ for searching among features of the manuscript

(Elastic, 2012)

As it was mentioned earlier, the very first goal, an integration of intermediate results

of the SWATI workflow should be managed in the near future. For this reason, a con-

cept of the solution has already been developed in order to simplify the following im-

plementation process (Figure 48). Basically, it is just another tab, which is added

alongside with “Properties” and “Downloads” whenever the user opens a manuscript

(Figure 42). The “Workflow” tab contains a tree structured workflow steps. Each time

user clicks on one of them, the image on the right hand side is changed by a corre-

sponding intermediate result of the SWATI workflow.

 59

FIGURE 48. Concept of the UI for viewing workflow results

All these tasks, mentioned above, are important for improvement of usage quality of

the portal. Nevertheless, at the moment the CodiHub has shown itself as a stable,

fast and easy-to-use software, which would be widely used for solving ordinary tasks

by humanities scholars.

 60

11 REFERENCES

Busch, H., Vanscheidt, P., Krause, C., Chandna, S., Rapp, A., Moulin, C., & Stotzka,
R. 2010-2014. eCodicology - Algorithms for the Automatic Tagging of Medieval Man-
uscripts [web page]. [accessed 18 October 2015]. Available from: http://www.ecodi-
cology.org/index.php?id=1&L=2

Chandna, S., Tonne, D., Jejkal, T., Stotzka, R., Krause, C., Vanscheidt, P., ... & Prab-
hune, A. 2015. Software workflow for the automatic tagging of medieval manuscript
images (SWATI) [web publication]. In IS&T/SPIE Electronic Imaging (pp. 940206-
940206). International Society for Optics and Photonics. [accessed 18 October 2015].
Available from:
www.researchgate.net/publication/282303587

Elastic 2012. Elasticsearch [web page]. [accessed 18 October 2015]. Available from:
https://www.elastic.co/products/elasticsearch

Embach, M., Moulin, C., Rapp, A., Sabine, P., & Philipp, V. 2011-2012. Virtuelles
Skriptorium St. Matthias [web page]. [accessed 18 October 2015]. Available from:
http://stmatthias.uni-trier.de/

Geary, P., Hendrix, J., Chiong, H., Davison, S., Ghorpade, P., McAulay, E., . . .
Westgard, J. 2012. The Reichenau-St. Gall virtual library [web page]. [accessed 18
October 2015]. Available from: http://www.stgallplan.org/en/index_library.html

Hedley, J. 2010. Jsoup [web page]. [accessed 18 October 2015]. Available from:
http://jsoup.org/

Jejkal, T., Vondrous, A., Kopmann, A., & Hartmann, R. S. 2014. KIT Data Manager:
The Repository Architecture Enabling Cross-Disciplinary Research [web document].
In Christopher Jung & Streit Achim, Large-Scale Data Management and Analysis
(LSDMA) - Big Data in Science. Karlsruhe: LSDMA, 9. [accessed 18 October 2015].
Available from: http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3212685

Paul, H. Vaadin 7 Loves JavaScript Components [blog]. 28 August 2012 [accessed
18 October 2015]. Available from: https://vaadin.com/blog/-/blogs/vaadin-7-loves-ja-
vascript-components

Pöntelin, T. 2014. Switch [web page]. [accessed 18 October 2015]. Available from:
https://vaadin.com/directory#!addon/switch

Ruderman, J. 2015. Same-origin policy [web page]. [accessed 18 October 2015].
Available from: https://developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy

The Apache Software Foundation 1999. Apache Tomcat [web page]. [accessed 18
October 2015]. Available from: http://tomcat.apache.org/index.html

The British Library 2003. The Digitised Manuscripts [web page]. [accessed 18 Octo-
ber 2015]. Available from: http://www.bl.uk/manuscripts/Default.aspx

http://www.ecodicology.org/index.php?id=1&L=2
http://www.ecodicology.org/index.php?id=1&L=2
http://www.researchgate.net/publication/282303587
https://www.elastic.co/products/elasticsearch
http://stmatthias.uni-trier.de/
http://www.stgallplan.org/en/index_library.html
http://jsoup.org/
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3212685
https://vaadin.com/blog/-/blogs/vaadin-7-loves-javascript-components
https://vaadin.com/blog/-/blogs/vaadin-7-loves-javascript-components
https://vaadin.com/directory#!addon/switch
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://tomcat.apache.org/index.html
http://www.bl.uk/manuscripts/Default.aspx

 61

The Saxon State and University Library Dresden 2010. DFG Viewer [web page]. [ac-
cessed 18 October 2015]. Available from: http://dfg-viewer.de/en/regarding-the-pro-
ject/
The Text Encoding Initiative Consortium 2015. TEI P5: Guidelines for Electronic Text
Encoding and Interchange [web document]. [accessed 18 October 2015]. Available
from: http://www.tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf

The University of Cambridge 2006-2009. Scriptorium: Medieval and Early Modern
Manuscripts Online [web page]. [accessed 18 October 2015]. Available from:
http://scriptorium.english.cam.ac.uk/

Vaadin Ltd. 2009. Vaadin Framework [web page]. [accessed 18 October 2015]. Avail-
able from: https://vaadin.com/framework

Viitanen, S. 2014. ColumnLayout [web page]. [accessed 18 October 2015]. Available
from: https://vaadin.com/directory#!addon/columnlayout

W3Schools 2015. Browser Display Statistics [web page]. [accessed 18 October
2015]. Available from: http://www.w3schools.com/browsers/browsers_display.asp

Wikipedia 2015. Cross-origin resource sharing [web page]. [accessed 18 October
2015]. Available from: https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

http://dfg-viewer.de/en/regarding-the-project/
http://dfg-viewer.de/en/regarding-the-project/
http://www.tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf
http://scriptorium.english.cam.ac.uk/
https://vaadin.com/framework
https://vaadin.com/directory#!browse/search=user:"Sami Viitanen"
https://vaadin.com/directory#!addon/columnlayout
http://www.w3schools.com/browsers/browsers_display.asp
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Appendix 1 1(2)

TASK-BASED EVALUATION SURVEY

2

Appendix 2 1(3)

OVERALL IMPRESSION EVALUATION SURVEY

2

3

