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1 INTRODUCTION 

1.1 Background 

The purpose of this thesis is to investigate the possibility of a non-destructive testing 

method for measuring the ageing and prediction of material failure of fibre-reinforced 

plastics (FRP). A FRP subjected to cyclic loading will cause initiation and growth of 

microscopic (and macroscopic) damage in the material. The hypothesis stand that this 

damage growth would be measureable as a decrease of the quality factor, with the as-

sumption that the quality factor is a direct measurement of the ageing of a material. The 

most relevant research question is therefore to prove the correlation between ageing and 

the quality factor and determine if the change over time can be measured using regular 

acoustic vibrational tests. If the hypothesis would stand correct, it would make possible 

for on-site acoustic vibrational testing, which would enable better monitoring of the con-

dition of laminates and more accurate predictions for material failure of FRP parts.  

 

The fatigue behaviour of FRPs have become a popular subject for research as the growing 

composite industry demands increasingly better and more accurate means of predicting 

the fatigue life of its products. Damage accumulation to FRPs have been documented 

widely and studies made by Xue et al. (Xue, et al., 2015), Ajaja & Barthelat (Ajaja & 

Barthelat, 2016) and Sudevan et al. (Sudevan, et al., 2015), among others, point toward 

that the damage growth of FRPs follow characteristic trends that may be modelled and 

likely also accurately predicted. The fatigue testing are usually performed using cyclic 

three-point bending and a frequently occurring problem is that the testing speed is too low 

to reach the high number of cycles often required to accurately define the complete fatigue 

life in a reasonable time. Xue et al. (Xue, et al., 2007) and Backe et al. (Backe, et al., 

2015) have developed setups for cyclic three-point bending that allows for testing speeds 

up to 20 kHz to counter this problem, which are expected to aid the study of fatigue be-

haviour of composites at very high cycle fatigue. 

 

The demand for non-destructive testing methods for damage identification in FRPs is 

apparent, as there is a lot of research on this matter with various different approaches to 

the subject. The purpose of these studies are generally to develop a method capable of 
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identifying damage in an early stage to predict and prevent material failure and enhance 

the service life of FRP parts. Numerous studies have been made using vibrational testing 

as an alternative non-destructive testing method. Experimental researches have been 

made by Perez et al., Lakhdar et al., Kersemans et al. and Klepka et al. focusing on both 

visible and barely visible damage as well as identification and localisation of damage 

growth. Studies focusing on mathematically modelling the fatigue life are common as 

well, for example studies by Zhang et al. (Zhang, et al., 2013) and Yan et al. (Yan, et al., 

2006) focusing on optimisation of FEM analysis and the importance of correct meshing 

to form a method of accurately predicting the damage accumulation in FRPs without ex-

perimental tests.  

 

A trend among these studies are that most claim to have promising results but all recom-

mend further study to prove their theories, which indicates that this subject may still be a 

work in progress. An article by Yan et al. (Yan, et al., 2007) about the development of 

vibration-based methods for damage identification, support this statement by stating that 

vibrational testing are on the rise but still have its limitations. Most studies focus on the 

relation of stiffness degradation and damage accumulation, while none of the researches 

mentioned use the quality factor in their research. These statements should consequently 

justify further research on the subject of fatigue behaviour and identification of damage 

growth in FRPs with the use of vibrational analysis, especially in relation to the quality 

factor.  

1.2 Objectives 

The main objectives of this thesis are (I) to prove the correlation between the ageing of a 

material and the quality factor, (II) determine if regular acoustic vibrational tests may be 

used as a method of measuring the damage growth and (III) predicting the fatigue life of 

fibre-reinforced plastics. This thesis also seeks (IV) to prove that the addition of fibres in 

the z-direction will resist damage from spreading across the laminate. A secondary ob-

jective of this thesis is (V) to identify the failure mode(s) of FRPs as a result of ageing.   
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2 LITTERATURE REVIEW 

2.1 Theory 

2.1.1 Free vibration 

Free vibrations occur when a spring system is subjected to an initial kinetic energy or 

initial displacement from the equilibrium position that leads to potential energy in the 

system. This will make the system oscillate about its equilibrium position. If no external 

forces acts upon the system, the oscillating motion is referred to as free vibration. A can-

tilever beam may be modelled as a spring system if the mass of the beam is seen as a 

concentrated weight at the free end of the beam and the beam itself is considered to be 

equivalent of a spring, as illustrated in Figure 1. (Kelly, 2011, p. 137) (Thomson, 1996, 

p. 17) 

 

Figure 1 Schematic drawing of a cantilever beam modelled as a spring system. 

 

The second-order differential equation for any single degree of freedom system is (Kelly, 

2011, pp. 138-139) (Thomson, 1996, pp. 28-30) 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹(𝑡)      Equation 1 

Since no force is acting upon the system 𝐹(𝑡) = 0 and the system parameters are defined 

as 

𝜔𝑛 = √
𝑚

𝑘
   𝑎𝑛𝑑   휁 =

𝑐

2√𝑘𝑚
      Equation 2 & 3 

the equation become 

�̈� + 2휁𝜔𝑛�̇� + 𝜔𝑛
2𝑥 = 0      Equation 4 

where 𝜔𝑛 is the natural frequency and ζ is the damping ratio. 



11 

 

A solution for equation 4 may be assumed to be 

𝑥(𝑡) = 𝐴𝑒𝛼𝑡
           Equation 5 

because of the linearity and constant coefficients in the equation. If substituting equation 

5 into equation 4 it yields 

(𝛼2 + 2휁𝜔𝑛𝛼 + 𝜔𝑛
2)𝐴𝑒𝛼𝑡 = 0     Equation 6 

The solution may then be obtained by solving for the roots, which give the two roots 

𝛼 = 𝜔𝑛(−휁 ± √휁2 − 1)      Equation 7 

The solution varies with the value of the damping ratio. There are four different possibil-

ities, if setting 𝑖 = √−1 the possibilities are: (Kelly, 2011, pp. 140, 147-160) (Thomson, 

1996, pp. 29-33) 

1. Undamped 휁 = 0 

In theory if there was no damping the free vibration would be a continuous har-

monic oscillating motion, in practice however some form of damping is present 

in all vibrations. 

𝛼 = ±𝑖𝜔𝑛 

2. Underdamped 0 < 휁 < 1 

If the damping ratio is less than one but more than zero the vibrations are under-

damped and will die out with a decaying oscillating motion. The underdamped 

case is the case relevant for this study and will be explained further later on. Nei-

ther of the roots are real in this case and consist of complex conjugates. 

𝛼 = 𝜔𝑛 (−휁 ± 𝑖√1 − 휁2) 

3. Critically damped 휁 = 1 

If the damping ratio equals one there is no oscillatory motion, but instead the 

system returns to equilibrium instantly. In this case only one of the roots are real. 

𝛼 = −𝜔𝑛 

4. Overdamped 휁 > 1 

If the damping ratio is greater than one the vibrations are heavily damped and 

will without oscillating return to equilibrium slowly. In this case both roots are 

real.  

𝛼 = 𝜔𝑛 (−휁 ± √휁2 − 1) 
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The general solution for underdamped vibration is defined as (Kelly, 2011, pp. 147-148) 

(Thomson, 1996, p. 29) 

𝑥(𝑡) = 𝐶1𝑒
(− 𝜔𝑛−𝑖𝜔𝑛√1− 2)𝑡 + 𝐶2𝑒

(− 𝜔𝑛+𝑖𝜔𝑛√1− 2)𝑡
  Equation 8 

where 𝐶1 and 𝐶2 are constants determined from the initial conditions. Equation 8 may 

also be expressed as 

𝑥(𝑡) = 𝑒− 𝜔𝑛𝑡[𝐶1 𝑐𝑜𝑠(𝜔𝑑𝑡) + 𝐶2 𝑠𝑖𝑛(𝜔𝑑𝑡)]    Equation 9 

where 𝜔𝑑 is the damped natural frequency and is defined as 

𝜔𝑑 = 𝜔𝑛√1 − 휁2       Equation 10 

In an underdamped system the vibrations will decrease in strength with time, but the time 

between each cycle will be constant. This time is referred to as the damped period, 𝑇𝑑, 

and is expressed as (Kelly, 2011, p. 148) (Thomson, 1996, p. 33) 

𝑇𝑑 =
2𝜋

𝜔𝑑
        Equation 11 

The decrease in strength of vibrations over time in an underdamped system is referred to 

as the logarithmic decrement, 𝛿, and may be determined in several ways 

𝛿 =
1

𝑛
𝑙𝑛 (

𝑥(𝑡)

𝑥(𝑡+𝑛𝑇𝑑)
) = 휁𝜔𝑛𝑇𝑑 =

2𝜋

√1− 2
     Equation 12 

The damping ratio may be calculated from the logarithmic decrement as (Kelly, 2011, pp. 

149-150) (Thomson, 1996, p. 33) 

휁 =
𝛿

√4𝜋2+𝛿2
        Equation 13 

2.1.2 Viscous damping 

If a system vibrates in a fluid medium, such as air or water, energy will be lost due to the 

resistance the medium puts on the vibrating body. This will cause the vibrations to decay 

exponentially as explained in the previous paragraph. The degree of viscous damping 

depends on several factors, namely the viscosity of the liquid, but also the shape and size 

of the body, frequency and velocity of vibrations. The damping force due to viscous 

damping is proportional to the velocity of the vibrating body. (Kelly, 2011, pp. 71-73) 

𝐹 = −𝑐�̇�        Equation 14 
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2.1.3 Hysteretic damping 

Damping caused by the material itself is referred to as hysteretic damping or structural 

damping and will show in the stress-strain curve as a loop as illustrated in Figure 2. For 

an ideal material the stress-strain curve of a loading-unloading cycle would be linear, due 

to no energy lost in the process. In reality however, intermolecular layers may slide and 

molecular bonds may brake and cause friction, which as a result may cause microscopic 

damage or imperfections in the material to grow as the strain energy in the material is 

dissipated as thermal energy. The energy dissipated may be referred to as ageing of the 

material and the process is irreversible. The energy lost each cycle is proportional to the 

square of the initial amplitude, while the frequency is known to have no effect on the 

energy lost per cycle. (Kelly, 2011, pp. 167-169) (Thomson, 1996, p. 75) 

 

Figure 2 Example of a typical hysteresis loop. 

2.1.4 Frictional damping 

Frictional damping is also known as Coulomb damping and is a results of two dry surfaces 

sliding against each other generating a friction force, 𝐹𝜇, that resists the motion. Frictional 

damping may originate from friction of macroscopic damage such as delamination, con-

trary to friction from microscopic damage, which will result in hysteretic damping. There-

fore an undamaged FRP may have no frictional damping present, but may develop it as 

the material ages. The damping force due to friction is proportional to the friction coeffi-

cient times the normal force and the sign is the opposite of the velocity. Unlike viscous 

damping, frictional damping generates a constant decay of vibrations.  (Kelly, 2011, pp. 

160-164) (Thomson, 1996, pp. 35-36) 

𝑚�̈� + 𝑘𝑥 = −𝐹𝜇𝑚𝑔       Equation 15 
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2.1.5 Free vibration of a cantilever beam with distributed mass 

To model the free vibrations of a cantilever beam a few assumptions have to be made. 

First the composite beam is assumed to be a uniform thin beam and in addition to that it 

is assumed that no rotary inertia or shear forces act upon the beam as well as no damping. 

The displacement, 𝑦, of the beam is then modelled, using a fourth order partial differential 

equation, as a function of point, 𝑥, and time, 𝑡. (Capozucca, 2014, pp. 212-213) (Safa, et 

al., 2011, pp. 2-5) 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4 + µ
𝜕2𝑦

𝜕𝑡2 = 0       Equation 16 

Where 𝐸 is the modulus of elasticity of the material, 𝐼 is the area moment of inertia of the 

cross-section of the beam and µ is the mass per unit length. 

 

The fourth order partial differential equation may then be reduced to a fourth order ordi-

nary differential equation using the solution. Since the solution is expected to be a har-

monic function of time the solution must have the form of 

𝑦(𝑥, 𝑡) = 𝑌(𝑥)𝑠𝑖 𝑛(𝜔𝑡 + 𝛼)    𝑜𝑟   𝑦(𝑥, 𝑡) = 𝑌(𝑥) 𝑐𝑜𝑠(𝜔𝑡 + 𝛼) Equation 17 

and if inserting equation 17 into equation 16 the following fourth order ordinary differ-

ential equation is obtained 

𝑑4𝑌

𝑑𝑥4 + 𝜆4𝑌 = 0        Equation 18 

where 

𝜆4 =
µ𝜔𝑛

2

𝐸𝐼
        Equation 19 

The general solution to equation 18 is 

𝑌(𝑥) = 𝐶1 𝑠𝑖𝑛 𝜆𝑥 + 𝐶2 𝑐𝑜𝑠 𝜆𝑥 + 𝐶3 𝑠𝑖𝑛ℎ 𝜆𝑥 + 𝐶4 𝑐𝑜𝑠ℎ 𝜆𝑥  Equation 20 

where the constants 𝐶1,  𝐶2,  𝐶3 𝑎𝑛𝑑 𝐶4 may be determined from the boundary conditions.  

 

A cantilever beam have one end fixed and the other end free as schematically illustrated 

in Figure 3. For a cantilever beam with distributed mass, meaning that the mass is constant 

throughout the length of the beam, the boundary conditions are known as (1) no deflection 

at the fixed end, (2) the slope is zero at the fixed end, (3) no bending moment acting on 
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the free end and (4) no shear force acting on the free end. The boundary conditions may 

be expressed as: 

𝑌(0) = 0; 𝑌′(0) = 0; 𝑌′′(𝐿) = 0; 𝑌′′′(𝐿) = 0 Equation 21, 22, 23 & 24 

 

Figure 3 Schematic illustration of a vibrating cantilever beam. 

 

By using the boundary conditions, the following condition is obtained: 

𝑐𝑜𝑠 𝜆𝐿 𝑐𝑜𝑠ℎ 𝜆𝐿 = −1       Equation 25 

From equation 25 the value of 𝜆 may be determined for each mode of vibration. A sche-

matic drawing of the first three modes are presented in Figure 4 and the value of the first 

three modes are: 

(𝜆1𝐿) = 1.875 

(𝜆2𝐿) = 4.694 

(𝜆3𝐿) = 7.855 

 

Figure 4 Schematic drawing of the first three modes of vibration. 
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The circular natural frequency may then be determined as 

𝜔𝑛 = (𝜆𝑛𝐿)2√
𝐸𝐼

µ𝐿4       Equation 26 

where 𝐿 is the free length of the beam. Since the natural frequency is obtainable experi-

mentally the modulus of elasticity may be determined by rearranging equation 26. 

𝐸 =
𝜔𝑛

2µ𝐿4

(𝜆𝑛𝐿)4𝐼
        Equation 27 

2.1.6 Quality factor 

The quality factor, 𝑄, is defined as the ratio of the resonance frequency, 𝑓𝑟, over the half-

power bandwidth, Δ𝑓. The half-power bandwidth is defined as the width of the peak at 

1 √2⁄  of the amplitude at the resonance frequency as illustrated in Figure 5. The equation 

for the quality factor is expressed as (Thorby, 2008, pp. 108-109) 

𝑄 =
𝑓𝑟

𝛥𝑓
         Equation 28 

The quality factor may also be related to the damping ratio as 

𝑄 =
1

2
         Equation 29 

 

Figure 5 Illustration of the resonance frequency and half-power bandwidth in a frequency spectrum. 
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2.1.7 Laplace transform and transfer functions 

Laplace transform is another method for finding the time response of an excitation to a 

system, the method also is the basis for the Fast Fourier Transform algorithm. The La-

place transform is used to convert ordinary differential equations into algebraic equations 

and may in combination with a transfer function and a known input function, define the 

solution for the output function. (Thorby, 2008, pp. 46-48) (Kelly, 2011, pp. 332-335) 

�̈� + 2휁𝜔𝑛�̇� + 𝜔𝑛
2𝑥 =

𝑓(𝑡)

𝑚
      Equation 30 

The equation above is the standard form for forced vibration, where 𝑓(𝑡) is the external 

force acting on the system. The Laplace transform is defined as 

𝑋(𝑠) = ∫ 𝑒−𝑠𝑡𝑥(𝑡)𝑑𝑡
∞

0
      Equation 31 

Where the operator 𝑠 is defined as  

𝑠 = 𝜎 + 𝑖𝜔        Equation 32 

If the real part 𝜎 = 0, the Laplace transform becomes what is called the Fourier transform 

where 𝑠 = 𝑖𝜔. Setting the initial conditions to 𝑥 = 0 and �̇� = 0 and applying the Laplace 

transform to each term in equation 30, 

𝑋(𝑠) = ℒ{𝑥(𝑡); 𝑡 → 𝑠};           𝐹(𝑠) = ℒ{𝑓(𝑡); 𝑡 → 𝑠}   Equation 33 

gives 

(𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛
2)𝑋(𝑠) =

𝐹(𝑠)

𝑚
     Equation 34 

The transfer function, 𝐺(𝑠), is a relation between the Laplace transform of the output and 

input functions of the system. 

𝐺(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑚
∙

1

(𝑠2+2 𝜔𝑛𝑠+𝜔𝑛
2)

     Equation 35 

Which may be rearranged to 

𝑋(𝑠) = 𝐺(𝑠)𝐹(𝑠)       Equation 36 

Hence the transfer function and the input function may be used to find the output through 

the inverse Laplace transform. 

𝑥(𝑡) = ℒ−1{𝑋(𝑠)} = ℒ−1{𝐺(𝑠)𝐹(𝑠)}     Equation 37 
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The input function, defined by the type of excitation is required to determine response. 

Typical excitation modes are delta impulse, step response and forced sine excitation. 

 

The delta impulse is an excitation mode where the system experiences a sudden change 

in velocity, in practice, for example, being struck by a moving object. From Table 1 the 

Laplace transform for a delta impulse may be found to be 𝐹(𝑠) = 1. As a result the output 

of a delta impulse reduces to only the inverse Laplace transform of the transfer function. 

(Thorby, 2008, pp. 50-52) 

𝑥(𝑡) = ℒ−1{𝐺(𝑠)} = ℒ−1 {
1

𝑚
∙ [

1

(𝑠2+2 𝜔𝑛𝑠+𝜔𝑛
2)

]}   Equation 38 

Equation 38 may then be solved using Table 1 backwards. 

𝑥(𝑡) =
1

𝑚𝜔𝑑
(𝑒− 𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔𝑑𝑡)     Equation 39 

Where 

𝜔𝑑 = 𝜔𝑛√1 − 휁2       Equation 40 

 

Table 1 Common Laplace transforms. (Thorby, 2008, p. 387) 

f(t) F(s) Notes 

𝜹(𝒕) 1 Delta impulse 

𝑯(𝒕) 1

𝑠
 Step response 

𝟏

𝝎𝒅
𝒆−𝜻𝝎𝒅𝒕 𝐬𝐢𝐧𝝎𝒅𝒕 

1

𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛
2
 𝜔𝑑 = 𝜔𝑛√1 − 휁2 

𝒆−𝑪𝒕 𝐬𝐢𝐧𝝎𝒕 𝜔

(𝑠 + 𝐶)2 + 𝜔2
 

 

𝒆−𝑪𝒕 𝐜𝐨𝐬 𝝎𝒕 𝑠 + 𝐶

(𝑠 + 𝐶)2 + 𝜔2
 

 

 

The step response is the response of a system being displaced by a force, 𝑃, and released. 

From Table 1 it is noticed that 𝐹(𝑠) =
1

𝑠
. (Thorby, 2008, pp. 48-50) 

𝑥(𝑡) = ℒ−1{𝐺(𝑠)𝐹(𝑠)} =       

ℒ−1 {
1

𝑚
∙

1

(𝑠2+2 𝜔𝑛𝑠+𝜔𝑛
2)

∙
𝑃

𝑠
} = ℒ−1 {

𝑃

𝑚
[
1

𝑠
∙

1

(𝑠2+2 𝜔𝑛𝑠+𝜔𝑛
2)

]}  Equation 41 
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The inverse Laplace transform is in this case not commonly found in tables and need to 

be split into partial fractions. Noting that 
𝑃

𝑚
 is just a constant that can be multiplied to the 

answer, it does not need to be included in the transform and the equation may be expressed 

as: 

[
1

𝑠
∙

1

(𝑠2+2 𝜔𝑛𝑠+𝜔𝑛
2)

] ≡
𝐴

𝑠
+

𝐵𝑠+𝐶

(𝑠2+2 𝜔𝑛𝑠+𝜔𝑛
2)

    Equation 42  

A, B and C are constants that need to be found, since equation 42 is an identity valid for 

any value of 𝑠 the equation may be rewritten with the intention of finding A, B and C. 

1 ≡ 𝐴(𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛
2) + 𝐵𝑠2 + 𝐶𝑠    Equation 43 

If equating the constants and coefficients of 𝑠 and 𝑠2 and subsequently substituting for A, 

B and C back into equation 42 the following equation is obtained. 

1

𝜔𝑛
2 [

1

𝑠
−

𝑠+2 𝜔𝑛

(𝑠2+2 𝜔𝑛𝑠+𝜔𝑛
2)

]       Equation 44  

The second term in the brackets is still too complex to solve, but may be rewritten if 

rewriting the denominator first, keeping in mind that 𝜔𝑑 = 𝜔𝑛√1 − 휁2. 

(𝑠2 + 2휁𝜔𝑛𝑠 + 𝜔𝑛
2) = (𝑠 + 휁𝜔𝑛)2 + 𝜔𝑑

2
    Equation 45  

Which gives 

1

𝜔𝑛
2

[
 
 
 
 
1

𝑠
−

𝑠+ 𝜔𝑛

(𝑠+ 𝜔𝑛)2+𝜔𝑑
2 −

(
𝜁

√1−𝜁2
)𝜔𝑑

(𝑠+ 𝜔𝑛)2+𝜔𝑑
2

]
 
 
 
 

     Equation 46 

All the three terms in the brackets may be solved using Table 1 and reinserting the term 

𝑃

𝑚
 yields the result: 

𝑥(𝑡) =
𝑃

𝑚𝜔𝑛
2 [1 − 𝑒− 𝜔𝑛𝑡 cos𝜔𝑑𝑡 − 𝑒− 𝜔𝑛𝑡

√1− 2
sin𝜔𝑑𝑡] =  

𝑃

𝑚𝜔𝑛
2 [1 − 𝑒− 𝜔𝑛𝑡 (𝑐𝑜𝑠 𝜔𝑑𝑡 +

√1− 2
𝑠𝑖𝑛 𝜔𝑑𝑡)]    Equation 47 
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2.1.8 3-Point bending 

The flexural properties of plastic materials are defined in ISO standard 178 (ISO 

178:2010, 2010). The flexural stress is defined as 

𝜎 =
3𝐹𝐿

2𝑏ℎ2
        Equation 48 

where 𝐹 is the applied force, 𝐿 is the span length, 𝑏 is the width and ℎ is the thickness of 

the specimen.  

 

The flexural strain is defined as 

휀 =
6𝑦ℎ

𝐿2         Equation 49 

where 𝑦 is the deflection of the specimen.  

 

A schematic drawing of the principle of three-point bending is presented in Figure 6. The 

y-axis is inverted as the positive direction of the deflection is downwards and the tip of 

the indenter marks the zero point. 

 

Figure 6 Schematic drawing of the principle of three-point bending. 

 

The flexural modulus may be determined from the stress and strain as illustrated in Figure 

7. 

𝐸 =
∆𝜎

∆
=

𝐿3(
∆𝐹

∆𝑦
)

48𝐼
       Equation 50 
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Figure 7 The slope of the stress-strain curve represent the modulus of elasticity. 

 

Important to note is that the area of the hysteresis loop from a loading-unloading 3-point 

bending cycle is normally seen as the amount of energy dissipated by the material, but a 

research by Van Paepegem et al. (Van Paepegem, et al., 2006) shows that the friction at 

the supports significantly affects the result and the area enclosed by the hysteresis loop 

may not be used as a direct measurement of the energy absorbed. 

2.2 Sampling 

2.2.1 Software 

Audacity is a free open source software for recording live audio and editing of audio files. 

Audacity will serve as the recording software for the acoustic vibrational tests in this 

thesis. (Audacity, u.d.) 

 

Scilab is another free open source software, but for numerical computation and offer the 

possibility compute algorithms and functions for a vast amount of applications such as 

simulation, optimisation or signal processing. The time series data recorded with Audac-

ity will be computed and visualized as graphs with Scilab. A Fast Fourier Transform al-

gorithm is used to obtain analysable frequency data. (Scilab Enterprises S.A.S, 2015) 
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2.2.2 Fast Fourier Transform (FFT) 

In vibrational tests the data collected experimentally are analogue readings that are con-

tinuous points in time, referred to as time series data. The Fast Fourier Transform (FFT) 

is an algorithm that converts the time series data into Fourier series from which frequency 

data are obtainable. The frequency data may then be analysed to determine the resonant 

frequency and half-power bandwidth necessary for the calculation of material properties. 

(Thorby, 2008, pp. 247-256) 

2.3 Failure modes of laminates 

The fatigue life of a metal may in most cases be expected to be linear until the fatigue 

limit is reached. The typical failure mode of laminates subjected to fatigue from bending 

is however split into three phases as illustrated in Figure 8. (Krüger & Rolfes, 2015) 

(Sudevan, et al., 2015) 

 

The first phase consists of crack initiation and growth of existing impurities in the matrix 

as well as matrix-fibre de-bonding. This phase is dominantly logarithmic and accordingly 

most damage will occur instantly and as the matrix closes in on crack saturation the dam-

age growth will reduce. In this phase buckling may also occur as a result of a pointy or 

spherical indenter e.g. in 3-point bending, causing local damage to the surface. (Krüger 

& Rolfes, 2015) (Sudevan, et al., 2015) 

 

The second phase becomes dominant as a result of the matrix having reached crack satu-

ration and the cracks will instead continue to grow along the fibres causing delamination 

between layers in the laminate. This is a phenomenon happening slowly but steadily, 

leading to this phase being dominantly linear. (Krüger & Rolfes, 2015) (Sudevan, et al., 

2015) 

 

The third and final phase consist of fibre brakeage, ultimately leading to material failure. 

This phase is dominantly exponential, as fibre brakeage will greatly weaken the material 

and accelerate the progress. Figure 9 illustrates the three phases of damage accumulation. 

(Krüger & Rolfes, 2015) (Sudevan, et al., 2015) 
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Figure 8 To the left a schematic drawing of the damage accumulation over time to laminates subjected to bending 

fatigue and to the right the effect of the damage to the modulus of elasticity. 

 

 

Figure 9 Schematic drawing of the three phases of damage accumulation. (I) Matrix cracking and matrix-fibre de-

bonding, (II) delamination and (III) fibre brakeage.  
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3 METHOD 

3.1 Material and specimen preparation 

The specimens tested are made of a combination of a unidirectional carbon fibre and a 

0°/90° glass fibre with a vinyl ester resin matrix and were manufactured through vacuum 

bagging and infusion. The process consist of sealing the textile under a plastic film and 

infusing resin with vacuum pressure applied under the plastic film, this is schematically 

illustrated in Figure 10. This means that with perfect vacuum the pressure put on the 

laminate would be equal one atmosphere (~101 kPa). The specimens were prepared to 

rectangular pieces using a band saw, with the unidirectional carbon fibre in the length 

direction (0°) of the specimen. The stacking sequences of the laminas are presented in 

Table 2 and schematically in Figure 11. The specifications of the specimens are presented 

in Table 3.  

 

Figure 10 Schematic drawing of vacuum bagging with resin infusion. 

 

One of the two laminates prepared has its layers sewed together with cotton thread in the 

z-direction, perpendicular to the unidirectional carbon fibres, to form a laminate with fi-

bres in three dimensions. The purpose of this is an attempt to resist delamination to spread 

as the material ages. By adding fibres to the laminate in a direction other than the direction 

of stress, the strength-to-weight ratio of the laminate will be lowered, but with the ex-

pected benefit of making the material more resistant to fatigue. 
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Figure 11 Schematic drawing of the stacking order and fibre orientation of the specimens. 

 

Table 2 Stacking sequence and materials of the laminates. 

Laminate  
Layer 

1 

Layer 

2 

Layer 

3 

Layer 

4 

Layer 

5 

Layer 

6 

Layer 

7 

z- 

direction 

1 

Material Carbon 

fibre 

Glass 

fibre 

Carbon 

fibre 

Glass 

fibre 

Carbon 

fibre 

Glass 

fibre 

Carbon 

fibre 
- 

Percent of fibres 

in x/y-direction 
100/0 50/50 100/0 50/50 100/0 50/50 100/0 

2 

Material Carbon 

fibre 

Glass 

fibre 

Carbon 

fibre 

Glass 

fibre 

Carbon 

fibre 

Glass 

fibre 

Carbon 

fibre 

Cotton 

thread 

Percent of fibres 

in x/y-direction 
100/0 50/50 100/0 50/50 100/0 50/50 100/0  

 

Table 3 Specifications of the specimens. 

Specimen Laminate Mass, g Thickness, mm Length, mm Width, mm 

1 1 11.38 1.646 202 24.53 

2 1 11.13 1.582 202.5 24.62 

3 2 12.99 1.88 202.5 25.15 

4 2 12.49 1.886 202.5 24.09 
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3.2 Sampling 

3.2.1 Setup for 3-point bending 

The ageing of the specimens were performed by causing fatigue degradation to the mate-

rial by high strain cyclic 3-point bending. The apparatus used was a material testing ma-

chine (Testometric M350-5CT) for 3-point bending with a maximum load capacity of 5 

kN. In cyclic tests the maximum velocity for the machine is 100 mm/min, with a maxi-

mum of 999 cycles per set. The specimen lays on cylindrical supports with a span of 75 

mm and the cylindrical indenter is centred between the supports. The indenter and the 

supports both have a diameter of 10 mm. Stoppers were attached to the ends of the sup-

ports to stop the specimens from gliding sideward along the supports during the tests. The 

gap between the stoppers and the specimen was roughly 1 mm on each side, to ensure 

specimens were still able to freely move. The setup is shown in Figure 12. 

 

Figure 12 Material testing machine for cyclic 3-point bending. 

3.2.2 Setup for vibrational testing 

For this thesis the hysteretic damping is the damping mode of interest, but it will not likely 

be the only damping present. A problem is that each form of damping contributing to the 

measured damping cannot be distinguished from each other. This means that the meas-

ured damping will in fact be a combination of all present damping in the system. Thus it 

is necessary to eliminate or keep the other forms of damping constant, in that way the 
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only change in damping will be originating from hysteretic damping as a result of ageing 

to the material.  

 

The viscous damping may for example be omitted in vacuum, but would lead to acoustic 

testing being unusable as well. Since the dimensions of the specimen and the medium 

(air) may be considered to be constant throughout the tests, the only factors affecting the 

viscous damping are the amplitude and velocity of the vibrations. If the induction of mo-

tion to the system is to be made identical for each sample, the amplitude and velocity 

should accordingly be identical for each individual sample. The induction of motion is in 

this case done manually and is therefore challenging to get identical. However, with a 

setup from which the specimen may be released from the same position each time, the 

viscous damping may be considered to be constant throughout the tests as well. If fric-

tional damping is considered very small compared to the hysteretic damping, the only 

change in damping or at least the major part of the change should then be originating from 

hysteretic damping. As the material ages the influence of frictional damping may however 

increase, as delamination occurs in the laminate. 

 

The vibrations were recorded acoustically with a microphone (Microsoft LifeChat LX-

1000) placed beneath the vibrating specimen and the recordings were processed with the 

software Audacity. The clamping device consists of two steel plates in which between the 

specimen is fixed and a large steel plate extending backwards as a counterweight as 

shown in Figure 13.  

 

Figure 13 The clamping device for a cantilever beam and the microphone placement. 
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3.2.3 Ageing of the material and the gathering of data 

To inflict damage to the material the specimens were put under constant amplitude cy-

cling for sets of 999 cycles at a velocity of 100 mm/min for 10 sets or a total of 9990 

cycles. Specimen 1 and 3 were aged at 0.8 % strain and specimen 2 and 4 at 1 % strain. 

The strain limit of carbon fibre is 1.8 % and the strain levels of the carbon fibres in the 

test is thus 44 % and 55 % of the strain limit, which was considered to be enough to cause 

major damage to specimen in form of resin cracking and delamination but not enough to 

cause the specimen to brake prematurely. The amplitudes needed to cause the desired 

strain was calculated according to equation 49.  

 

The code presented in Appendix A was used to calculate the slope for each individual 

cycle, by inputting the raw data gathered. In this case the slope represent the modulus of 

elasticity as shown in equation 50. The modulus of elasticity was then plotted against the 

number of cycles to define the change over time. The expected results are that the force 

necessary for displacing the specimen will decrease as the material ages and accordingly 

also the modulus of elasticity. The expected nature of the results are presented in Figure 

14. 

 

 Figure 14 Schematic illustration of the expected change to the force and modulus of elasticity due to ageing. 

3.2.4 Vibrational tests and the gathering of data 

Vibrational tests were performed on the specimens in their initial condition before ageing 

the material and after every following set of 999 bending cycles, with 25 samples recorded 
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for each test. The vibrations were induced manually by displacement of the specimen 

using a plastic stick. The stick was placed on a fixed support from which the specimen 

could be displaced and was removed horizontally away from the specimen in an attempt 

to make the induction identical for each sample. The data was collected using the record-

ing software Audacity at a sample rate of 8000 Hz and mono recording. The parameters 

used when recording are presented in Figure 15. 

 

Figure 15 Screenshot of Audacity including the parameters used for acoustically recording the vibrations. 

 

The code presented in Appendix B was run in the software Scilab. The code is using the 

Fast Fourier Transform to transform the vibrational time data into a frequency spectrum 

as shown in Figure 16. The resonance frequency and half-power bandwidth was obtained 

by analysing the frequency spectrum. This information, along with the specifications of 

the specimens, were used to determine the modulus of elasticity and quality factor ac-

cording to equation 27 and equation 28 respectively. The systematic tests allowed for the 

values of the modulus of elasticity and the quality factor to be plotted against the number 

of cycles to witness the change over time.  

 

Figure 16 Example of the time data plot and frequency spectrum from the undamaged specimen 2. 
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Only the first mode of vibrations are of interest for this thesis as it is the dominant mode 

for this particular case. The peak of the first mode in this sample is at approximately 120 

Hz as seen in Figure 16 and it is undoubtedly the dominant peak in this spectrum. The 

two following peaks are at 240 Hz and 360 Hz and are overtones of the first peak. At 

roughly 730 Hz is the peak of the second mode of vibrations and at roughly 2040 Hz is 

the peak of the third mode of vibrations. The resonance frequency of mode 2 and 3 are 

very close to the theoretical values, which are 6.27 and 17.55 times the resonance fre-

quency of mode 1, respectively. 

 

The expected results are that the resonance frequency, and consequently the modulus of 

elasticity, will decrease as the material ages. Similarly it is expected that the half-power 

bandwidth will increase, resulting in a decrease in the quality factor, as the material ages. 

This phenomenon is presented in Figure 17. 

 

Figure 17 Schematic illustration of the expected change to the resonance frequency and half-power bandwidth due to 

material ageing. 
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4 RESULTS 

4.1 Bending test results 

The data collected during the ageing of the specimens are presented in force-displacement 

graphs in Figure 18. If the force is great enough to damage the specimen, each cycle will 

generate a loop as described in section 2.1.3. The graph is consisting of hysteresis loops 

from each of the 9990 cycles, for each of the specimens. An important notion is that the 

exact amount of energy dissipated cannot be determined from the loop as the result is 

highly depending on the friction at the supports. The specimens were tested at constant 

amplitude cycling meaning the displacement was constant during the tests and as such 

the expected result is that the force needed to displace the specimen will be reduced as 

the specimen weakens as a result of fatigue. This phenomenon is clearly visible in the 

graphs as the loops tend to become more and more horizontal as the damage grows. This 

is expected as the modulus of elasticity is represented by the slope as described in equa-

tion 50 and a steeper slope indicates a higher modulus of elasticity. 

 

Analysing the results indicates that there was most damage to the specimens at the early 

stages as the drop of the cycles in the beginning are greater than at later stages, this is 

especially visible in specimen 2, 3 and 4. Specifically specimen 4 took much damage at 

the very first cycle and a visible sudden drop, moments before reaching the set deflection, 

is likely a result of fibres breaking, which could be a result of buckling at the bending 

point. 

 

As mentioned the slope is a representation of the modulus of elasticity and was plotted 

for each individual cycle to get a visual of the change over time, the results are presented 

in Figure 19. As expected the result is logarithmically decaying, the initial damage is 

great, but the damage growth quickly reduces and especially for specimen 1 and 3 there 

is very little damage growth showing in the later stages. Specimen 2 and 4 were subjected 

to higher strain and show more damage growth in the later stages, indicating that more 

delamination have occurred in those specimens. Comparing the results between the 2D 

and 3D laminates, it seems that the 3D laminates shows less damage growth in the later 
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stages, which may be a sign of resistance to delamination spreading across the laminate 

due to the extra fibres in the z-direction. 

 

 

Figure 18 Hysteresis loops as a result of ageing to the specimens, where the slope represent the modulus of elasticity. 

 

 

 

Figure 19 The change of the modulus of elasticity versus the number of cycles. 

 

The large variation visible in Figure 19 is entirely due to bugs in the code that fail to 

define the start and end of a cycle, an example of this error is shown in Figure 20. The 

software calculates the linear average of the data supplied and with an error, such as 

shown in Figure 20, the calculated slope is to some extent offset and not a representation 
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of the actual slope. Since the slope represent the modulus of elasticity, the calculated 

value will be offset accordingly. Therefore it is very important that these values is not 

treated as exact numbers. The trend line however shows an accurate representation of the 

relative damage to the specimen and may be used as a tool for predicting damage accu-

mulation and material failure.  

 

Figure 20 Example of an error defining the slope due to a bug in the code. 

4.2 Vibrational test results 

The results of the vibrational tests are presented in Figure 21, where the left column shows 

the modulus of elasticity and the right column shows the quality factor both versus the 

number of cycles. As each specimen were tested before ageing and after every set of 999 

cycles up to ten full sets and each vibrational tests consisted of 25 samples. The variation 

between samples in individual tests were typically very small as seen in Table 4. The 

modulus of elasticity, calculated from the resonance frequency according to equation 27, 

had very little to no variation between samples. The variation on undamaged and slightly 

damaged specimens was mainly due to precision errors in the software offsetting the res-

onance frequency by exactly 1 Hz. As the specimens got more damaged the resonance 

peak tended to get wider, which resulted in the peak being increasingly more round-tipped 

instead of pointy, causing minor variations to the highest point on the peak between sam-

ples. The quality factor, calculated from the ratio between the resonance frequency and 

half-power bandwidth of the peak according to equation 28, had more variation between 

samples as a result of approximation errors made by the software. The software only cal-

culates data points and when plotting a graph the software make straight lines between 

these points, which is not the true representation of the curve.  
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Table 4 Range of relative variations for the modulus of elasticity and the quality factor of the four specimens. 

Specimen  1 2 3 4 

Relative variations 
E 0 - 0.21 % 0 - 0.38 % 0.16 – 0.38 % 0 – 0.72 % 

Q 0.63 - 2.27 % 1.30 - 3.74 % 1.86 – 3.72 % 0.04 – 4.06 % 

 

 

 

 

 

 

Figure 21 The left column shows the change of the modulus of elasticity versus the number of cycles and the right 

column shows the change of the quality factor versus the number of cycles. 
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Studying the curves in Figure 21, shows a clear logarithmically decaying tendency, which 

is the expected result as described in section 2.3 describing the failure modes of laminates. 

As the initial damage growth is predominantly in the matrix, the fibres remain mostly 

undamaged in the early stages of the damage accumulation. Since the modulus of elastic-

ity is to a great extent dependent on the fibres rather than the matrix, the decrease should 

be relatively small although still following a logarithmically decaying pattern. As clearly 

seen in Figure 21 this is also the case where most damage occur between 0 and 1000 

cycles. Even that damage only cause a minor decrease to the modulus of elasticity. Note-

worthy is that the value of the modulus of elasticity differs from the values measured 

during bending. 

 

The quality factor is in contrast to the modulus of elasticity depending on the quality of 

the matrix and should similarly show a logarithmic decay, but with a great initial decrease 

as the damage accumulation in the matrix is dominant in early stages of the fatigue life 

and slows down as the matrix approaches its point of crack saturation. Comparing the 

expectations to the curves in Figure 21 it is seen that the decrease is at its greatest between 

0 and 1000 cycles. The rate of damage growth is also far more rapid than the damage 

growth later on, indicating that the matrix is approaching its point of crack saturation even 

before the first set of 999 cycles.  

 

Comparing the results of the 2D and 3D laminates it is noticeable that the 3D laminates, 

specimen 3 and 4, have a much greater initial decrease of the quality factor than the 2D 

laminates as seen in Figure 21. This is likely a result of damage concentration at the bend-

ing point, as the additional fibres in the z-direction of the 3D laminates may hinder dam-

age to spread across the laminate. The effect of the additional fibres in the z-direction on 

the spreading and growth of damage is proved by analysing the second phase of damage 

accumulation, which is delamination. The second phase is shown in Figure 22 and Figure 

23, which shows the same results as Figure 21 excluding the first 1000 cycles resulting 

in the slope being dominantly linear for that region.  

 

As seen in Figure 22 there is not much variation between the specimens, all four having 

only a slight decrease in the modulus of elasticity. This is expected as the second phase 

of damage accumulation is dominantly due to delamination in the laminate. Delamination 
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leaves the fibres mostly undamaged and accordingly does not remarkably affect the mod-

ulus of elasticity either as the fibres are the main contributor to the modulus of elasticity. 

Noticeable is that the value of the modulus of elasticity is 21.8 % – 29.5 % lower for the 

3D laminate, specimen 3 and 4, compared to the 2D laminate, specimen 1 and 2. This is 

expected as well, as the additional fibres in the z-direction made the laminate thicker 

without adding any strength to the direction of stress. Another likely reason is that the 

carbon fibres might have gotten damaged when sewn together, further weakening the 3D 

laminate. 

 

Figure 23 shows the linear region of the quality factor versus the number of cycles and 

from the slope it is evident that the decrease is slower for the 3D laminates. The 2D lam-

inates, specimen 1 and 2, both have the quality factor decreasing with 0.0011 per cycle, 

while the 3D laminates, specimen 3 and 4, have the quality factor decreasing with 0.0004 

and 0.0005 per cycle respectively. This proves that the addition of fibres in the z-direction 

in fact resist the spreading and growth of delamination in the laminate. The ageing was 

slowed down by 54.5 % and 63.6 % for specimen 3 and 4, respectively, compared to their 

2D laminate equivalents, by the addition of cotton thread in the z-direction. 

 

The correlation between the modulus of elasticity and the quality factor is shown in Figure 

24. From the graph it is apparent that the relationship is linear, proving that the modulus 

of elasticity and quality factor may be predicted if the slope is known. The decrease of 

the quality factor is however much greater than for the modulus of elasticity, which fur-

ther proves that, at least, for the early stages of ageing the quality factor is a better tool 

for measuring the ageing as the damage is mostly concentrated in the matrix rather than 

in the fibres. 
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Figure 22 The linear region of the modulus of elasticity versus the number of cycles. 

 

Figure 23 The linear region of the quality factor versus the number of cycles. 

 

Figure 24 The relationship between the modulus of elasticity and the quality factor as a result of ageing. 
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4.3 Damage analysis 

The most noticeable visible damage is large cracks in the direction of the unidirectional 

carbon fibres in specimen 1 and 2 as seen in Figure 25 and Figure 26 respectively. These 

cracks are a result of matrix-fibre de-bonding and occurred already after the first set of 

cycles. Specimen 3 and 4 on the other hand shows more local damage of several shorter 

and smaller cracks forming around the stiches from the thread in the z-direction shown in 

Figure 27 and Figure 28 respectively. The stiches from the thread in the z-direction is 

observed distorting the fibres in Figure 30 which shows the smooth side of specimen 3 

and 4. These distortions will have stress concentrations formed around them as the spec-

imens is put under stress which explains why the visible damage is primarily close to the 

stiches. 

 

Marked in red in Figure 25 – 28 are visible points where fibre brakeage has occurred as 

a result of buckling due to compression. Figure 31 shows an example of visible buckling 

and delamination during bending, a phenomenon which occurred in all four specimens. 

Comparing the damage of the side subjected to compression seen in Figures 25 – 28 and 

the side subjected to tension seen in Figure 29 – 30 it is evident that the side subjected to 

tension has next to none visible damage, while the side subjected to compression have a 

combination of matrix cracking and fibre brakeage as already described. Comparing spec-

imen 1 and 3 to specimen 2 and 4 it is noticeable that the latter have more visible damage, 

which is expected as specimen 2 and 4 were subjected to greater strain.
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Figure 25 To the left specimen 1, damage due to compression.  

Figure 26 To the right specimen 2, damage due to compression. 

 

  

Figure 27 To the left specimen 3, damage due to compression.  

Figure 28 To the right specimen 4, damage due to compression. 
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Figure 29 To the left specimen 1 & 2, damage due to tension.  

Figure 30 To the right specimen 3 & 4, damage due to tension. 

 

 

Figure 31 Visible buckling with resulting delamination of the top layer of specimen 2. 
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5 DISCUSSION 

The lamination method chosen for this thesis was vacuum bagging and infusion, although 

other methods such as heat pressing pre-preg fibres would have likely given a better lam-

inate in terms of fibre volume ratio and even thickness. Vacuum bagging is however a 

commonly used method for lamination and the method was considered being an easy and 

appropriate way of achieving a suitable representation of laminates commonly used in 

terms of quality. The laminates had some thickness variations over the surface, most no-

tably as specimen 1 and 2 has a thickness difference between the averages of 0.064 mm 

or about 4 %. This is because of the specimens was cut from different ends of the larger 

laminate and is as such a representation of the thickness variation across the whole lami-

nate. The thickness variation of the individual specimens were considerably lower.  

 

The layup could arguably have been made up of merely the unidirectional carbon fibre, 

but the glass fibre was considered adding stability between layers as the higher strain limit 

of the glass fibre had it stay intact and therefore offered great contrast in terms of colours, 

aiding in the analysis of visible damage. 

 

To achieve best results from comparing 2D and 3D laminates, a woven 3D textile would 

unquestionably be recommended instead of simply stitching a 2D textile stack together. 

Although the self-made 3D textile in theory should achieve the same results, there will 

certainly be imprecisions such as stiches covering more than, or less than, one string of 

textile in the x/y-direction. This would result in the fibres not being perfectly symmetri-

cally stacked as well as the risk of damaging fibres while sewing, which will reduce the 

strength and quality of the lamina. 

 

Specimen preparation should ideally be done by laser or water jet cutting to achieve 

straight and clean edges without damaging the specimen. The method chosen for this 

thesis was however cutting by band saw, due to availability and simplicity of the method. 

Cutting by band saw may however include the risk of causing damage to the specimens 

such as delamination at the edges as well as being considerably more inaccurate than an 

automated cutting method. 
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An alternative method to cyclic three-point bending are four-point bending, which work 

by the same principle as three point bending but have two indenters. This would cause 

the damage to be more even and spread over a larger area, which might be a more realistic 

approach to material damage. However as the vibrations are measured with a cantilever 

setup, it is actually more desirable having local damage that is easy to localise.  

 

The limiting factor in the method chosen is actually not in three-point bending but in the 

speed that the machine operates at. A maximum testing speed of 100 mm/min, led to that 

the specimens were only tested at 9990 cycles, but at relatively high strains to achieve 

enough damage with that few cycles. To achieve a full understanding of the fatigue life it 

would be necessary to accomplish possibly million cycles or more. At 100 mm/min a 

million cycles are beyond reach unless the deflection would be exceptionally small. A 

proper fatigue testing machine capable of operating at hundreds of Hertz, would allow for 

the specimen to be tested at lower strains and at more cycles. This may be a more accurate 

representation of the damage a part may receive under its lifetime, as well as a greater 

part of its fatigue life. 

 

A method for vibrational analysis often preferred is a fixed-fixed or free-free setup where 

the vibrations are induced using a hammer. Neither of those were chosen for this thesis 

as the method were a cantilever setup where the vibrations were induced by offsetting the 

free end. Both methods were however considered, but testing the methods showed that 

the fixed-fixed clamping device available was not robust enough and vibrations from the 

clamping device itself interfered with the vibrations of the specimen. The free-free setup 

was yet challenging for keeping the specimen in place. Induction of vibrations were also 

tested using a hammer, with the conclusion that manually hitting the exact same spot was 

problematical and led to greater variation in the results than manually offsetting the can-

tilever beam. Having a robust fixed-fixed clamping device and an automated device for 

the induction of vibrations may nevertheless be a superior testing method.      

 

The codes used for this thesis could undoubtedly be improved, but with the of lack time, 

the codes were limited to the essentials necessary for getting analysable results. Most 

important for this study was however the damage trend or the relative damage rather than 

exact results. 
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6 CONCLUSIONS 

The results indicate that the specimens were noticeably damaged as a result of ageing 

from cyclic three-point bending and the value of the quality factor was determined to be 

an accurate representation of the damage accumulation in the laminate. As most damage 

occur in the matrix in the early stages of ageing, the quality factor gave a better represen-

tation of the damage growth, as the modulus of elasticity is strongly related to the strength 

of the fibres. The correlation between the quality factor and modulus elasticity was nev-

ertheless proven to be linear.  

 

The relative variation of the quality factor reach up to 4 % in the tests, which may be too 

much variation to usefully determine the condition of the material. If the test were made 

with more accurate equipment, as discussed in the previous chapter, the variation may be 

reduced to such a level that the information could be used to accurately determine the 

damage and possibly more accurately predict the remaining life of the material. The con-

clusion is nevertheless that acoustic vibrational analysis is a suitable method for non-

destructively determine the ageing of fibre-reinforced plastics. 

 

The point of material failure may not be determined from the results of this thesis as the 

number of cycles were far too few. The specimens were still prone to damage growth at 

9990 cycles and may as such be expected to continue decreasing linearly until initiation 

of fibre brakeage and ultimately material failure. There is however possible that the dam-

age growth would stop completely and continue without taking further damage, resulting 

in the specimen never reaching material failure. This thesis consequently fail to confirm 

the applicability of regular acoustic vibrational tests as a method of predicting material 

failure. To confirm this hypothesis it would be recommended that in further research use 

high frequency fatigue testing equipment that allows for a larger number of cycles. This 

would provide a more accurate definition of the fatigue life of fibre-reinforced plastics. 

 

The quality factor furthermore proved that 3D laminates have a remarkable effect on re-

sisting spreading and growth of damage in laminates compared to their 2D laminate 

equivalents. The addition of cotton thread in the z-direction slowed down the spreading 
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and growth of damage by 54.5 % – 63.6 %. The drawback was that the modulus of elas-

ticity for the 3D laminates were reduced by 21.8 % – 29.5 %. 

 

The failure modes due to fatigue damage were determined by analysing the visible dam-

age to the surface of the specimens. Matrix cracks were the most noticeable damage, 

where the 2D laminates had large cracks in the direction of the unidirectional carbon fi-

bres indicating matrix-fibre de-bonding, while the 3D laminate had cracks mainly around 

the stiches of the fibres in the z-direction. Some cases of fibre brakeage were noticed on 

all four specimen, which were concluded to be a result of buckling from the cylindrical 

indenter. These failure modes were all textbook examples, which further confirms that 

the damage accumulation can be predicted for fibre-reinforced plastics, at least in the 

early stages. 
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APPENDICES 

Appendix A - Fatigue analysis code 

A=fscanfMat('filename.txt'); 

F=A(:,2); 

x=A(:,1); 

 

//Graph of fatigue, Force vs. displacement 

 

xset("window",0) 

xgrid(0) 

plot2d(x,F,5) 

xlabel('Displacement') 

ylabel('Force') 

title('All cycles') 

 

//Definition of data 

 

dx=diff(x); 

L=find(dx>0); //All data for the load cycle 

R=find(dx<0); //All data for the return cycle 

 

dx_L=diff(L); 

dx_R=diff(R); 

int_L=find(dx_L>1); //Start and End values of load cycles 

int_R=find(dx_R>1); 

 

//Defining the slope 

 

Range=[1:9990]; //All intervals 

N=2; 



 

 

Intervals=Range(2:N:length(Range)); //Only intervals for loading cycle 

 

marginal=0; //Trimming the ends for access of only the slope 

 

a=0:1:max(size(int_L)); 

a=a*0; 

 

for i=Intervals(1:4995); 

F_L=F((int_L(i)+marginal):(int_L(i+1)-marginal*3)); 

x_L=x((int_L(i)+marginal):(int_L(i+1)-marginal*3)); 

[a(i),b,sig]=reglin(x_L',F_L'); 

 

//Slope 

 

xset("window",1) 

xgrid(0) 

plot2d(x_L,F_L,i) 

xlabel('Displacement') 

ylabel('Force') 

title('Slope') 

end 

 

//Plotting Young's modulus vs. number of cycles 

 

xset("window",2) 

xgrid(0) 

plot(a) 

xlabel('Number of cyles') 

ylabel('Youngs modulus') 

title('Fatigue') 

 

 

  



 

 

Appendix B - FFT code 

D = fscanfMat('filename.csv'); 

 

dt=1/8000; 

T_max=max(size(D)); 

t=0:1:T_max-1; 

t=t*dt; 

 

//compute the fft 

y=fft(D,-1); 

spektrum=fftshift(abs(y)); 

 

//display 

xset("window",0) 

xgrid(0) 

plot2d(t,D,2) 

 

hans=spektrum/inttrap(spektrum); 

 

xset("window",1) 

xgrid(0) 

frequency=0:1/max(t):(max(size(t))-1)/max(t); 

niva=0*frequency+0.7071; 

 

plot2d(frequency-0.5*max(frequency),hans/max(hans),2) 

plot2d(frequency-0.5*max(frequency),niva,1) 

 

 


