
Julia Sulina

X-RoadWeb servicesmigration adapter

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

10 May 2016

Abstract

Author(s)

Title

Number of Pages

Date

Julia Sulina

X-Road Web services migration adapter

47 pages + 4 appendices

Tuesday 10th May, 2016

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Development

Instructor(s) Patrick Ausderau, Lecturer

Web services provide a possibility for information transfer between remote applications
of different platforms. Estonian X-Road is a large-scale Web service network of state and
private organisations’ information systems exchanging data via Simple Object Access
Protocol (SOAP) messages. These applications are unprepared for message alteration,
caused by renewal of X-Road protocol for cross-border communication.

The concept of the SOAP intermediary is used to develop an adapter converting X-Road
messages on their route, instead of adjusting information systems code. Feasibility of
the concept is evaluated by a theoretical enquiry and its implementation approbation.
This thesis is a report of the lessons learned while analysing, developing and testing the
intermediary.

The results show that the adapter is able to accurately recognize a need for transformation
and convert messages at a satisfactory speed. The intermediary proved to be usable
with various configurations, which makes it suitable for addressing not only the described
X-Road service migration, but also further changes in messaging. Acknowledging that,
additional testing of the application on a production-like environment should be performed.

Keywords Web service, SOAP intermediary, X-Road, XML parsing,

WSDL comparison

Contents

1 Introduction 1

2 Theoretical background 2

2.1 Simple Object Access Protocol (SOAP) Web services 2
2.2 X-Road Web services 5
2.3 SOAP message processing 10

2.3.1 eXtensible Markup Language (XML) parsing methods 10

2.3.2 SOAP message transformation in Java 11

2.4 SOAP interceptor and intermediary 13

3 Methods and materials 15

3.1 Context 15
3.2 Methods and project workflow 16
3.3 Software requirements 17

3.3.1 Functional requirements 17

3.3.2 Nonfunctional requirements 18

3.4 Development environment 18
3.5 Test arrangements 18

4 Results 21

4.1 Description of SOAP intermediary 21
4.1.1 Proxy setup component 22

4.1.2 Translation handling component 23

4.1.3 Translation algorithms 23

4.2 Description of the supporting application 25
4.3 Test results of SOAP intermediary 27

4.3.1 Accuracy testing 27

4.3.2 Performance testing 28

4.3.3 Information system data testing 29

4.4 Test results of the supporting application 30

5 Discussion 31

5.1 Technical decisions 31
5.2 Accordance to requirements 37
5.3 Improvements 39

6 Conclusions 41

References 43

Appendices

Appendix 1 Intermediary configuration

Appendix 2 Supporting application configuration

Appendix 3 Test environment

Appendix 4 Intermediary test arrangements

Abbreviations

API Application Programming Interface.

CA Central Authority.

DOM Document Object Model.
DTD Document Type Definition.

EU European Union.

HDD Hard Disk Drive.
HTML HyperText Markup Language.
HTTP Hypertext Transfer Protocol.
HTTPS HyperText Transfer Protocol Secure.

IDE Integrated Development Environment.
IP Internet Protocol.

JAR Java Archive.
JAX-WS Java API for XML-Based Web Services.
JAXB Java Architecture for XML Binding.
JAXP Java API for XML Processing.
JDK Java Development Kit.

RIA Republic of Estonia Information System Authority.
RIHA Administration System for the State Information System.

SAX Simple API for XML.
SIS State Information System.
SMTP Simple Mail Transfer Protocol.
SOA Service-Oriented Architecture.
SOAP Simple Object Access Protocol.
SSD Solid-State Drive.
STAR Social services and benefits data register.
StAX Streaming API for XML.

TCP Transmission Control Protocol.

UML Unified Modeling Language.
URL Uniform Resource Locator.

W3C World Wide Web Consortium.
WSDL Web Services Description Language.

XML eXtensible Markup Language.
XML-RPC XML Remote Procedure Call.
XSL Extensible Stylesheet Language.
XSLT Extensible Stylesheet Language Transformations.

Glossary

Servlet ”A servlet is a small Java program that runs within aWeb server. Servlets
receive and respond to requests from Web clients” [1].

Web service ”A Web service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its de-
scription using SOAPmessages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.” [2].

X-Road X-Road is a name for data exchange layer of information systems and
digital registers [3].

XML Schema XML Schema is a description of XML document type, indicating con-
straints on its structure and content [4].

1

1 Introduction

Web services provide a possibility for data exchange to applications of different platforms.

Estonian X-Road is an interesting example of a large-scale Web service network of state

and private organisations, which exchange information though Simple Object Access Pro-

tocol (SOAP) messages sent at a secured communication layer. Its infrastructure enables

preserving sensitive data in scattered data stores, with access permitted only to certified

members.

According to the current schedule1, in October 2016, a major change will take place in the

X-Road communication protocol with an aim of extending data transmission across state

borders within the European Union. This change means that all current members should

adjust the production and consumption of X-Road messages.

Taking part in the development of information systems engaged in X-Road communication

due to work assignments at Tieto Estonia, caused interest towards the migration process

and its implementation possibilities. This thesis aims to test an idea of addressing proto-

col change outside the member’s software. The goal is to create a SOAP intermediary

application, which can translate X-Road messages to a new format without altering the

code of existing information systems.

102.03.2016

2

2 Theoretical background

2.1 Simple Object Access Protocol (SOAP) Web services

Web services are ”a new breed of Web application, and they are self-contained, self-

describing, modular applications that can be published, located and invoked across the

Web”2 [5, p.219]. Web services3 create an opportunity for developing applications in the

Service-Oriented Architecture (SOA) paradigm, by presenting software functionality in a

platform independent manner [6, p.499]. SOA is an computer software design / integration

pattern in which application remotely provide services to other components using defined

communications protocol [7]. Such applications are able to request the needed informa-

tion ad hoc [8, p.7] reusing other software parts which provide the requested data [7].

Simple Object Access Protocol (SOAP) is one of the protocols which can be used for in-

formation transmission of Web services and it has become common for such message in-

terchange due to its simplicity, extensibility and interoperability [9, p.55; 10, p.387]. SOAP

is a standardized protocol4, representing messages shared between applications in eX-

tensible Markup Language (XML) format [8, p.7]. Hypertext Transfer Protocol (HTTP) is

common for SOAP messages transport5, where a request6 is sent over HTTP POST and

answered by an HTTP response [8, p.36].

SOAP Web services are described by Web Services Description Language (WSDL) –

such a representation makes it easier to create, maintain and consume services by pro-

viding a predefined structure of its components [8, p.79]. WSDL is a regularly program-
2IBM definition.
3W3Schools definition:

AWeb service is a software system designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards. [2]

4Standardized by World Wide Web Consortium (W3C) available at https://www.w3.org/TR/soap12/
5Other protocols like HyperText Transfer Protocol Secure (HTTPS) and Simple Mail Transfer Protocol

(SMTP) can also be used.
6Excluding WSDL requests.

https://www.w3.org/TR/soap12/

3

matically generated XML document, describing Web service and consisting of:

• definitions element: is a WSDL preamble or container, defines target namespace

and xmlns namespaces providing XML Schema URLs;

• types element: contains all abstract data types definitions belonging to messages

imported from XML Schema or defined in WSDL;

• message and part elements: describe messages that will be exchanged as a col-

lection of named parts (data values) of a particular type;

• operation element: presents operation (method) translation to messages7, introduc-

ing messages used on request and response8;

• portType element: defines the service interface;

• binding element: provides concrete implementation of a method and operation bind-

ing defining protocols;

• port element: declares location of the service: service name, port, address. [11,

pp.111-120; 8, p.80]

Web service applications act in three main roles: service provider – implements and pub-

lishes Web service, service registry – stores information about it, and service requester9

– discovers and invokes functionality [5, p.220; 12, pp.7-8].

Web services can be implemented using static composition; in this case, the aggregation

of services takes place at design time, or dynamic composition, which allows determining

and replacing service components during runtime. Static composition is suitable when

service functionality rarely changes. Dynamic composition in its turn can accommodate

frequent changes; however it requires support of automatic discovery of altered service

components. [5, p.221]

Snell et al [8, pp.79-80] states that dynamic discovery can be implemented in applications

and may help to adjust a consumer to the changed service structure, though as WSDL

descriptions versioning is not supported it is likely for requesting application to encounter

problems on major change of service [8, pp.79-80]. Sheng et al [5, p.221] also sees

complications in developing dynamic composition services originating from the need of all

partners being able to meet the requirements of flexibility [5, p.221]. Snell et al [8, pp.79-

80] proposes that WSDL in production should be immutable.
7Operation may contain of one (Single-Message Exchange pattern) or more (Multiple-Message Ex-

changes pattern) message exchanges [8, p.91].
8Operation input, output and fault messages.
9In the rest of this thesis, the terms service requester and service consumer will be used interchangeably.

4

SOAP messages are contained in an envelope, defining namespace information of mes-

sage elements and consisting of a header (optional), composed of blocks with informa-

tion about message processing, and a body (mandatory), incorporating actual data of the

message [8, p.17; 10, pp.390-391].

SOAP serialization is a process of transformation of application data types to XML-based

string format [10, p.391]. Deserialization or SOAP parsing is the opposite process of con-

verting the incoming message to application objects [10, p.392; 13, p.90]. Such a con-

version of messages is illustrated by figure 1: each message in case of regular request-

response communication encounters the serialization and deserialization process twice.

Figure 1: SOAP service call processing. Copied from Tekli et al (2012) [10, p.389].

Li et al [14, p.67] states that Web services meet a number of important purposes, nev-

ertheless not being faultless. The serialization of outgoing messages or overall mes-

sage processing becomes a performance issue for SOAP services in high-performance

requiring applications [9, p.55; 15; 14, p.67]. Besides the verbosity of the protocol in-

creases network traffic [15, p.1; 10, p.387]. Li et al [14, p.67] notes that a problem of

message processing performance arises remarkably if the SOAP engine is built in Java.

Web services performance is suffering especially because of time-consuming operations

with XML [14, p.67]. Abbas et al [16, p.81] claims that XML documents become larger

than the same information in other formats because of the repetition of tags.

Studies introduce various ways of dealing with the confronted issues. Abbas et al [16,

p.81] propose a dynamic clustering-based aggregation model for XML web messages to

increase performance. Both Tekli et al [10, p.391] and Abu-Ghazaleh et al [9, p.56] utilize

5

storing processed messages and using them as templates for transformation of new simi-

lar messages, saving time with differential serialization. Other measures include adaptive

cache, predeserialized templates [14, p.67], proxy cache [17, p.1614] and measuring sim-

ilarity using XML trees [13, p.88].

2.2 X-Road Web services

X-Road is an information systems’ communication layer – technical and organizational

environment – that allows to organize secure and veritable Internet-based data exchange

between digital data stores and information systems (public and private) [3]. X-Road

Estonia was founded in 2001 to avoid storing sensitive data in centralized database [18].

Information system included into X-Road communication can be any legal entity whose

membership application has been approved by Central Authority (CA) [18]. Core of X-

Road is made of state institutions registers as seen in figure 2. Top-consumed services

by its members also belong to state institutions. For example, in 2015, the services of the

Estonian Tax and Customs Board and Population Register were used the most [19].

Figure 2: Estonian information system. Copied from Estonian informatics Centre (2011)
[20].

6

During the year 2016, Estonia moves to a new version10 of X-Road, whichmeans changes

in the infrastructure and messaging protocol [21]. Version renewal aims to enable com-

munication with countries within the European Union (EU) using European X-Road. From

October 2016 only the new message protocol11 will be supported, when support for the

previously used versions of the protocol12 ends [21]. As of December 2015, according to

the Administration System for the State Information System (RIHA), X-Road is used by

1232 registered organizations and 320 information systems both service providers and

consumers [19].

Intercommunication between services in X-Road is based on SOAP and XML Remote

Procedure Call (XML-RPC) messages [22] with a new version migrating to only SOAP

1.1 protocol [23]. Using of a standardized protocol enables information transmission be-

tween systems written using various technologies through X-Road [3]. Presently, infor-

mation systems are responsible for composing SOAP requests and sending those to se-

curity server, where messages are transformed to be sent to service providers. Service

providers respond with data incorporated in SOAP response message [22, p.16]. This

message route is illustrated by figure 3. The X-Road message request route leads from

the service consumer thought the adapter server (optional), security server on consumer

side, X-Road / Internet, security server on provider side and adapter server (optional), to

service provider. Consequently, while migrating to the new X-Road messaging version all

systems engaged in X-Road communication need to change structures of messages sent

and be prepared to receive messages of new composition. Information systems are not

ready to use a new protocol without additional changes, because they are designed using

static composition [Raivo Tali, Software Architect, 15.02.2016, personal communication].

The main differences between old and new protocols are the language and composition

of envelope header attributes, certificates and digital signing of messages in security

server, and unified names of messages for request and response [24]. Besides message

name changes due to unification, translation of message parts may occur for some

services. Additionally, asynchronous calls to Web services, used to prevent blocking

other application activity [25], are no longer supported [24].

10X-Road version 5 will be changed to 6.
11X-Road message protocol version 4.
12X-Road message protocol versions 2, 3 and 3.1.

7

Figure 3: X-Road message route. Adapted from Ministry of Economic Affairs and Com-
munications, State information system department (2007) [22, p.15].

The code in listing 1 shows the old and listing 2 new version of the header blocks of a

message on the example of a datastore request fetched from RIHA13. The comparison

of listings 1 and 2 demonstrates the following changes in the example message header:

the protocolVersion block is added to new version header, the id field’s namespace is

changed, the userId is translated from the Estonian field name isikukood and its names-

pace is altered, the nimi (name in Estonian) element is removed, and finally, andmekogu

and asutus simple type elements are substituted with service and client complex types;

besides, child elements of the complex types are introduced.

1 <soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/
XMLSchema -instance" xmlns:xsd="http://www.w3.org/2001/
XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap
/envelope/" xmlns:xxx="http://***/xxx">

2 <soapenv:Header>
3 <xxx:id xsi:type="xsd:string">?</xxx:id>
4 <xxx:nimi xsi:type="xsd:string">?</xxx:nimi>
5 <xxx:isikukood xsi:type="xsd:string">?</xxx:isikukood>
6 <xxx:andmekogu xsi:type="xsd:string">?</xxx:andmekogu>
7 <xxx:asutus xsi:type="xsd:string">?</xxx:asutus>
8 </soapenv:Header>
9 ...
10 </soapenv:Envelope>

Listing 1: X-Road message header version 3. Example generated from RIHA
WSDL [26].

1 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:xro="http://x-road.eu/xsd/xroad.xsd
" xmlns:iden="http://x-road.eu/xsd/identifiers" xmlns:
prod="http://producer.x-road.eu">

13”xxx” marks a namespace of the datastore.

8

2 <soapenv:Header>
3 <xro:protocolVersion>?</xro:protocolVersion>
4 <xro:id>?</xro:id>
5 <xro:userId>?</xro:userId>
6 <xro:service iden:objectType="SERVICE">
7 <iden:xRoadInstance>?</iden:xRoadInstance>
8 <iden:memberClass>?</iden:memberClass>
9 <iden:memberCode>?</iden:memberCode>
10 <!--Optional:-->
11 <iden:subsystemCode>?</iden:subsystemCode>
12 <iden:serviceCode>?</iden:serviceCode>
13 <!--Optional:-->
14 <iden:serviceVersion>?</iden:serviceVersion>
15 </xro:service>
16 <xro:client iden:objectType="?">
17 <iden:xRoadInstance>?</iden:xRoadInstance>
18 <iden:memberClass>?</iden:memberClass>
19 <iden:memberCode>?</iden:memberCode>
20 <!--Optional:-->
21 <iden:subsystemCode>?</iden:subsystemCode>
22 </xro:client>
23 </soapenv:Header>
24 ...
25 </soapenv:Envelope>

Listing 2: X-road message header version 4. Gathered from Annuk et al (2015) [23].

Systems use data from X-Road in various situations; there are three main types of re-

quests:

• real time requests from the information system to fetch data for a form fields;

• real time requests from user to get information from a specific service;

• scheduled requests run by the system to update data in the database with a large

set of entries, usually made outside of peek hours. [27]

Figure 4: All requests from SIS in December 2014 on a time axis. Copied from Sulina
(2015) [27].

9

Requests to X-Road services are not uniformly divided; the main peeks are during the

state institution working hours [27]. These tendencies are visible in figure 4 from an anal-

ysis of the logs for State Information System (SIS)14.

Figure 5: X-Road infrastructure. Adapted from Ministry of Economic Affairs and Commu-
nications, State information system department (2007) [22, p.16].

X-Road infrastructure includes security servers – servers with special software, central

servers, certification authority15 and monitoring station [3; 28, §9] as represented in figure

5. X-Road security is provided by security server. According to the Estonian X-Road reg-

ulation [28, §11(2)], the service provider information system related components (adapter

server, security server) should be placed on the information system intranet. The security

server thus transforms messages for crossing security domains. This implementation is

conceptually similar to the one proposed by Jeckle et al [29], who describes a possibility

of providing security with a single point securing and signing proxy, instead of modifying

applications. The security server performs the following tasks: encrypts and decrypts

messages, produces logs, controls rights of service requester, prevents unauthorized ac-

cess of X-Road member service and mediates incoming messages to destination [28, §7].

The adapter-server is optional software that converts a request received from the security

server into a form understandable by the information system / data store platform. This

server also receives and converts a response for the request to the form required by

X-Road, and then mediates it to security server for sending it to the request performer
14Examples included in this thesis do not contain real information system / Web service partners names,

according to the use agreement with a system owner. Information system will be further referred as SIS.
15All X-Road members are certified.

10

member. [28, §11(4)]

2.3 SOAP message processing

SOAP message processing, as discussed in section 2.1, is an issue when targeting high

performance software mainly due to XML processing shortcomings. There are cross-

language standards [30, p.137] and specific programming language tools for such mes-

sage handling, an excerpt of those is reviewed in the following sections.

2.3.1 XML parsing methods

XML is parsed to guarantee a well-formed document16, to verify that its structure complies

with Document Type Definition (DTD) or XML Schema, and to access or modify elements

or attributes of the document. Every application intends to produce well-formed XML, pos-

sessing the first and, optionally, the second reason listed above. In contrast, accessing

or modifying elements is not always necessary. [31, p.33] Taking into account that seri-

alization / deserialization of the message aims for a transfer between XML encapsulated

values and application objects, which requires values access and reading, thus, SOAP

message processing incorporates the third reason for parsing as well.

Parsing approaches:

• Document Object Model (DOM) parsing approach: complete document model is

constructed before access or modification can take place.

• Push parsing approach: a document is processed in parts; encountering predefined

parts of the document, push parser produces parsing events, which can be handled

by an application using callback handlers, e.g. Simple API for XML (SAX).

• Pull parsing approach: event-based parsing, similarly to push approach. Application

controls delivery of the parsing events, e.g. Streaming API for XML (StAX). [31,

pp.33-37]

DOM was implemented with an aim of making changes in the XML structure and cre-

ating new documents [30, p.126]. The result of XML parsing with the DOM Application

Programming Interface (API) is a tree representation of the document in application mem-
16Document corresponding to the syntax standard.

11

ory [32].

SAX differently to DOM is used mostly for read-only document processing [30, p.125].

SAX likewise DOM is a common interface implemented for many different XML

parsers [33]. Both are cross-language standard [30, p.137], having their own specific

implementations in programming languages.

Table 1: XML Parser API Feature Summary. Copied fromOracle Java documentation [34]

Feature StAX SAX DOM

API Type Pull, streaming Push, streaming In memory tree
Ease of Use High Medium High

XPath Capability No No Yes
CPU and Memory Efficiency Good Good Varies

Forward Only Yes Yes No
Read XML Yes Yes Yes
Write XML Yes No Yes

Create, Read, Update, Delete No No Yes

DOM trees provide maximum flexibility for developers, however consume large amounts

of memory and higher processor requirements in case of processing long documents. As

stream processors like StAX enable removing already processed elements from mem-

ory, developer can only work with one document location at a time. However, in certain

situations, working without preserving the whole document tree in the memory increases

performance. [34] As seen in table 1 summarizing parsers features, one of the important

differences between DOM and StAX is an ability of DOM to update XML structure, which

is needed when document tags change.

2.3.2 SOAP message transformation in Java

SOAP messages can be handled in Java as other XML files17, created with dedicated

API classes18 or processed using Java classes binding19. In the last case Java classes

are usually generated automatically using WSDL, marshalling and unmarshalling is used

for serialization and deserialization [35, ch.4].
17For example with Java API for XML Processing (JAXP).
18For example javax.xml.soap classes.
19XML parsing takes place in each of approaches, being evident or hided by abstraction.

12

JAXP is one possibility for handling any XML data in the applications implemented in Java

programming language. JAXP implements StAX standard20, it enables parsing both us-

ing SAX and DOM API or transforming documents using Extensible Stylesheet Language

Transformations (XSLT). JAXP provides namespace support, allowing to work with doc-

ument structures that might otherwise have naming conflicts. [36]

Examples of automatic tools for generating Java classes code from WSDL include: Java

Architecture for XML Binding (JAXB) [37], Java API for XML-Based Web Services (JAX-

WS) [38], Apache Axis2 code generator [39], Apache CXF [40] and other. These tools

mostly generate classes representing XML with ObjectFactory class, for example JAXB,

JAX-WS, which enables to create needed messages by providing message inputs. The

indicated approach involves that application has an entity calling creation methods. From

one side, if operation message changes, new classes can be regenerated dynamically21.

From the other side, if inputs for a message creation are also altered, the entity calling

renewed classes might fault. Thus, dynamically created classes do not guarantee that

the code layers communicating with their operations will function, calling service as be-

fore the change. That is why in a large applications common practise is to hold a state of

Web service in the WSDL file placed within the application [Raivo Tali, Software Architect,

07.06.2015, personal communication]. Such an approach guaranties that in a case of

service changes, with no action for the client application update, only changed operation

calls will return fault response, and unchanged operations will function normally. In com-

plicated cases, like the alteration of X-Road protocol version described in this work, all the

service operations may change and will produce fault response if automatically generated

code is not updated.

Certain applications still do not use automatic tools for generation of the SOAP engine –

a layer for communication with Web service. XML files are created manually from strings,

or message responses are transformed with Extensible Stylesheet Language (XSL) to

HyperText Markup Language (HTML) showing those to a client. This increases code

interrelation and complicates changes, because message generation might be scattered

within application classes.
20From version 1.4.
21It is possible to provide link to WSDL and update code automatically.

13

2.4 SOAP interceptor and intermediary

Transformation of messages could be performed inside an application – changing SOAP

processing or plugging in an interceptor – or while a message is travelling to a SOAP

destination. Two approaches for retrieving the messages moving in SOAP frameworks

are: the SOAP intermediary mechanism, operated as a midpoint proxy, and interception

provided by SOAP framework vendors [41, pp.209-210].

Interceptors can provide solutions for cross-cutting concerns like logging, auditing, secu-

rity [42, ch. Interceptors; 43, p.111]. They allow developers initiate tasks outside of the

business logic of the application bound to events of method, invoked when specified event

occurs upon the intercepted method [42, ch. Interceptors]. An interceptor – software ar-

chitecture pattern used to resolve issues in numerous application domains, according to

Lin et al [41, pp.209-210], can be used in SOAPWeb services to develop flexible portable

interceptor mechanism. Currently, interceptors are bound to SOAP engines, which de-

creases their usability outside of those [41, p.210]. An interceptor is placed within an

application, meaning that each application should implement it again for similar changes,

as software architectures and frameworks differ. When the interceptor processes SOAP

messages within SOAP engine at the client and server sites, the intermediary operates

independently of the client application and the server site’s Web Service [41, p.210,217].

SOAP intermediaries are additional actors on the route of a message between origin and

final destination (between requester and provider) [8, p.91; 44]. While travelling through

intermediaries a message is usually processed or transformed. Transformation can be

applied for crossing trust domains (security)22, scalability or providing value added ser-

vices. Active – undertake additional processing that may modify the outbound message

in ways not described in the inbound message, and forwarding intermediaries – process

as described in the original message, are classified. [44, ch.SOAP Intermediaries; 45;

46, p.267]

Technically, SOAP intermediary can be developed as a Web service23 or as a proxy24. An

intermediary as a Web service, could receive a request instead of destination service, but
22For example, X-Road security server.
23Using, for example, Spring tools for Web services.
24Using Proxy Servlet, or API, for example Membrane Service Proxy [47].

14

for providing a response use an embedded client calling an original destination. When

the response is received by the client, transform it and send to the origin.

Forward proxy is an intermediate server placed between the client and the origin server,

requiring client special configuration, functioning similarly to a Web service intermediary.

A reverse proxy or gateway, by contrast, is transparent to the client. Thus, no special

configuration is necessary. The client makes ordinary requests for content, the reverse

proxy forwards request and returns the response content the same way as an origin. [48]

The adapter server, already used in X-Road communication [28, §11(4)], or a proxy pat-

tern [17, p.1614] can be successfully used for transformation of SOAP messages as an

intermediary. This thesis aims using the intermediary concept to present a software de-

veloped for addressing changes in the SOAP messages while renewing X-Road protocol.

15

3 Methods and materials

3.1 Context

State information systems of Estonia use X-RoadWeb services substantially as described

in section 2.2. Systems software is not prepared to the renewal of X-Road protocol, which

causes changes in all exchanged messages. The aim of this thesis is to test if the problem

can be addressed without changing the code of each application. The concept of the

SOAP intermediary is used to develop a software making transformation to messages

outside requesting application on the route to security server. The outcome of thesis

project, named X-Road message adapter, provisional position on X-Road message route

is depicted by figure 6. Themain challenge of the work is to be able to transformmessages

from one form to another. For such manipulations input data is needed, which can be

produced manually or automatically. As manual data generation is often error prompt, a

tool25 for producing adapter input was implemented among with the intermediary.

Figure 6: X-Road message adapter inclusion to message route. Adapted from Ministry of
Economic Affairs and Communications, State information system department (2007) [22,
p.15].

25Tool is further referred to as a supporting application.

16

The thesis project is inspired from work assignments at Tieto Estonia and it uses sup-

port provided by the company. All stages of the project, defined in section 3.2 detailed

workflow, are carried out by author.

3.2 Methods and project workflow

The research methodology of this thesis similarly to the workflow of the project comprises

three stages26. Initially, as the outcome of analysis stage, technical possibilities for soft-

ware implementation27 and software requirements28 are determined. Secondly, problems

encountered and technical solutions chosen in the development stage are discussed29.

Finally, produced software is tested according to the requirements, so that a feasibility

of proposed intermediary is inspected via a proof of concept30. The thesis is a report

of the lessons learned [49] while analysing, developing and testing the intermediary and

supporting application.

The project is carried out in three main steps: analysis, development and testing. Stages

of the thesis workflow and main procedures of each phase are listed below.

1. Planning and analysis:

• Preliminary analysis of needs: informal discussions with colleagues at Tieto

Estonia, media articles and mailing list of changes in X-Road;

• Developing an initial application idea of SOAP intermediary;

• Defining software requirements;

• Consideration of possible intermediary architectural implementation alterna-

tives: interceptor, proxy;

• Analysing possibilities for organizing inputs, review of WSDL comparison tools.

2. Development:

• Developing the supporting application and intermediary.

3. Testing:

• Testing the supporting application using test data;

• Testing the intermediary using test and information system data;
26Analogous research approach was used, for example, by Lin et al [41].
27Technical possibilities for software implementation are described in section 2.
28Software requirements are outlined by section 3.3.
29See section 5 for details.
30Analysed by sections 4 and 5.

17

• Comparison of the testing results with requirements.

Stages of the project are not to be considered carried out strictly sequentially. Since a

need for additional analysis occasionally arise on the development stage, besides, meth-

ods of the application are tested simultaneously by unit tests.

3.3 Software requirements

This section includes functional and non-functional31 requirements defined for developed

applications in order to provide criteria for the thesis project product evaluation. The re-

quirements also serve as a basis for software design and testing [51, p.30].

3.3.1 Functional requirements

Supporting application should:

R1. generate properties files displaying changes in provided WSDLs readable to the

intermediary application.

Intermediary should:

R1. receive SOAP request messages from a configured application;

R2. be able to recognize request messages needing transformation;

R3. transform request messages in the old format according to the changes specified in

properties files;

R4. forward all received request messages to a destination (through security server),

not depending on the transformation need and success;

R5. receive SOAP response messages sent back from the destination;

R6. be able to recognize response messages needing transformation;

R7. transform response messages in the new format back to old if the request was pre-

viously transformed, according to the changes specified in properties files;

R8. forward all received response messages to the configured application, not depend-

ing on the transformation need and success.

31According to Bode et al [50, p.1] non-functional requirements are quality properties of the software.

18

3.3.2 Nonfunctional requirements

Nonfunctional requirements for intermediary application:

• Performance requirements: Speed of processing amessage inside the intermediary

should be under 1 second. Multiple message processing should be supported.

• Usability and configurability requirement: The application enables set up on a server

and custom configuration.

• Reliability requirements: Fault tolerance – communication is not broken if some

message encounters faults in processing. Minimum impact on the normal opera-

tions of Web services [41].

• Extensibility: Further changes in Web services can be addressed by changing con-

figuration.

• Portability: The application enables transfer to other systems.

• Logging of faults and processed data.

3.4 Development environment

Software described in this thesis was developed using Java 1.8 programming language.

Tools and APIs used:

• Eclipse Integrated Development Environment (IDE);

• Apache Maven32;

• JUnit 4.1233;

• Java API for Membrane Service Proxy 4.1;

• JAXP API;

• Java API for Membrane SOA Model 1.4 [54].

3.5 Test arrangements

Preliminary, key methods of both the intermediary and supporting applications are tested

with JUnit tests present in source code34. Subsequently described tests are performed
32Apache Maven is a software tool for building and managing any Java-based project, also referred to as

Maven [52].
33JUnit is a framework for writing repeatable unit tests [53].
34Accessible from https://github.com/julia-sulina/b-project/tree/master/intermediary/src/test and https://

github.com/julia-sulina/b-project/tree/master/wsdlproperies/src/test

https://github.com/julia-sulina/b-project/tree/master/intermediary/src/test
https://github.com/julia-sulina/b-project/tree/master/wsdlproperies/src/test
https://github.com/julia-sulina/b-project/tree/master/wsdlproperies/src/test

19

running applications in the developing environment and using additional tools. Test re-

sults are analysed by comparing testing tools’ and applications’ logs with expected re-

sults. Testing environment details for both the intermediary and supporting application

approbation are described in appendix 3.

As requirements of the intermediary application include a possibility of setting it up on a

server, initially, an opportunity of server testing was considered. This alternative rendered

unreasonable, because X-Road services would be inaccessible for the test server without

a security server. At the time of application testing, X-Road has not yet migrated to a new

version. For this reason, there were hardly any security servers or test services ready to

receive translated calls. Besides, even if technically feasible, testing actions would involve

special permissions from X-Road members / authorities. As a result, in the scope of this

project, was decided to test the intermediary without using network on a local computer.

At the same time, recognising that test results will differ from ones potentially produced on

a server, e.g. missing network latency. However, quite fair feedback about the application

functionality can still be achieved.

Three different test arrangements are made for testing the intermediary as described be-

low:

1. Accuracy testing – testing the intermediary using test messages35 when SOAP re-

quester and provider are both simulated with SoapUI 5.2.136 with an aim of approba-

tion of the transformation algorithms. Test configuration for SoapUI and intermediary

are presented in appendix 4 (SoapUI test) and source code.

2. Performance testing with Grinder application37 for simulating high load on the inter-

mediary system, using SoapUI service mocking for answering requests. Grinder

configuration properties, test scripts and requests can be found in appendix 4

(Grinder test) and source code.

3. Testing the intermediary with a real information system application generating re-

quests, SoapUI tool responding, to access X-Road message processing. Test ar-

rangements configuration is included in source code38.

Approbation of the supporting application using test data is carried out by running it with
35Test message example is displayed in listing 9.
36SoapUI is a testing solution available from https://www.soapui.org/
37Grinder is a load testing framework available from http://grinder.sourceforge.net/
38Available from https://github.com/julia-sulina/b-project-private/tree/master/test/intermediary/

application_test

https://www.soapui.org/
http://grinder.sourceforge.net/
https://github.com/julia-sulina/b-project-private/tree/master/test/intermediary/application_test
https://github.com/julia-sulina/b-project-private/tree/master/test/intermediary/application_test

20

certain input WSDLs and comparing an output with expected result. Input data is initially

fetched fromRIHA39. AsWSDLs of new X-Road version have not yet been published as of

March 2016, the application is tested on initial shortenedWSDLs andWSDLs transformed

according to the version changes documentation [23]. Supporting application is expected

to be used on a local computer, that is why tests are run in the development environment.

For testing, the application is configured to fetch files available on local computer40. Input

files used for testing are available from source code41. During a first test input of one pair

of WSDLs is provided, when on a second test the application is run with two pair of WSDL

files. Such tests evaluate application functioning with different amount of files input.

39https://riha.eesti.ee/riha/main/
40Configuration file accessable from https://github.com/julia-sulina/b-project/tree/master/test/

wsdlproperties/configuration
41https://github.com/julia-sulina/b-project/tree/master/test/wsdlproperties

https://riha.eesti.ee/riha/main/
https://github.com/julia-sulina/b-project/tree/master/test/wsdlproperties/configuration
https://github.com/julia-sulina/b-project/tree/master/test/wsdlproperties/configuration
https://github.com/julia-sulina/b-project/tree/master/test/wsdlproperties

21

4 Results

The thesis project resulted in producing software for intercepting X-Road messages, im-

plemented in two separate applications. Main application or SOAP intermediary is meant

to be placed on a server within message route and perform actual transformation. Sup-

porting application is to be run before configuring the intermediary for providing input data.

Main features and design of each application are briefly described in following sections.

SOAP intermediary and supporting application were tested independently. Intermediary

tests were performed to measure application accuracy, performance and ability to process

data from an information system. So that different configuration setups were tried out

during the tests. In contrast, the supporting application was only tested for capability of

expected data production, as performance is not crucial quality for this software purpose.

4.1 Description of SOAP intermediary

SOAP intermediary42 software is designed to be run as regular Java Application, requires

Java Development Kit (JDK) 8, configuration file43 and translation input data in properties

files, specified in section 4.2. The intermediary contains of two main functional compo-

nents: proxy setup and translation handling, as depicted by figure 7.

Figure 7: Components and main classes of intermediary application. Generated using
Intellij Idea native Unified Modeling Language (UML) diagram tool.

42Documentation of SOAP intermediary Java project available from http://users.metropolia.fi/~juliasu/
intermediary/doc/, source code accessible from https://github.com/julia-sulina/b-project/tree/master/
intermediary

43Configuration file default name – xroadProxy.properties, contents described in appendix 1.

http://users.metropolia.fi/~juliasu/intermediary/doc/
http://users.metropolia.fi/~juliasu/intermediary/doc/
https://github.com/julia-sulina/b-project/tree/master/intermediary
https://github.com/julia-sulina/b-project/tree/master/intermediary

22

4.1.1 Proxy setup component

The proxy setup component is composed from ProxyConfiguration and

XRoadInterceptor classes, see figure 7. Classes implement service proxy and

interceptor using Java API for Membrane Service Proxy 4.144.

Regular Membrane Service Proxy is a reverse HTTP proxy [55], which setup contains:

• rule matching – selection of service proxy by matching filter criteria to incoming

HTTP request.

• dispatching – setting exchange destination for the selected service proxy target.

• user feature – execution of interceptors configured for proxy by user.

• HTTP client – forwarding the request to the exchange destination. [56]

The intermediary is a service proxy configured in a way that rule matching filter will forward

suitable incoming requests to it. Rule matching filter criteria are: incoming Transmission

Control Protocol (TCP) port, local Internet Protocol (IP) address, hostname – the HTTP

request Host header, and request path, matched by a path prefix or a Java regular ex-

pression [57]. These criteria as well as dispatching target are configurable for designed

intermediary, using properties file attached in appendix 1. The only statically predefined

parameter is a request type configured to HTTP POST, because the intermediary is de-

signed to handle only SOAP messages.

ProxyConfiguration class loads a configuration45 from properties file and setups Mem-

brane service proxy46. Custom XRoadInterceptor is added to the proxy as a user

feature, thus all proxy requests will be processed before forwarding. An intercep-

tor receives a message of request and response encapsulated in Exchange47 ob-

ject. To recognize SOAP from other accidental messages the interceptor uses API’s

SoapOperationExtractor48 class. Interceptor is in charge of capturing proxied mes-

sages, evaluating the need and way of translation, calling translation handling component

for translation performing49, as well as forwarding messages back to the proxy. Messages

are then dispatched to the destination.
44API jar file is added to the classpath of a project.
45Configuration for rule matching includes hostname, path and port to listen, and dispatching – target host

and port.
46com.predic8.membrane.core.rules.ServiceProxy
47com.predic8.membrane.core.exchange.Exchange
48com.predic8.membrane.core.interceptor.soap.SoapOperationExtractor
49See section 4.1.3 for details.

23

4.1.2 Translation handling component

The translation handling component includes translation service and factory, parsers,

properties and XML handling utility classes, additionally, supportive classes as a custom

exception and constants. TranslationService class responds for performing message

translation. On construction it loads a translation component configuration50. According

to the configuration, properties files handlers51 are created. When translation is requested

from the translation service, it turns to TranslationFactory class, which produces a new

instance of request52 or response parser53 according to the current need, this way factory

pattern design is used. Response and request parser share several fields and methods

by inheriting AbstractMessageParser class, this relation is visible in figure 7. Parsers

implement method translate, which executes translation routine according to a suitable

algorithm.

Translation is performed with a help of JAXP API DOM parsing, which enables to update

message structures dynamically. XMLUtil class is adapted from Apache Software Foun-

dation to simplify work of XML objects building. Custom exception class54 is introduced

and exception handling is used to improve software reliability. When possible, translations

are loaded straight from properties handlers to document structure, in complex cases, e.g.

request header translation, a list of objects for transformation55 is employed.

4.1.3 Translation algorithms

The translation need is determined as illustrated in figure 8. Firstly, the service controls

message operation name presence in a list of operations that should not be translated

(ignore list). On condition that operation name is found in this list, message translation

is skipped and a forwarding case algorithm used. Otherwise, the next step control is

executed. Secondly, the service searches message contents for a new tag name set

in proxy configurations (appendix 1) to decide on message belonging to the old or new

version format. On this step, an action of the program depends on themessage type being
50Configuration contents are listed in appendix 1.
51PropertiesHandler class instances.
52RequestMessageParser class.
53ResponseMessageParser class.
54MessageParsingException
55MessageTag class instances.

24

request or response. If the message presently processed is a request and the tag is found

in its contents, the message will be regarded suitable for the forwarding case algorithm,

else the message will be handed to the next control. If the message is a response, the

program acts in the opposite way. Thirdly, the list of operations needing translation for

body tags is examined. In a case that this list contains operation of current message,

the complex case algorithm is applied, if not, then the simple case algorithm is used for

transformation.

Figure 8: Translation algorithm determination

Forwarding case algorithm: nothing needs to be translated.

1. Request / response procedures:

• forward.

Simple case algorithm: only message header elements require translation.

1. Request procedure:

• save message header to Exchange object property for use in response parsing;

• translate header:

– load prepared default header from provided file or cache;

– obtain values from message header tags;

– find corresponding values for new header elements and insert them to de-

fault header.

• compose a new message, merging new header with an old body;

• forward.

2. Response procedure:

• restore header:

– get saved message header from Exchange object property;

25

– replace header.

• forward.

Complex case algorithm: message header and body should be translated both ways

1. Request procedure:

• save message header (like in the simple case);

• translate header (like in the simple case);

• compose a new message (like in the simple case);

• translate body replacing tag names with new names in the merged message;

• forward.

2. Response procedure:

• restore header (like in the simple case);

• translate body (opposite to the request);

• forward.

4.2 Description of the supporting application

Supporting application56 generates properties files for SOAP intermediary comparing dif-

ferent versions WSDLs of services. The program is run as a regular Java Application,

requires Java JDK 8, configuration file57 and WSDL files for comparison.

Each WSDL is converted to Java objects using API for Membrane SOA Model WSDL-

Parser class58, which generates hierarchical model structure containing all elements of

WSDL59. WSDLs are paired and their structures are compared for changes by generic

class. Firstly, objects that were not changed are found and removed from further anal-

yses. Unchanged objects are defined as objects which have the same type, name and

position in the hierarchy of both WSDLs. Secondly, remaining objects are matched in

pairs using following criteria:

• Positions in the hierarchy match – elements that are children of the same parent are

compared, e.g. parts of the same message.

• Equal child objects present in the different parent nodes, e.g. in a case of message

name change, same parts containing in two messages enable to pair them.
56Documentation of supporting application Java project available from http://users.metropolia.fi/~juliasu/

wsdlproperties/doc/, source code accessible from https://github.com/julia-sulina/b-project/tree/master/
wsdlproperies

57Configuration file default name – wsdl.properties, contents – appendix 2.
58Available from http://www.membrane-soa.org/soa-model-doc/1.4/java-api
59See list in section 2.1.

http://users.metropolia.fi/~juliasu/wsdlproperties/doc/
http://users.metropolia.fi/~juliasu/wsdlproperties/doc/
https://github.com/julia-sulina/b-project/tree/master/wsdlproperies
https://github.com/julia-sulina/b-project/tree/master/wsdlproperies
http://www.membrane-soa.org/soa-model-doc/1.4/java-api

26

• Same node attributes values – two objects on the same level of hierarchy tree, being

children of the same object can be paired according to containing same attributes

e.g. type.

• No potential pairing node is present – if a node is present in the hierarchy of one

document and missing in the hierarchy of other, the node is regarded as deleted

or added, depending on the position in new or old WSDLs, i.e. paired with nothing

(null)60.

SomeWSDL elements, however, cannot be paired according to any of named criteria. For

this reason user can provide properties list of known translations, which will be consulted

during the pairing process61.

When changed objects are found, a list of translations containing their descriptions is

composed. From this list, properties files are generated. While generation, a position of

the element is also marked. Property entry structure is following: position.old_name

= new_name_with_namespace. Position for header entries is marked as header and for

body elements, operation name is used.

Functionality of application classes can be summarized as following:

• ComparationService – initiates comparison process;

• Comparator – handles comparison routine;

• FilesHandler – reads WSDLs and outputs property files;

• PairGenerator – pairs any elements of the same type according to criteria;

• Tuple – generic class representing elements pairs;

• ChangedItem – contains position, old and new name of an element;

• Mapper – maps from Tuple to ChangedItem.

Generic classes, Function and Predicate interfaces are used in order to reuse function-

ality for different objects e.g. PairGenerator class. Lists are processed using streams

and lambda expressions.
60In case that compulsory node is added user should provide its value, optional nodes are skipped.
61Reconsidering as an example headers of listings 1 and 2 user might provide following translations for

the tags: isikukood=userId, andmekogu=service, asutus=client, see section 2.2 for detailed analysis of
these headers change.

27

4.3 Test results of SOAP intermediary

4.3.1 Accuracy testing

SoapUI tool tests were run to try all translation algorithms62 functioning accuracy. De-

scription and results of these tests are reported in table 2. Test 1 and 2 were designed

to evaluate the forwarding algorithm, while test 3 for the simple case algorithm and test 4

for the complex case algorithm. Description of test shows expected results, actual results

were gathered from SoapUI tool and intermediary application logs63.

Table 2: Intermediary application tests using SoapUI tool

Test Description Result Errors

1 New mes-
sage test

New protocol message sent to intermediary,
should be analysed and forwarded without
processing.

Message
forwarded
in both
directions.

-

2 Ignore list
test

Old protocol message sent to intermediary
with operation name, marked in ignore list.
Nevertheless, operation uses old protocol,
intermediary should forward it without pro-
cessing.

Message
forwarded
in both
directions.

-

3 Header
translation
test

Old protocol message sent to intermediary,
message header should be translated.

Header
translated
in both
directions.

-

4 Header and
body trans-
lation test

Old protocol message sent to intermediary,
operation name marked in configuration as
message requiring body translation. Mes-
sage header and body should be translated.

Header
and body
translated
in both
directions.

-

Table 2 shows that test results corresponded to expected outcome. Besides, all four tests

run were finished without errors.
62See section 4.1.3.
63Available from source code https://github.com/julia-sulina/b-project/tree/master/test/intermediary/

soapui_test

https://github.com/julia-sulina/b-project/tree/master/test/intermediary/soapui_test
https://github.com/julia-sulina/b-project/tree/master/test/intermediary/soapui_test

28

4.3.2 Performance testing

Grinder tool tests results presented in table 3 show the intermediary application perfor-

mance while multiple requests simultaneous processing. For three tests, the tool was

configured to send same requests from 10 processes with 10 threads each, so that 100

messages were sent to the application almost simultaneously. For the next tests, pro-

cesses amount was doubled.

Mean time in table 3 shows an average from sending a request to receiving response by

Grinder tool. Between those events, message first of all travelled through the intermediary

application, being translated or not according to the test setup. Then, reached SoapUI

tool, which mocked aWeb service and immediately sent a response back to the requester.

The response again was received in the intermediary application, which processed and

forwarded it back to Grinder.

Table 3: Tests using Gringer tool

Test Successful
Tests

Errors Mean
Time,
ms

Mean Time Standard
Deviation, ms

Mean Response
Length, bytes

Test 1 100 0 66,4 47,9 6140
Test 2 100 0 110 74,4 5750
Test 3 100 0 229 209 5710

Test 1 200 0 133 133 6140
Test 2 200 0 186 171 5750
Test 3 200 0 391 302 5700

The test 1 results show the application performance while forwarding requests without

transformation. While test 2, messages header was transformed in both directions. In test

3 message header and body were transformed. During the tests there was no network

latency or other slowing conditions e.g. long request processing in a target Web service.

Test results show that the application can handle several simultaneous requests without

fault. Logs of Grinder, SoapUI tool and intermediary application show that all messages

during the tests were processed in expected way64. In real life conditions the application
64Available from source code https://github.com/julia-sulina/b-project/tree/master/test/intermediary/

grinder_test

https://github.com/julia-sulina/b-project/tree/master/test/intermediary/grinder_test
https://github.com/julia-sulina/b-project/tree/master/test/intermediary/grinder_test

29

may work slower due to bigger properties file contents searching, but probably would not

have such large load as in the tests65. From the test results can be observed, that larger

load makes operations longer. However, presented data does not allow to make statistical

analysis of load influence on mean time variation, it still displays a difference between the

tests. Test 1 mean time grows linearly i.e. time doubles with doubled messages amount,

while Test 2 and 3, taking more time with initial load, increment less with doubled amount

of messages.

4.3.3 Information system data testing

The intermediary application was configured to receive requests of a state information

system to test real life X-Roadmessage processing. The test setup was following: SoapUI

was configured to imitate a Web service and the information system sent requests. The

intermediary was tested on 9 different requests66. All requests were expected to undergo

header translation.

On the first test, from 9 requests 4 failed translation and 5 were successfully translated.

Failed requests were forwarded to service without alteration. An error source was eas-

ily discovered. The intermediary application expected a message containing envelope,

header and body tags with soapenv namespace e.g. <soapenv:Envelope>. The informa-

tion system sent out requests with tags namespace ns2 e.g. <ns2:Envelope>.

After errors discovery in the first test, the intermediary application was fixed by adding

a method, which controls and unifies namespaces of the main SOAP tags. Only then

the intermediary performs actual translation operations. After this fix, same 9 operation

requests tests were run. Resulting in one NullPointerException67 and one fault68 from

SoapUI tool, which cause is unknown. Headers of all other operation requests were trans-

lated.

Limitation of presented results is that the intermediary is not tested with a real service

provider, only with the consumer information system. SoapUI tool is not performing same
65At the busiest time information system produce 30-40 requests in a minute [27].
66Not all possible requests of the system were used, ones easily performed from user interface were

preferred.
67Exception was fixed after the test.
68Message was not recognized by SoapUI tool, but appeared well-formed.

30

operations on messages like X-Road service. The first test showed that the application

was initially not fully adjusted to real life data. Before being able to run it in the production

environment, the application should be tested on a server with X-Road service provider.

4.4 Test results of the supporting application

Supporting application was tested by an input of oneWSDL pair and twoWSDL files pairs.

When the first test was run for determining changed elements pairing capability of the

application, then another aimed approbation of multiple inputs. A limited amount of tests

does not guarantee supporting application functioning faultlessly in all possible cases.

Nevertheless run tests showed software ability to prepare properties files usable by the

intermediary in both tests. To conclude, the supporting application produced expected

results during the tests69.

69Configuration and results of the tests available in source code https://github.com/julia-sulina/b-project/
tree/master/test/wsdlproperties

https://github.com/julia-sulina/b-project/tree/master/test/wsdlproperties
https://github.com/julia-sulina/b-project/tree/master/test/wsdlproperties

31

5 Discussion

5.1 Technical decisions

Technical questions arose at each stage of the project. Initially, several principal decisions

were unavoidable. For example, a source from which changes in Web services could be

determined needed to be selected. As X-Road services, like other SOAP services, use

WSDLs, it was relevant to work with those for change analysis. The other possibility was

to map alterations from SOAP messages, but in such case, the messages would need to

be additionally generated fromWSDLwith some tool, and only then be compared. WSDLs

are not usually versioned [8, pp.79-80], but in the case of X-Road, WSDLs are stored in

one service (RIHA). Besides, old versions are commonly documented in the development

of the requester or presented within an application that makes them available.

When WSDLs are fetched, the next issue will be faced: how changes could be discov-

ered, collected and represented in a systematic way. Review of WSDLs comparison tools

showed that there are hardly any ready-made tool for performing such processing. One

instrument found, was the Membrane SOA Model comparison tool as a command-line

application and Java API70. This tool, however, is quite inflexible in output, producing pre-

defined strings, and does not allow extension e.g. providing of known changes. Thus

supporting application development idea was unfold. After evaluating different possibil-

ities, I came to the conclusion that WSDL processing should be performed only once,

producing results which could be utilised any time. In this way the message translation

itself can be made quicker using data from previously prepared changes.

Consequently, the Membrane SOA Model API was only used for deserialization of WS-

DLs. Several difficulties were encountered when working with WSDL converted to an

object, because its hierarchy is a multi-branch tree, and API documentation of tree rep-

resentation in the object was partly missing. It took several tries and fails to clarify how

to extract the needed elements out of the tree for further comparison. Theory about the
70Available from http://www.membrane-soa.org/soa-model-doc/1.4/java-api/compare-wsdl-java-api.htm

http://www.membrane-soa.org/soa-model-doc/1.4/java-api/compare-wsdl-java-api.htm

32

WSDL structure71 as described in section 2.1 helped to focus only on the parts needed

for messages.

Provided that changes in service occurred, capturing the right translation becomes the

next challenge. The structure and hierarchy of the components could serve for that pur-

pose, but not all alterations can be paired in this way. As a result a possibility to provide

known translations was introduced. Detailed results for the translations pairing criteria

were presented in section 4.2.

Another consideration was, what format of output should be prepared. As translation is

a pair of values – old and new – the format of the properties file was considered suitable

for the supporting application output. Properties files are commonly used in Java for

configuration or localization, and contain entries of the key and value. Since searching in

such files is easily performed, they are acceptable as input data as well. A properties file

is also readable for the developer72, who can control if the input was generated fully and

maintain it.

The most significant decision in the intermediary application was architectural. Possibili-

ties for implementation of the intermediary tried and evaluated during the thesis project

were: Proxy Servlet73; Interceptor and Filter patterns, plugged in to SOAP engine or

together with separate Servlet; Spring tools for Web services – Spring service and client

in one application; Membrane API. Finally, Membrane API was chosen, as it enabled

building a reverse proxy with a custom interceptor in several lines of code as seen in

listing 3. Furthermore, this API provided additional support classes for SOAP74. The

reverse proxy was evaluated as the best solution over other choices, because it does not

require additional configuration outside it.

71See list in section 2.1.
72Can be opened as a regular text file.
73Possible implementations available from

• https://github.com/mitre/HTTP-Proxy-Servlet

• http://edwardstx.net/2010/06/http-proxy-servlet/

• http://noodle.tigris.org/

• https://sourceforge.net/projects/j2ep/

74For example message decoding with Message class getBodyAsStringDecoded() method, which helps
to avoid message wrong encoding.

https://github.com/mitre/HTTP-Proxy-Servlet
http://edwardstx.net/2010/06/http-proxy-servlet/
http://noodle.tigris.org/
https://sourceforge.net/projects/j2ep/

33

1 public static void main(String[] args) throws Exception {
2 loadConfiguration();
3
4 String hostname = confHostname;
5 String method = POST;
6 String path = confPath;
7 int listenPort = confListenPort;
8
9 ServiceProxyKey key = new ServiceProxyKey(hostname ,

method, path, listenPort);
10
11 String targetHost = confTargetHost;
12 int targetPort = confTargetPort;
13 ServiceProxy proxy = new ServiceProxy(key, targetHost ,

targetPort);
14
15 XRoadInterceptor interceptor = new XRoadInterceptor();
16 proxy.getInterceptors().add(interceptor);
17 HttpRouter router = new HttpRouter();
18 router.add(proxy);
19 router.init();
20 }

Listing 3: ProxyConfiguration class main method

Not everything worked out completely at the start of the Membrane project API usage.

Documentation for this Java API is scarce, because commonly the project is run as a

standalone application configured with XML, without custom classes. Initially, it was un-

clear if the whole Membrane project was needed and how to make its methods avail-

able from outside. One of the obstacles was that the documented version API’s artifact

was missing from the Maven Central Repository. Therefore it could not be included as

a regular Maven dependency to the project. Other possibilities were tried, e.g. including

Java Archive (JAR) files manually or trying to run a Web archive of the project, until it

was discovered that some newer versions were available for Maven. At the same time

possibilities of intermediary application deployment were evaluated and a regular Java

Application was chosen.

Choosing the way of working with X-Road messages while performing translation was

another decision milestone of the project. Generation of Java classes from WSDL, us-

ing automatic tools discussed previously75, as regularly when building Web services e.g.

with Spring, was perceived as a promising opportunity. The initial idea was to generate

classes and an object factory from old and new WSDLs. When translating, an operation
75See section 2.3.2.

34

(method) has to be chosen according to the current message. However, an issue with

such a design is that even if the operation name stays the same76 and helps to match old

and new operation classes, the class fields would not be corresponding whenever mes-

sage elements change. The problem arises when mapping one object values to another,

which requires implementation of special mappers, in the worst case for every transla-

tion. Finally, the JAXP DOM parser was preferred for work with SOAP messages, as

it provides a lot of flexibility for processing. Messages are not that large in X-Road to

become a performance issue.

The next problem faced was to evaluate if a message needs translation or not. The mes-

sage translation decision need was presented in figure 8. The first question is how to rec-

ognize if the encountered message is constructed according to the new or old version of

the protocol. Luckily, only the new version of the header contains tag <protocolVersion>

with value 4, which makes the decision straightforward. Theoretically, all the messages

of the old version need translation of the header; however only some need translation of

the body elements. In such a case there should be different approaches for translations,

as shown in transformation algorithms in section 4.1.3. One properties file has the names

of operations which need body tags translation. There is also an ignore list for messages

that should not be translated. The ignore list is included with consideration of the tran-

sition process. There can be a time when some of the service providers are still able to

consume only old protocol messages, and others already migrate. Then the ignore list

can be updated according to timely needs.

Handling of adding and deleting message elements is likewise problematic. If a new

message has the acquired fields, which are not compulsory, those may be skipped, on

condition that the field value cannot be generated or provided by the user. In case that a

new request has additional compulsory fields, there is a problem. A new field value should

be provided by the user and the program needs to signalize it, because in the opposite

case the generated request will fail. If the old message has fields no more needed, those

should be deleted. Whenever there are changes in the field names, the translator should

handle them.

Some translations may add complications. An example of such a situation is header trans-
76If operation name changed, additional matching logic need to be implemented.

35

lation discussed previously in this work in section 2. As can be seen by comparing listings

1 and 2, the simple type element was changed to a complex type. The difficulty is provid-

ing values of complex type for all compulsory children fields. The solution used in this work

is that a special values properties file should be composed77. For example, if a tag asutus

displayed in listing 4 should be transformed to a tag client with sub-tags xRoadInstance

, memberClass, memberCode as shown in listing 5, the value list configuration similar to

listing 6 would be employed. Entries with a structure old_value.new_name = new_value

are used in cases when the new value depends on the old one, and structure default.

new_name = new_value, when translated messages will share the new values78. This file

cannot be created fully automatically, only a template will be generated, as values are not

known from WSDL and can be different for many messages.

1 <xxx:asutus xsi:type="xsd:string">123456</xxx:asutus>
Listing 4: Example of transformation input element.

1 <xro:client iden:objectType="MEMBER">
2 <iden:xRoadInstance>EE</iden:xRoadInstance>
3 <iden:memberClass>BUSINESS</iden:memberClass>
4 <iden:memberCode>123456</iden:memberCode>
5 </xro:client>

Listing 5: Example of transformation expected output element.

1 default.client.objectType=MEMBER
2 default.client.xRoadInstance=EE
3 123456.client.memberClass=BUSINESS
4 123456.client.memberCode=123456

Listing 6: Example of transformation value list configuration.

Searching in properties file, if the same tag name should be translated for one operation,

and not for another may become a complication. That is the reason why the position of

the tag as the operation name or header is included in the property entry. For instance,

searching translation with values for the header is performed in two stages. First, trans-

lation is looked for by searching value of header.old_name in translation properties file; if

such a value is not found, the item of header will not require translation. In case that an

element requires translation, the values list will be examined, searching sequentially for

new_name, old_value.new_name, default.new_name if none of these are found, the value

of element stays the same; otherwise it gets the first found value. Body translations are

searched by operation_name.old_name, and if not found, they will not be translated.
77Structure of an entry in this file is old_value.new_name = new_value or default.new_name =

new_value.
78For example all messages from Estonia will share xRoadInstance tag with value EE.

36

The problem with SOAP message translation is that when a request is translated in one

way, the response should be translated in the opposite way. Particularly, the task in-

volves dealing with bidirectional translation. Firstly, an idea was to implement a powerful

parser, which would handle transformation in both directions. However, after analysing

the needed transformations, it was clear that converting the request and response being

similar do not follow the same algorithm routine79. Under those circumstances the factory

pattern and abstract parser were developed as specified in section 4.1.2.

The header bidirectional translation was solved by preserving the old header in the

Exchange object80, and reusing it in the translating response. Another assessed possibil-

ity was to add a header of request to HashMap with id. On response, search the header by

id, restore it and remove the found object from the HashMap. However, Exchange object

was preferred, because it enabled a simple property setting for each message exchange,

making searching unnecessary. For the body part, no better solution than adding both

ways translations to the properties file was found.

Reusing the header was inspired from the template parsing examples used in several

studies discussed previously [9; 10; 14]. Also the message cache [17] was evaluated as

a possibility to make transformations faster saving message responses. This means that

encountering the same request, the application is able to answer it without communicating

to the service provider from the previously saved data, similarly to the proxy cache solution

of Kungas et al [17, p.1614]. However, as the same X-Road requests rarely repeat, this

possibility will hardly add any processing speed. The producer-consumer pattern was

also examined as an opportunity for speed enhancement, but was considered unsuitable

for the Membrane API singleton interceptor bean.

Adding serialisation / deserialisation overhead to SOAP processing is clearly one of the

weaknesses of the project. This problem in software implementation originates from slow

XML parsing operations, as discussed in several studies [14; 16]. Limited resources for

carried out the project did not allow to take many measures for performance increasing.

One measure was to prefer a document structure copying over reading it from an XML

file. The original document was held in a map. Withal, if reading from a file is more costly

operation than copying the DOM structure in all cases, is unproven. Another issue with
79Translation algorithms are fully described in section 4.1.3.
80Membrane API com.predic8.membrane.core.exchange.Exchange class.

37

XML parsing is that the JAXP DOM builder is not thread-safe. Multi-threading issues

were solved with using the XML utilities component while DOM building81. Even if the

application adds extra time to message processing, this might be a less costly solution

than changing each application. Change of an existing information system application

requires resources for development and testing, as alteration in the SOAP engine can

indirectly influence other parts of the application.

During the work on this project some problems appeared more complicated than they ac-

tually were, because of my lack of experience. That is why some code produced was later

erased. For example, when it became obvious that namespaces could be handled auto-

matically with JAXP [36], like Node node = (Node)document.importNode(messageBody

, true);, the manual adding of elements namespaces was already written.

During this project I developed my skills and knowledge about handling XML and proper-

ties files, proxy configuration, interceptors and other project related fields. For example,

I learned that properties can be loaded using properties object or resource bundle. The

difference here is that when searching for property in a resource bundle exception will be

thrown if the property is not present, this does not happen if to look for such value using

properties object.

5.2 Accordance to requirements

A supporting application is developed in accordance to the functional requirement, as it

produces properties files, which can be used as an input for an intermediary application.

A limitation of the supporting application is incapability of producing values for new tags

which need to be provided by the user.

The functional requirements of the intermediary application are also satisfied82. Results

of accuracy testing showed that intermediary software received requests from the con-

figured application (R1), was able to recognize requests requiring translation (R2) and

transform request messages according to the changes specified (R3). The first test of in-
81Adapted from Apache Software Foundation https://svn.apache.org/repos/asf/shindig/branches/1.0.x/

java/common/src/main/java/org/apache/shindig/common/xml/XmlUtil.java
82Intermediary functional requirements, as defined in section 3.3, are referred in this paragraph by R with

requirement number.

https://svn.apache.org/repos/asf/shindig/branches/1.0.x/java/common/src/main/java/org/apache/shindig/common/xml/XmlUtil.java
https://svn.apache.org/repos/asf/shindig/branches/1.0.x/java/common/src/main/java/org/apache/shindig/common/xml/XmlUtil.java

38

formation system data showed that even when translation of message failed, the request

and response were still forwarded to the destination as in successful accuracy tests (R4

and R8). Accuracy test logs confirm that a response message was also received by the

intermediary (R5), a need for processing a response was judged as anticipated (R6) and

transformation was performed according to configurations in properties files (R7).

Non-functional requirements for the intermediary application were largely matched ac-

cording to the scope of this project. Performance tests showed a satisfactory speed of

message processing by intermediary software and an ability to process multiple requests

arriving simultaneously. It can be concluded that the intermediary application showed

satisfactory performance and met the performing requirements, taking into account the

previously mentioned limitations of local computer testing83.

The application set up on the server was not tested, being left out from the scope of

the project due to technical reasons described in section 3.5. But configuration of the

intermediary proved to be customizable, as it was adjustable for different tests: processing

data input from testing tools and from the information system. The indicated quality also

affirms application portability. To summarise, achievement of usability and configurability

requirements was not fully verified by test results.

Reliability requirements turned out to be met, as the software did not interrupt message

processing on translation fail, illustrated by information system data first test, and func-

tioned quite fast, as concluded from performance testing. Input data changeability, while

the testing tool and information system tests input data provided for intermediary was dif-

ferent, can indirectly prove that further changes in Web services can be addressed by the

special configuration of intermediary application. Extensibility of the application is verified

by its portability and meets the narrow requirement set in the methods section 3.2. The

intermediary application logged faults and processed data as seen from intermediary log

files present for each test84.

To conclude, the results show that the developed X-Road intermediary is able to recog-

nize and translate SOAP messages accurately. While processing simultaneous requests
83Limitations described in section 4.3.3.
84Files named log_intermediary.txt accessible from https://github.com/julia-sulina/b-project/tree/master/

test/intermediary.

https://github.com/julia-sulina/b-project/tree/master/test/intermediary
https://github.com/julia-sulina/b-project/tree/master/test/intermediary

39

performs satisfactorily fast, is capable of handling X-Road message data from information

system and can be configured to work with various applications. Therefore the developed

intermediary is a feasible solution concept for X-Road protocol switching, acknowledging

that additional testing on the server setup and with information system data should be

performed.

5.3 Improvements

The first test of the intermediary with information system data failed in some cases, and

therefore the intermediary application was fixed by including the method for unification

of SOAP main tags (envelope, header and body). The method implementation includes

string processing, which might not be the best solution and can be further improved. The

intermediary should be extensively tested and other possible faults not yet discovered be

fixed.

The developed intermediary enables configuration using properties files. However, with

the current software solution, to be able to reconfigure the application it must be restarted.

There could be a scheduled operation or some other dynamic way to update the list of

properties without the application restart.

One possibility to improve the intermediary performance, not currently implemented, is to

store the translated header in the cache. For this, the incoming header should be nor-

malized85 and stored together with its translation. When the same header is encountered

again, it will be just fetched from cache86 without performing translation manipulations.

This may be very efficient as headers repeat much more often in X-Road communication

than the messages body87.

When using a foreign API, the threat of unexpected bugs is possible. Both the inter-

mediary and supporting application included such APIs. However rewriting functionality

already available from open source does not guarantee bug amount reduction and is

questionable improvement, decreasing only application dependence. As the intermedi-
85Normalization increases significantly the probability that SOAP messages with the same content have

the same textual representation as well [17, p.1615].
86Similar solution to Kungas et al [17, p.1615] cache could be used, however message still would be

forwarded to data provider.
87Header in X-Road message shows service requester and provider.

40

ary has many architectural alternatives, improvement could be done by determining the

best available of them by testing all the different APIs.

A limitation of the supporting application is that it produces a quite strictly predefined

structure of the properties files, which makes it narrowly usable. An improvement could

be to develop a more flexible comparator for WSDL files.

41

6 Conclusions

Thesis project originated from an interest in the Web service migrating process while

changing the protocol of Estonian X-Road communication. This change involves the need

for adjusting production and consumption of service messages by current X-Road mem-

bers. The project was grounded on the concept of the SOAP intermediary and aimed

to test possibilities of addressing service change outside of the members’ software. The

goal was to create an application, which could translate X-Road messages into a new

format without altering the code of existing information systems.

The work resulted in developing intermediary software for converting SOAP messages

and an auxiliary tool generating input data for transformation. The results show that the

implemented software is able to recognize the need for transformation and to convert mes-

sages accurately. It performs satisfactorily fast while processing simultaneous requests

and is capable of handling X-Road information system message data. Therefore the de-

veloped intermediary is a feasible solution for X-Road protocol switching. The application

proved to be usable with various configurations, which makes it suitable for addressing

not only current migration, but also further changes in messages. Acknowledging that its

additional testing on the server setup with the information system service provider should

be performed. Absence of such tests is a limitation of the project.

Weakness of the message converting by intermediary is adding extra time to SOAP data

exchange, even if transformation is performed quite fast. Nevertheless, the intermedi-

ary might be a less costly solution than changing each X-Road application. Alteration of

the existing information systems requires resources for development and testing, as a

change in the SOAP engine can indirectly influence other parts of the application. The

intermediary, on the contrary, once configured works with messages independently from

the X-Road member architecture and platform.

Another possible solution for avoiding problems ofWeb service alteration this thesis aimed

to address is to develop systems with a highly adaptive dynamic SOAP engine of auto-

mated service changes discovery. Challenges in such a design are implementing un-

42

changeable interface for interacting with other layers of software and engine reliability,

so that any alteration in SOAP service would not influence functioning of the remaining

application. Practical implementation of such an engine interface might be a question for

further study.

43

References

1 Oracle. Servlet (Java EE 6). docs.oracle.com; 2011. Available from:
https://docs.oracle.com/javaee/6/api/javax/servlet/Servlet.html [cited
2016-03-20].

2 W3C. Web Services Architecture. W3C Working Group Note; 2004. Available
from: https://www.w3.org/TR/ws-arch/ [cited 2016-02-27].

3 Undusk M. Mis on X-tee? Riigi Infosüsteemide Arenduskeskus; 2008. (in
Estonian). Available from:
https://www.ria.ee/public/RIHA/RIHA_teabep_ev_14.11.08/riha-xtee-
jaotusmaterjal.pdf [cited 2016-02-15].

4 W3C. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures.
www.w3.org; 2012. Available from: https://www.w3.org/TR/xmlschema11-1/
[cited 2016-03-15].

5 Sheng QZ, Qiao X, Vasilakos AV, Szabo C, Bourne S, Xu X. Web services
composition: A decade’s overview. Information Sciences. 2014
oct;280:218–238. Available from:
http://www.sciencedirect.com/science/article/pii/S0020025514005428.

6 Yuxuan M, Ralph D. Research on the runtime behavior of composite SOAP
web services under transient loads. Proceedings - International Conference on
Computer Science and Software Engineering, CSSE 2008. 2008;3:499–504.

7 Microsoft. Chapter 1: Service Oriented Architecture (SOA).
msdn.microsoft.com; 2016. Available from:
https://msdn.microsoft.com/en-us/library/bb833022.aspx.

8 Snell J, Tidwell D, Kulchenko P. Programming Web Services with SOAP.
OŔeilly Media; 2002.

9 Abu-Ghazaleh N, Lewis MJ. Differential deserialization for optimized SOAP
performance. In: Proceedings of the ACM/IEEE 2005 Supercomputing
Conference, SC’05; 2005. p. 55–64.

10 Tekli JM, Damiani E, Chbeir R, Gianini G. SOAP Processing Performance and
Enhancement. IEEE Transactions on Services Computing. 2012
jan;5(3):387–403. Available from:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5719596.

11 Zimmermann O, Tomlinson M, Peuser S. Perspectives on Web Services:
Applying SOAP, WSDL and UDDI to Real-World Projects. Springer Science &
Business Media; 2005.

12 Kreger H. Web Services Conceptual Architecture (WSCA 1.0); 2001. Available
from: http://www.cs.uoi.gr/~pvassil/downloads/WebServices/Tutorials/
WebServicesConceptualArchitecture.pdf.

https://docs.oracle.com/javaee/6/api/javax/servlet/Servlet.html
https://www.w3.org/TR/ws-arch/
https://www.ria.ee/public/RIHA/RIHA_teabep_ev_14.11.08/riha-xtee-jaotusmaterjal.pdf
https://www.ria.ee/public/RIHA/RIHA_teabep_ev_14.11.08/riha-xtee-jaotusmaterjal.pdf
https://www.w3.org/TR/xmlschema11-1/
http://www.sciencedirect.com/science/article/pii/S0020025514005428
https://msdn.microsoft.com/en-us/library/bb833022.aspx
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5719596
http://www.cs.uoi.gr/~pvassil/downloads/WebServices/Tutorials/WebServicesConceptualArchitecture.pdf
http://www.cs.uoi.gr/~pvassil/downloads/WebServices/Tutorials/WebServicesConceptualArchitecture.pdf

44

13 Phan KA, Tari Z, Bertok P. Similarity-Based SOAP Multicast Protocol to
Reduce Bandwith and Latency in Web Services. IEEE Transactions on
Services Computing. 2008 apr;1(2):88–103. Available from:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4689465.

14 Li L, Niu C, Chen N, Wei J, Huang T. High Performance Approach for Server
Side SOAP Processing. International Journal of Web Services Research.
2009;6(2):66–93.

15 Tekli J, Damiani E, Chbeir R. XML-Based Multicasting to Improve Web Service
Scalability. International Journal of Web Services Research. 2012;9(1):1.

16 Abbas AM, Bakar AA, Ahmad MZ. Fast dynamic clustering SOAP messages
based compression and aggregation model for enhanced performance of Web
services. Journal of Network and Computer Applications. 2014 may;41:80–88.
Available from:
http://www.sciencedirect.com/science/article/pii/S1084804513002154.

17 Küngas P, Dumas M. Configurable SOAP Proxy Cache for Data Provisioning
Web Services. In: Conference SAC’11 The 2011 ACM Symposium on Applied
Computing TaiChung, Taiwan — March 21 - 24, 2011; 2011. p. 1614–1621.

18 Veldre A. Introduction to X-Road. Estonian Information System Authority;
2016. Available from: https://www.ria.ee/en/introduction-to-xroad-part1.html
[cited 2016-02-18].

19 Republic of Estonia Information System Authority. Statistics about the X-Road.
Republic of Estonia Information System Authority; 2016. Available from:
http://x-road.eu/xtee-stats/ [cited 2016-02-18].

20 Estonian Informatics Centre. Riigi infosüsteemi illustreeriv skeem 2011. Riigi
Infosüsteemide Arenduskeskus; 2011. Available from:
https://www.ria.ee/public/publikatsioonid/x-road.jpg [cited 2016-02-15].

21 Peterkop T. X-tee versiooni 6 juurutamise ajakava. Käskkiri. Riigi Infosüsteemi
Amet; 2015. (in Estonian).

22 Majandus- ja Kommunikatsiooniministeerium Riigi infosüsteemide osakond.
Riigi IT arhitektuur; 2007. (in Estonian).

23 Annuk S, Nõgisto I, Kromonov I, Freudenthal M. X-Road: Message Protocol
v4.0. Technical Specification.; 2015. Available from:
https://www.ria.ee/public/x_tee/pr-mess_x-
road_message_protocol_v4.0_4.0.8_Y-743-11.pdf [cited 2016-02-08].

24 Republic of Estonia Information System Authority. Lühiülevaade peamistest
erinevustest X-tee versioonide 5 ja 6 vahel; 2015. (in Estonian). Available
from: https://www.ria.ee/public/x_tee/X-tee_v5_ja_v6_erisused.pdf [cited
2016-03-01].

25 Zdun U, Voelter M, Kircher M. Design and implementation of an asynchronous
invocation framework for web services. International Journal of Web Services
Research. 2004;1(3):42–62.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4689465
http://www.sciencedirect.com/science/article/pii/S1084804513002154
https://www.ria.ee/en/introduction-to-xroad-part1.html
http://x-road.eu/xtee-stats/
https://www.ria.ee/public/publikatsioonid/x-road.jpg
https://www.ria.ee/public/x_tee/pr-mess_x-road_message_protocol_v4.0_4.0.8_Y-743-11.pdf
https://www.ria.ee/public/x_tee/pr-mess_x-road_message_protocol_v4.0_4.0.8_Y-743-11.pdf
https://www.ria.ee/public/x_tee/X-tee_v5_ja_v6_erisused.pdf

45

26 RIHA - Riigi infosüsteemi haldussüsteem, Teenused. RIHA;. (in Estonian).
Available from: https://riha.eesti.ee/riha/main [cited 2016-03-09].

27 Sulina J. Log Analysis of Information System. Document prepared at Tieto
Estonia on the request of information system owner, used on the permission of
the sides.; 2015. (in Estonian).

28 Vabariigi Valitsus. Infosüsteemide andmevahetuskiht. Riigi Teataja; 2008. (in
Estonian). Available from:
https://www.riigiteataja.ee/akt/119012011015?leiaKehtiv [cited 2016-03-05].

29 Jeckle M. Seamlessly Securing Web Services by a Signing Proxy.
International Journal of Web Services Research. 2004;1(3):88–100.

30 McLaughlin B. Java & XML. O’Reilly Media, Inc.; 2001.

31 Vohra A. Pro XML Development with Java Technology. Apress; 2007.

32 Ashdown L, Greenberg J, Melnick J. Oracle XML Developer’s Kit.
Programmer’s Guide. XML Parsing for Java. Oracle; 2014. Available from:
https://docs.oracle.com/cd/B28359_01/appdev.111/b28394/adx_j_parser.htm#
CCHCCEHA [cited 2016-02-27].

33 SAX. Quickstart. www.saxproject.org; n.d. Available from:
http://www.saxproject.org/quickstart.html [cited 2016-03-07].

34 Oracle. Why StAX? Java Documentation. docs.oracle.com; 2015. Available
from: https://docs.oracle.com/javase/tutorial/jaxp/stax/why.html [cited
2016-03-07].

35 Kalin M. Java Web Services: Up and Running. O’Reilly Media, Inc.; 2013.

36 Sun Microsystems Inc. Java API for XML Processing (JAXP) Tutorial.
www.oracle.com; n.d. Available from:
http://www.oracle.com/technetwork/java/intro-140052.html [cited 2016-03-08].

37 Ort E, Mehta B. Java Architecture for XML Binding (JAXB). www.oracle.com;
2003. Available from:
http://www.oracle.com/technetwork/articles/javase/index-140168.html#binsch
[cited 2016-03-05].

38 Soldano A, Schlebusch N. JAX-WS User Guide - JBoss Web Services -
Project Documentation Editor. docs.jboss.org; 2014. Available from:
https://docs.jboss.org/author/display/JBWS/JAX-WS+User+Guide [cited
2016-03-05].

39 The Apache Software Foundation. Apache Axis2 – Code Generator Wizard
Guide for Eclipse Plug-in. axis.apache.org; 2016. Available from:
https://axis.apache.org/axis2/java/core/tools/eclipse/wsdl2java-plugin.html
[cited 2016-03-05].

40 The Apache Software Foundation. Apache CXF - WSDL to Java.
cxf.apache.org; n.d. Available from:
http://cxf.apache.org/docs/wsdl-to-java.html [cited 2016-03-05].

https://riha.eesti.ee/riha/main
https://www.riigiteataja.ee/akt/119012011015?leiaKehtiv
https://docs.oracle.com/cd/B28359_01/appdev.111/b28394/adx_j_parser.htm#CCHCCEHA
https://docs.oracle.com/cd/B28359_01/appdev.111/b28394/adx_j_parser.htm#CCHCCEHA
http://www.saxproject.org/quickstart.html
https://docs.oracle.com/javase/tutorial/jaxp/stax/why.html
http://www.oracle.com/technetwork/java/intro-140052.html
http://www.oracle.com/technetwork/articles/javase/index-140168.html#binsch
https://docs.jboss.org/author/display/JBWS/JAX-WS+User+Guide
https://axis.apache.org/axis2/java/core/tools/eclipse/wsdl2java-plugin.html
http://cxf.apache.org/docs/wsdl-to-java.html

46

41 Lin CC, Fang CL, Liang D. A portable interceptor mechanism for SOAP
frameworks. Computer Standards & Interfaces. 2013 nov;36(1):209–218.
Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0920548913000226.

42 Juneau J. Introducing Java EE 7: A Look at What’s New. Apress; 2013.

43 Yener M, Theedom A. Professional Java EE Design Patterns. Wiley; 2014.

44 Graham BS, Simeonov S, Boubez T, Davis D, Daniels G, Nakamura Y, et al.
Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and
UDDI. Pearson Education; 2002.

45 W3C. Relaying SOAP Messages. www.w3.org;. Available from:
http://www.w3.org/2000/xp/Group/2/02/27-SOAPIntermediaries.html [cited
2016-01-06].

46 Nagappan R, Skoczylas R, Sriganesh RP. Developing Java Web Services:
Architecting and Developing Secure Web Services Using Java. John Wiley &
Sons; 2003. Available from:
https://books.google.com/books?id=-41_zzAk4hgC&pgis=1.

47 predic8 GmbH. Membrane Service Proxy Documentation.
www.membrane-soa.org; 2015. Available from:
http://www.membrane-soa.org/service-proxy-doc/4.1/ [cited 2016-03-09].

48 The Apache Software Foundation. Apache Module mod_proxy - Apache HTTP
Server Version 2.4. httpd.apache.org; 2016. Available from:
https://httpd.apache.org/docs/current/mod/mod_proxy.html [cited 2016-03-09].

49 Bjørnson FO, Dingsøyr T. Knowledge management in software engineering: A
systematic review of studied concepts, findings and research methods used.
Information and Software Technology. 2008;50(11):1055–1068.

50 Bode S, Riebisch M. Tracing the Implementation of Non-Functional
Requirements. In: Non-Functional Properties in Service Oriented Architecture:
Requirements, Models and Methods. IGI Global; 2011. p. 424. Available from:
https://books.google.com/books?id=BD_oa5Ki4bgC&pgis=1.

51 IEEE Std. IEEE Recommended Practice for Software Requirements
Specifications. IEEE; 1998. Available from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=720574.

52 The Apache Software Foundation. Maven – Welcome to Apache Maven.
maven.apache.org; 2016. Available from: https://maven.apache.org/ [cited
2016-03-20].

53 JUnit. JUnit - About. junit.org; 2016. Available from: http://junit.org/ [cited
2016-03-20].

54 predic8 GmbH. Membrane SOA Model Documentation.
www.membrane-soa.org; n.d. Available from:
http://www.membrane-soa.org/soa-model/api-doc/ [cited 2016-03-09].

http://linkinghub.elsevier.com/retrieve/pii/S0920548913000226
http://www.w3.org/2000/xp/Group/2/02/27-SOAPIntermediaries.html
https://books.google.com/books?id=-41_zzAk4hgC&pgis=1
http://www.membrane-soa.org/service-proxy-doc/4.1/
https://httpd.apache.org/docs/current/mod/mod_proxy.html
https://books.google.com/books?id=BD_oa5Ki4bgC&pgis=1
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=720574
https://maven.apache.org/
http://junit.org/
http://www.membrane-soa.org/soa-model/api-doc/

47

55 predic8 GmbH. Open Source Reverse Proxy for SOAP & REST - Membrane.
http://www.membrane-soa.org/; 2015. Available from:
http://www.membrane-soa.org/service-proxy/ [cited 2016-03-15].

56 Bayer T, Kessler F. Membrane Service Proxy wiki. github.com; 2014. Available
from: https://github.com/membrane/service-proxy/wiki [cited 2016-02-26].

57 predic8 GmbH. Membrane SOA Router - Rule Matching.
www.membrane-soa.org; 2015. Available from:
http://www.membrane-soa.org/service-proxy-doc/4.1/rule-matching.htm [cited
2016-02-26].

58 The Grinder. Script Gallery. http://grinder.sourceforge.net/; n.d. Available from:
http://grinder.sourceforge.net/g3/script-gallery.html [cited 2016-03-18].

http://www.membrane-soa.org/service-proxy/
https://github.com/membrane/service-proxy/wiki
http://www.membrane-soa.org/service-proxy-doc/4.1/rule-matching.htm
http://grinder.sourceforge.net/g3/script-gallery.html

Appendix 1
1 (2)

1 Intermediary configuration

1 #proxy configuration
2 #compulsory configuration field, sets hostname proxy listens

to, default value "*" - all
3 hostname=
4
5 #compulsory configuration field, sets path proxy listens to,

default value ".*" - all
6 path=
7
8 #compulsory configuration field, sets port number proxy

listens to, no default value
9 listenport=
10
11 #compulsory configuration field, sets proxy target hostname ,

no default value
12 targethost=
13
14 #compulsory configuration field, sets proxy target port

number, no default value
15 targetport=
16
17 #translations configuration
18 #compulsory configuration field, sets a tag name with

namespace of the message, which is present only in
messages not needing translations

19 newTagNameWithNameSpace = xro:protocolVersion
20
21 #optional configuration field, sets name of a property file

containing list of messages which need body translation
22 operationPropertiesFileName =
23
24 #optional configuration field, sets name of a property file

containing list of messages which never need to be
translated

25 ignorelistPropertiesFileName =
26
27 #compulsory configuration field, sets name of a property

file containing list of tag translations
28 translationPropertiesFileName =
29
30 #compulsory configuration field, sets name of a property

file containing new values for translated tags
31 valuesPropertiesFileName =
32

Appendix 1
2 (2)

33 #compulsory configuration field, sets path to properties
files

34 propertiesFilePath =
35
36 #compulsory configuration field, sets path to xml files
37 xmlFilePath =

Listing 7: Intermediary configuratiuon, xroadProxy.properties file.

Listing 7 shows intermediary configuration properties available from source code88. In

case that compulsory properties are not set, application will throw configuration exception

or set a default value for property. Configuration include proxy settings, such as host-

names, path, ports and translation settings, such as properties files’ names. Listing 2

shows XML file89 used as template for header in intermediary configuration.

88https://github.com/julia-sulina/b-project/blob/master/intermediary/src/main/resources/xroadProxy.
properties

89Available from source code https://github.com/julia-sulina/b-project/blob/master/intermediary/src/main/
resources/header.xml

https://github.com/julia-sulina/b-project/blob/master/intermediary/src/main/resources/xroadProxy.properties
https://github.com/julia-sulina/b-project/blob/master/intermediary/src/main/resources/xroadProxy.properties
https://github.com/julia-sulina/b-project/blob/master/intermediary/src/main/resources/header.xml
https://github.com/julia-sulina/b-project/blob/master/intermediary/src/main/resources/header.xml

Appendix 2
1 (1)

2 Supporting application configuration

1 # old and new version of WSDL should have same name
2 # compulsory configuration field, folder containing old

version WSDL files
3 wsdl.old.folder=
4 # compulsory configuration field, folder containing new

version WSDL files
5 wsdl.new.folder=
6 # optional configuration field, folder containing for

generated files, default value project root
7 wsdl.properties.output.folder=
8 # optional configuration field, file containing known

translations
9 wsdl.known.name.differences.properties.file=

Listing 8: Supporting application configuratiuon, wsdl.properties file.

Supporting application configuration90 displayed in listing 8 requires providing folder paths

to WSDLs, where WSDL file names should match to be paired. Such configuration en-

ables process multiple input file pairs at once.

90Available from https://github.com/julia-sulina/b-project/blob/master/wsdlproperies/src/main/resources/
wsdl.properties

https://github.com/julia-sulina/b-project/blob/master/wsdlproperies/src/main/resources/wsdl.properties
https://github.com/julia-sulina/b-project/blob/master/wsdlproperies/src/main/resources/wsdl.properties

Appendix 3
1 (1)

3 Test environment

Testing of the applications was performed on local computer without using network, com-

puter system properties are indicated in table 4. Development environment, in which

tried application was run, is described on page 18. Testing tools are specified in the test

arrangements section on page 19.
Table 4: System properties

Component Description

Operating System Name Microsoft Windows 7 Enterprise
System Type 64-bit Operating System
Processor Intel(R) Core(TM) i5-3470 CPU @

3.20GHz, 3201 MHz, 4 Cores
Installed Physical Memory (RAM) 8.00 GB(7.89 GB usable)
Total Virtual Memory 15.8 GB
Hard Disk Drive (HDD) Size 465.27 GB
Solid-State Drive (SSD) Size 112.80 GB

Appendix 4
1 (2)

4 Intermediary test arrangements

SoapUI test

SoapUI tool projects are accessible from source code as XML files, which can be imported

to software for test reproduction91. Each of intermediary application tests required SOAP

message test data, which content varied according to the test purpose. Exact test mes-

sages used for performed tests are located in source code together with other test-specific

configurations92. Listing 9 displays example structure of the message used.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/

XMLSchema -instance" xmlns:xsd="http://www.w3.org/2001/
XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap
/envelope/" xmlns:xxx="http://***">

3 <soapenv:Header>
4 <xxx:id xsi:type="xsd:string">?</xxx:id>
5 <xxx:nimi xsi:type="xsd:string">?</xxx:nimi>
6 <xxx:isikukood xsi:type="xsd:string">?</xxx:isikukood>
7 <xxx:andmekogu xsi:type="xsd:string">?</xxx:andmekogu>
8 <xxx:asutus xsi:type="xsd:string">?</xxx:asutus>
9 </soapenv:Header>
10 <soapenv:Body>
11 <xxx:REQUEST_NAME soapenv:encodingStyle="http://

schemas.xmlsoap.org/soap/encoding/">
12 <keha xsi:type="xxx:REQUEST">
13 <!--You may enter the following 3 items in any

order-->
14 <isikukood xsi:type="xxx:IsikukoodType">?</

isikukood>
15 <algus_kuup xsi:type="xsd:date">?</algus_kuup>
16 <lopp_kuup xsi:type="xsd:date">?</lopp_kuup>
17 </keha>
18 </xxx:REQUEST_NAME>
19 </soapenv:Body>
20 </soapenv:Envelope>

Listing 9: Intermediary test message example.

91https://github.com/julia-sulina/b-project/tree/master/test/intermediary/soapui_test
92https://github.com/julia-sulina/b-project/tree/master/test/intermediary

https://github.com/julia-sulina/b-project/tree/master/test/intermediary/soapui_test
https://github.com/julia-sulina/b-project/tree/master/test/intermediary

Appendix 4
2 (2)

Grinder test

Grinder tool detail configurations are downloadable from source code93, example script

run for testing is presented in listing 10 and configuration file in listing 11.

1 from net.grinder.script.Grinder import grinder
2 from net.grinder.script import Test
3 from net.grinder.plugin.http import HTTPRequest
4
5 test1 = Test(1, "Request resource")
6 request1 = HTTPRequest()
7
8 test1.record(request1)
9
10 class TestRunner:
11 def __call__(self):
12 msgStr = ''
13
14 # read the SOAP message from the XML template file
15 msg = open("message.xml","r")
16 msgStr = msg.read()
17 msg.close()
18 result = request1.POST("http://localhost:4000/", msgStr)
19
20 # result is a HTTPClient.HTTPResult. We get the

message body
21 # using the getText() method.
22 writeToFile(result.text)
23
24 # Utility method that writes the given string to a uniquely

named file.
25 def writeToFile(text):
26 filename = "%s-page-%d.xml" % (grinder.processName ,

grinder.runNumber)
27
28 file = open(filename , "w")
29 print >> file, text
30 file.close()

Listing 10: Intermediary test script. Adapted from Gringer examples [58].
1 grinder.processes=10
2 grinder.script=script-test1.py
3 grinder.threads=10
4 grinder.runs=1
5 grinder.logDirectory=logs

Listing 11: Grinder tool configuration (grinder.properties file) to run a test of 100
requests.

93https://github.com/julia-sulina/b-project/tree/master/test/intermediary/grinder_test

https://github.com/julia-sulina/b-project/tree/master/test/intermediary/grinder_test

	Introduction
	Theoretical background
	soap web service
	x-road web service
	soap message processing
	xml parsing methods
	soap message transformation in Java

	soap interceptor and intermediary

	Methods and materials
	Context
	Methods and project workflow
	Software requirements
	Functional requirements
	Nonfunctional requirements

	Development environment
	Test arrangements

	Results
	Description of soap intermediary
	Proxy setup component
	Translation handling component
	Translation algorithms

	Description of the supporting application
	Test results of soap intermediary
	Accuracy testing
	Performance testing
	Information system data testing

	Test results of the supporting application

	Discussion
	Technical decisions
	Accordance to requirements
	Improvements

	Conclusions
	References
	Appendices
	Intermediary configuration
	Supporting application configuration
	Test environment
	Intermediary test arrangements

