

Heikki Niemelä

ROBOT CONTROL WITH RASPBERRY PI

ROBOT CONTROL WITH RASPBERRY PI

 Heikki Niemelä
 Bachelor’s thesis
 Spring 2016
 Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Information Technology

Author: Heikki Niemelä
Title of the bachelor’s thesis: Robot Control with Raspberry Pi
Supervisor: Timo Vainio
Term and year of completion: Spring 2016 Number of pages: 31

The objective of this bachelor’s thesis was to test if it would be possible to cre-
ate a robot control system that controls each robot individually. The hardware
used in testing was Raspberry Pi, another aim for this thesis was to find indus-
trial hardware which could replace Raspberry Pi in the actual application. The
used PLC program was CoDeSys since a cheap license for Raspberry Pi was
recently released. This kind of solution could make developing robots easier
and would greatly assist when many robots would be combined.

The test platform was built using Ginolis master and motor cards. These cards
were connected to Raspberry. With two motor cards a test conveyer and a sin-
gle EC flat motor was controlled. When this physical built was tested also virtual
axes were added to the software. In this way it was found out the maximum
number of motors that Raspberry Pi could control. Also, a hardware research
for replacing Raspberry Pi was done. This research was completed by search-
ing products from the Internet and by negotiating with SKS Group.

The research pointed out that Raspberry Pi works as a robot controlling PC. It
was able to control 20 motors at the same time with a reasonable jitter. As for
the research for hardware, there was available industrial hardware with similar
capabilities to Raspberry Pi. Unfortunately, the price of all available solutions
were over the budget of this thesis.

Keywords: Robotics, Automation, Raspberry Pi, PLC, Distributed control

 4

PREFACE

The work was commissioned by Ginolis Ltd. The company provided a working

environment and all the boards used in thesis. The work took place in the pro-

duction facility of Ginolis.

From the company side the supervisor of the thesis was Jarmo Paloviita, Man-

ager of the robot applications. He provided a great assistance with understand-

ing current codes and solutions.

A special thanks has been rightfully gained by all the coworkers in Ginolis Ltd.

This thesis was made possible by them and their explanations and teachings of

their products and equipment.

Timo Vainio assisted as a tutoring teacher.

Oulu, 12.4.2015
Heikki Niemelä

 5

CONTENTS

ABSTRACT 3

PREFACE 4

CONTENTS 5

VOCABULARY 6

1 INTRODUCTION 8

2 DEFINATION OF USED THCHNOLOGY 10

2.1 Raspberry Pi 10

2.2 Programmable Logic Controller (PLC) 11

2.2.1 EtherCat 13

2.2.2 CoDeSys 15

2.3 Ginolis Master board 17

2.4 Conveyer 17

3 IMPLEMENTATION 19

3.1 Physical platform 19

3.2 Programming 19

3.2.1 Motor and master card 20

3.2.2 Starting motor with CoDeSys 20

3.2.3 Test program 23

4 TESTING THE IMPLEMENTATION 26

4.1 Test results 26

4.2 Research for alternative hardware 28

5 CHALLENGES 30

5.1 Raspberry Pi 30

5.2 Programming 30

5.2.1 Motor and master card 30

5.2.2 CodeSys code 31

6 CONCLUSION 32

REFERENCES 34

 6

VOCABULARY

AND Logic gate that gives a TRUE output only if it gets two

TRUE inputs.

Array Programming term for space where multiple variables

are stored.

Topology A way of building a network.

Interface Graphical part of program for a user to be seen.

Variable A slot that a program uses to save and read data from.

RJ-45 Commonly understood as a physical layer of Ethernet.

Cycle time Time between starting of each loop.

Microcontroller Small component with calculation capabilities.

Case structure Programming structure which uses a certain part of

 program according to a changing number.

Bit Term used for data that is one or zero.

Operational state PLC devices use different states to indicate what is

happening in a device. This state means that a device

is ready to be used.

Library In information technology there is a group of code that

can be easily called.

Boolean Variable that contains values TRUE or FALSE.

DWord Variable that contains 32-bits which are divided into

four groups.

Else if Program structure that runs a certain part of a program

if a certain condition is fulfilled.

 7

Jitter Difference between the wanted time and the actual

time.

Oscilloscope Device used to measure signals.

Ethernet The most common networking standard used in local

area networking.

C++ Programming language.

TCP/IP Common networking protocol widely used in the Inter-

net browsing.

Skript Program that is executed in another program.

 8

1 INTRODUCTION

Ginolis Ltd. Is a company that offers automated solutions to the production of di-

agnostics equipment. The strength of Ginolis automated solutions lay in high

precision and modularity (1).

The object of this thesis was to test if the current robot control would be possi-

ble to replace with a CoDeSys solution. If the current TwinCat solution were

pointed out to be replaceable, the CoDeSys solution would be tested with the

application. The purpose of this testing was to create a system that offers a con-

trol for each robot individually instead of a single control PC for each production

line.

A word robotic means mechanical devices that are programmed to do simple

tasks. Nowdays robots are met even in households doing simple tasks such as

vacuuming and lawn mowing. While household robots are rather new, sight ro-

bots have been doing simple tasks for decades in the field of automated pro-

ductions. As told earlier these tasks are simple, such as a screw fixing or lifting

objects. In these kinds of tasks robots are ideal since they do not get tired or

frustrated while repeating simple but necessary tasks. Robots also have many

other advantages compared to humans. They have a superior accuracy, speed

and strength. These attributes give a possibility to use robots in huge amounts

of tasks. And robots are constantly being developed more. So the amount of

tasks that they can complete grows constantly larger.

If this thesis would point out that this concept works, the products of the com-

pany would gain an even greater modularity since each module would work with

or without another module.

The challenges of this thesis lay in a real time function of the Raspberry Pi. An-

other challenge was an application which did not exist at the point when the pur-

pose of the thesis was decided.

 9

 10

2 DEFINATION OF USED THCHNOLOGY

In this section used technologies and equipment are introduced. In order to

build a working test platform, it was necessary to get familiar with these technol-

ogies.

2.1 Raspberry Pi

Raspberry Pi is a single board PC, which is usually used for educational pur-

poses. Usually Raspberry Pi has a Linux based operation system. Overall

Raspberry is claimed to do any task that a usual desktop PC is capable of doing

(2.)

Raspberry has five different models and all available models are comparedwith

each other in table below (Table 1). On the compartment a notable model is

Raspberry Pi Zero, which is physically half the size of others. And it meant for

projects that need to save space.

TABLE 1. Compartment of different Raspberry pi models (3).

Model CPU Wireless Ethernet Bluetoot Ram
GPIO
pins

Camera interface

Raspberry Pi
3 Model B

1.2GHz 64-bit quad-core
ARMv8

Yes 1 Slot Yes 1 GB 40 Yes

Raspberry Pi
2 Model B

900MHz quad-core ARM
Cortex-A7 No 1 Slot No 1 GB 40 Yes

Raspberry Pi
1 Model B+ 700 MHz 7ARM116JZF-S No 1 Slot No 512MB 40 Yes

Raspberry Pi
1 Model A+ 701 MHz 7ARM116JZF-S No No No 256MB 40 Yes

Raspberry Pi
Zero 1Ghz, Single-core No No No 512MB HAT 40 No

Raspberry Pi is not meant for industrial purposes, since usually an industrial PC

is designed to cooperate in much harsher conditions and has a higher tolerance

towards dirt, heat and cold. In this particular case Raspberry Pi was used in the

test case scenario and it was never meant to be used in the actual production.

 11

This platform was chosen to be a test platform because of its cheap price and

because CoDeSys had recently released a very cheap license for Raspberry Pi.

The used version was a Raspberry Pi 2 model B. This version was chosen be-

cause at the beginning of the project its processor was the most powerful. Alt-

hough Raspberry Pi 3 model B has a better processor, it was released after the

testing in this thesis was started.

 The used Raspberry version has a 900Mhz quad core ARM Cortex-A7 proces-

sor and 1 GB RAM. It also has 4 USB ports, one Ethernet port and a micro SD

card slot (4). Naturally, the model B has all the same other connections as the

previous versions have but they were not needed or used during this thesis.

2.2 Programmable Logic Controller (PLC)

PLC is a computer control system, which constantly measures input devices

and makes decisions for output devises according to the written program (5.)

PLC is a widely used system in terms of automated production.

The basic idea of PLC is that all the inputs and outputs are connected to the

central processing unit. At the beginning the system measures input values.

Then, the system runs a customized program made for that particular case. Af-

ter that the system manages the output according to the program and results

gained from the inputs. At the last state the program does housekeeping tasks

such as communicating with devices and diagnosing hardware.

PLC programming can contain five different languages. The programming lan-

guages are a structure text (ST), a ladder diagram (LD), a function block dia-

gram (FBD), an instruction list (IL) and a sequential function chart (SFC). These

languages can roughly be divided into two groups, a written language and a

graphical language. The structure text and instruction list are written langages.

The ladder diagram, function block and sequential function charts are graphical

languages.

 12

During this thesis only the structure text, ladder diagram and function block dia-

gram were used. The ladder and function block diagrams were used at the be-

ginning of this thesis while testing the inputs and outputs of implementation.

These codes had no effect on the result of this thesis. However, the structure

text was more widely used and all the used programs were written using the

structure text.

The ladder diagram is usually used in simple cases as shown in the example

(figure 1). This example turns a digital output to be true if digital inputs 2 and 3

are true. It is also required that the AND function is enabled with the digital input

1. timer function is also used in the example. This turns the digital output 2 to be

true after one second when the digital input 2 is turned true.

FIGURE 1. Example of a ladder diagram

The function block diagram is usually used to create different kinds of functions

that are used in the whole PLC application. In the shown example (figure 2) the

function is created. This function detects a rising edge from the digital input 1

and sets the variable 1 to be true after one second from the detection of the ris-

ing edge.

 13

FIGURE 2. Example of a function block diagram

The most important language in this thesis was the structured text. It is the most

used language because compared to other languages it allows more complex

programs to be created. As shown in the example (figure 3), the function is ex-

actly the same as in the ladder diagram example but the structure text allows

output data to be stored in an array for a later use.

FIGURE 3. Example of a structure text

2.2.1 EtherCat

A company called Beckhoff started a project to develop EtherCat in 2004. Thus,

Ethercat Technology Group was created. This croup is separated from Beckhoff

but it does a really close cooperation with Beckhoff. EtherCat Technology

Group has all the rights to the EtherCat.

EtherCat is a network protocol, which aims for a fast rate messaging. EtherCat

could be defined to be flexible since it gives a possibility to connect multiple de-

 14

vices to the network with a superb topology. Possible topologies are a string to-

pology and a ring topology. The strength of these two EtherCat topologies lays

in their self-establishing and flexibility.

EtherCat devices are connected to each other through RJ-45 ports. With two

RJ-45 ports in each device devices can be connected to a string (figure 4). And

messages are conveyed from device to another.

FIGURE 4 EtherCat string structure

Devices will initialize themselves when the system is started. A somehow

unique feature in EtherCat is that when last the device does not detect the next

device it will automatically terminates the network. The last device will also send

messages back to the master through the same RJ-45 post as it received mes-

sages.

EtherCat also provides a possibility to the ring topology (figure 5). In the ring

structure messages are always relayed forward until message reaches a pro-

cessing unit.

 15

FIGURE 5. EtherCat ring structure

The strength of the ring structure lays in its fault tolerance. If a cable is broken

or one of slave Ethernet ports are multifunctioning the processing unit will detect

the problem and it will send messages to the slaves. In these messages there is

information which creates two separate string structures and system itself can

continue operating (6).

2.2.2 CoDeSys

CoDeSys is a software platform, which is targeting to sell software to the indus-

trial automation companies and projects. This platform uses the PLC program-

ming language and it offers several useful functionalities. The most important

functionalities in this thesis are visualization and soft motion. Visualization is a

system that creates a user interface which is visible to the user through a

screen. And Soft motion is system that allows creation of axes. Without the soft

motion calculation to run motor smoothly should be written in the program.

This section concentrates on the usage of CoDeSys, so that it could be easier

to understand what was done during this thesis.

 16

FIGURE 6. Basic view of CoDeSys

On the left side of the figure (figure 6) circled in red is a device tree. On this de-

vice tree there are all the used devices, programs and the used functionalities of

CoDeSys. For instance, there is a soft motion general pool, under this pool all

the used axes are defined. Thus, on this device tree it is possible to freely add

or remove new devices, programs and functions. New devices can also be

added by a scan function. This function will automatically scan all the connected

devices and add them to the device tree.

On top of the figure circled in blue is a variable table. On this table all the used

variables on the current program are defined. These variables are possible to

link to any device but if two programs use the same variable, then variables

need to be defined in global variables the under device tree.

Finally, at the bottom of the figure circled in green is a program table. This sec-

tion contains the actual program selected from the device tree. On the view pro-

gram there is the structure text but it could be as well any other available pro-

gramming form. At the same time different kinds of programming languages can

be used. All the wanted languages can be defined to the device tree.

 17

2.3 Ginolis Master board

The ginolis master board is designed and produced by Ginolis Ltd. The master

board is used as an EtherCat master. During this thesis only few connections of

the master board was used. In reality the master board has ten digital outputs

and ten digital inputs. These outputs and inputs are usually used to control sen-

sors and to control simple devices like lights. In each input slot there is also

ground and power pins for each sensor and each output slot contains also a

ground pin. These pins exist to make wiring more simple for each product.

The master board also contains communication ports for different kinds of con-

trol cards. Each master board can give commands to ten different cards at the

same time.

2.4 Conveyer

In this thesis a conveyer was used as an application (figure 7). This conveyer

belt is out of usage and has already been replaced with a newer kind of technol-

ogy but it is well suitable for the test application.

FIGURE 7. Conveyer

 18

This conveyer contains the Maxon EC-max motor and two Omron E3T-FT13

sensors used for sensing motion on the conveyer. The bolt visible in the figure

is a random object, which was used during testing and its only purpose is to be

transported.

At the beginning of the thesis the implementation was planned to be completed

with a cutter application. Due to mechanical problems, this cutter applications

production was delayed and this conveyer was chosen to replace the actual ap-

plication.

 19

3 IMPLEMENTATION

This section contains a description about how the test platform was built. To

achieve a functional test platform, the following steps were needed. Firstly, a

physical platform was build. This build was really simple because it was built

just and only for test purposes. After the basic connection between devices was

built they needed the basic communication between each others. This commu-

nication was achieved with premade code for a PLC processing unit and with

premade code for the Ginolis master and motor cards.

3.1 Physical platform

Raspberry Pi that contained CoDeSys was used as a PLC processing unit.

Raspberry was connected to the Ginolis master card with an RJ-45 cable. Wir-

ing from the Ginolis master card to the Ginolis motor card was done as pointed

out in the Ginolis motor card datasheet. The motor was wired to the Ginolis mo-

tor card as pointed out in the datasheet of motor. This used motor was a Maxon

EC-max motor.

After the basic communication was achieved and the first test was made, an-

other Ginolis motor card was connected with the Ginolis master card. This mo-

tor card was used to run the conveyor, which was chosen to represent the appli-

cation. All the connections were done with an exact method as previously men-

tioned. The only difference was two sensors from the conveyor. These sensors

were connected to Ginolis master cards input slots. Current and ground were

wired from the same slot because the card makes this kind of connection possi-

ble.

3.2 Programming

The used languages in this thesis were PLC and C++. PLC code was made for

CoDeSys and C++ was used for both Ginolis cards. During this thesis the actual

program writing was, however, a minor part. The main efforts with codes lay in

understanding premade codes. Understanding was necessary since codes

were not directly possible to plot into the system and needed slight changes.

 20

Another reason for understanding was data sending. It was necessary to know

which kind of data had to be sent so that Ginolis cards would function properly.

3.2.1 Motor and master card

Code for both Ginolis master and motor cards already existed since both cards

are constantly in use. In normal usage Ginolis cards have a default cycle time of

2ms. This cycle time is defined in code so if needed, this cycle time can be

changed. Changing a cycle time to be longer would rise an idle time of proces-

sor and so it could be able to calculate more axes. Since cards use PIC control-

lers, a PICkit was needed to program the cards. During this thesis the actual

programming was done with the PICkit 3. PIC itself is a microcontroller, which

contains a small memory for program to be saved in. And PICkits are program-

ming devices which allow a program to be written in this small memory of PIC.

Ginolis master cards code itself was unchanged. However, for a card to be able

to function, code was written in it with the PICkit. Another necessary part was

XML file, which contains information for the card about its self. This information

basically tells the card what are its functions and how the card is called. This in-

formation makes a connection to the card possible.

With the Ginolis motor card code was written with the PICkit just as with the

master card. The only difference was that code had to be written twice to the

card. At the first writing round an ID definition was enabled. This ID is unique to

each card and is necessary since it is used to recognise which card each mes-

sage is meant to. At the second time when writing the code, the ID definition

was disabled and the actual program was taken in use.

3.2.2 Starting motor with CoDeSys

At the beginning the Ginolis master board was taught to CoDeSys. This was

done by adding a specific masterboard.xml file to a list of known devices. After

this the XML file master board was added to device tree of this project. After the

master board had been added to the project, all necessary connections were

 21

mapped to the master board. In other words, the program was taught that data

in a certain variable is sent out from certain output. A similar task was done to

all outputs and inputs in usage.

From this point on working was done more like traditionally recognized coding.

All the coding was completed in the structured text, because other available lan-

guages were not useful with this kind of application. This also means that nec-

essary changes in CoDeSys were done and the following code will command

the Ginolis motor card.

For making the basic connection from Raspberry Pi to the Ginolis master board,

premade code was available and used. This code was implemented with a case

structure. This code works by running a case after a case so that at the end of

each case the number, which chooses cases, is increased by one. Unless one

case does not function as it should the case sets the choosing number to be

999. This means that the program itself is in an error state. As this was used in

a test case, the error state did not do anything else than informed that some-

thing went wrong.

At the first case parameters for the Ginolis motor card were defined. The de-

fined values were an ID number, amplifier values, used currents and a used

pulse width. These values depend on the controlled motor. Amplifier values ad-

just the motor so that the actual movement is equivalent to the desired move-

ments. The used currents values define current that is allowed to the motor so

that the motor will not break down. Lastly, the pulse width is defined so that the

motor has enough time to execute all the orders sent to it. At the second case

the message of incoming parameters was sent to the motor card. At the third

case parameter values were sent. The sent data is in two parts. The first part is

three bursts of eight bits containing the ID of the receiving devise. The second

part is four bursts of eight bits containing one defined parameter. At the third

case it was checked that all the parameter values were sent and the message

for the end of parameters was sent. After the third case has made sure that all

the messages have been sent, the program is directed to a case number fifty.

 22

This means that all the devices have reached an operational state and the basic

communication between devices has been achieved.

After getting all the devices to the operational state, the motor was defined in

CoDeSys. Unlike the master board, the motor card does not need a specific

XML file. Controlling motors is a universal system in CoDeSys thus all the mo-

tors are controlled in the same way and the difference between motors affects

only to the previously sent parameter values.

A position controlled drive was defined under an SoftMotion axis pool in the de-

vice tree. Without this definition of new axis, all the functions of the motor ought

to have been programmed manually. But now all the calculation such as accel-

eration, deceleration and position was done in this axis. This made program-

ming easier since now the motor control was done just by changing variable val-

ues.

Under the defined axis there is large amount of different libraries and all the li-

braries contain a lot of control variables. However, to get the motor working,

only two libraries were needed. These libraries were Power and MoveAbsolute.

The power library is a library where different functions of the motor are enabled.

Without the usage of this library, the motor would not gain any current to run.

The moveAbsolute library is a library where values for running the motor are de-

fined.

In the actual program libraries were defined in variable sections. At the defini-

tion the beginning values of variables were also defined. Since the program is

rather simple, Boolean variables enable bRegulatorOn and bDriveStart were

defined true under the Power library. This means that the motor itself was able

to run from the start of the program. Also, the MoveAbsolute library was de-

fined. Under this library the defined variables were Execute, Acceleration, De-

celeration, Velocity and Position. The only notable variable is the Execute varia-

ble, which is a Boolean variable, and it was defined as false because changes

to the true motor take action according to other defined variables. DWord varia-

bles Acceleration, Deceleration, Velocity and Position were given some values

since at this point they did not matter so much as the purpose was only to get

 23

the motor running. These variables were changes later when the system was

tested and a more accurate control was needed.

After everything above was completed and the program ran till the end, the mo-

tor was in a ready state and all what had to be done was manually force the Ex-

ecute variable as true. This caused the motor to run in a different position using

the defined variables.

3.2.3 Test program

To test Raspberry Pi’s feasibility, it was decided to run two motors and a couple

of sensors at the same time. This was done to confirm that controlling a physi-

cal motor was equivalent to controlling a virtual motor. This test platform was

achieved by adding a conveyer to the build and by repeating everything from

the chapter Starting a motor with CoDeSys. The only exception was that also

two sensors had to be mapped to the Ginolis master card. In this way also the

conveyer was set to a ready state.

To run two motors while using two sensors, a short program was written under

a case 50 (figure 8). This program causes another motor to run till the position

reaches 3000. When in that position, the motor returns to a position 0. Another

motor runs forward until the sensor detects an object and then the motor

changes direction until another sensor detects the same object.

 24

FIGURE 8. Program used to run motors.

The used variables in this code are Position, which is a desired position for the

motor, and dwActPosition, which is the actual positon of the motor. This value

updates as the motor changes its position. Also, the variable Execute was used

to apply changes done to the desired position. These variables are saved to a

different variable so that multiple motors could be controlled. These variables

are named as mcma and mcp. The difference between motors are seen from a

numbering system. When mcma is given values, the motor is controlled and

when the changed values are under mcma_1, the motor conveyer is controlled.

Code itself firstly checks if the actual position and the desired position are differ-

ent. If they are different code sets the motor to move to the desired position.

Then the actual position of motors is checked with else if structure. If motor has

reached its desired position, the desired position is changed to the opposite

 25

end. Then on the next round of the loop, the first if case of the program, exe-

cutes this change.

With conveyer codes, the basic working policy is exactly the same. The motor

runs one direction until it reaches the desired position. The point desired posi-

tion is changed and executed at the next round of loop. The only difference is

that the running direction of the motor changes when the sensor value changes

from true to false. This change means that sensor the has detected an object.

With this executed two motors started running separately. One motor ran back

and forth between two points set with the variable. The conveyer started to

move an object back and forth on it. At this point everything was set to start the

actual measurements and test.

 26

4 TESTING THE IMPLEMENTATION

The main focus of tests was on the processor usage since it was assumed to be

the main reason why Raspberry Pi would not suit to this kind of robot control.

Another test subject was jitter which told how much deviation there were in

messaging times.

The processor usage was tested in two cases. The first case was the visual

side of CoDeSys. This test was done by simply enabling or disabling visual

while inspecting the processor usage on Raspberry Pi. This test was completed

while two motors were running and without them.

Another case was to find out how many axes Raspberry was able to run. This

was done by creating virtual axes. These virtual axes were linked to receive

their positions and desired positions from the motor. In this way each virtual axis

had to complete exactly same calculations as the axis that ran the motor. After

each added axis, the program was executed and the processor usage was

checked from Raspberry Pi. Also, the functioning of the motors was visually in-

spected since it was expected that if the motor would skip any steps due to lack

of processor power, it could be possible to detect with a plain eye.

The last test subject was jitter. Jitter is showed directly from CoDeSys. But to

make sure that this data was reliable, an oscilloscope was used. To get any

data for the oscilloscope, one of Ginolis master cards outputs was set to change

its value at each round of loop. When this data was supplied to the oscilloscope,

an output should look like a square wave. And from the irregularity of the square

wave, an actual jitter was possible to measure. This measurement, however,

pointed out that data shown by CoDeSys is accurate.

4.1 Test results

Processor testing was started by starting CoDeSys and checking the processor

usage level. It was confirmed that having just CoDeSys running but without do-

ing anything, the processor usage level was 17% from the available capacity.

 27

When the visual side of CoDeSys was started, the processor usage level raised

up to 30%. This value however was not stabile and after inspecting the usage

level, it was possible to say that the visual side uses approximately 10% of the

available processor capacity.

After adding virtual axes on the program, the results from processor usage per

axis were written down (Table 2).

TABLE 2. Processor usage with multiple axes

Motors CPU% Notes

0 17 OK

2 33 OK

3 36 OK

4 39 OK

5 41 OK

6 44 OK

7 46 OK

10 52 OK

20 68 OK

21 80 Slight Lag

22 82 Slight Lag

23 84 Lag

24 85 Lag

When zero motors were running 17% of the processor capacity was used. This

is the same as CoDeSys were just idling. When two motors were started, the

processor usage raised to 33%. This large raise is due to all the basic calcula-

tions from running CoDeSys since after this adding, one axis caused a just

slight increase of the processor usage.

When 20 axes were running, the processor usage level was 68% and there

were no problems. However, after adding the 21st axis, the processor usage

level took a large leap up to 80% and the motor visibly started skipping steps.

Although there was supposed to be still idle calculation power left it would seem

that either Raspberry’s information about the processor usage lever is inaccu-

rate or Raspberry is actually not able effectively to use all its resources with

CoDeSys.

 28

After adding the 23rd axis, skipping steps were very clear, since these skips

were so long that the motor completely stopped moving and soon started mov-

ing again. This caused acceleration and declaration to increase near infinity and

from these sudden stops and starts the motor generated enough power to start

move around.

4.2 Research for alternative hardware

Since Raspberry Pi is not suited for industrial purposes, a research for alterna-

tive hardware was done. The target for this research was to find out hardware

whose capitalises are similar to Raspberry Pi but which would suit for industrial

purposes. This means that hardware should comprehend dirt, heat and cold.

Hardware should also operate without any fan which would make hardware si-

lent. The last requirement was two Ethernet ports, which were required for

EtherCat to reach its full functionality.

This research is also supposed to find out the lowest price for a robot control

with CoDeSys. The price was an essential factor while choosing hardware,

since it would be unreasonable to control each motor with the same price as the

whole production line could be controlled. This would lead to a raise of the price

of products of Ginolis Ltd.

From the beginning two choices were possible. It was possible to design and

manufacture Linux based hardware just for this case. Or it was possible to order

hardware from an external manufacturer. The first choice was to negotiate with

an external manufacturer since ordering a hardware would save time and re-

sources. These negations could also give a price range for the CoDeSys li-

cence.

The research was started by searching suitable manufacturers from the Inter-

net. This searching pointed out that there are plenty of single board platforms

available for this kind of system. However most of the single board platforms

within price range of 50-200€ do not have the required amount of Ethernet

ports. Also while researching these single board platforms, the suitability for in-

dustrial purposes was unknown.

 29

Another choice for what could be ordered was industrial PCs as it was expected

that a PC produced for industrial purposes would be more expensive. But it was

necessary to find out a price range of industrial PCs whit the CoDeSys licence.

Since Ginolis Ltd. has been previously a customer of SKS Group, it was de-

cided to send request of order for an industrial PC to the representor of SKS

Group.

The answer for the request of order pointed out that SKS Group produces suita-

ble industrial PCs. These PCs have a similar capability as Raspberry Pi as well

as other required features such as two Ethernet ports and a real time function.

However, the price of this kind of hardware was more expensive for a single

motor control (7).

Shortly after the request of order, a possibility to have a meeting with the repre-

sentor of SKS Group occurred. This meeting was hold since it was assumed

that the representor had more knowledge of the CoDeSys licence policy. This

information would give a price range for the license as possible manufactured

hardware.

This meeting pointed out that the price of the CoDeSys licence is always negoti-

ated separately with CoDeSys. Since the price for a license is determined by

the price of the manufactured product. So the price of a licence for a high cost

robot is higher than the current TwinCat licence. But at the same time licence

price could be lower for low cost robots. The biggest set back from this meeting

was plotting costs. Since the policy of CoDeSys is that when licence to new kind

hardware is sold a representor of CoDeSys needs to plot a program to hard-

ware (8).

 30

5 CHALLENGES

5.1 Raspberry Pi

The biggest challenge with Raspberry Pi was a lack of Ethernet ports since

there is only one Ethernet port in Raspberry. With the PLC implementation two

Ethernet ports are needed since one Ethernet port is used by the EtherCat pro-

tocol. So to actually connect Raspberry Pi and the program, CoDeSys TCP/IP

connection was needed. This problem was solved by implementing a WLAN

module to the Raspberry Pi.

Another challenge, which needed a lot of research, was a fact that Raspberry Pi

is not suitable for industrial solutions. Thus so a dilemma was ready when hard-

ware similar with Raspberry was needed. Yet this similar hardware was sup-

posed to be meant for industrial purposes. This research was made even more

difficult with a demand that the price of new hardware was supposed to be simi-

lar to Raspberry Pi.

5.2 Programming

Programs were written with two languages. All the cards were already written

with C++. And the actual code was written as PLC because PLC is a language

that CoDeSys requires. This combination of two different languages caused

some problems because codes in cards are not short skripts. And when two dif-

ferent languages were wanted to communicate with each other a lot of studying

was necessary so that the author could understand what information the cards

needed to function or even send an answer message to the Raspberry Pi.

5.2.1 Motor and master card

The codes for Ginolis mastercard and Ginolis motor card already existed and

they were used in this implementation. However, to use and implement these

codes some changes were needed since TwinCat revives the sent information

in a slightly different way than CoDeSys. Another problem with Ginolis cards

were the lack of datasheets. All the details of the functions of the cards seemed

 31

to be gained only by testing or by asking from someone who had worked with

the cards longer a period of times.

5.2.2 CodeSys code

A base of the PLC code was copied from TwinCat PC. These codes were de-

signed to connect the Ginolis master board to TwinCat. So with small changes

code was plotted to the CoDeSys project. Although this seems a simple job, it

caused problems since the author did not have any experience with PLC cod-

ing.

 32

6 CONCLUSION

The aim of this thesis was to test Raspberry Pi’s capability of robot control. The

combination of CoDeSys and Raspberry Pi could lead to individual robot control

for each robot in the production line. The inspiration for thesis came from a very

cheap license CoDeSys for Raspberry Pi.

A test application which simulates the actual application was built with a con-

veyer and a separate single motor. This kind of application was proven to be

possible to run with Raspberry Pi. Although due to the lack of real time function-

ality of Raspberry Pi, this application had a 100μs jitter. This jitter would most

likely be much lower with another hardware.

With the running application the maximum amount of running axes was also

tested. This was simply done by adding virtual axes and using them in calcula-

tions. Raspberry Pi ran without any problems until the 21st virtual axis was

added. This means that Raspberry Pi can run calculations for 20 axes at the

same time, which is enough axes for most of the applications. Over all, the re-

sult of this thesis is that Raspberry Pi or similar hardware is able to control a

single robot.

While choosing usable hardware for the application it was found out that any

reasonable solution would exceed the budget plan for this thesis. If a company

did not have an existing solution for robot control, this kind of solution would

work well. Most likely the best solution could be to design and produce own

hardware with similar capabilities to Raspberry Pi 2 module B. Also, the

CoDeSys license is required. This licence and plotting costs should be negoti-

ated directly with CoDeSys. In this way costs of hardware would be possible to

reduce to a level where each robot is controlled separately.

If a company has been recently established or a company is planned to be es-

tablished, the solution of this thesis should be taken under a careful considera-

tion, since plotting costs that prevented testing CoDeSys with another hardware

would eventually be divided between the produced robots.

 33

It could have been really interesting and rewarding to actually create a new kind

of robot control system, which would lower production costs. But the decision of

not to forcefully continue developing the system despite the costs, was the most

reasonable decision to do. Although, this result is a little bit bothering, it is a re-

ally good lesson of making reasonable decisions.

As a learning process completing this thesis has been very rewarding because

before this thesis, the author did not have any experience with robotics. Basi-

cally, the only familiar part was a PIC controller and everything else had to be

studied or experimented. Completing this thesis also gave an idea of the useful-

ness of robotics. And naturally this led to a great eagerness to work with robot-

ics.

 34

REFERENCES

1. Ginolis. 2015. Date of retrieval 16.2.2016

http://ginolis.com/.

2. Raspberry Pi. Date of retrieval 12.4.2016

https://www.raspberrypi.org/help/what-is-a-raspberry-pi/.

3. Raspberry Pi. Date of retrieval 27.4.2016

https://www.raspberrypi.org/products/.

4. Raspberry Pi 2 Model B. Date of retrieval 12.4.2016

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/.

5. PLC introduction. AMCI. Date of retrieval 12.4.2016

http://www.amci.com/tutorials/tutorials-what-is-programmable-logic-control-

ler.asp.

6. EtherCat. Date of retrieval 13.4.2016

http://www.rtaautomation.com/technologies/ethercat/.

7. Saarikko, Pekka 2016. Offer 3668091. Email message. Receiver: Heikki Nie-

melä Date of retrieval 19.2.2016

8. Saarikko, Pekka 2016. Sales manager. Oulunsalo. Meeting 23.2.2016

http://ginolis.com/
https://www.raspberrypi.org/help/what-is-a-raspberry-pi/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://www.amci.com/tutorials/tutorials-what-is-programmable-logic-controller.asp
http://www.amci.com/tutorials/tutorials-what-is-programmable-logic-controller.asp
http://www.rtaautomation.com/technologies/ethercat/

