

Ke Liao

QR CODE GENERATION AND

APPLICATION OF ANTI-

FALSIFICATION

Technology and Communication

2016

2

PREFACE

It has been about two years since I started my student life in Vaasa University of

Applied Sciences. I would like to express my greatest gratitude to VAMK for

giving me such a great environment to study.

I would also like to thank my thesis supervisor Dr Chao Gao for providing me the

opportunity to work on this exciting field of research. He has guided me

throughout this project with great patience and offered me plenty of helpful

suggestions along the way.

Having gone through quite a few obstacles, I realized the importance of patience

working as an engineer. Even a tiny mistake with the code can make a great

difference to the result.

Finally, I succeeded and fulfilled all my original expectation.

Ke Liao

Vaasa, Finland

04/05/2016

3

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Ke Liao

Title QR Code Generation and Application of Anti-falsification

Year 2016

Language English

Pages 34 + 10 Appendices

Name of Supervisor Chao Gao

QR code is two-dimensional bar code. It is more advanced than bar code which can

only store numbers and characters. QR code can store numbers, characters

(including Chinese characters) and even images. It has great data capacity and

allows for error correction. It is commonly used to spread information and is

sometimes used to achieve website login function. It can even be encrypted so that

the user has to enter a password to get the original information.

In this thesis, I come up with the idea that the QR code can be used for checking

the genuineness of products. This is achieved by applying a CRC32 algorithm,

which will produce a checksum value according to the original information so that

check operation can be performed when we scanning a product’s QR code and so

tell whether this product is verified.

This is quite a practical implementation method because it is easy to operate.

1

1 Key words QR Code, CRC32 Algorithm, Anti-falsification

4

CONTENTS

ABSTRACT

1 INTRODUCTION ... 8

1.1 Motivation of the Project ... 8

1.2 Overview Structure of the Project ... 9

1.3 Overview Structure of the Thesis .. 10

2 BACKGROUND ... 12

2.1 QR Code .. 12

2.1.1 QR Code Symbol Structure .. 12

2.1.2 Symbol Versions and sizes ... 15

2.2 Selection of the Algorithm... 19

2.3 CRC32 Algorithm .. 20

2.3.1 Polynomial .. 20

2.3.2 Choosing A Polynomial .. 21

2.3.3 A Straightforward CRC Implementation .. 21

2.3.4 "Reflected" Table-Driven Implementations 22

2.3.5 "Reversed" Polynomials ... 23

3 IMPLEMENTATION ... 25

3.1 QR Code Library ... 25

3.2 CRC32 Implementation ... 25

3.3 Flowchart of the Program .. 27

3.3.1 CRC32 Sender .. 27

3.3.2 CRC32 Receiver ... 28

4 TEST AND RESULT .. 30

4.1 CRC Sender Test ... 30

4.2 CRC Receiver Test .. 30

4.3 Summary .. 32

5 CONCLUSION ... 33

REFERENCES .. 34

APPENDICES

5

LIST OF FIGURES AND TABLES

Figure 1. Project Structure p. 9

Figure 2. Structure of a QR Code symbol p. 13

Figure 3. Structure of Position Detection Pattern p. 14

Figure 4. Version 40 Symbol p. 15

Figure 5. Checksum Generation p. 22

Figure 6. "Reflected" Table-Driven Implementation p. 23

Figure 7. CRC32 Implementation p. 26

Figure 8. CRC32 Sender p. 27

Figure 9. CRC32 Receiver p. 28

Figure 10. CRC Sender Test p. 30

Figure 11. MySQL Database p. 31

Figure 12. CRC Receiver Test 1 p. 31

Figure 13. CRC Receiver Test 2 p. 31

Figure 14. CRC Receiver Test 3 p. 32

Table 1. Data Capacity of all versions of QR code p. 16

Table 2. Error Correction Levels p. 17

Table 3. Encoding/decoding table for Alphanumeric Mode p. 18

Table 4. Mode Indicators p. 18

Table 5. Encoding/decoding table for JIS8 character set p. 19

Table 6. CRC32 Standard Polynomials p. 21

6

LIST OF ABBREVIATIONS

CRC Cyclic redundancy check

ECI Extended Channel Interpretation

MD5 Message-digest algorithm

PDP Position Detection Pattern

PHP Professional Hypertext Pre-processor

QR Code Quick Response Code

URI Uniform Resource Identifier

URL Uniform Resource Locator

7

LIST OF APPENDICES

APPENDIX 1. CRC Sender Source Code

APPENDIX 2. CRC Receiver Source Code

APPENDIX 3. CRC Table Generation Source Code

8

1 INTRODUCTION

The introduction chapter introduces the motivation, the general structure of this project and

the structure of the thesis report.

1.1 Motivation of the Project

Counterfeits threatens the interests of manufacturers and consumers, and they have a serious

impact on the economy development of the country. Government and companies have to spend

a lot of manpower and financial resources every year for the security crackdown. Many

manufacturers lose a lot of interests when other manufacturers copy their products and sell fake

products at a low price. Consumers also suffer from the spread of fake products the quality of

which is always not guaranteed. The poor quality of fake products also ruins the brand

reputation. Therefore, it is necessary to apply anti-falsification technology to help customers

distinguish the difference between authentic products and counterfeits.

There are many different anti-falsification technologies. Consumers can check the genuineness

of a product by uncovering the coating on the product and getting a random number which is

pre-generated by algorithm. Then customers can dial a phone number to check if this random

number is stored in the database. If so, then this product is verified, otherwise it is asserted as

a counterfeit. Anti-falsification technology can also be achieved by inserting microchips to the

wanted products. In this case, the product information is stored on a microchip and this chip

can only be scanned by specific devices.

Now that the QR code has spread all over the world because of its fast readability and great

storage capacity, it would be a good idea to apply to QR code to check the validity of products.

It is easier to operate compared to dialling a number. Customers only need a smartphone, which

is widespread today, to scan the QR codes printed on the products to get the validation

information. It has a lower cost in comparison to inserting a microchip on the products.

Actually, manufacturers only need trivial investment to apply the QR code anti-falsification

technology.

However, the QR code is just a method to carry the information, it also need to think about

how to perform the validation process. This is achieved by applying a CRC32 algorithm. By

applying the CRC32 algorithm, we can get a checksum value corresponding to the original

9

information. A combined information of the original information and the checksum value is

stored in the QR code and this QR code will be printed on the product. Hence, the check

operation can be performed by scanning a product’s QR code and so tell whether this product

is verified.

1.2 Overview Structure of the Project

Figure 1 displays the structure of the thesis.

Figure 1.Project Structure

10

The product sequence number is sent to the checksum generator and a checksum value is

generated based on the CRC32 algorithm, then the sequence number and the checksum value

are sent to the QR code generator and are stored as part of QR code information. Next a QR

code will be generated and it will be printed on the surface of product and the product is stored

in a box.

A customer can download a QR code scanner to scan the QR code on the product. This QR

code stores a URL. The URL is a HTTP query string which contains a product sequence

number and its corresponding checksum. The query is sent to a verification server which runs

the same algorithm as the QR code generator.

The server checks the sequence number and the checksum information and if they match, it

will check whether this QR code has been scanned before, if not, a message which says this

product is verified will show on the website. If it has been scanned before, the number of scan

times will be returned.

Since the QR code generation is quite a complicated technology, I simply apply a

JAVASCRIPT library QRCode.js to implement this function. It is published on GITHUB and

is open-source. Therefore, it can be used without any prerequisite. On the generation side, there

is another function which is the checksum generation function. It is based on the CRC32

algorithm and is written in JAVASCRIPT. On the server side, there is also a CRC32 checksum

generation function written in PHP. We obtain the sequence number from the query string and

generate a correspondent CRC32 remainder value and check if this value matches the

checksum value (received from the query string). The reason why this checksum generator on

the server side is written in PHP is so that hackers cannot figure out how our checksum value

is generated.

The principle is easy to understand and implement. It also facilitates the process of checking

the validity of products.

1.3 Overall Structure of the Thesis

The basic structure of the thesis is as follows:

11

Chapter 1 describes the motivation and overall architecture of the project. Chapter 2 introduces

the related background knowledge about developing this project. Chapter 3 focuses on the

implementation of the project in details, while the Chapter 4 illustrates the test procedure and

result. Chapter 5 draws conclusions.

12

2 BACKGROUND

This chapter introduces the background knowledge of the technologies used in this project,

including QR code, the QR code generation method and the CRC32 Algorithm.

2.1 QR Code

QR code is a two-dimensional matrix symbol and it consists of an array of square modules. It

has three position detection patterns located at three corners of the symbol and they are intended

to help locate its position, size and inclination. It also provides a wide range set symbol sizes

and four levels of error correction/5/.

QR code has two different models, including model 1 and model 2. QR code model 1 is the

original specification for the QR code. Model 2 is an enhanced form of the symbol with

additional features and is more universal today. Model 2 is used in this thesis.

The QR code system was invented in 1994 by Denso Wave. It is widely used to track vehicles

during manufacture and it is also applied in commercial tracking applications. Many mobile

applications also include this technology because of its convenience. It can be used to display

text or image to the user, to open a Uniform Resource Identifier (URI), or to send messages.

Individual users can generate QR codes by themselves to share information, manufacturers can

apply QR code on the products to provide company information or publish advertisements. The

technology has since become one of the most-used types of two-dimensional barcode/2/.

2.1.1 QR Code Symbol Structure

Each QR code symbol is constructed of nominally square modules and consists of an encoding

region, function patterns, namely finder, separator, timings patterns and alignment patterns. It

is surrounded by a quiet zone border on all sides. Figure 2 illustrates the structure of a Version

7 QR Code symbol.

13

Figure 2.Structure of a QR Code symbol/5/

Representation of data

A module is the unit length of QR code (one square area comprising QR Code)/6/. A dark

module is a binary one and a light module is a binary zero.

Quiet Zone

It is a 4X (X is the width of a QR code module) wide region which surrounds the symbol on

four sides.

Finder Pattern

It consists of three Position Detection Patterns (PDP) located at the upper left, upper right and

lower left corners of the QR code symbol. Each PDP consists of dark 7 × 7 modules, light 5 ×

5 modules and dark 3 × 3 modules. Figure 3 shows the structure of the position detection pattern

(finder pattern).

14

Figure 3.Structure of Position Detection Pattern/5/

Separators

As illustrated in Figure 2, a separator consists of all light modules and it is one-module wide.

There is a separator between each finder pattern and encoding region.

Segment

Segment is a sequence of data encoded according to the rules of one ECI (Extended Channel

Interpretation) or encoding mode.

Terminator

Terminator has a bit pattern of 0000 and it is used to end the data bit string.

Timing Patterns

The horizontal and vertical Timing Patterns respectively consist of a one module wide row or

column of alternating dark and light modules, commencing and ending with a dark module.

Alignment Patterns

Alignment pattern consists of dark 5 × 5 modules, light 3 × 3 modules and a single central dark

module. Different symbol version has different number of alignment patterns.

Format Information

15

Format information provides information of the symbol’s error correction level and masking

pattern.

Version Information

Version information is applied in QR code model 2. It contains information on the symbol

version and the error correction bits for this data.

2.1.2 Symbol Versions and sizes

QR code has 40 versions and each version has different size. Version 2 is a matrix of 21

modules × 21 modules, version 2 measures 25 modules × 25 modules and so on increasing in

steps of 4 modules per side up to Version 40 which measures 177 modules × 177 modules/5/.

Figure 4 illustrates the structure of Versions 40 which has the highest data capacity. In this

thesis, the version of the QR code is chosen based on the size of the data to carry.

Figure 4.Version 40 Symbol/5/

16

Data Capacity

The amount of data that can be stored in the QR code symbol depends on the datatype (mode,

or input character set), version (1, …, 40, indicating the overall dimensions of the symbol), and

error correction level. The maximum storage capacities occur for 40-L symbols (version 40,

error correction level L). Below Table 1 shows the data capacity for all versions of the QR

code.

Version No.of

Modules/Side(A)

Function

Pattern
modules(B)

Format

Version
Information

modules(C)

Data modules

except

(C)(D=𝐴2 −
𝐵 − 𝐶)

Data

capacity[𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑠]3

Remainder

Bits

1 21 202 31 208 26 0

2 25 235 31 359 44 7

3 29 243 31 567 70 7

4 33 251 31 807 100 7

5 37 259 31 1079 134 7

6 41 267 31 1383 172 7

7 45 390 67 1568 196 0

8 49 398 67 1936 242 0

9 53 406 67 2336 292 0

10 57 414 67 2768 346 0

11 61 422 67 3232 404 0

12 65 430 67 3728 466 0

13 69 438 67 4256 532 0

14 73 611 67 4651 581 3

15 77 619 67 5243 655 3

16 81 627 67 5867 733 3

17 85 635 67 6523 815 3

18 89 643 67 7211 901 3

19 93 651 67 7931 991 3

20 97 659 67 8683 1085 3

21 101 882 67 9252 1156 4

22 105 890 67 10068 1258 4

23 109 898 67 10916 1364 4

24 113 906 67 11796 1474 4

25 117 914 67 12708 1588 4

26 121 922 67 13652 1706 4

27 125 930 67 14628 1828 4

28 129 1203 67 15371 1921 3

29 133 1211 67 16411 2051 3

30 137 1219 67 17483 2185 3

31 141 1227 67 18587 2323 3

32 145 1235 67 19723 2465 3

33 149 1243 67 20891 2611 3

34 153 1251 67 22091 2761 3

35 157 1574 67 23008 2876 0

36 161 1582 67 24272 3034 0

37 165 1590 67 25568 3196 0

17

38 169 1598 67 26896 3362 0

39 173

3

1606 67 28256 3532 0

40 177 1614 67 29648 3706 0

Table 1.Data Capacity of all versions of QR code /5/

Error Correction Capacity

The QR code allows for error correction and has four different error correction levels (L, M,

Q, H).

QR code with a different error correction level has capacity of recovery from different amounts

of damage.

As is shown in Table 2, the lowest error correction level is L and it allows for 7 percent of

damage to be recovered. The highest error correction level is H and it allows for 30 percent of

damage to be recovered. Error correction level H is selected for this thesis.

Table 2.Error Correction Levels /5/

Error Correction Level Recovery Capacity % (approx..)

L 7

M 15

Q 25

H 30

Encoding Mode

There are many different encoding modes in QR code. Next is a list of the frequently used

encoding modes.

1) Extended Channel Interpretation (ECI) Mode/5/

The input data is interpreted according to the default character set. Four broad types of

interpretation are supported in QR Code:

a) international character sets (or code pages).

b) general purpose interpretations such as encryption or compaction.

c) user-defined interpretations for closed systems.

18

d) control information for structured append in unbuffered mode

2) Numeric Mode/5/

Numeric mode accepts decimal data and encodes the decimal digit set. Three data

characters are represented by 10 bits. For example, 012 is represented as 0000001100.

3) Alphanumeric Mode/5/

Alphanumeric mode encodes data from a set of 45 characters, including ten decimal

digits (0-9), 26 alphabetic characters (A-Z) and nine symbols (SP, $, %, *, +, -, ., /, :).

Each character is represented by a corresponding ASCII value according to the ASCII

table. Normally the two input characters are represented by 11 bits binary string. For

example, with input AC, the corresponding index values (in Table 3) are 10 and 12

respectively. Then 10 is multiplied by 45 and plus 12, the result is 462, finally 462 is

converted to 10 bits binary string 00111001110.

Table 3.Encoding/decoding table for Alphanumeric Mode/5/

Char. Value Char. Value Char. Value Char. Value Char. Value Char. Value Char. Value Char. Value

0 0 6 6 C 12 I 18 O 24 U 30 SP 36 . 42

1 1 7 7 D 13 J 19 P 25 V 31 $ 37 / 43

2 2 8 8 E 14 K 20 Q 26 W 32 % 38 : 44

3 3 9 9 F 15 L 21 R 27 X 33 * 39

4 4 A 10 G 16 M 22 S 28 Y 34 + 40

5 5 B 11 H 17 N 23 T 29 Z 35

5

- 41

8-bit Byte Mode/5/

The 8-bit byte mode encodes the 8-bit Latin/Kana character set in accordance with JIS X 0201

(character values 00HEX to FFHEX). In this mode data is encoded at a density of 8 bits. Table

4 shows the mode indicators for all the modes.

Table 4.Mode Indicators/5/

Mode Indicator

ECI 0111

Numeric 0001

Alphanumeric 0010

8-bit Byte 0100

Kanji 1000

Structured Append 0011

19

FNC1 0101 (First position)

1001 (Second position)

Terminator (End of Message) 0000

8-bit byte mode is used in this thesis because it can handle almost all kinds of characters as

shown in Table 5.

Table 5.Encoding/decoding table for JIS8 character set/5/

In this thesis, the generation of QR code is implemented by applying a JAVASCRIPT library

which will be explained later.

2.2 Selection of the Algorithm

The selection of the algorithm is the most important part in the whole process. The initial plan

was to protect the data stored in the QR code by a password so that the user cannot scan the

20

QR code successfully without knowing a password. However, this process is not user-friendly

and it is hard to implement in the real process. There is also a cryptographic algorithm called

md5, which will produce a more complicated result. But it cannot avoid the risk that the hacker

figures out which algorithm is used. Finally, I came up with an idea that it can be achieved by

applying a CRC32 algorithm, which can secure this process since a not commonly used

polynomial value is applied and it will not be easy to crack this value.

2.3 CRC32 Algorithm

A Cyclic Redundancy Check (CRC) is a hash which is frequently used as a checksum for data

in for instance archives. A checksum is the value calculated based on the original data by

performing mod 2 polynomial division.

This method was invented by W. Wesley Peterson in 1961; the 32-bit CRC function of Ethernet

and many other standards is the work of several researchers and the idea was published in

1975/3/.

There are different versions of CRC and a CRC is called an n-bit CRC when its check value is

n-bits. In this project, CRC32 is used and the check value is 32 bits.

2.3.1 Polynomial

When applying a polynomial to CRC algorithms, the coefficients of a polynomial needs to be

treated as the numbers in a bit-string.

For example, supposing there is a following 5-bits polynomial.

𝑥4 + 𝑥 + 1

When treating the coefficients of this polynomial as the numbers in a bit-string, the following

result is reached.

10011

CRC performs a module-2 division between the message data and the polynomial, if the

polynomial is n bits long, the remainder of the binary division is n-1 bits long. A CRC32 has a

33-bit polynomial and the remainder is 32 bits long.

21

2.3.2 Choosing A Polynomial

The selection of the generator polynomial is the most important part of implementing the CRC

algorithm. The polynomial must be chosen to maximize the error-detecting capabilities while

minimizing overall collision probabilities/3/.

It is hard to choose an appropriate polynomial, however, there is a standard polynomial library

which is universally used.

Table 6.CRC32 Standard Polynomials/3/

Name Normal Polynomial Reversed Polynomial

CRC-32 0x04C11DB7 0xEDB88320

CRC-32C 0x1EDC6F41 0x82F63B78

CRC-32K 0x741B8CD7 0xEB31D82E

CRC-32K2 0x32583499 0x992C1A4C

CRC-32Q 0x814141AB 0xD5828281

Table 6 displays the polynomials used for all versions of CRC32.

In this project, CRC-32 is used and as can be seen from Table 4, the standard polynomial of

CRC-32 is 0x04C11DB7. However, in order to prevent some hackers from easily figuring out

the polynomial value, there is small change to this standard polynomial. The last hex number

is replaced with 6, which produces the final polynomial value 0x04C11DB6. Such a small

change with the polynomial value will produce quite a different check value according to the

CRC algorithm. For example, if the original data is 123, the CRC remainder would be

2286445522 with the polynomial value of 0x04C11DB7 and 3383897554 with the polynomial

value of 0x04C11DB6.

2.3.3 A Straightforward CRC Implementation

22

The basic idea of CRC algorithms is simply to treat the message as an enormous binary number,

to divide it by another fixed binary number (polynomial), and to make the remainder from this

division the checksum. Upon receipt of the message, the receiver can perform the same division

and compare the remainder with the "checksum"/4/, as shown in Figure 5.

Figure 5.Checksum Generation /4/

Figure 5 explains how the checksum value is generated. First, there is original data, which is

converted to a binary string. Then padding bits are added to the end of this binary string. The

number of padding bits is based on the length of CRC. In this project, 32 bits of 0 are added to

the binary string. Then mod 2 division is performed on this padded binary string so that we can

get our CRC remainder value, which is the checksum.

2.3.4 "Reflected" Table-Driven Implementations

In the real process, a simple straightforward CRC implementation cannot suffice our need. The

reason is that this simple implementation operates at the bit level, which is quite inefficient to

23

execute. Therefore, this "Reflected" Table-Driven Implementation method is introduced as it

can speed up the process. This was done because most of the hardware chips at the time

reversed data bitwise.

In the "Reflected" Table-Driven Implementation method, the operation level is the byte level.

The following Figure 6 illustrates how this implementation works.

Figure 6. "Reflected" Table-Driven Implementation/4/

In the CRC32 table-driven implementation, the message is augmented into bytes string, and

the register processes 4 bytes of data at a time. Each byte has 8 bits, which has a range between

0 and 255. Therefore, a table is pre-generated which stores all the CRC32 remainder values of

numbers between 0 and 255. When performing mod 2 division on byte, it is possible to quickly

refer to that table and get the remainder result. Finally, it is possible to get the CRC remainder

value of the whole string.

2.3.5 "Reversed" Polynomials

24

In order to further improve the processing speed, so called “Reversed” Polynomials were

introduced, the principle is quite simple. The polynomial is reversed means all of its bits are

shifted from right to left. For example, supposing there is a polynomial with a corresponding

binary string of 101011, then the reversed polynomial value will be 110101.

25

3 IMPLEMENTATION

This chapter introduces the implementation of the project, including the used QR Code

Library, CRC32 Implementation and the Flowchart of the whole project.

3.1 QR Code Library

Since this QR Code generation is quite a complicated technology, it would be too difficult to

achieve it by myself. Therefore, I applied a universal QR code generation library/1/ in this

project and it is written in JAVASCRIPT. It is published under MIT license and the copyright

is Copyright (c) 2012 davidshimjs. It is fully open-source and anyone can employ this library

without any prerequisite. It consists of three JAVASCRIPT files, including jquery.min.js,

jquery.qrcode.js and qrcode.js/1/.

In this library, the default error correction level is H. The version number of the generated QR

code is dependent on how many bytes of data needs to be carried. The default encode mode is

an 8-bit byte mode.

3.2 CRC32 Implementation

In the second chapter, how the CRC algorithm works was introduced together with several

different implementation methods. However, it may still seem a little confusing so I will make

a conclusion on how it works in the real process.

26

Figure 7. CRC32 Implementation

Figure 7 displays the whole process of the CRC32 implementation. According to a “Reflected”

Table-Driven implementation which was explained in chapter 2, needs to be pre-generated. A

table which stores all the CRC32 remainder(checksum) values of the numbers ranging between

0 and 255. Then the CRC initial value is set as a default value 0Xffffffff. After that, the

polynomial value that we want to use is resolved, it is 0X04C11DB6 and after reversing this

polynomial we get 0X6DB88320. The next step is to perform the mod 2 division on the original

sequence number value by the reversed polynomial value, this is done by dividing the sequence

number to bytes and all the bytes are processed in a loop and the table needs to be referred to

in this step to optimize the processing speed. Finally, the CRC remainder value is reached.

27

3.3 Flowchart of the Program

In this project, there is a CRC32 sender and a CRC32 receiver. The CRC sender generates a

QR code and the CRC receiver verifies the information stored in the QR code.

3.3.1 CRC32 Sender

Figure 8.CRC32 Sender

On the sender side, a polynomial value, which is 0X04C11DB6 by default is reached. Then we

input the product sequence number and based on a CRC32 algorithm function written in

JAVASCRIPT we get the CRC32 remainder value, which is the checksum. In the last step, a

QR code which will be printed on the products needs to be generated. First a combination of

the sequence number is made, the checksum and the server information and the result will be

28

a URL, then this URL is sent to the QR code generation function and hence a QR code is

generated.

3.3.2 CRC32 Receiver

Figure 9.CRC32 Receiver

29

On the receiver side, a database is built which stores all the sequence numbers that have been

scanned before. Then the sequence number is resolved and checksum information from the

URL are obtained and the correct checksum value is calculated based on the sequence number

by another CRC32 algorithm function written in PHP. The checking part is a server-side

solution so that the algorithm and polynomial is hidden from potential hackers. After getting

the correct checksum value, it is checked if the checksum value obtained from the URL matches

the correct checksum value. If they do not match, this product is not verified. If they match, we

refer to the database and check whether it has been scanned before, if it has, we return the scan

time. If not, this product is verified.

30

4 TEST AND RESULT

With the principles introduced in Chapter 2 and the implementation methods introduced in

Chapter 3, this project works successfully. In this chapter, the detailed implementation results

are displayed.

4.1 CRC Sender Test

Figure 10.CRC Sender Test

Figure 10 shows how the CRC sender works in this project. On the data input area, the product

sequence number is input, 123 is used as an example. Once the sequence number is entered, a

CRC32 algorithm function is called and the result 3383897554 is displayed. This is the CRC32

remainder value. It can be also expressed as the hex decimal format 0XC9B22DD2. After

generating the remainder value, once the submit button is clicked, a URL which contains the

sequence number and the remainder value is sent to the QR code generation function thus a

QR code is generated.

4.2 CRC Receiver Test

When a QR code is scanned on a product, the sequence number from the URL is resolved and

the correct checksum value is calculated. Then the checksum number from the URL is resolved

and check if this value matches the correct checksum value. If they do not match, this product

is not verified. If they match, the server will check the database (Figure 11) whether it contains

this sequence number and if it is stored, then the scan time is returned, if not, this product is

verified.

31

Figure 11.MySQL Database

Figure 12.CRC Receiver Test 1

Figure 12 shows an example when the product’s checksum value does not match the correct

one.

Figure 13.CRC Receiver Test 2

Figure 13 shows an example when the product’s checksum value matches and the QR code is

scanned for the first time.

32

Figure 14.CRC Receiver Test 3

Figure 14 shows an example when the product’s checksum value matches and the QR code has

been scanned before.

4.3 Summary

Each product has a sequence number, therefore, a checksum value can be generated according

to this sequence number on both the sender side and receiver side. Also the product is verified

only when the checksum values match each other and what has not been scanned before.

Since each product has a unique sequence number, the checksum value for each sequence

number is also unique. Therefore, there is low risk that two sequence numbers share a common

checksum value. In addition, the CRC32 algorithm applies a 32-bits polynomial and therefore

it will be difficult for hackers to figure out the polynomial value, hence, guaranteeing the

information security.

33

5 CONCLUSION

Overall, this project introduces a way to facilitate the process of verifying a product. Without

any need to get access to a specific device or dial a phone number, it requires only a smart

phone installed with a QR code scanner application.

In addition, there is almost no additional cost required to implement this project. In spite of

simply generating a QR code on the website and printing it on the surface of the product, all

that needs to be done is to maintain a database.

The verification system is based on CRC32 algorithm. A QR code containing the product

sequence number and the checksum value is generated on the sender side that on the receiver

side, we need to generate a checksum value as well to check whether the checksum value

matches. A product is verified only when the checksum value matches and the sequence

number is not stored in the database.

During this project I have had a basic command of QR code generation technology and learnt

how a CRC32 algorithm works. It also enhances my programming skills with JAVASCRIPT

and PHP.

34

REFERENCE

/1/ Github QR Code Library. Accessed 30.3.2016

https://github.com/davidshimjs/qrcodejs

/2/ QR Code Definition. Accessed 27.3.2016

https://en.wikipedia.org/wiki/QR_code

/3/ CRC Definition. Accessed 15.4.2016

https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Designing_polynomials

/4/ Ross N. Williams., 19 August 1993. A PAINLESS GUIDE TO CRC ERROR

DETECTION ALGORITHMS. Accessed 15.4.2016

http://www.zlib.net/crc_v3.txt

/5/ ISO/IEC Standard 18004, "Information technology - Automatic identification and data

capture techniques - Bar code symbology - QR Code", ISO/IEC, 2000. Accessed 15.4.2016

http://www.swisseduc.ch/informatik/theoretische_informatik/qr_codes/docs/qr_standard.pdf

/6/ QR Code Module Accessed 18.5.2016

http://www.qrcode.com/en/howto/cell.html

https://github.com/davidshimjs/qrcodejs
https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Designing_polynomials
http://www.zlib.net/crc_v3.txt
http://www.swisseduc.ch/informatik/theoretische_informatik/qr_codes/docs/qr_standard.pdf
http://www.qrcode.com/en/howto/cell.html

35

APPENDIX 1. CRC Sender Source Code

 <html>

<head></head>

<body>

<script type="text/javascript" src="./js/jquery.min.js"></script>

<script type="text/javascript" src="./js/jquery.qrcode.js"></script> /1/

<script type="text/javascript" src="./js/qrcode.js"></script>

<link href="./css/test3.css" rel='stylesheet' type='text/css' />

<script type="text/javascript">

/*The following table stores all the crc32 remainder(checksum) for the polynomial
value 6DB88320(reversed polynomial of 04C11DB6) */

var table =
 [0x00000000,0x36073096,0x6C0E612C,0x5A0951BA,0x036DC419,0x356AF48F,
 0x6F63A535,0x596495A3,0x06DB8832,0x30DCB8A4,0x6AD5E91E,0x5CD2D988,
 0x05B64C2B,0x33B17CBD,0x69B82D07,0x5FBF1D91,0x0DB71064,0x3BB020F2,
 0x61B97148,0x57BE41DE,0x0EDAD47D,0x38DDE4EB,0x62D4B551,0x54D385C7,
 0x0B6C9856,0x3D6BA8C0,0x6762F97A,0x5165C9EC,0x08015C4F,0x3E066CD9,

 0x640F3D63,0x52080DF5,0x1B6E20C8,0x2D69105E,0x776041E4,0x41677172,
 0x1803E4D1,0x2E04D447,0x740D85FD,0x420AB56B,0x1DB5A8FA,0x2BB2986C,
 0x71BBC9D6,0x47BCF940,0x1ED86CE3,0x28DF5C75,0x72D60DCF,0x44D13D59,
 0x16D930AC,0x20DE003A,0x7AD75180,0x4CD06116,0x15B4F4B5,0x23B3C423,
 0x79BA9599,0x4FBDA50F,0x1002B89E,0x26058808,0x7C0CD9B2,0x4A0BE924,
 0x136F7C87,0x25684C11,0x7F611DAB,0x49662D3D,0x36DC4190,0x00DB7106,
 0x5AD220BC,0x6CD5102A,0x35B18589,0x03B6B51F,0x59BFE4A5,0x6FB8D433,
 0x3007C9A2,0x0600F934,0x5C09A88E,0x6A0E9818,0x336A0DBB,0x056D3D2D,
 0x5F646C97,0x69635C01,0x3B6B51F4,0x0D6C6162,0x576530D8,0x6162004E,
 0x380695ED,0x0E01A57B,0x5408F4C1,0x620FC457,0x3DB0D9C6,0x0BB7E950,
 0x51BEB8EA,0x67B9887C,0x3EDD1DDF,0x08DA2D49,0x52D37CF3,0x64D44C65,
 0x2DB26158,0x1BB551CE,0x41BC0074,0x77BB30E2,0x2EDFA541,0x18D895D7,
 0x42D1C46D,0x74D6F4FB,0x2B69E96A,0x1D6ED9FC,0x47678846,0x7160B8D0,
 0x28042D73,0x1E031DE5,0x440A4C5F,0x720D7CC9,0x2005713C,0x160241AA,
 0x4C0B1010,0x7A0C2086,0x2368B525,0x156F85B3,0x4F66D409,0x7961E49F,
 0x26DEF90E,0x10D9C998,0x4AD09822,0x7CD7A8B4,0x25B33D17,0x13B40D81,

 0x49BD5C3B,0x7FBA6CAD,0x6DB88320,0x5BBFB3B6,0x01B6E20C,0x37B1D29A,
 0x6ED54739,0x58D277AF,0x02DB2615,0x34DC1683,0x6B630B12,0x5D643B84,
 0x076D6A3E,0x316A5AA8,0x680ECF0B,0x5E09FF9D,0x0400AE27,0x32079EB1,
 0x600F9344,0x5608A3D2,0x0C01F268,0x3A06C2FE,0x6362575D,0x556567CB,
 0x0F6C3671,0x396B06E7,0x66D41B76,0x50D32BE0,0x0ADA7A5A,0x3CDD4ACC,
 0x65B9DF6F,0x53BEEFF9,0x09B7BE43,0x3FB08ED5,0x76D6A3E8,0x40D1937E,
 0x1AD8C2C4,0x2CDFF252,0x75BB67F1,0x43BC5767,0x19B506DD,0x2FB2364B,
 0x700D2BDA,0x460A1B4C,0x1C034AF6,0x2A047A60,0x7360EFC3,0x4567DF55,
 0x1F6E8EEF,0x2969BE79,0x7B61B38C,0x4D66831A,0x176FD2A0,0x2168E236,
 0x780C7795,0x4E0B4703,0x140216B9,0x2205262F,0x7DBA3BBE,0x4BBD0B28,
 0x11B45A92,0x27B36A04,0x7ED7FFA7,0x48D0CF31,0x12D99E8B,0x24DEAE1D,

36

 0x5B64C2B0,0x6D63F226,0x376AA39C,0x016D930A,0x580906A9,0x6E0E363F,
 0x34076785,0x02005713,0x5DBF4A82,0x6BB87A14,0x31B12BAE,0x07B61B38,
 0x5ED28E9B,0x68D5BE0D,0x32DCEFB7,0x04DBDF21,0x56D3D2D4,0x60D4E242,
 0x3ADDB3F8,0x0CDA836E,0x55BE16CD,0x63B9265B,0x39B077E1,0x0FB74777,

 0x50085AE6,0x660F6A70,0x3C063BCA,0x0A010B5C,0x53659EFF,0x6562AE69,
 0x3F6BFFD3,0x096CCF45,0x400AE278,0x760DD2EE,0x2C048354,0x1A03B3C2,
 0x43672661,0x756016F7,0x2F69474D,0x196E77DB,0x46D16A4A,0x70D65ADC,
 0x2ADF0B66,0x1CD83BF0,0x45BCAE53,0x73BB9EC5,0x29B2CF7F,0x1FB5FFE9,
 0x4DBDF21C,0x7BBAC28A,0x21B39330,0x17B4A3A6,0x4ED03605,0x78D70693,
 0x22DE5729,0x14D967BF,0x4B667A2E,0x7D614AB8,0x27681B02,0x116F2B94,

 0x480BBE37,0x7E0C8EA1,0x2405DF1B,0x1202EF8D];

 function crc32_calculate(str) {

 /*Calculate the checksum according to the input value*/

 var crc = 0xFFFFFFFF //Set CRC Original Value

 var i

 for (i = 0; i < str.length; i++)

 //Refer to the table and calculate the remainder for one byte

 crc = (crc >>> 8) ^ table[str.charCodeAt(i) ^ (crc & 0x000000FF)]

 crc = ~crc //Reverse the result

 if (crc < 0)

 {

 crc = 0xFFFFFFFF + crc + 1;//Calculate complement if it is
negative

 }

 return crc

 }

</script>

<p class="texto">QR Code Generator</p>

<form name=form1>

 <table class=wide>

 <tr>

 <td valign=top></td>

37

 <td class=wide><textarea name=data type=text id=data placeholder="Plese
input data here" autofocus rows=5 onChange="onChange()"
onKeyUp="onChange()"></textarea></td>

 </tr>

 <tr>

 <td>Result</td>

 <td><input type=text name=decResult id=decResult readonly> </td>

 </tr>

 <tr>

 <td> </td>

 <td><input type=text name=hexResult id=hexResult readonly> </td>

 </tr>

 </table>

</form>

<div id="qrcodeTable"></div>

<p>Press submit to generate QR code:</p>

<button class="button" onclick="submit();" href="javascript:;">Submit</button>

<script type="text/javascript">

 String.prototype.repeat = function(times) {

 return (new Array(times + 1)).join(this);

 }

 Number.prototype.toHex = function(len)

 /*Convert decimal to hex and add padding zero if the length is less than 8*/

 {

 if (typeof(len) === 'undefined') len = 8;

 var num = this < 0 ? (0xFFFFFFFF + this + 1) : this

 var hex = num.toString(16).toUpperCase()

 var pad = hex.length < len ? len - hex.length : 0

 return "0".repeat(pad) + hex;

38

 }

 function onChange() {

/*Update the result once the data changes*/

 var data = document.form1.data.value

 var crc = crc32_calculate(data);

 document.form1.decResult.value = crc

 document.form1.hexResult.value = crc.toHex()

 }

 function submit(){

 $('canvas').remove();

 //var reversed =
parseInt(document.form1.polynomialReversed.value, 16)

 var data = document.form1.data.value

 var crc = document.form1.decResult.value.toString()

 //alert(crc);
jQuery('#qrcodeTable').qrcode("https://www.cc.puv.fi/~e1201759/QR.php?"+data+"+"+c
rc);

 }

</script>

</body>

</html>

39

APPENDIX 2. CRC Receiver Source Code

 <!DOCTYPE html>

<html>

<body>

<?php

/* php crc32 implementation */

function zeroFill($a, $b) {

/*shift one bit and add padding zero*/

 $z = hexdec(80000000);

 $z = (int)$z;

 $a = (int)$a;

 $b = (int)$b;

 if ($z & $a) {

 $a >>= 1;

 $a &= (~ $z);

 $a |= 0x40000000;

 $a >>= ($b-1);

 }

 else {

 $a >>= $b;

 }

 return $a;

}

function crc32_generate($polynomial) {

 /*Pre-generate a table which stores all the remainder

 for numbers between 0 and 255*/

 $table = array();

 for ($i = 0; $i < 256; $i++) {

40

 $n = $i;

 for ($j = 8; $j > 0; $j--) {

 if (($n & 1) == 1) {

 $n = (zeroFill($n, 1)) ^ $polynomial;

 } else {

 $n = zeroFill($n, 1);

 }

 }

 $table[$i] = $n;

 }

 return $table;

}

function crc32_initial() {

 /*set crc32 initial value*/

 return 0xFFFFFFFF;

}

function crc32_final($crc) {

 /*reverse the result and use complement if the value is negative*/

 $crc = ~$crc;

 return $crc < 0 ? 0xFFFFFFFF + $crc + 1 : $crc;

}

function crc32_compute_string($polynomial, $str) {

 /*compute the checksum according to the sequence number*/

 $crc = 0;

 $table = crc32_generate($polynomial);

 $crc = crc32_initial();

41

 for ($i = 0; $i < strlen($str); $i++)

 $crc = (zeroFill($crc, 8)) ^ $table[ord($str[$i]) ^ ($crc & 0x000000FF)];

 $crc = crc32_final($crc);

 return $crc;

}

function crc32_reversed($polynomial) {

 /*reverse polynomial value*/

 $reversed = 0;

 for ($i = 0; $i < 32; $i++) {

 $reversed = $reversed << 1;

 $reversed = $reversed | (zeroFill($polynomial, $i) & 1);

 }

 return reversed;

}

$polynomialReversed="6DB88320";

$result= $_SERVER["QUERY_STRING"]."
";

$result1=explode("+",$result);

$result2=$result1[1];

$result3=$result1[0];

$str=crc32_compute_string(hexdec($polynomialReversed),$result1[0]);

$servername = "mysql.cc.puv.fi";

$username = "e1201759";

$password = "";

$dbname = "e1201759_SequenceNumber";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

//sql to create table

42

$sql = "CREATE TABLE IF NOT EXISTS ScanTime(

SequenceNumber INT NULL,

ScanTime INT NULL,

PRIMARY KEY (`SequenceNumber`)

)";

$conn->query($sql);

//search for the sequence number in the database

$sql = "SELECT SequenceNumber,ScanTime FROM ScanTime

where SequenceNumber='$result3'";

$result4 = $conn->query($sql);

if($str==$result2 && $str!=""){

 if ($result4->num_rows > 0) {

 $row=mysqli_fetch_assoc($result4);

 printf ("This product has been scanned for %s
times\n",$row["ScanTime"]);

 $sql = "UPDATE ScanTime SET ScanTime=ScanTime+1

 WHERE SequenceNumber='$result3'";

 $conn->query($sql);

 }

 else {

 $sql = "INSERT INTO ScanTime (SequenceNumber, ScanTime)

 VALUES ('$result3',1)";

 $conn->query($sql);

 echo "This product is verified and has not been scanned before";

 }

}

else{

 echo "This product is not verified";

}

43

?>

</body>

</html>

44

APPENDIX 3. CRC Table Generation Source Code

<html>

<body>

<script type="text/javascript">

function crc32_generate(polynomial) {

/*This function is used to generate crc32 remainder value for numbers between

0-255 based on the polynomial value 0x6DB88320.*/

 polynomial = 0x6DB88320

 var table = new Array()

 var i, j, n

 for (i = 0; i < 256; i++) {

 n = i

 for (j = 8; j > 0; j--) {

 if ((n & 1) == 1) {

 n = (n >>> 1) ^ polynomial

 } else {

 n = n >>> 1

 }

 }

 table[i] = n

 }

 document.getElementById("demo").innerHTML = table;

 return table

}

</script>

</body>

</html>

