Olesia Klevanaia

# Computer Aided Engineering in Structural Design:

trends and challanges in data processing

Helsinki Metropolia University of Applied Sciences Civil Engineering Sustainable Building Engineering Bachelor's Thesis 30 May 2016



| Author(s)<br>Title<br>Number of Pages<br>Date | Olesia Klevanaia<br>Computer Aided Engineering in Structural Design: trends and<br>challanges in data processing<br>31 pages + 6 appendices<br>19 May 2016 |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Degree                                        | Bachelor of Engineering                                                                                                                                    |
| Degree Programme                              | Civil Engineering                                                                                                                                          |
| Specialisation option                         | Sustainable Building Engineering                                                                                                                           |
| Instructor(s)                                 | Jorma Säteri, Head of Department                                                                                                                           |

The purpose of this thesis was to study the impact of Computer Aided Engineering (CAE) methods, which substantially grew in significance over the last several decades, on structural design process. The goal of this study was to evaluate degree of the impacts using data processing issues as an example.

The methods used in this study included literature review and performance assessment of such computational tools used in structural design as Autodesk Revit and Robot Structural Analysis. The studied literature covered sources on conventional structural design, as well as papers on the latest advancements in computational structural engineering. The performance assessment involved the steel frame structures analysed with the programs mentioned above.

As a result, it could be seen that smooth data transfer and integration of the computer programs in the design process substantially facilitated delivery of the structural design for the construction project. The same statement is true for such computer-facilitated tools as modeling, analysis and optimization.

Nonetheless, the minor issues that were discovered in the use of the programs suggested that many improvements should be made. Open modeling and optimization of transferred data in particular seemed like relevant topics to consider.



# Contents

| 1 | Intro      | odu   | ction                                            | 1  |
|---|------------|-------|--------------------------------------------------|----|
| 2 | Trac       | ditic | onal and Computer Aided Structural Design        | 2  |
|   | 2.1        | Tra   | aditional Structural Design                      | 2  |
|   | 2.1        | .1    | Construction Engineering Process                 | 3  |
|   | 2.1        | .2    | Structural Engineering Process                   | 4  |
|   | 2.1        | .3    | Structural Design Method                         | 6  |
|   | 2.2        | Со    | mputer Aided Structural Design                   | 8  |
|   | 2.2        | .1    | Implementation of CAE in Construction Industry   | 8  |
|   | 2.2        | .2    | BIM-enabled Structural Engineering               | 10 |
|   | 2.2        | .3    | Analysis and Optimisation in Structural Design   | 12 |
| 3 | Ana        | lys   | is of Steel Frames with Autodesk Revit and Robot | 14 |
|   | 3.1        | Ge    | neral method of analysis                         | 14 |
|   | 3.1        | .1    | Employed software applications                   | 16 |
|   | 3.1        | .2    | Computer procedure                               | 17 |
|   | 3.2        | Са    | se Study 1                                       | 18 |
|   | 3.3        | Са    | se Study 2                                       | 21 |
|   | 3.4        | Те    | st Results                                       | 25 |
| 4 | Disc       | cus   | sion                                             | 28 |
| 5 | Conclusion |       |                                                  | 31 |
| 6 | References |       |                                                  | 32 |

# Appendices

Appendix 1. Case 1: Problem solution

Appendix 2. Case 1: Steel frame design and analysis in Autodesk Robot Structural Analysis

Appendix 3. Case 1: Steel frame model integration between Revit and Robot

Appendix 4. Case 2: Problem solution

Appendix 5. Case 2: Steel frame design and analysis in Autodesk Robot Structural Analysis



Appendix 6. Case 2: Steel frame model integration between Revit and Robot



# 1 Introduction

Over the last decades computational techniques have become a significant tool in many fields of engineering including structural engineering. It is hard to ignore the impact of Computer Aided Engineering (CAE) on structural design practices and changes caused by it.

Traditionally, structural design is defined as a set of actions that aim to produce a function-oriented design of a structure, while complying with a number of requirements and limitations. Today one of the primary ways to handle structural design process, taking into account its complexity and large number of parameters, involves the use of Computer Aided Engineering. At the moment, in addition to its evident benefits, this approach has certain issues, placing new challenges for the industry. However, it promises, eventually, to shape a reformed construction process, where all subsystems, including structural design, function efficiently and in coherence with each other, making sure to deliver an optimal result. [1,2.]

This thesis aims to evaluate and classify the changes caused by the growing importance of computational methods in structural design, with data processing being the main focus area. The aims are achieved through the analysis of existing practices and supported by the assessment of the computer programs commonly used for structural design. Autodesk Revit and Robot Structural Analysis serve as platforms for the assessment, assuring the practical validity of the conclusions.

The assessment is based on 2 case studies, where steel frames are analysed with Autodesk Revit and Robot. The modeled steel structures are sent from one program to another several times, in order to assess the quality of data processing. The results of the tests help to evaluate to what extent information exchange can impact the final results of the design.

# 2 Traditional and Computer Aided Structural Design

In order to describe and evaluate the applications of CAE in structural design in a comprehensible way, first, it is essential to analyze structural design itself. Taking a closer look at the concept of structural design, its workflow and technical aspects allows the formulation of fundamental questions that arise in course of any project. By doing so, elaborate design process can be condensed to a finer model. Hence, the areas that require the use of computational techniques become easier to detect. The next logical step is to link these areas with available solutions offered by computer software. [3.]

As a final outcome, this chapter presents the most common computer aided (CA) structural engineering techniques together with development trends. The obtained information is used as a frame of reference for performance tests of Autodesk Revit and Robot Structural Analysis described in chapter 3.

## 2.1 Traditional Structural Design

This section describes structural design, which is carried out from three points of view: as a stage in a construction design process, as an independent process and, finally, as a mathematical problem. During the analysis of each of the three points of view possible technical issues become apparent. In short, the issues include communication and data exchange difficulties between involved parties, as well as the delivery of a timely and precise solution of the design problem. The solution of the design problem usually means solving systems of simultaneous partial differential equations (PDE). [2,4.]

## 2.1.1 Construction Engineering Process

Construction engineering is a multidisciplinary area of expertise, which requires diverse knowledge and skills. A workflow of a construction project is subject to certain variation, yet there are a number of typical stages, as can be seen in figure 1. [5.]

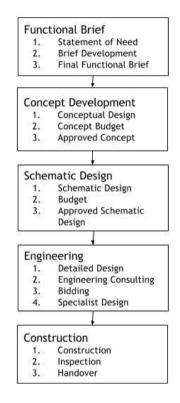
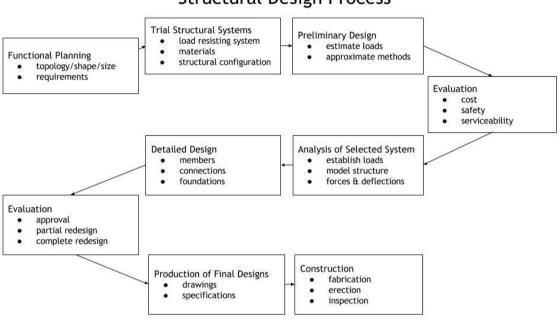



Figure 1. Construction Engineering Process

Initially, a client develops a brief that states the main functions, which is then transferred to a design team for conceptual, or schematic, design. This stage utilizes simplified tools, in order to investigate a wide range of possibilities. The main goal here is to outline the appearance of the building, major design solutions and methods for structure erection, along with specifications and restrictions. [1,5.]

As soon as the client approves the design, the team starts to work on a detailed building model which refines the existing design through editing and by encompassing new details. Simultaneously, the manager can start procurement, which in turn strongly influences the design of the details. After the project information is complete, the actual construction can commence. In order to assure sufficient quality, inspections by the design team and authorities take place during this stage. [6,7,8.]

Despite the brevity of the description given above, it is clear that the number of parties involved in a building project is fairly large. Therefore, apart from technical considerations, which are discussed in section 2.1.1, timely and efficient communication is another issue worth looking at. To a large extent interactions between the participants of the project are carried out using computers. Therefore communication is strongly connected with data exchange. Hence, efficient data processing and interoperability need to be ensured during any design project. [2,5,7.]


#### 2.1.2 Structural Engineering Process

By decomposing the process described above, structural design can be viewed as a separate system. Schematic and detail design constitute the largest part of a structural designer's work, yet certain level of involvement is required during the whole construction project. As a matter of fact, structural design cannot be described as a continuous uninterrupted process. To be more precise, the design team produces several solutions, which are then edited and improved by maintaining a constant feedback loop with the other involved parties including the architect, client, consultants etc. [5,9,10.]

As can be seen in figure 2, the design process starts with functional design, where the topology, shape and size of the structures are established. It also includes an estimation of a sufficient area, the preliminary design of staircases and elevators, any atypical structural requirements and building code limitations. [5,9.]

The next step is to select trial structure systems. Primary concerns here are material selection, load resisting system and structural configuration. The trial systems are then designed and analysed with some basic structural analysis methods meant for estimation of approximate loads, member sizes and connections. [5,11.]

Based on the results of the preliminary analysis a system for detailed design is chosen. This phase is typically carried out with computer programs and includes structural modeling and load definition, followed by the computation of forces and deflections. [12,13.]



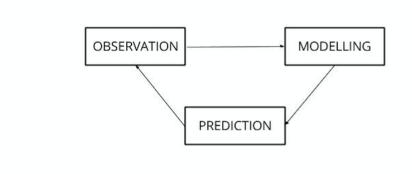
# Structural Design Process

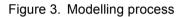
Figure 2. Structural Design Process

The final detailed design is then evaluated against the criteria set during the initial functional design. If the results are unsatisfactory, the project must be redesigned. Depending on the situation, the redesign could be either complete, which starts with a selection of new trial systems and the repetition of all further steps, or partial, which consists of reworking existing detailed designs. As soon as the desired optimum is achieved, the drawings and specifications can be produced and the project moves to construction phase. [10,14,15.]

Structural design is strongly interconnected with architectural design as well as with procurement. Thus, it can be altered at any given stage of the construction process. Apart from redesign during early stages, it is not uncommon for the architect or the manager to request some changes to the finalized structural model during later stages of the project. The reasons for this can be constructability problems, detection of collision and so on. These situations prove that flexibility is an essential characteristic of a successful structural engineering process, yet in practice it is not always the case. [2,4,16.]

Structural design process poses many technical challenges, which result in multiple redesigns. This way the main goal of the structural design is to deliver satisfactory solution with as few redesigns, or iteration loops, as possible. In terms of CAE it means implementation of more effective optimization techniques. [17.]


#### 2.1.3 Structural Design Method


The final outcome of a structural design process is an arrangement of structural elements that optimally suits the set requirements. Most design problems are formulated and solved with the analysis procedure. It is often necessary to carry out the analysis repeatedly in the course of the design process. This approach allows the designer to pinpoint better design solutions considering the budget and performance. [4,14.]

The intent of a structural analysis is to identify forces, stresses and displacements that occur as a result of working loads. To assess the abovementioned reactions, it is crucial to set up a model imitating the behaviour of the structure under assumed loads. The main criterion for the adequate model is the relation between its accuracy and simplicity. [4,17.]

From a theoretical point of view, parameters that influence structural responses are well defined and can be solved with numerical methods. Its simplified procedure is shown on figure 3. However, a growing complexity of designed systems, naturally, leads to structural solutions becoming more complicated as well. As a result, in order to find the problem solution more sophisticated computational procedures and higher lev-

el of expertise are required. Another essential steps are verification and interpretation of numerical output. [14,18,19.]





An analytical model is created in order to calculate the displacements in the structure and usually processed in a standard way. First, a structure is idealized to such level of abstraction, where it can be solved. Typically, a real structure is reformulated into an assembly of interconnected elements. Next, a model is generated, as local requirements for equilibrium are defined. Then the set of simultaneous equations which are used for displacement calculation is formulated through requirements for interconnection of elements. Finally, the solution of simultaneous equations provides values of unknown displacements, which are required for the final model. Then internal stresses and forces are computed by solving local equilibrium requirements. [16, 20,21]

The quality of the analysis predominantly relies upon the computational techniques utilized for the solution of the equilibrium equations. A higher precision can be achieved by using better-defined models which approximate real structures to a very high extent. [22,23.]

#### 2.2 Computer Aided Structural Design

After outlining the issues that typically occur in the structural design, available corresponding CA solutions are outlined. Even though the division suggested below is conditional and implies substantial simplification, it can be accepted that each of the issues is tackled with a certain computational tool or family of tools. The first group of problems is related to communication, including data exchange. They are supposed to be eliminated by modeling tools. The second group of problems is caused by difficulties with the mathematical formulation of the design problem. Such tools as computational structural analysis and optimisation are expected to resolve these problems. [20,24.]

#### 2.2.1 Implementation of CAE in Construction Industry

BIM and its implementation are typically expected to improve productivity and quality of deliverables. However, there is still no uniform strategy for the incorporation of BIM methodology in a construction process. Naturally, this fact causes some implementation issues. Yet despite possible complications at the early stages, information modeling brings certain benefits to the design procedure, including a lower number of inter-disciplinary conflicts and a higher quality of the final output. [25,26,27.]

A universal definition of BIM is yet to be given. Nevertheless, it can be interpreted as a multidimensional, historically evolving and complex concept. To begin with, it is a digital representation of a building in 3D. It can also be perceived as the information library of a project, as well as a communication and cooperation tool. The main trend is for BIM to refine a construction project workflow and to strengthen the relationship between design and construction. Along with all existing branches of building industry, structural design is impacted by BIM and by the changes that it brings to the construction process. [25,28.]

As stated above, the implementation of BIM could at times be challenging due to its novelty. In spite of the lack of comprehensive research on the subject and limited experimental data, some modeling practices are more successful and some have proven to be fruitless. For instance, for quite some time the concept of single software solution

for the whole construction process was dominant in the industry. However as it became obvious that this paradigm is not feasible practically, distributed modeling started to gain more attention and eventually proved to be a more successful approach. A comparison of these two approaches is summarized in Figure 4. [29,30.]

Hypothetically, integrated design offers multiple advantages. Still little progress has been made to bring it to the industry. Currently there is no existing or developing application that could store all the information for a construction project in a form that would be understandable to all participants. Moreover, none is likely to appear at all. [20,30.]

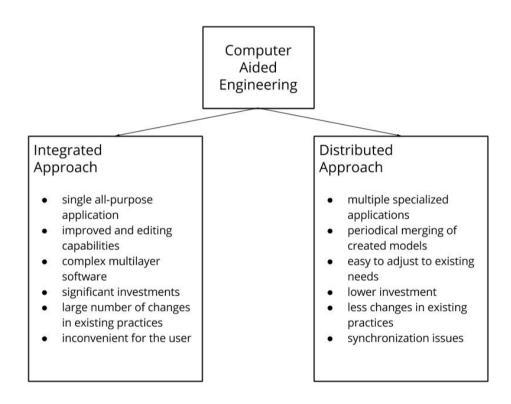



Figure 4. Comparison of Integrated and Differentiated Approaches in Construction Industry

Development of a program with multiple environments for the different specialists is rather complicated and would require an extremely high investment. Financial costs of that size would turn the project unprofitable for the developer. Businesses would face the need to disintegrate current operation practices and establish new ones, and users would be exposed to a complicated interface, with a majority of functions that are never used. Overall, financial, intellectual and social investments required for the success of this paradigm along with the high risks undermine the possible benefits, making integrated approach unattractive for the industry. [28,30.]

The distributed modeling paradigm, on the other hand, has shown more signs of success. Such positive results can be attributed to the high flexibility of this approach. As opposed to various experts working with the same software, distributed modeling promotes highly specialized programs, where the created models are merged periodically, in order to provide a platform for collaboration and comparison. [25,30.]

Changes caused by the introduction of such software in a company would be of a moderate scale, keeping the existing practices intact. Additionally, there remains a possibility to modify and experiment with available functions, crafting the most suitable implementation pattern for a given company and allowing the company to develop in the most organic way. Considering the wide range of businesses involved in construction, adaptability plays an important role. Lastly, a large number of vendors with a relatively low market share should put the issue of interoperability forward. At the moment, data processing with several software products within the same project considered to be one of the most problematic areas. [30.]

#### 2.2.2 BIM-enabled Structural Engineering

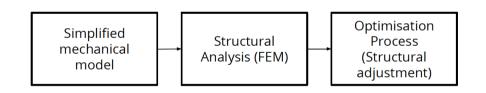
As it is now clear from section 2.2.1 which direction modeling in building industry is headed to, impacts of computer modeling on the development of computer aided structural design in particular can be spotted as well. Some of the major trends of modeling in structural design include an increase in data sharing, ever-growing iteration capabilities of software products and the development of parametric design. [2,31.]

A constant exchange of information is an adjustment that affects all levels of a project. These adjustments influence all specialists, including the structural designers, in a similar manner. First, increased transparency leads to a higher awareness of current situation, changing the approach to decision making. Different teams, such as structural, electrical, HVAC and others who traditionally work separately and do not share almost any facts regarding their progress, now get an opportunity to get familiar with the solutions of the remaining specialists, thus making better-informed decisions in their own domain. [32,33.]

Additionally, with growing information flows every piece of data is exposed to a larger number of viewers within the same design team as well, which can be beneficial in a number of ways. Importantly, the exposure of the design details to a larger number of people can reduce errors and inconsistencies. If tracked at early stages, these issues can be resolved with a minimal negative effect. Then, a higher level of exposure brings a higher sense of responsibility, resulting in a better quality of the output. [31,32.]

The development of computational methods supports the advancement of modeling software too, making it more efficient and productive. With a higher automation level and a lower time required for a single operation, iterative capabilities of structural design programs increase significantly. Hence, the higher productivity means a larger variety of possible options to be considered and evaluated, which leads to a more refined solution. [34.]

Parametric modeling is another important development in CAE area. The ability to use an object library, where the geometry of an object is related to its properties, could advance many procedures. For example, the use of object-oriented software can facilitate design, as individual components can be queried for material and performance data, as well as for cost. [28,35.]


The development of the parametric modeling is also supported by the fact that manufacturers create open libraries with models of their products. This way, a parametric relationship between form and components of a building can be established right after initial sizing and form organization, resulting in a better overall optimization of the structure. [27,20.]

# 2.2.3 Analysis and Optimisation in Structural Design

As mentioned above in section 2.2.2, advancements in operational speed and output data quality of computational methods strongly encouraged, among many things, the incorporation of computer-aided structural design techniques in construction engineering process. The most prominent tools used to increase the operational speed and data quality include finite element analysis (FEA) along with multiple optimisation methods. With the development of computational engineering, especially finite element method calculations, processes of optimisation were integrated into design activities, in order to save the time required for obtaining a satisfactory result. [29,36.]

The technical procedure of computational structural analysis is not in the scope of this study, yet a basic interpretation of the issue could help to gain better understanding of the subject. One of the ways to look at a structural analysis is by dividing it into three major parts. [27,29.]

As can also be seen in figure 5, a model created by architects should be preprocessed. In other words, the project needs to be reformulated using simple structural elements, such as beams and columns. [37.]



#### Figure 5. Computational Structural Analysis Process

When the model is assembled, the analysis is carried out with computer programs. The finite element method (FEM) is the most widely used form of analysis, as it provides solutions to complex problems while maintaining a high level of automation. The finite element method for structural analysis is based on substitution of a real continuous

structure with a model that consists of finite number of elements. These assumed elements possess known material properties, including elasticity and inertia, which are expressed in a matrix form. Assembled according to the rules derived from elasticity theory, matrices describe the responses of the actual structure. The major concept to keep in mind, when discussing FEM, is that once the size of the defined elements becomes small enough, the model's behaviour converges to that of the real structure and it is possible to determine the deformations with sufficient accuracy. [29,30.]

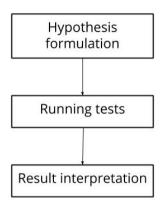
After the analysis, engineers should interpret the results. Furthermore, they introduce adjustments to an existing design. Even though structural analysis is predominantly used to evaluate the quality of the suggested design, more appropriate structural solutions can be offered. One of the ways to find more suitable solutions supposes the use of certain patterns and search mechanisms. This process denotes the shift from analysis to optimization. [37.]

Optimization in structural design deals with three aspects, the size, shape and topology. Optimizing the shape and area is typically less complicated and allows for the control of such factors as fabrication costs and structural reliability. Topology, on the other hand, can be more challenging to optimize. It deals with the connectivity of the elements, and when optimizing it, the design should be viewed from a more global perspective. Nonetheless, the latest studies indicate that the best possible results come from the simultaneous optimization of all three aspects. [2,37.]

From a technical point of view, structural design can be said to significantly benefit from implementation of computational tools which handle sophisticated calculations with a higher accuracy in a shorter period of time, decreasing the overall cost. The development of computer optimization tools and FEM serve as major examples for that.

# 3 Analysis of Steel Frames with Autodesk Revit and Robot

The practical part of this thesis aims to assess the level of data transfer quality offered by Autodesk Revit and Robot. Problems, which are analysed with the method described below, are used to demonstrate capabilities of the computer programs and to draw conclusions regarding performance and possible future developments of the programs.


As it was stated in chapter 2, distributed design showed to be rather successful. However, the use of distributed deign approach in CAE development places certain challenges on the industry. For instance, any software is now supposed to accommodate an ever-increasing number of model and data transfers in the course of a construction project. Results of the tests carried out in this chapter give the basis for the evaluation of the current situation in the computer-aided structural design. [9,10.]

The tests carried out in this final project clarify how compatible different computer programs are and how much their repetitive synchronization can affect the quality of a structural model. Structural models used in the case studies are all steel hyperstatic structures under a uniformly distributed load. The moment diagrams for the structures need to be determined. In order to ensure the reliability of the results, the problems were preliminary solved manually with Excel. There were two pieces of structural analysis software used in the practical part, Autodesk Revit and Robot, both of which are developed by the same company and widely used in the industry. [38,39.]

As a final outcome, the test results are supposed to provide sufficient information for software evaluation. Based on the case studies, the current synchronization procedure is assessed and any possible drawbacks and development suggestions are outlined.

# 3.1 General method of analysis

The tests carried out in this study are based on several cases, the main goal of which is to determine the quality of data transfer and, if possible, distinguish areas worth improving. The general analysis procedure adopted for the tests is described in this section and schematically shown in figure 6. Case-specific details are elaborated further in corresponding sections.



#### Figure 6. General test procedure

In order to answer the questions posed in section 2 above, tests on different structures are carried out. Every test procedure is performed in a similar manner and can be divided into three steps: hypothesis construction, testing and analysis of results. [7,17.]

For each case, certain unknowns should be calculated with both Autodesk Revit and Robot Structural Analysis. The outputs of each program are expected to be coherent and, additionally, stay within the same order of magnitude as preliminary calculated results. The results are obtained through manual calculations with Excel for repetitive operations. As it can be understood, the availability of preliminary results and their accuracy are significant for the overall assessment. For this reason, the test structures are chosen with a view to obtaining unambiguous results which can be checked manually. [9.]

Once the hypothesis is formulated, tests are carried out, and their results are recorded and stored. The main areas of focus here are the consistency of the calculation results on one hand, and their accuracy after multiple conversions from one format to another, on another hand. Derived results are then compared with each other, as well as with the preliminary manual calculations. This provides sufficient background for the evaluation of the used software products. [25.]

3.1.1 Employed software applications

The programs used for the study were Autodesk Revit and Robot Structural Analysis Professional. Both programs are developed by Autodesk, which ensures a high level of compatibility during the simulations. In addition to this, the fact that Autodesk is one of the leaders in the industry means that both programs are widely used in construction projects. [38,39.]

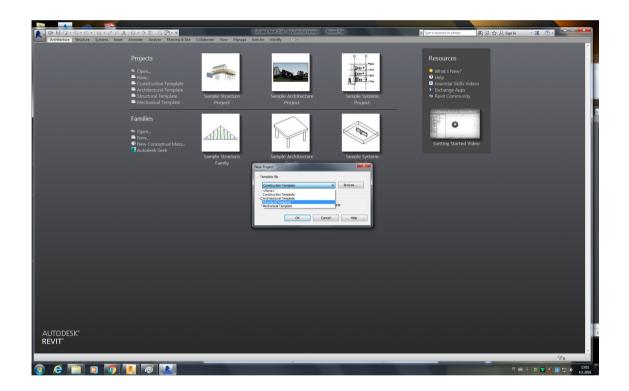



Figure 7. Interface of Autodesk Revit

Autodesk Revit, work environment of which is presented in figure 7, is a design and construction program, which supports implementation of BIM at all stages of a construction project. It promises, among other features, to provide precise models, facilitate optimisation processes and give a platform for effective communication. [39.] Autodesk Robot Structural Analysis is a structural analysis program based on FEA. It allows engineers to carry out design, simulation and analysis procedures, as well as code checking for any type of structures. It also has a link to Autodesk Revit, assuring sufficient interoperability. [38.]

## 3.1.2 Computer procedure

Based on sections 3.1 and 3.1.1 the test procedure is described. Its schematic representation can be seen in figure 8.

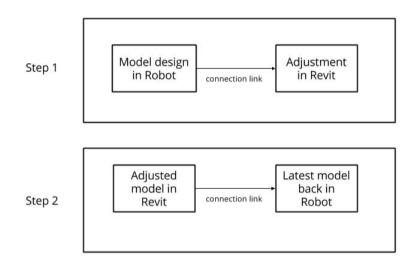



Figure 8. Procedure of computer simulation

Initial modelling and analysis are performed with Autodesk Robot Structural Analysis Professional. The created model is then transferred to Autodesk Revit, where it can be modified if necessary. The updated model can then be delivered back to Autodesk Robot with all adjustments intact. The produced results are studied and summarized, in order to assess the level of data processing.

#### 3.2 Case Study 1

A structure displayed in Figure 9 is chosen for analysis in the first case. It is a hyperstatic homogenous structure, meaning that the bending stiffness, or a product of the elastic modulus (E) and the area moment of inertia (I), is a constant. Its horizontal element is uniformly loaded with p=25kN/m. More relevant dimensions can be seen in figure 9.

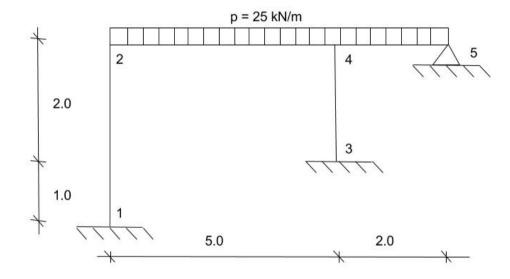
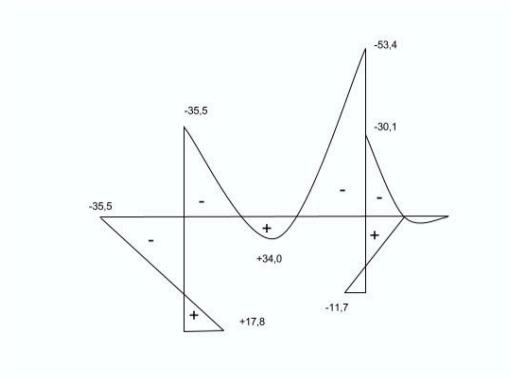
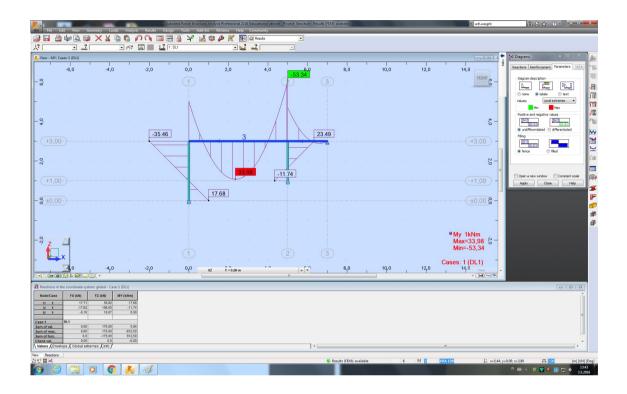




Figure 9. Case 1: Structure diagram

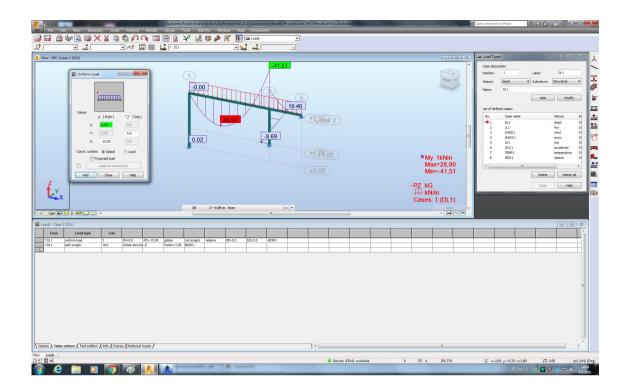
The task is to identify reaction forces and sketch a moment diagram for the structure. A detailed solution of this problem can be found in Appendix 1. For the purposes of this study, a manually derived moment diagram with denoted extreme values is presented below in figure 10. The values serve as a reference point for computer calculations, performed next.

When the preparatory calculations for case 1 are ready, the problem can be reformulated and solved with Autodesk Robot. The proceedings of the process can be checked in Appendix 3.




#### Figure 10. Case 1: Moment diagram

The shaped curves show that that the obtained solution is fairly close to the expected one (see figure 10). Upon further examination, also the extreme values for moments appear to be sufficiently close. For example, the maximal moment value of the horizon-tal element, bar 2-4-5 in figure 8, is 33,96 kNm with manual calculations against 33,98 kNm offered by Autodesk Revit. The remaining critical values vary in the same range. With this result it can be concluded that the input of data was performed successfully and further simulations have a solid point of reference.


The complete Autodesk Robot model is then sent to Revit via built-in link. The function offers multiple options regarding the objects and properties of the object's properties that will be transferred to Revit. The final moment diagram can be seen in figure 11.

Further, once the program processes the model, the examined structure can be viewed in Revit. The properties of the model, including the materials, dimensions and topology, remain unchanged, as well as the assumed loads, keeping the moment diagram identical to the one in Robot.



#### Figure 11. Case 1: Moment diagram generated with Autodesk Robot

Revit also allows the designer to modify the loads. In Case 1, uniform 25 kN/m load was reduced to 15 kN/m. The updated model is then sent to Robot via the built-in link for a new analysis. When the model is viewed in Robot the loads are reduced from 25 kN/m to 15 kN/m, proving compatibility of the programs. Finally, after the analysis it can be stated that the latest model of the structure, which is displayed in figure 12, is no longer stable.



#### Figure 12. Updated Robot model

As a result, it is possible to say that the data transfer between Revit and Robot in this case study was quite successful and smooth. Both programs retained the essential information and the results of the analysis stayed coherent with the expected values.

# 3.3 Case Study 2

The second case to be analysed is the structure shown in figure 13. It is a hyperstatic homogenous structure, meaning that the bending stiffness, or a product of the elastic modulus (E) and the area moment of inertia (I), is a constant. Its horizontal element is uniformly loaded with p=42kN/m. More relevant dimensions can be seen in the figure 13.

Similarly to the 1<sup>st</sup> case, the task is to identify the reaction forces and sketch a moment diagram for the structure. Appendix 2 offers a full solution to the problem. A moment diagram with denoted extreme values, drawn from the calculations in Appendix 2. Fur-

ther computations with Autodesk Robot and Revit are compared to these results for the reference.

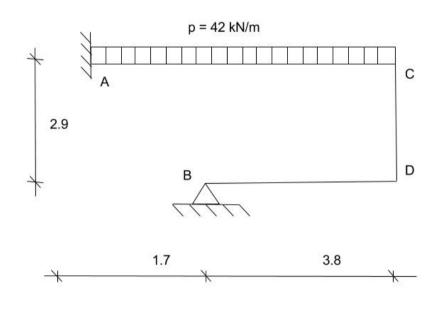



Figure 13. Case 2: Structure diagram

When the preparatory calculations for the Case 2 and the moment diagram are ready, the problem can be reformulated and solved with Autodesk Robot. The proceedings of the process can be checked in Appendix 4.

It can be seen from the similarly shaped curves that the obtained solution is fairly close to the expected one (figure 14). Upon further examination the extreme values for moments appear to be sufficiently close also. For example, the manually calculated moment value at the fixed support, point A on Figure 11 is -317,65 kNm against -317,77 kNm offered by Autodesk Revit. The remaining critical values vary in the same range. Consequently, it can be concluded that the input of data was performed successfully and further simulations have a solid point of reference.

3

The complete Autodesk Robot model is then sent to Revit using the built-in link. The link allows the engineer to specify which objects and properties should be transferred.

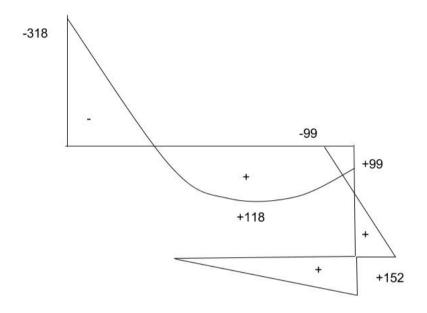



Figure 14. Case 2: Moment diagram

Further, once processed by the software, the examined structure can be viewed in Revit. The properties, including materials, dimensions and topology of the structure remain unchanged, as do the assumed loads, keeping the moment diagram identical to the one in Robot.

In this case two changes to the initial model were made: one element was changed and the magnitude of load was increased. First, The changes were begun with modifying properties of the lower horizontal bar, element B-D in figure 13. Its section was changed from HE100 to HE320, while the remaining elements were not changed. Then the load introduced to the structure was increased from 42 kN/m to 100 kN/m. [38.]

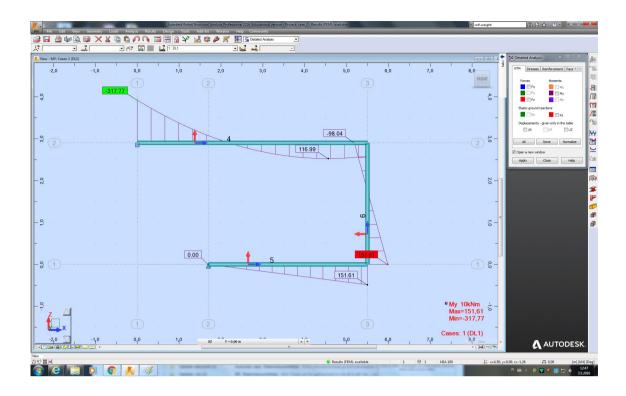



Figure 15. Case 1: moment diagram generated with Autodesk Robot

The updated model is then sent back to Robot, figure 15, and analysed. In figure 16 it can be seen that the modified bar is also updated in Autodesk Robot. The section properties and loads are updated as well. Lastly, an analysis on the structure is performed for the second time. The analysis states that the frame is no longer stable due to the introduced changes.

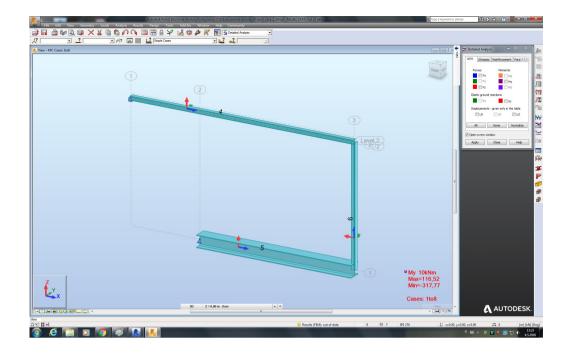



Figure 16. Case 2: updated Robot model

The tests showed that the data transfer between Revit and Robot was quite successful and smooth in this case. Both programs retained the essential information and the results of the analyses stayed coherent with the expected values.

# 3.4 Test Results

After considering the output produced during the tests, models designed in Autodesk Robot can be transferred to Revit and back with minor to none distortion. However that is true in the cases with conventional structures and loads within typically expected range. Load cases described by Eurocode can be used as an example. [38,39]

Moreover, changes introduced in Revit are also displayed in Autodesk Robot after synchronisation. Nonetheless, in order to avoid inconsistencies in the calculation the software-specific rules for definition of geometrical surfaces and loads should be followed accurately. Average construction projects can use Autodesk Robot and Revit and expect the high level of synchronization and data exchange. Aside from that, the tests show that distributed design becomes more common and is recognized by larger software developers, such as Autodesk, who also provide a link that ensures smooth information exchange between users of different products. Still data exchange properties of any program are strongly dependant on parameters determined by the developer and can at times serve as limitations. [35,38,39.]

Talking about special requirements during a design process in Autodesk Robot and Revit, it is essential to pay close attention to two instances. Firstly, a clear and consistent definition of the coordinate system and sign convention plays a significant role in achieving accurate results. Furthermore, units and their scale should be double-checked as well for the same reason.

Secondly, during the synchronization of Revit and Autodesk Robot, the definition of loads needs to be traced carefully, as their listing in Revit is slightly different from that in Autodesk Robot. Input values do not get altered after the integration of the model, though the load groups might be automatically re-named in Robot to match the groups in Revit, as the latter is typically serves as a primary software application in construction projects. All in all, this feature does not cause any significant disruption to the process.

Synchronization of the two programs provides a reliable tool for distributed design of a structure. Certain difficulties may arise when working with pieces of software developed by different companies. While the transition between Autodesk Robot and Revit is uncomplicated, similar procedure between Autodesk Robot and Tekla Structures might require more effort due to installation technicalities and more time consuming configuration of the parameters of a transferred model.

To sum up, a distributed approach to the design of structures becomes more common and developers of software, such as Autodesk, have already acknowledged this fact. Nevertheless, interoperability is still quite far from being as all-encompassing as stated in official papers. Despite certain challenges that may arise while working with products of different vendors, tests with Revit and Autodesk Robot Structural Analysis showed that project models can be synchronized and updated while maintaining most of the model information, which allows different design teams in a project relatively independently.

## 4 Discussion

Overall, the test results in Chapter 3 supported by the theoretical research in Chapter 2 help to distinguish the ways in which structural design is impacted by CAE. It can be also seen that Autodesk Revit and Robot provide the design functions adequate for the analysis purposes in majority of projects. Use of the programs facilitates both technical calculations and communication process. Nevertheless, a number of challenges is still to be overcome. Most importantly, it is crucial to understand that the contents and definition of structural design have changed, as well as the skills required to perform it. [10,27.]

Models used for the simulations in chapter 3 contain information that is typically relevant in the structural design phase of a construction project. This way, despite their relative simplicity, tests can be used to extrapolate the performance of CA functions in a large-scale project. Evidently, a structural model developed in Autodesk Revit and Robot can be sent back and forth several times without any significant disturbance to the overall quality of the model. Alterations can also be performed and retained after transfer, if some details, such as geometric parameters and load definition process, are performed carefully. [20.]

However, timing can be an issue worth considering. Even for the studied simple structures analysis process with Autodesk Robot took some time. Naturally, a project with thousands of details and multiple load combinations require a lot more time. This may lead to project extensions and delays. Consequentially, studying the relation of output, processing speed and amount of transferred information should be studied further.

Also, the practical implications of distributed design adoption should be noticed. The approach taken in the practical part of this study, where a model created with one program is then edited or analysed with another, is typical for a structural design process today. Architects, managers and consultants merge models from specialized applications to achieve better communication. [25,27.]

This system works well enough, provided that the synchronization of models is properly organized. Such distributed design simplifies the delegation of tasks, which naturally occurs in any construction project. As an outcome, deliverables are presented within shorter period of time and their quality is typically better. The reason for that is the fact that engineers work with narrowly targeted programs that offer exceptional results for a limited number of tasks. An example of this is Autodesk Robot and its use for finite element analysis. [28,38,39.]

Distributed design still has some issues, mainly related to the openness and compatibility of design and its outputs. With Autodesk Revit and Robot, the integration process takes place quickly and smoothly. Such results are expected from applications developed by the same company. However, many issues arise when applications were created by different companies. A direct link is not always available and manual transfer of a model requires high level of expertise in a number of areas: structural design, construction management and programming. The transfer issue can currently be considered as pressing, and an express solution would be highly beneficial to many companies. [30.]

Finally, the roles of the structural engineer and designer are getting redefined, as new skills become more and more essential and old ones are now looked at from a different perspective. The main idea is that massive computations, which used to constitute the body of structural engineer's work, are now done by of a machine. Constantly developing mechanisms of analysis and optimisation handle extremely complicated problems better than humans could ever do. In turn, the ability to communicate the designer's intent to a program and derive conclusions from numerical output provided by a computer becomes invaluable, in order to successfully solve any structural design problem. [27,31.]

At the same time, traditional skills and practices cannot be abandoned. The ability to predict results and evaluate computations carried out by a computer application is essential as well. In the case studies, the solutions to the problems were also calculated normally and served as a reference point for the rest of the process. Yet in real projects this scenario is impossible, so the reference point needs to be produced with approxi-

mate calculations in a very short time. This sort of proficiency requires exceptional knowledge of traditional methods and an understanding of structures, setting high requirements for future specialists. [31.]

Research performed in the course of writing this thesis shows that structural design primarily benefits from the use of CAE methods. With the adoption of a distributed approach to design, facilitated by software applications that can be recurrently synchronised, more precise and economical solutions become available. Although problems with data exchange between computer programs of different developers are still to be solved, the general impact of CAE can be considered positive both for the field and for its specialists.

## 5 Conclusion

The intent of this paper is to identify those areas within structural design in construction process that are most affected by the introduction of computational methods, and then assesses the scale and consequences of these new developments. Data exchange is one of the more obvious and, at the same time vital implications of CA structural design, thus it was studied particularly closely. [27.]

After defining structural design as part of a construction project, independent discipline and technical approach to problem, it appears that CAE can be tied to structural design in two major ways. First, computer software solves the problem of complex analysis and optimization. FEA-based programs for structural analysis, such as Autodesk Robot, are an example of this. Second, since structural design serves as a part of a construction project, developments in construction engineering typically affect the workflow of a structural design process as well. Computer-enhanced modeling capabilities are a relevant example for that, as they allow the design team to work more efficiently and new ways of communication, presenting visuals and exchanging data. [13,25,31.]

The data exchange was studied more closely and showed to be worth the attention. The quality of data transfer strongly affects the quality of final outputs and the time frame of structural design. Some software applications, such as Autodesk Revit and Robot, provide sufficient functions in that area. Their integration ensures a smooth information exchange and shows that a distributed design approach is developing in a positive direction. Yet for other programs it may not be the case, as the synchronization of products from different developers is typically more cumbersome. For this reason, further investigation in data-processing issues, for instance, the manual definition of transferred model may be pursued in future, becoming another fascinating area of research. [38,39.]

# 6 References

- 1. Hibbeler RC. Structural analysis. 4th ed. Upper Saddle, NJ: Prentice-HAll, Inc; 1998.
- Hung-Lin Chi, Xiangyu Wang, Yi Jiao. BIM-Enabled Structural Design: Impacts and Future Developments in Structural Modelling, Analysis and Optimisation Processes. Archives of Computational Methods in Engineering 2015;22(1):135-151.
- 3. Simon HA. The Sciences of the Artificial. 3rd ed. US: MIT Press; 1996.
- Kirsch U. Design-Orientated Analysis of Structures [online]. Secaucus, US: Kluwer Academic Publishers; 2004. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10066772. Accessed 28 March 2016.
- 5. Gray C, Hughes W. Building Design Management. GB: MPG Books Ltd; 2001.
- Baldwin A, Bordoli D. Handbook for Construction Planning and Scheduling [online]. Somerset, GB: Wiley; 2014. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10860997. Accessed 29 March 2016.
- 7. Dym CL, Little P, Orwin EJ. Engineering design: a project-based introduction. 4th ed. US: John Wiley & Sons, Inc; 2014.
- McGeorge D, Zou PXW. Construction Management [online]. Somerset, GB: Wiley-Blackwell, 2012. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/reader.action?do cID=10657919. Accessed 29 March 2016.
- Pahl G, Beitz W, Feldhusen J, Grote KH. Engineering Design: A Systematic Approach. 3rd ed [online]. Springer-Verlag London; 2007. URL:http://link.springer.com.ezproxy.metropolia.fi/book/10.1007/978-1-84628-319-2/page/1 Accessed 28 March 2016.
- Camilleri ML. Structural Analysis [online]. New York, US: Nova; 2010. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10681003. Accessed 29 March 2016.
- Dabby R,Bedi A. Structure for Architects [online]. Hoboken, US: Wiley; 2012. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10546589. Accessed 29 March 2016.
- Boswell K. Exterior Building Enclosures [online]. Somerset, US: Wiley; 2013. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10718824. Accessed 28 March 2016.

- 13. Construction Specifications Institute. CSI Construction Specifications Practice Guide [online]. Hoboken, US: Wiley; 2011. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10441468. Accessed 29 March 2016.
- Megson T. Structural and Stress Analysis [online]. Jordan Hill, GB: Butterworth-Heinemann; 2005. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10138506. Accessed 17 March 2016.
- 15. McGeorge D, Zou PXW. Construction Management [online]. Somerset, GB: Wiley-Blackwell, 2012. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/reader.action?do cID=10657919. Accessed 29 March 2016.
- Eynon J. The Design Manager's Handbook [online]. Somerset, GB: Wiley-Blackwell; 2013. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10546589. Accessed 29 March 2016.
- Dym CL, Williams HE. Analytical Estimates of Structural Behavior [online]. Boca Raton, US: CRC Press; 2012. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10539449. Accessed 28 March 2016.
- Hellesland J, Challamel NI, Casandjian C. Reinforced Concrete Beams, Columns and Frames [online]. Somerset, US: Wiley-ISTE; 2013. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10662558. Accessed 29 March 2016.
- 19. Maekawa K, Obikawa T, Yamane Y, Mechanical Design [online]. Butterworth-Heinemann, Jordan Hill, GB; 2003. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10169639. Accessed 28 March 2016.
- Dym C. Principles of Mathematical Modeling [online]. Burlington, US: Academic Press; 2004. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10167048. Accessed 28 March 2016.
- Kurrer KE. History of the Theory of Structures [online]. Hoboken, DE: Ernst & Sohn; 2009.
   URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10355298. Accessed 29 March 2016.
- 22. Chen WF. Advanced analysis for structural steel building design. Frontiers of Structural and Civil Engineering [serial online] 2008;2(3):189-196. URL:http://search.proquest.com.ezproxy.metropolia.fi/docview/251195850/BAE 1D22476D645D7PQ/1?accountid=11363. Accessed 22 February 2016.

23. Zalka KA. Global Structural Analysis of Buildings [online]. US: CRC Press; 2000.

URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10054256. Accessed 18 March 2016.

- 24. Abrishami S, Goulding J, Pour Rahimian F, Ganah A. Virtual generative BIM workspace for maximising AEC conceptual design innovation: A paradigm of future opportunities [serial online] 2015;15(1):24-41. URL:http://search.proquest.com.ezproxy.metropolia.fi/docview/1641817647/8E 2293CB6E5745A8PQ/1?accountid=11363. Accessed 22 February 2016.
- 25. Miettinen R, Paavola S. Beyond the BIM utopia: Approaches to the development and implementation of building information modeling. Automation in Construction [serial online] 2014;43:84-91. URL:http://www.sciencedirect.com.ezproxy.metropolia.fi/science/article/pii/S092 6580514000612. Accessed 22 February 2016.
- Lino Maia, Meda P, Freitas JG. BIM Methodology, a New Approach Case Study of Structural Elements Creation. Procedia Engineering [serial online] 2015;114:816-823. URL:http://www.sciencedirect.com.ezproxy.metropolia.fi/science/article/pii/S187 7705815016719. Accessed 22 February 2016.
- Singh Vishal. BIM and systemic ICT innovation in AEC: Perceived needs and actor's degrees of freedom. Construction Innovation [serial online] 2014;14(3):292-306. URL:http://search.proquest.com.ezproxy.metropolia.fi/docview/1658480446/8C 5104B595D4D93PQ/1?accountid=11363. Accessed 22 February 2016.
- Farr ERP, Piroozfar PAE, Robinson D. BIM as a generic configurator for facilitation of customisation in the AEC industry. Automation in Construction [serial online] 2014; 45:119-125. URL:http://www.sciencedirect.com.ezproxy.metropolia.fi/science/article/pii/S092 658051400123X. Accessed 22 February 2016.
- Minho Oh, Jaewook Lee, Seung Wan Hong, Yongwook Jeong. Integrated system for BIM-based collaborative design [serial online] 2015;58: 196-206. URL:http://www.sciencedirect.com.ezproxy.metropolia.fi/science/article/pii/S092 6580515001582?np=y. Accessed 22 February 2016.
- Ning Gu, Kerry London. Understanding and facilitating BIM adoption in the AEC industry [serial online] 2010;19(8):988-999. URL:http://www.sciencedirect.com.ezproxy.metropolia.fi/science/article/pii/S092 6580510001317. Accessed 18 February 2016.
- 31. Solihin W, Eastman C. Classification of rules for automated BIM rule checking development [serial online] 2015;53:69-82. URL:http://www.sciencedirect.com.ezproxy.metropolia.fi/science/article/pii/S092 6580515000370. Accessed 22 February 2016.

32. Moore JFA, editor. Monitoring Building Structures [online]. US: Routledge; 2003.

URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10060693. Accessed 29 March 2016.

- 33. Akponanabofa Henry Oti, Walid Tizani. BIM extension for the sustainability appraisal of conceptual steel design. Advanced Engineering Informatics [serial online] 2015;29(1): 28-46. URL:http://www.sciencedirect.com.ezproxy.metropolia.fi/science/article/pii/S147 4034614000871?np=y. Accessed 22 February 2016.
- 34. Dalton SK, Atamtuktur S, Farajpour I, Hsein Juang. An optimization based approach for structural design considering safety. robustness. and [serial cost.Engineering Structures online] 2013;57:356-363. URL:http://www.sciencedirect.com.ezproxy.metropolia.fi/science/article/pii/S014 1029613004525?np=y. Accessed 19 February 2016.
- Davila Delgado JM, Hofmeyer H. Automated generation of structural solutions based on spatial designs. Automation in Construction [serial online] 2013;35:528-541. URL:http://www.sciencedirect.com.ezproxy.metropolia.fi/science/article/pii/S092 6580513001052. Accessed 19 February 2016.
- El Hami A, Bouchaib R. Uncertainty and Optimization in Structural Mechanics [online]. Somerset, US: Wiley-ISTE; 2013. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10687764. Accessed 29 March 2016.
- Arora JS. Optimization of Structural and Mechanical Systems [online]. River Edge, SG: WSPC; 2007. URL:http://site.ebrary.com.ezproxy.metropolia.fi/lib/metropolia/detail.action?doc ID=10255791. Accessed 29 March 2016.
- 38. Robot Structural Analysis Professional. Autodesk. [online]. URL:http://www.autodesk.com/products/robot-structuralanalysis/features/all/list-view. Accessed 18 May 2016
- 39. Revit. Autodesk. [online].

URL:http://www.autodesk.com/products/revit-family/overview. Accessed 18 May 2016

#### Appendix 1. Case 1: Problem solution

In this Appendix solution of the problem used for the 1<sup>st</sup> case study is presented.

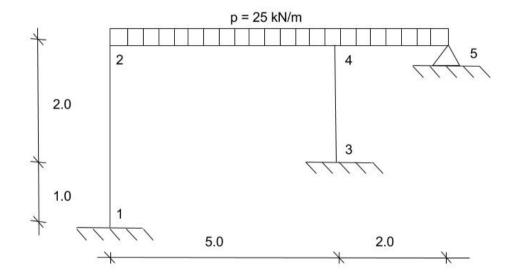



Figure 17. Case 1: Schematic drawing of a frame

The first structure is a hyperstatic frame showed above. It is uniformly loaded (p= 25kN/m) and EI is constant, which means that the material is homogeneous.

Moment diagram and steps preceding its deduction are provided below.

 $k_{12} = \frac{1}{3}$  $k_{24} = \frac{1}{5}$  $k_{34} = \frac{1}{2}$ 

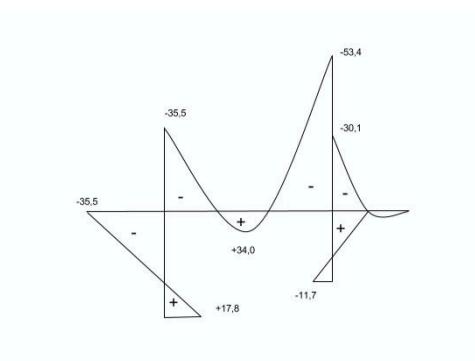
3

-11,47678

-0,20018

-11,67696

M34


| $k_{24} = \frac{3}{4} * \frac{1}{2} = \frac{3}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |           |                                |           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|--------------------------------|-----------|-----------|
| $\mu_{21} = \frac{1/_3}{1/_3 + 1/_5} = \frac{1}{1/_3 + 1/_5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>5</u><br>8                 |           |                                |           |           |
| $\mu_{24} = \frac{1/_5}{1/_3 + 1/_5} = \frac{1}{1/_3 + 1/_5} = \frac{1}{1/_5} = \frac{1}{$ | <u>3</u><br>8                 |           |                                |           |           |
| $\mu_{42} = \frac{1/5}{1/5 + 1/2 + 3/5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - = 0,18605                   | ;         |                                |           |           |
| $\mu_{43} = \frac{1/2}{1/5 + 1/2 + 3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{8} = 0,46512$       | 2         |                                |           |           |
| $\mu_{45} = \frac{\frac{3}{8}}{\frac{1}{5} + \frac{1}{2} + \frac{3}{8}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{8} = 0,34883$       | ;         |                                |           |           |
| $MK_{24} = -\frac{pL^2}{12} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-\frac{25*25}{12} = -$       | -52,084 F | $Xnm = -MK_{42}$               |           |           |
| $MK_{45} = \frac{pL^2}{8} = -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12,5 kNm                      |           |                                |           |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                             |           |                                | 4         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>0,625                    | 0,375     | 0,18605                        | 0,46512   | 0,34884   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | -52,084   | 52,084                         |           | -12,5     |
| 16,27625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32,5525                       | 19,5315   | 9,76575                        |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | -4,59076  | -9,181521                      | -22,95356 | -17,21517 |
| 1,434613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,869225                      | 1,721535  | 0,860768                       |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | -0,080073 | -0,160146                      | -0,40036  | -0,30027  |
| 0,025023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,050046                      | 0,030027  | 0,015014                       |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |           | -0,002793                      | -0,006983 | -0,005237 |
| 17,73589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,47177                       | -35,47177 | 53,38107                       | -23,3609  | -30,02067 |
| M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M21 I                         | M24       | M42                            | M43       | M45       |
| $Q_{24} = \frac{1}{2}pL - \frac{M_{24}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{L} = \frac{1}{2}25$ | * 53      | $\frac{5,47+53,38}{5} = 58,92$ | kN        |           |

$$x_{0} = \frac{Q_{24}}{p} = 2,357 m$$

$$M_{max} = M_{24} + Q_{24}x_{0} - \frac{1}{2}px_{0}^{2} = 33,962 \ kNm$$

$$Q_{45} = \frac{1}{2}pL - \frac{-M_{45}}{L} = \frac{1}{2}25 * 2 - \frac{-30,02}{2} = 40,01 \ kN$$

 $M_{max} = 1,98 \ kNm$ 



# Appendix 2. Case 1: Steel frame design and analysis in Autodesk Robot Structural Analysis

In this Appendix detailed procedure of the design and analysis via Autodesk Robot for the 1<sup>st</sup> case study is presented.

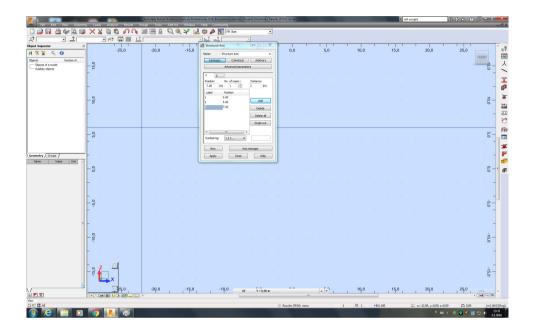



Figure 18. Case 1, Autodesk Robot: Definition of axis 1

# Appendix 2 2(8)

| 2                     |                         |                                                                 |                                       |
|-----------------------|-------------------------|-----------------------------------------------------------------|---------------------------------------|
| sctor I               | -1,0 . 0,0              | 1,0 Structural Axis                                             | 6,0                                   |
| Number of             |                         | Cartesian Cylindical Arbitrary                                  | FRONT                                 |
| of a model<br>objects | _ <u>-</u> ₽            | Advanced parameters                                             |                                       |
|                       |                         | X Z                                                             |                                       |
|                       |                         | Position: No. af repet.: Distance:<br>D.Commun. (n) 0 (2) 1 (n) |                                       |
|                       |                         | Label Position                                                  |                                       |
|                       |                         | 40,00 0.00<br>+1,00 1.00 Add                                    |                                       |
|                       | - \$+3,00-              | +1,00 3.00 Delete                                               | (+3,00)                               |
|                       |                         | Delete al<br>Single out                                         |                                       |
|                       |                         |                                                                 |                                       |
|                       |                         | Kunbering: 123                                                  |                                       |
|                       | - 0.                    | New Axis manager                                                |                                       |
| (Groups /             | N                       | Apply Case Heb                                                  |                                       |
| Value Unit -          |                         |                                                                 |                                       |
|                       |                         |                                                                 |                                       |
|                       |                         |                                                                 |                                       |
|                       | - 2 +1,00-              |                                                                 | +1,00                                 |
|                       |                         |                                                                 |                                       |
|                       |                         |                                                                 |                                       |
|                       | -                       |                                                                 |                                       |
| -                     | <b>B</b> 1000           |                                                                 | (10.00)                               |
|                       | - \$ ±0,00-             |                                                                 | (±0,00)                               |
|                       |                         |                                                                 |                                       |
|                       |                         |                                                                 |                                       |
|                       |                         |                                                                 |                                       |
|                       | - <u></u>               |                                                                 |                                       |
|                       | 🚽 i 🛄 χ – s 🕕 s – s – s |                                                                 |                                       |
|                       | -1,0                    | 1,0 2,0 v v.e.e. 5,0                                            | 6,0 7,0 8,0                           |
|                       |                         | 10 1 1 210 XZ Y-0,00 m * * 1 300 1                              | · · · · · · · · · · · · · · · · · · · |

Figure 19. Case 1, Autodesk Robot: Definition of axis 2

| Stgries                                        |         | <br>          | <br> |     | 3 |    |     | -   | -        |     | 1 1 | -    |   | <br>- | 1 1 |   | -   | 1 1 | - | <br> | - | <br>-         |
|------------------------------------------------|---------|---------------|------|-----|---|----|-----|-----|----------|-----|-----|------|---|-------|-----|---|-----|-----|---|------|---|---------------|
| Bars                                           |         | 0,0           | - 10 | D . |   | 2, | 0   |     | - 3      | 0.  |     | - 4, | 0 | - 5   | ,0  |   |     | 8,0 |   | 7,0  |   | <br>8,0<br>FI |
| Objects<br>Structure                           | :       | 1             |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| Columns                                        |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| - Beams<br>Claddings                           |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| Materials.                                     |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| Propgrties                                     | •       |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| Supports                                       |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| Additional Attr                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   | +3            |
| Phases                                         | · ·     |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| <u>n</u> Numbering<br><u>R-1</u> Names of Bars | Objects |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| 2.0                                            |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| Unt A                                          |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| - 2                                            |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   | +1            |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| =                                              |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| - 8                                            |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   | ±C            |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                |         |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                | - 1     |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| - <del>7</del>                                 |         | $\frac{1}{1}$ |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
| -                                              | 🛶 x 📔 🐘 |               |      |     |   |    |     |     |          |     |     |      |   |       |     |   |     |     |   |      |   |               |
|                                                | -1,0    | 0,0           | 10   | o j |   | 2, | 0 x | , , | Y-0,00 m | · · |     | · ,  | ^ | 5     | 0   |   | 1.1 | 5,0 |   | 7,0  |   | <br>8,0       |
| 0-10                                           |         |               | <br> | _   |   |    |     |     |          |     |     |      |   | _     |     | _ |     |     | _ | <br> |   | <br>+         |

Figure 20. Case 1, Autodesk Robot: Definition of elements 1

# Appendix 2 3(8)

| -                                                                                                                                                    |                      | Autodesk I | Robot Structural Ana | lysis Professional 2011 | 5-Educational v                          | version - Proje           | ct: Structure - Re | ults (FEM): nor |   |              |     |      |         |   | self-weight        |                | 88 | S 🔄 (         | 3) - 0                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|----------------------|-------------------------|------------------------------------------|---------------------------|--------------------|-----------------|---|--------------|-----|------|---------|---|--------------------|----------------|----|---------------|---------------------------|
| ) 🚅 🖬 🍐 🖗 🗟 🚳                                                                                                                                        | XX 🖻 🛍 🖌             |            |                      | Y 💰 🅸 🌶                 | <b>9 🛐</b> m :                           | Start                     | •                  | _               | _ | _            | _   | _    | _       | _ | _                  | _              | _  | _             |                           |
| ·                                                                                                                                                    | - @? A               | 12         |                      | - b.?                   | ~                                        | ~                         |                    | <b></b>         |   |              |     |      |         |   |                    |                |    |               |                           |
| ct Impoctor III           Impoctor         III           If         X         Q         Q           cts         Number of         Objects of a model | -2,0                 | ) -1,0     | 0,0                  | 1,                      | Namber: 4<br>Name: 5<br>Properties       |                           | tape 1             | 4,              |   | 5.0          | 6,0 |      | 7,0     |   | 8,0                | 9,0            |    | 10,0          | FRONT                     |
| 3- Nans 0.3<br>3- A Nodes 0.5<br>Auxiliary objects                                                                                                   | - 0.                 |            |                      |                         | Bar type:<br>Section:<br>Default materia | Beam<br>HEA 100<br>al: 51 | •]<br>• •]<br>n.   |                 |   |              |     |      |         |   |                    |                |    |               |                           |
|                                                                                                                                                      |                      |            |                      |                         | Node coordina<br>Beginning:              |                           | _                  |                 |   |              |     |      |         |   |                    |                |    |               | · -                       |
|                                                                                                                                                      | +                    |            |                      |                         | End:                                     | Drag                      |                    |                 |   |              |     |      |         |   |                    |                |    |               | .0 -                      |
|                                                                                                                                                      |                      |            | Objec                | t/window/capture sel    | ection<br>Add                            | None                      | •                  |                 |   |              |     |      |         |   |                    |                |    |               | -                         |
|                                                                                                                                                      | - 8 +3,00-           |            | F                    | C                       |                                          |                           |                    | 9               |   |              |     |      | _       |   |                    |                |    |               | +3,00 8 -                 |
| ne Value Unit e                                                                                                                                      | -                    |            |                      |                         |                                          |                           |                    |                 |   |              |     |      |         |   |                    |                |    |               | -                         |
|                                                                                                                                                      | 2.0                  |            |                      |                         |                                          |                           |                    |                 |   |              |     |      |         |   |                    |                |    |               | 2.0 -                     |
|                                                                                                                                                      |                      |            |                      |                         |                                          |                           |                    |                 |   | t            |     |      |         |   |                    |                |    |               |                           |
|                                                                                                                                                      | - 2 +1,00-)          |            |                      |                         |                                          |                           |                    |                 |   |              |     |      |         |   |                    |                |    |               | +1,00 = -                 |
|                                                                                                                                                      |                      |            |                      |                         |                                          |                           |                    |                 |   |              |     |      |         |   |                    |                |    |               |                           |
| =                                                                                                                                                    | - <u>\$ ±0,00</u> -) |            |                      |                         |                                          |                           |                    |                 |   |              |     |      |         |   |                    |                |    |               | ±0,00 g -                 |
|                                                                                                                                                      |                      |            |                      |                         |                                          |                           |                    |                 |   |              |     |      |         |   |                    |                |    |               |                           |
|                                                                                                                                                      | <b>T</b>             |            |                      |                         |                                          |                           |                    |                 |   |              |     |      |         |   |                    |                |    |               | 1,0                       |
|                                                                                                                                                      |                      |            | . 1                  |                         |                                          |                           |                    |                 |   |              |     |      |         |   |                    |                |    |               |                           |
|                                                                                                                                                      | -2,0                 |            | , 0,0                | 1,0                     |                                          | nn xz                     | Y = 0,00 m         |                 |   | <u> </u> _ + | 6,0 |      | 7,0     |   | 8 <sub>1</sub> 0 , | 9,0            | 1  | 19,0          | 1 Vine<br>1 (14) *** (10) |
|                                                                                                                                                      | ,                    |            |                      |                         |                                          |                           |                    | · Results       |   |              | 6   | 84 4 | HEA 100 |   |                    | -0,18; y±0,00; |    | <b>=</b> 0,00 |                           |

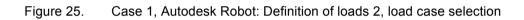
Figure 21. Case 1, Autodesk Robot: Definition of elements 2

| 2     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - </th <th>File Edit View Geom</th> <th>etry Loods Analysis Res</th> <th>Autodesk Robot<br/>uits Desion Tools</th> <th>Structural Analysis<br/>Addeles - Wire</th> <th>Professional 2016-Educ<br/>Jow H&amp;p Comm</th> <th>ational vanion - Project: S<br/>unity</th> <th>tructure - Results (</th> <th>(FEM): none</th> <th></th> <th></th> <th></th> <th></th> <th>&gt; self-weight</th> <th></th> <th>88.9</th> <th>\$ A (9)</th> <th>- 0</th> | File Edit View Geom | etry Loods Analysis Res   | Autodesk Robot<br>uits Desion Tools | Structural Analysis<br>Addeles - Wire | Professional 2016-Educ<br>Jow H&p Comm | ational vanion - Project: S<br>unity                            | tructure - Results ( | (FEM): none |                   |     |      |   | > self-weight |       | 88.9 | \$ A (9) | - 0     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|-------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------------------------------|----------------------|-------------|-------------------|-----|------|---|---------------|-------|------|----------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                           |                                     | Q€¥                                   |                                        | - III Structure Model                                           | •                    | 1           |                   |     |      |   |               |       |      |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ect Inspector       | 8                         | 1                                   |                                       | 1                                      | H Start<br>A Nodes<br>- Bars<br>I Sectons&Materials<br># Record |                      | 4,0         |                   | 6,0 |      |   | 8,0           | 9,0   |      |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | - 20                      |                                     |                                       |                                        | Tools                                                           |                      | ]           |                   |     |      |   |               |       |      |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                           |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      |          | -<br>*- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                           |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      |          | -       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | - 2:+3,00-                |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      | (-+3     | ,00,30  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                           |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      |          | -       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                           |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      |          | -       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | - 2 +1,00-                |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      | (-+1     | - 5 00, |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | -                         |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | = - <u>&amp; ±0,00-</u> ) |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      |          | .00 8 - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | - 0,                      |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      |          | ÷-      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | - <u>z</u> 🛆 -            |                                     |                                       |                                        |                                                                 |                      |             |                   |     |      |   |               |       |      |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                           | -1.0                                |                                       | 10                                     |                                                                 |                      |             |                   | 6.0 |      |   |               |       |      | 10.0     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u></u>             |                           |                                     | 1 010                                 | 1 10                                   | xz                                                              | Y = 0,00 m           |             | <br> * * <u> </u> | 810 | 1,10 | 1 | °1º           | 1 910 | I.   |          |         |

Figure 22. Case 1, Autodesk Robot: Definition of supports 1

# Appendix 2 4(8)

| MO Fic B         | dt Viev  | Geomet | try Loods     | Aralysi   | is Result | Auto<br>s Design | desk Robot Stru<br>Tools Ad | ctural Analysi<br>d-Irs - Wit | s Professional<br>Idon - HS | p Comm                  | ational version<br>unity | - Project:        | Structure - Recu | Its (FEM): non | 2             |            |      |      |         | > self-weight |                       | 鼎昌会 ③     | · ·        |
|------------------|----------|--------|---------------|-----------|-----------|------------------|-----------------------------|-------------------------------|-----------------------------|-------------------------|--------------------------|-------------------|------------------|----------------|---------------|------------|------|------|---------|---------------|-----------------------|-----------|------------|
| 28               |          |        | < 🗶 🗓         |           | ∩∩<br>  ■ |                  | ≞ ¥° ⊫                      | å 🏶 🌢                         | ۵ 🗶 ۹                       |                         |                          |                   | •                |                |               |            |      |      |         |               |                       |           |            |
| L?               | <u> </u> | _?     |               | <u> </u>  | iaj 📰     |                  |                             |                               | <u></u>                     | 2                       |                          | -                 |                  |                |               |            |      |      |         | La Supp       |                       | - • ×     | -          |
| -6,0             | )        | -      | 4,0           |           | -2,0      |                  | 0,0                         |                               | 2,0                         |                         | 4,0                      |                   | 6,0              |                | 8,0           |            | 10,0 |      | 12,0    | Nodal         |                       | 8 🖻       |            |
|                  |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         | ×             | Delete<br>Poord       |           |            |
|                  |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               | Pinned<br>Pinned1     |           |            |
|                  |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       |           |            |
| 4.0              |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         | Currer        | t selection           |           |            |
| (+3,00           |          |        |               |           |           |                  | 2                           |                               |                             |                         |                          | 4                 |                  | 5              |               |            |      |      |         |               | sky Classe            | Help      |            |
|                  |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       |           |            |
| 2,0              |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               | 2.0                   |           |            |
| (+1,00           |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       |           |            |
|                  |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                | Indicate node |            |      |      |         |               |                       |           |            |
| 8±0,00           |          |        |               |           |           |                  | <u>b</u>                    |                               |                             |                         |                          |                   |                  | supports       | Indicate nob  | e or eoge. |      |      |         | ·····-(-±0,0  | 08-                   |           |            |
|                  |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       |           |            |
| 7                |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               | -                     |           |            |
|                  | x        |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       |           |            |
| -6,0<br>         |          |        | 4,0           | 1         | -2,0      | 1                | 0,0                         | xz                            | Ŷ = 0,00                    | ) an                    |                          |                   | <b>↓</b>  ≎0     | - i            | 8,0           |            | 19,0 |      | 12,0    | 14.0          |                       |           |            |
| Supports         |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       |           |            |
|                  | Support  | P      | trined        | List of n |           | 5 fixed          | fxe                         | 1 6                           | 100                         | a) (kilim               | (k/kim) (k               | Nm D<br>0,0       |                  |                |               |            |      |      |         |               |                       |           |            |
|                  |          |        | Fixed<br>ned1 |           |           | 13 fixed         | fixe<br>fixe                | 1 ft<br>1 ft                  | eed 0,<br>ee 0,             | 0 0,0<br>0 0,0<br>0 0,0 | 0.0<br>0.0<br>0.0        | 0,0<br>0,0<br>0,0 |                  |                |               |            |      |      |         |               |                       |           |            |
|                  |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       |           |            |
|                  |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       |           |            |
|                  |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       |           |            |
| Values ), Edit / |          |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  |                | _             |            | _    | _    |         |               |                       |           |            |
| Supports         | J        |        |               |           |           |                  |                             |                               |                             |                         |                          |                   |                  | · Results (    | FEM): none    |            | 6    | 84 4 | HEA 100 | 11 *          | =6,71; y=0,00; z=0,67 |           | (m) [kN] [ |
| D 6              |          |        | 0             |           | ø         |                  |                             |                               |                             |                         |                          |                   |                  |                |               |            |      |      |         |               |                       | ं ह 🗑 4 📓 |            |

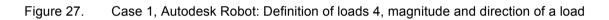

Figure 23. Case 1, Autodesk Robot: Definition of supports 2

|                        | ≥ <u>2</u>             | ×¥ | 1 C               | <u>በ</u> በ<br>የ |      |   | ¥    | <u>&amp;</u> 🕸 | ₿ <u>₹</u> | 二島 田 | Southern Model                                                 | •    |     |   |      |    |    |      |            |           | -                    |                          |            |                    |
|------------------------|------------------------|----|-------------------|-----------------|------|---|------|----------------|------------|------|----------------------------------------------------------------|------|-----|---|------|----|----|------|------------|-----------|----------------------|--------------------------|------------|--------------------|
| w - Cases: 0 ()        | -6,0                   | 1  | -4,0              | 1               | -2,0 | ! | 0,0  |                | 2,0        | i i  | - Bars<br>Sections/Materials<br>Supports                       |      | 8,0 |   | 10,0 | 12 | .0 | 14,0 |            |           | Case desc<br>Number: |                          | Label:     | - 0 ×              |
|                        |                        |    |                   |                 |      |   |      |                |            |      | Results<br>Steel Design<br>Timber Design<br>RC Design<br>Tools |      |     |   |      |    |    |      | FROP       | π         | Nature:<br>Name:     | dead<br>DL1              | Subnatures |                    |
|                        |                        |    |                   |                 |      |   |      |                |            |      | 10015                                                          |      |     |   |      |    |    |      |            | 4-<br>-0- | List of def          | Ined cases:<br>Case name | Add        | Modify<br>Nature A |
|                        |                        |    |                   |                 |      |   |      |                |            |      |                                                                |      |     |   |      |    |    |      | (-+3,01    | 20-       |                      |                          |            |                    |
|                        |                        |    |                   |                 |      |   |      |                |            |      |                                                                |      |     |   |      |    |    |      | (+1,0      |           |                      |                          |            |                    |
|                        | 1                      |    |                   |                 |      |   | ł    |                |            |      |                                                                |      |     |   |      |    |    |      | (±0,00     | 0;0       | ×                    |                          | Delete     | Delete all         |
| Z –                    | 1                      |    |                   |                 |      |   | 1    |                |            |      |                                                                |      |     |   |      |    |    |      | Cases: 0 ( | ,         |                      |                          | Oose       | Help               |
| V<br>Jee               | -6,0                   |    | -4 <sub>1</sub> 0 | -               | -2,0 | - | ¢° x | Y              | -0,00 m    |      |                                                                | 121- | 810 | _ | 19,0 | 12 | ,0 | 14,0 | • [#       |           |                      |                          |            |                    |
| ds - Case 0 ()<br>Case | Load type              | L  | ist               |                 |      |   |      |                |            |      |                                                                |      |     |   |      |    |    |      |            |           |                      |                          |            |                    |
|                        |                        |    |                   |                 |      |   |      |                |            |      |                                                                |      |     |   |      |    |    |      |            |           |                      |                          |            |                    |
|                        |                        |    |                   |                 |      |   |      |                |            |      |                                                                |      |     |   |      |    |    |      |            |           |                      |                          |            |                    |
|                        |                        |    |                   |                 |      |   |      |                |            |      |                                                                |      |     |   |      |    |    |      |            |           |                      |                          |            |                    |
|                        |                        |    |                   |                 |      |   |      |                |            |      |                                                                |      |     |   |      |    |    |      |            |           |                      |                          |            |                    |
|                        |                        |    |                   |                 |      |   |      |                |            |      |                                                                |      |     |   |      |    |    |      |            |           |                      |                          |            |                    |
|                        | ilion <u>(Text edi</u> |    |                   |                 |      |   |      |                |            |      |                                                                |      |     |   |      |    |    |      |            |           |                      |                          |            |                    |

Figure 24. Case 1, Autodesk Robot: Definition of loads 1

# Appendix 2 5(8)

| File Edit V                      | iew Geometry         | Loods Ar          | alysis Result   | Aut<br>s Design | odesk Robot S<br>Tools | Structural Ana<br>Add-Ins | ilysis Profes<br>Window | tional 2016-E<br>Hdp Co | ducational ve<br>mmunity | rtion - Projec  | t: Structure - Re       | oults (FEM): o | 100  |     |   |      |                        | self-weight            |                  | 施設会                | () · · · · · · ·          |
|----------------------------------|----------------------|-------------------|-----------------|-----------------|------------------------|---------------------------|-------------------------|-------------------------|--------------------------|-----------------|-------------------------|----------------|------|-----|---|------|------------------------|------------------------|------------------|--------------------|---------------------------|
|                                  | 2 🔿 🗙 🤅              |                   | 00              |                 |                        | 🕹 🏶 🌢                     |                         |                         |                          |                 | -                       |                |      |     |   |      |                        |                        |                  |                    |                           |
|                                  | 1                    | - 6               | ? 🗛 🔳           |                 | 11.1                   |                           |                         | - 🛁 -                   | 2                        | <u>×</u>        |                         |                |      |     |   |      |                        | In Lord Typ            |                  | _                  |                           |
| riew - Cases: 1 (DL1)            | -6,0                 | -4,0              | -2,0            |                 | 0,0                    | 2,                        | 0                       | 4,0                     |                          | 6,0             | 8,0                     |                | 10,0 | 12, | 0 | 14,0 | FRONT                  | * Case desi<br>Number: | ziption 2        | Label:             | DL2                       |
|                                  |                      |                   |                 |                 |                        |                           |                         |                         |                          |                 |                         |                |      |     |   |      |                        | Nature:                | DL2              | Subnature:     Add | Structural •<br>Modify    |
| +3,00-)                          |                      |                   |                 |                 | _                      |                           |                         |                         | _                        |                 | 2                       |                |      |     |   |      |                        | Ust of def             | Case name<br>DL1 |                    | Nature A<br>Structural SI |
|                                  |                      |                   |                 |                 |                        |                           |                         |                         |                          |                 |                         |                |      |     |   |      | 20-                    | 4                      |                  |                    |                           |
| +1,00-)<br>±0,00-)               |                      |                   |                 |                 |                        |                           |                         |                         |                          |                 |                         |                |      |     |   |      | (+1,00) -<br>(±0,00)8- |                        |                  | Delete             | ,<br>Delete al            |
|                                  | -6,0                 | -4 <sub>1</sub> 0 | -2,0            | -               |                        | Υ-Ô                       |                         |                         | 2                        | )<br>(<br>]^ +_ | 3<br>- B <sub>1</sub> 0 |                | 19,0 | 12  | 0 | Case | -PZ kG<br>s: 1 (DL1)   |                        |                  | Core               | Help                      |
| Case I (DL1) Case I IDL1 self-we | Load type            | List<br>3 What    | e atructu 42    | Factor=         | 1,00 MEMO:             |                           |                         |                         |                          |                 |                         |                |      |     |   |      |                        |                        |                  |                    |                           |
|                                  |                      |                   |                 |                 |                        |                           |                         |                         |                          |                 |                         |                |      |     |   |      |                        |                        |                  |                    |                           |
|                                  |                      |                   |                 |                 |                        |                           |                         |                         |                          |                 |                         |                |      |     |   |      |                        |                        |                  |                    |                           |
|                                  |                      |                   |                 |                 |                        |                           |                         |                         |                          |                 |                         |                |      |     |   |      |                        |                        |                  |                    |                           |
|                                  |                      |                   |                 |                 |                        |                           |                         |                         |                          |                 | 1.0                     |                |      |     |   |      |                        |                        |                  |                    |                           |
| Loads                            | ∫ Text edition ∫ Int | o (Cases (N       | otional loads / |                 |                        |                           |                         |                         |                          |                 | 12.0                    |                |      |     |   |      |                        |                        |                  |                    |                           |




|                                           |                                            |             | k Robot Struc | tural Analysis Pr | rofessional 200 | 16-Educational      | venion - Projec | tt: Structure - Ra | nsults (FEM): r | 1000 |   |      |      |                      | self-weight      | 品具会                                       | (2)                    |
|-------------------------------------------|--------------------------------------------|-------------|---------------|-------------------|-----------------|---------------------|-----------------|--------------------|-----------------|------|---|------|------|----------------------|------------------|-------------------------------------------|------------------------|
| File Edit View Geometry                   | Loads Analysis Results                     |             | 1005 ASC<br>  | ilis Windo        | ол нар<br>🗶 🖭 🚥 | Community<br>Lineds |                 | •                  | _               | _    | _ | _    | _    |                      |                  |                                           |                        |
|                                           | Losd Definition                            | 11          | - 22          | ***               | ·               |                     | -               |                    |                 |      |   |      |      |                      |                  |                                           |                        |
| ew - Cases: 1 (DL1)                       | Li Automatic Combinations                  |             | _             |                   |                 |                     |                 |                    |                 |      |   |      |      | 0 8 8                | III Load Types   | D Load Definition                         |                        |
|                                           | Load <u>T</u> able                         |             | 1 1           | 1                 | -               | 1 1                 | 1               | · · ·              |                 | 1    |   | 1 1  | 1    | 1                    | Case description |                                           |                        |
| -6,0                                      | Combination Table<br>Mass Table            |             | 0,0           | 2,0               | 1               | 1,0 ·               | 6,0             | 8,0                | ) .             | 10,0 |   | 12,0 | 14,0 |                      | Number:          | 1 Selected:                               |                        |
|                                           | und Select Cases                           | — (         |               |                   |                 |                     |                 |                    |                 |      |   |      |      | FRONT                |                  |                                           | veight and mass        |
|                                           | 32 Select Case Component<br>2 Select Modes |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      | Name:            |                                           |                        |
|                                           | Select Result Type                         | •           |               |                   |                 |                     |                 |                    |                 |      |   |      |      | -6-                  |                  |                                           | <u> </u>               |
|                                           | Wind & Snow                                | •           |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      | List of defined  | as 🖆 📫                                    | 2 ×                    |
| +3,00-)                                   | Special Loads                              | •           |               |                   |                 | T                   |                 | 74                 |                 |      |   |      |      | (-+3,00) -           | No.              | De la |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      | N                    |                  | Apply to                                  |                        |
|                                           |                                            |             |               |                   |                 | · •                 |                 |                    |                 |      |   |      |      | 2,0                  |                  |                                           |                        |
| +1,00-)                                   |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      | (-+1,00) -           |                  | Apply Close                               | se Help                |
|                                           |                                            |             |               |                   |                 | -                   |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             | 4             |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  | н                                         | •                      |
| - 01                                      |                                            |             | T .           |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  | Delete                                    | Delete al              |
|                                           |                                            |             | 1)            |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  | Close                                     | Help                   |
| k ⊨ x                                     |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      | Care | -PZ kG<br>s: 1 (DL1) | <u> </u>         |                                           |                        |
| -6,0                                      | -4,0 -2,0                                  |             | - xz          | Y-0,00 m          |                 |                     | 121+            | 8,0                |                 | 10,0 | 1 | 12,0 | 14,0 | IS. T (DLT)          |                  |                                           |                        |
| · serres                                  |                                            |             |               |                   |                 |                     |                 |                    | - 1             |      |   |      |      | • (Here)             |                  |                                           |                        |
| ads - Case: 1 (DL1)                       |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
| Case Load type                            | List                                       |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
| OL1 self-weight ff                        | to3 Whole structu -Z                       | Factor+1,00 | NENO:         |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           | -                      |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
|                                           |                                            |             |               |                   |                 |                     |                 |                    |                 |      |   |      |      |                      |                  |                                           |                        |
| s ), Table edition /, Text or Sinn / Li   | Yo & Cases & Notional Ioans 7              |             |               |                   |                 |                     |                 | 140                |                 |      |   |      |      |                      |                  |                                           |                        |
| es ), Table edition /, Text edition /, II | rfo & Cases & Notional Ioads /             |             |               |                   |                 |                     |                 | 1                  |                 |      |   |      |      |                      |                  |                                           | ·                      |
|                                           |                                            |             |               |                   |                 |                     |                 | 1.                 |                 |      |   |      |      | 17                   |                  | R 📾 i, p 🗣                                | 5 0 0 12<br>5 12 0 352 |

Figure 26. Case 1, Autodesk Robot: Definition of loads 3, load type

# Appendix 2 6(8)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                             | Autodesk Robot Structural Analysis Professional 2016-Educational vention - Pr<br>Dring Toris Addrins Window Hith Community | sject: Structure - Results (FEM): none | > self-weight                          | ALX 🛠 😧 💶 🖉 🗙                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                                                                                                            | -                                      |                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V: • - • • A                                                                  | 12 1:0L1                                                                                                                   | <b>.</b>                               |                                        |                                    |
| 4,0 4,0 2,0 0,0 2,0 4,8 0,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K View - Cases 1 (DL1)                                                        |                                                                                                                            |                                        |                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -6,0 -4,0 -2,0                                                                | 0,0 2,0 4,0 6,0                                                                                                            | 8,0 10,0 12,0                          |                                        | n Uniform Load                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               | (1) (2)                                                                                                                    |                                        | FRONT                                  |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                                                                                                            |                                        |                                        | a jiiiiiiii 🦿                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - <sup>4</sup>                                                                |                                                                                                                            |                                        |                                        | Values p (HN/m) VT (Deg)           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +3,00-)                                                                       |                                                                                                                            |                                        | ······································ | Ce X: 0,0 🏦                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                             |                                                                                                                            |                                        | Choose element                         |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                                                                                                            |                                        |                                        | Coord, system: @ Glabal @ Local    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +1,00-                                                                        |                                                                                                                            |                                        |                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -8±0,00-)                                                                     |                                                                                                                            |                                        |                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z 🖾                                                                           |                                                                                                                            |                                        |                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               | 1 2                                                                                                                        |                                        |                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -6,0 -4,0 -2,0                                                                | (^ xz y=0.00 m                                                                                                             | 8,0 19,0 12,0                          | 14.0                                   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D Loads - Caser 1 (DL1)                                                       |                                                                                                                            |                                        |                                        |                                    |
| ier λ τούν σύσο / ζετατεξίου / ζετατεξίου για το ματιματικό /<br>ματο λιαδια σύσο / ζετατεξίου / ζετατεξίου για το ματιματικό /<br>ματο ματο ματιματικό για τη ματιματική τη ματιμα   |                                                                               | Factor=1.00 MEMO:                                                                                                          |                                        |                                        | î                                  |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        | *                                  |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
| 1000.]<br>∰X ⊕ 0.1000,0000 € 9.4 H4100 E ±103.00,000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 [0.000 |                                                                               |                                                                                                                            |                                        |                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Values ), Table edition /, Text edition /, Info /, Cases /, Notional loads / |                                                                                                                            | [4]                                    |                                        | ,                                  |
| ) 😂 🚔 🖸 🧑 🕌 🛷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tev Loads<br>3.⊻] ≣ ≫                                                         |                                                                                                                            | Results (FEM): none                    | 6 🗎 4 HEA100 🖾 x=16,30;                |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 🚳 🩋 📋 🖸 🧑 🛃 🚳                                                                 |                                                                                                                            |                                        |                                        | P 🖬 () 👂 😨 🍕 📓 🗊 () 1338<br>352016 |



| iev - Cases 1 (D2)                         | 0 -2,0 0,0 2,<br> | 4,0 6,0 8,0 1 | 0,0 · 12,0 · 14,0 · · · · · · · · · · · · · · · · · · · | Case description<br>Number: 1 Case Noc 1: DL1<br>Selected: Uniform load |
|--------------------------------------------|-------------------|---------------|---------------------------------------------------------|-------------------------------------------------------------------------|
| +1,00<br>+1,00<br>40,00                    |                   |               |                                                         |                                                                         |
| and an | 24.3 22.2.5 par   |               |                                                         | (0.10) 9                                                                |

Figure 28. Case 1, Autodesk Robot: Definition of loads 5

# Appendix 2 7(8)

| w - Cases: 1 (DL)         | - <u></u>       |   | 1         | 67 A   | Cakula | ations 1 |            |         |        | -   |        |          | -     | - |     |   |      |   |      |   |              | -0-0-8               | 2 | Load Types       | I Los    | Definition                    |                |
|---------------------------|-----------------|---|-----------|--------|--------|----------|------------|---------|--------|-----|--------|----------|-------|---|-----|---|------|---|------|---|--------------|----------------------|---|------------------|----------|-------------------------------|----------------|
| . !                       | -6,0            | 1 | -4,0      | ÷ .    | 2,0    | !        | 0,0        |         | 0      | 1   | 4,0    | 1        | 6,0   |   | 8,0 |   | 10,0 | 1 | 12,0 | 1 | 14,0         |                      |   | Case description | n Case P | or 1 : DL1<br>d: Uniform load |                |
|                           |                 |   |           |        |        |          | 1          |         |        |     |        |          |       |   |     |   |      |   |      |   |              | FRONT                |   |                  |          |                               | sight and mass |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   | Name:            | DL1      |                               | ₩              |
|                           |                 |   |           |        |        |          | Π          |         |        |     |        |          |       | Π |     |   |      |   |      |   |              | * * <u>*</u> -       |   | List of defined  | cas      |                               |                |
|                           |                 |   |           |        |        |          | ₩-         |         |        |     |        | 11       | + + - |   |     |   |      |   |      |   |              |                      |   | No.              | Ce       |                               |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              | - 6-                 |   |                  | 400      | to                            |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              | (-+1,00) -           |   |                  |          | ply Close                     | Help           |
|                           |                 |   |           |        |        |          |            |         |        |     |        | -        |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |
|                           |                 |   |           |        |        |          | 4          |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   |                  |          | Delete                        | Delete al      |
| <b>7</b> <sup>Ω</sup>     |                 |   |           |        |        |          | 1          |         |        |     |        | 2        |       |   |     |   |      |   |      |   |              |                      |   |                  |          | Close                         | Help           |
| ×                         | -6.0            |   | -4,0      |        | 2,0    |          |            |         |        |     |        | <u> </u> |       |   |     |   | 19,0 |   | 12,0 |   | Case<br>14,0 | es: 1 (DL1)          |   |                  |          |                               |                |
|                           | .40<br>Deci     |   | -410      | -      | 2,0    | 1        | ×2         | ¥-1     | 1,00 m |     |        |          | 121-  |   | 810 | _ | 14.0 | 1 | 12,0 | 1 | 14.0         | 1 View<br>2 (44 (56) | 1 |                  |          |                               |                |
| ds - Case: 1 (DL)<br>Case | 1)<br>Load type |   | int       | 1      |        |          | 1          |         |        |     |        |          |       | 1 |     | 1 |      |   |      |   | 1            |                      |   |                  |          | 1                             |                |
|                           | Load type       | 3 | nt<br>201 | 0,0 PZ | -25,00 | ittel    | net projec | absolut | . 81-  | 0,0 | 02-0.0 | MSMO     |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |
|                           |                 |   |           |        |        |          |            |         |        |     |        |          |       |   |     |   |      |   |      |   |              |                      |   |                  |          |                               |                |

Figure 29. Case 1, Autodesk Robot: running calculations 1

| v - Cases: 1 (DL1) | - <u>-</u> -       |         |      | 197 E |          |     |     |          |            |       | 2 -2   |     |     | 2 |     |          |      |     |      |   |      | Calculation Messages                                                          |
|--------------------|--------------------|---------|------|-------|----------|-----|-----|----------|------------|-------|--------|-----|-----|---|-----|----------|------|-----|------|---|------|-------------------------------------------------------------------------------|
|                    | -6,0               | 1       | -4,0 |       | -2,0     | -   | 0,0 |          | 2,0        |       | 4,0    | -   | 6,0 |   | 8,0 |          | 10,0 |     | 12,0 | 1 | 14,0 | Parameters of the material used in the object are different from parameters c |
|                    |                    |         |      |       |          |     | 1   |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            | 1.1   |        | Ť   |     | 4 |     |          |      |     |      |   |      | 1                                                                             |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      | +1,00                                                                         |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      | ····(±0,008-                                                                  |
|                    |                    |         |      |       |          |     | T   |          |            |       |        |     |     |   |     |          |      |     |      |   |      | Detet Detete all                                                              |
| x                  |                    |         |      |       |          |     | 1   |          |            |       |        |     |     |   |     |          |      |     |      |   | Cono |                                                                               |
|                    | -6,0               | -       | -4,0 |       | -2,0     | - i | e'r | xz       | Y = 0,00 m |       |        |     | 12  | • | 8,0 | <u>.</u> | 19,0 | - 1 | 12,0 | 1 | 14.0 |                                                                               |
| - Case 1 (DL1)     |                    | et. ini |      |       |          |     |     |          |            |       |        |     |     |   |     | _        |      |     |      |   |      |                                                                               |
|                    | Load type<br>mitad |         | .int | -0.0  | 27-25.00 |     |     | reject a | achte      | 0(+10 | 02-0.0 | MAN | .   |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |
|                    |                    |         |      |       |          |     |     |          |            |       |        |     |     |   |     |          |      |     |      |   |      |                                                                               |

Figure 30. Case 1, Autodesk Robot: running calculations 2

# Appendix 2 8(8)

| The Diff Many Georgen Look Anthony Barney                                                                                                  | Autodesk Robot Structural Analysis Prefersional 2016-Educational version - Project Structure - Berufts (FEM): available                                                                                                                                                                                                                    | > sel-weight 🕮 🛠 🎓 🔹 🚥 🛀 🗮 🌌                    |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                                                                                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                      |                                                 |
| 사 - 그                                                                                                                                      | 1:DL1 IT Structure Model                                                                                                                                                                                                                                                                                                                   |                                                 |
| K View - Cases 1 (DL1)                                                                                                                     | A Nodes<br>— Bars                                                                                                                                                                                                                                                                                                                          | 📖 💿 🐹 🚛 Load Types 💷 Load Definition 📃 🦝 🙏      |
|                                                                                                                                            | I         I         I         Second Methods         I         I         I           0,0         2,0         2         X Second         8,0         10,0         12,           1         X Second         X Second         10,0         12,         12,           1         X Second         X Second         10,0         12,         12, | FRONT Namber: 1<br>Notice: data<br>Notice: data |
| - <sup>0</sup>                                                                                                                             | g RCDesyn<br>→ Tools                                                                                                                                                                                                                                                                                                                       | tat of defred case                              |
| - (+3,00-)<br>- R                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            | +3,00 -<br>+3,00 +1 0 400/10 ₩                  |
| - (+1,00)<br>- 8 ±0,00)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                            | +1,00                                           |
|                                                                                                                                            | 1 2 3<br>1 2 3<br>1 2 3                                                                                                                                                                                                                                                                                                                    | Cases: 1 (D(1)                                  |
| Case         Lead type         List           Case         Lead type         List           S         Control of them task         pin-0.0 | NW Ndprojet desite di-42 22-03 dttp:                                                                                                                                                                                                                                                                                                       |                                                 |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |                                                 |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |                                                 |
| Values ), Table edition (, Text edition (, Info (, Cases (, Notional loads /                                                               | e                                                                                                                                                                                                                                                                                                                                          |                                                 |
| Wew Loads                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                            |                                                 |
| 🛞 E 📋 D 🚺 👪 🐼                                                                                                                              |                                                                                                                                                                                                                                                                                                                                            | R 프 ( 외 등 < 18 는 4 35206                        |

Figure 31. Case 1, Autodesk Robot: presentation of results 1

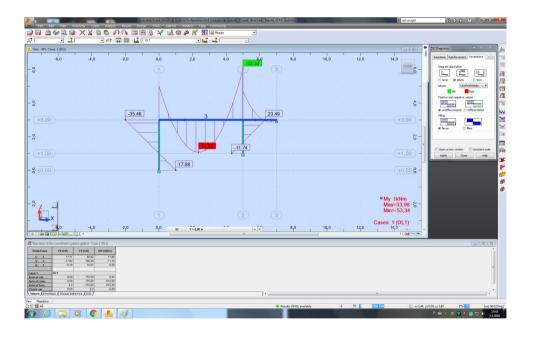



Figure 32. Case 1, Autodesk Robot: presentation of results 1, moment diagram

#### Appendix 3. Case 1: Steel frame model integration between Revit and Robot

In this Appendix detailed procedure of model integration between Autodesk Robot and Revit or the 1<sup>st</sup> case study is presented.

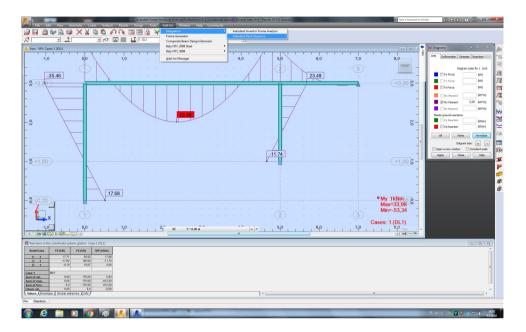



Figure 33. Case 1, Autodesk Robot: establishing the link with Revit 1

# Appendix 3 2(7)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2016-Educational venion - Projecti case "Xin - Perulta (EEX): available<br>Io - Community | <ul> <li>Type a keyword or phrase</li> <li>Ali K &amp; O · · · · · · · · · · · · · · · · · ·</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 열 Peads _                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 옷 - 그 그                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Kiew - MY; Cases 1 (DL1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 4.0 50 5.0 7.0 3.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                            | 1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000         1000           1000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reactions in the coordinate system: global - Case: 1 (DL1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Non-Care         F1 (20)         F1 (20)         F1 (20)           4         170         1500         1114           6         4.00         120         500           2012         5.00         1116         500         500           2012         5.00         1100         4215         500           2014         5.00         1100         4215         500           2014         5.00         1100         4215         500           2014         5.00         100         4215         500           2014         5.00         100         4215         500           2014         5.00         100         4215         500           2014         5.00         100         4215         500           2014         5.00         100         4215         500           2014         5.00         100         4215         500           2014         5.00         100         100         4215           2014         5.00         100         100         100           2014         5.00         100         100         100           2014         5.00         10 | ] + [#                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           | 8 m - ) 기 🕞 🍕 🎒 전 🔶 1403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



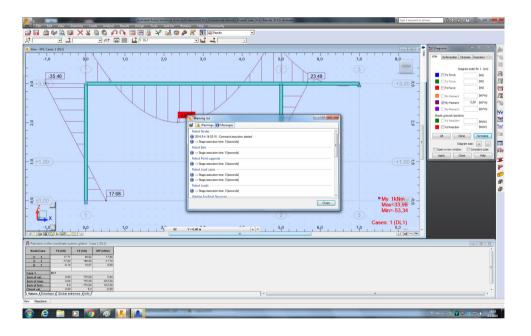



Figure 35. Case 1, Autodesk Robot: establishing the link with Revit 3

# Appendix 3 3(7)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Autodesk Robot Stru                          | ctural Analysis Professional 2016-Educational version | - Project: case_3fin - Results (FEM): available      | <ul> <li>Type a keyword or phrase</li> </ul>  | 組長会 (2) - 6) X                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ベ ル A : G · O E : G : E - F                |                                                       | tional Version - Project1 - Structural Plan: Level 2 | 🕨 Type a knywood or phrase 🕮 谷 合 L Sign In    | · 🕱 💿 - 🖸 💌                                                                         |
| Architecture Structure Syste<br>System<br>Sect •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | in Mullion Railing Ramp Stair Model Mor               |                                                      | by Shaft Wall Ventcal Dormon<br>Opening Datum |                                                                                     |
| parties           X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                       | Q                                                    |                                               | - 9 x<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() |
| Tesh Andya, Nora e<br>ne a<br>se a |                                              | C)                                                    |                                                      | 10                                            |                                                                                     |
| South<br>West<br>Elegends<br>Schedule/Quantities<br>Shedule/Quantities<br>Press<br>Press<br>Press<br>Googs<br>Renit Links                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1:203 11 11 11 11 11 11 11 11 11 11 11 11 11 |                                                       | õ                                                    |                                               | ,                                                                                   |
| dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                                       | dh - 2 a B                                           | 🖬 🕅 Main Model 🔹                              | 1 4 % C * Vo                                                                        |
| ) 🥭 🚞 🖸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 🧿 🛷 <u>k</u> 📐                               | and the spectrum                                      |                                                      | A 🖮                                           | -5. 2 🖸 🖉 🚳 🛱 🔶 👫                                                                   |

Figure 36. Case 1, Revit: model received from Autodesk Robot, plan view

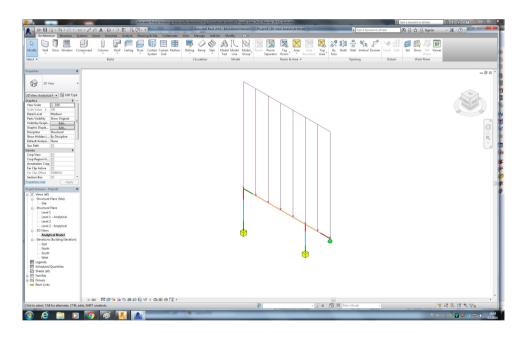



Figure 37. Case 1, Revit: model received from Autodesk Robot, analytical model

# Appendix 3 4(7)

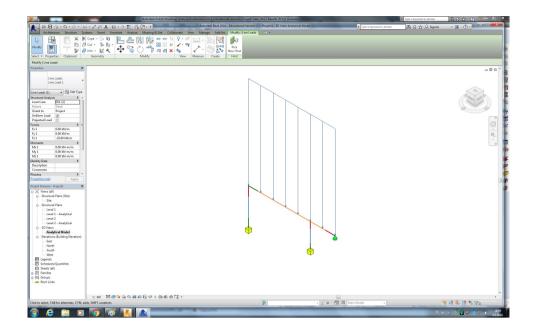



Figure 38. Case 1, Revit: modification of the model 1

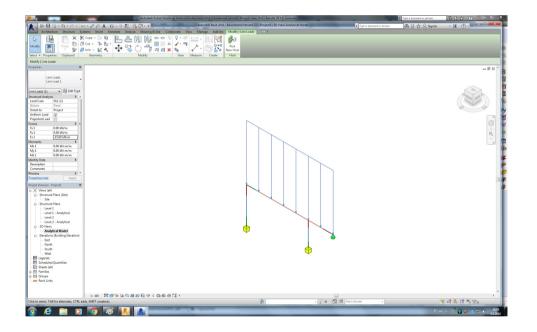



Figure 39. Case 1, Revit: modification of the model 2, reduction of the load

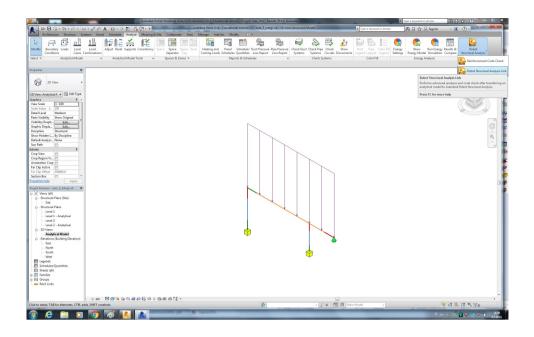



Figure 40. Case 1, Revit: establishing the link with Autodesk Robot

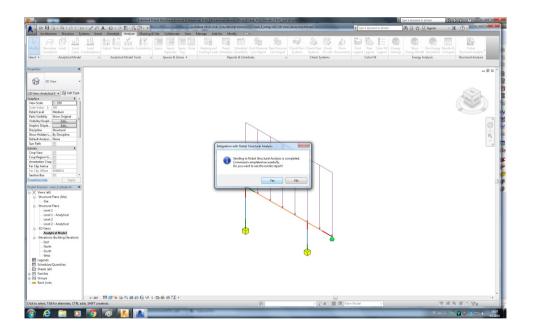



Figure 41. Case 1, Revit: integration process with Autodesk Robot 1

# Appendix 3 6(7)

| Autodesk Robot Structural Analysis R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | refessional 2016-Educational version - Project: case_3fin - Results (FEM(): out of date        | > Type a keyword or phrase                                                                                                            | 出 5 会 (2)                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| ▲ ● ■ ◎ · 為 · ∅ · □ · ↗ ∅ ▲ ◎ · ○ 記 品 冊 · ■                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Autodesk Revit 2016 - Educational Version - case_3_integrinit - 3D View: Analytical Model      | ・Type a knywood or phrase 前公会会Sign In                                                                                                 | · X () · 💻 💷                    |
| Architecture Structure Systems Insert Annotate Analyze Massing & Site Collaborate V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iew Manage Add-Ins Modify 💿 •                                                                  |                                                                                                                                       |                                 |
| Littate         Configuration         Adjust         Adjust         Adjust         Adjust         Rest: Support         Configuration         Support         Suport         Suport         Support <th>Cooling Loads Schedules Quantities Loss Report Loss Report Systems Systems Circuits Disconnect</th> <th>Duct Pipe CotorFill Energy Model Simulation<br/>Legend Legend Legend Legend Legend Legend Legend Settings<br/>ColorFill Energy Analysis</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cooling Loads Schedules Quantities Loss Report Loss Report Systems Systems Circuits Disconnect | Duct Pipe CotorFill Energy Model Simulation<br>Legend Legend Legend Legend Legend Legend Legend Settings<br>ColorFill Energy Analysis |                                 |
| Repertor         X           30 View         -           32 View         -           33 View         -           34 View Analysis         1           35 View         -           36 View         -           36 View         -           37 View         -           38 View         -           39 View         -           30 View         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Waning Ist                                                                                     |                                                                                                                                       | - 9 X *                         |
| Save student _ by Despine<br>Code a Anolys, Nov _ Code a Anolys, Nov _ Cod |                                                                                                |                                                                                                                                       |                                 |
| Contract = 0              |                                                                                                |                                                                                                                                       |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |                                                                                                                                       |                                 |
| 1:202 日前公司部的行人                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |                                                                                                                                       | • 1                             |
| Click to select, TAB for alternates, CTRI, adds, SHIFT unselects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 - ZA - Ma                                                                                    | in Model v                                                                                                                            | *#R#5%                          |
| 🚳 😂 🚞 🖸 🧑 🐼 🔝                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a cause                                                                                        | A (                                                                                                                                   | 🖮 🕤 🗶 🔂 🏶 🔂 🐨 🕕 1407<br>45.2016 |

Figure 42. Case 1, Revit: integration process with Autodesk Robot 2

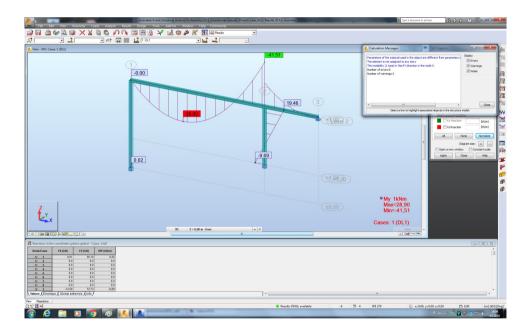



Figure 43. Case 1, Autodesk Robot: updated model with calculation messages

# Appendix 3 7(7)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actual fact from the formula for the formula formula for the formula for the formula for the formula for the f | et cana Jún - Berults (FDA): evalutie |                                                      | Type a keyword or phrase                                                                                                                                                                                                                                                               | <u>₩\$* 0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ev - MY; Cases 1 (DL3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                      | III Load Types                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.46<br>19.00                         | Wy tkNm<br>Mar-28,90<br>Min-41,51<br>-PZ kG<br>∰ KNm | Number:         1           Notice:         dated           Nome:         DL1           Lot of defined cases:         No.           Cose name         1           2         UL1           3         90001           3         90001           5         ACC1           7         T0903 | Subour:     Subour:     Subour:     Add Modify      Inst.re     Add     Soft     Soft |
| Cont         Control (Cont         Cont         Cont |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | View                                                 |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| tana<br>∰X ● Recube #1000; emilade 6 型 4 ₽4(220 ∐ 112,06; μ=4,00; μ=μ)(0)<br>∭X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Case         Losd type         List         Participation         Participation           1DL1         uniform lasd         3         PD=0,0         PZ=15,00         global         rel project.         relative         BE=0,0         DZ=0,0         MEMO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                                      |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ■ Results (FEM): available 6 원 4 第E270 江 xr.2,65, yr-0,33, xr.3,69 二 0,00 [m] [bb]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                      |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                     |                                                      |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Figure 44. Case 1, Autodesk Robot: check of changes of updated model

3

#### Appendix 4. Case 2: Problem solution

In this Appendix solution of the problem used for the 2nd case study is presented.

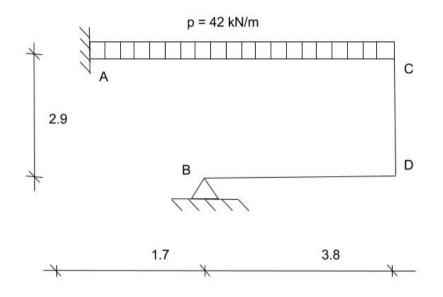
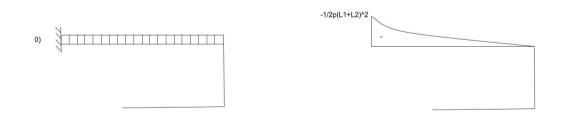




Figure 45. Case 2: Schematic drawing of a frame



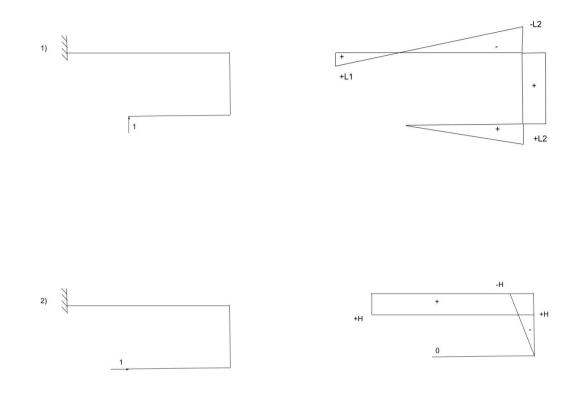



Figure 46. Case 2: force method solution

$$\begin{split} \delta_{10} &= \frac{1}{EI} \int M_0 M_1 ds = \frac{1}{EI} \frac{sy_2}{12} \left( \overline{y_1} + 3\overline{y_2} \right) = \frac{1}{EI} \frac{(L_1 + L_2) \left( -\frac{1}{2}p(L_1 + L_2)^2 \right)}{12} \left( -L_2 + 3L_1 \right) \\ &- \frac{p(L_1 + L_2)^3}{24EI} \left( -L_2 + 3L_1 \right) \\ \delta_{11} &= \frac{1}{EI} \int M_1^2 ds = \frac{1}{EI} \left( \frac{1}{3}s \left( \overline{y_1}^2 + \overline{y_1} \overline{y_2} + \overline{y_2}^2 \right) + s\overline{y_2}^2 + \frac{1}{3}s\overline{y_2}^2 \right) = \\ \frac{1}{EI} \frac{(L_1 + L_2)(L_1^2 + L_1 L_2 + L_2^2) + HL_2^2 + \frac{1}{3}L_1 L_2^2}{3} = \frac{(L_1^3 + 2L_2^3 + 3HL_2^2)}{3EI} \\ \delta_{20} &= \frac{1}{EI} \int M_0 M_2 ds = \frac{1}{EI} \frac{sy_1\overline{y}}{3} \left( \overline{y_1} + 3\overline{y_2} \right) = \frac{1}{EI} \frac{(L_1 + L_2)(-\frac{1}{2}p(L_1 + L_2)^2)}{3} H = \frac{p(L_1 + L_2)^3}{6EI} H \\ \delta_{22} &= \frac{1}{EI} \int M_2^2 ds = \frac{1}{EI} \left( \overline{y^2} + \frac{1}{3} \overline{y^2} \right) = \frac{1}{EI} \left( (L_1 + L_2) * H^2 + \frac{1}{3} H (-H)^2 \right) = \frac{1}{EI} \left( (L_1 + L_2) * H^2 + \frac{1}{3} H^3 \right) \end{split}$$

$$\begin{split} \delta_{12} &= \delta_{21} = \frac{1}{El} \int M_1 M_2 ds = \frac{1}{El} \left( \frac{s}{2} (y_1 + y_2) \overline{y} + \frac{1}{2} s y \overline{y} \right) = \frac{1}{El} \left( \frac{1}{2} (L_1 + L_2) (L_1 - L_2) H + \frac{1}{2} H L_2 (-H) \right) = \frac{1}{2El} ((L_1^2 - L_2^2) H - L_2 H^2) \\ \delta_{10} + X_1 \delta_{11} + X_2 \delta_{12} = 0 \\ \delta_{20} + X_1 \delta_{21} + X_2 \delta_{22} = 0 \\ \left| \frac{\delta_{11}}{\delta_{21}} \frac{\delta_{12}}{\delta_{22}} \right| \left| \frac{X_1}{X_2} \right| = \left| -\frac{\delta_{10}}{\delta_{20}} \right| \\ \left| \frac{(L_1^3 + 2L_2^3 + 3HL_2^3)}{\delta_{12} \frac{1}{2El}} \delta_{12} \frac{1}{2El} ((L_1^2 - L_2^2) H - L_2 H^2)}{(L_1 + L_2) * H^2 + \frac{1}{3} H^3)} \right| \left| \frac{X_1}{X_2} \right| = \left| \frac{p(L_1 + L_2)^3}{(-L_2 + 3L_1)} \right| \\ X_1 &= 39.9 \ kN \\ X_2 &= 86.1 \ kN \\ B_y &= 39.914 \ kN \\ B_x &= 86.121 \ kN \\ M_D &= B_y * L_2 = 151.67 \ kNm \\ M_A &= B_y * L_1 + B_X * L_2 - \frac{1}{2} p(L_1 + L_2)^2 = -317.645 \ kNm \\ Q_A &= \frac{1}{2} p(L_1 + L_2) - \frac{M_A - M_C}{L_1 + L_2} = \frac{1}{2} * 42 \ * 5.5 - \frac{-317.645 - 98.08}{5.5} = 191,086 \ kN \\ x_0 &= \frac{Q_A}{p} = 4.55 \ m \\ M_{max} &= M_A + Q_A x_0 - \frac{1}{2} p x_0^2 = 117,04 \ kNm \end{split}$$

Appendix 4 4(4)

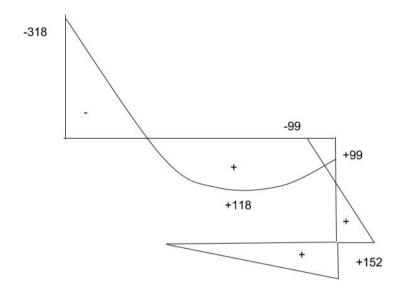



Figure 47. Case 2: Moment diagram

# Appendix 5. Case 2: Steel frame design and analysis in Autodesk Robot Structural Analysis

In this Appendix detailed procedure of the design and analysis via Autodesk Robot for the 2<sup>nd</sup> case study is presented.

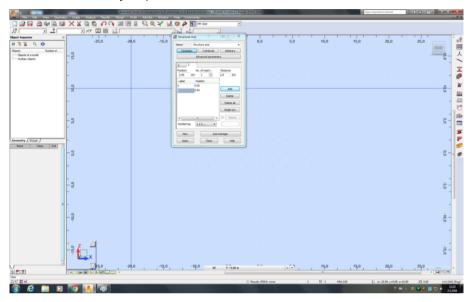



Figure 48. Case 2, Autodesk Robot: definition of axis

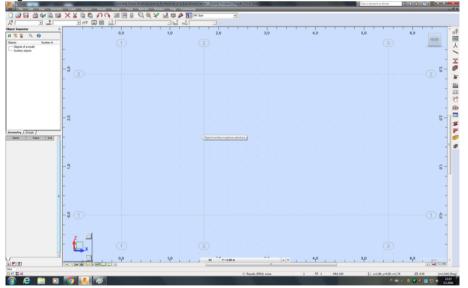



Figure 49. Case 2, Autodesk Robot: prepared grid

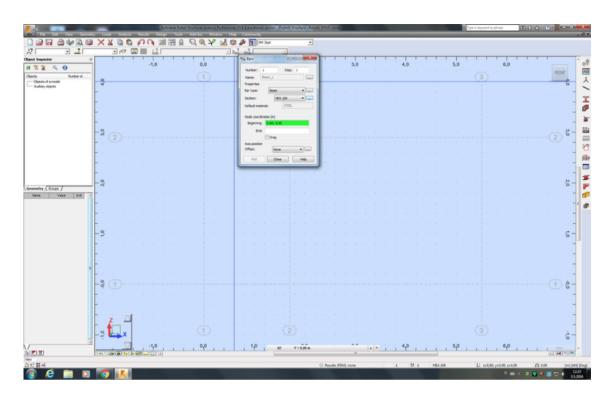



Figure 50. Case 2, Autodesk Robot: definition of elements 1

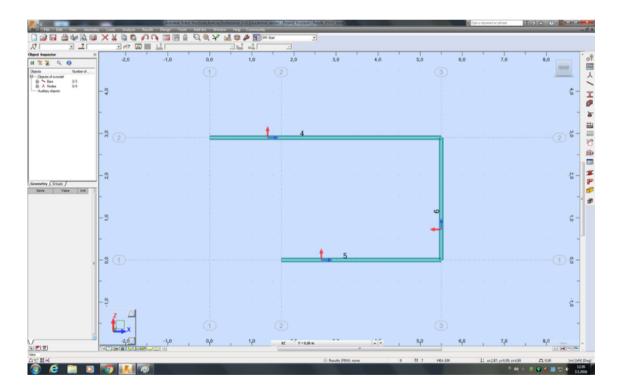



Figure 51. Case 2, Autodesk Robot: definition of elements 2

#### Appendix 5 3(7)

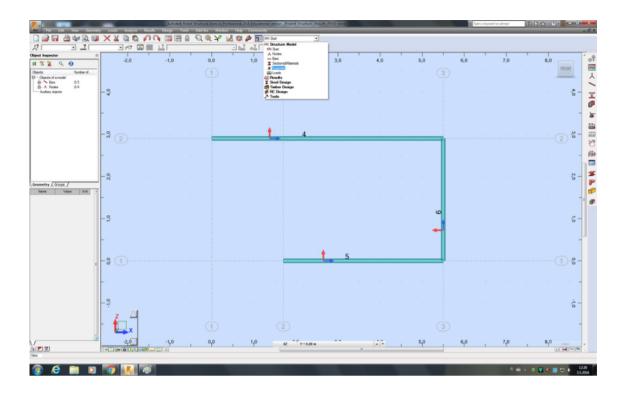



Figure 52. Case 2, Autodesk Robot: definition of supports 1

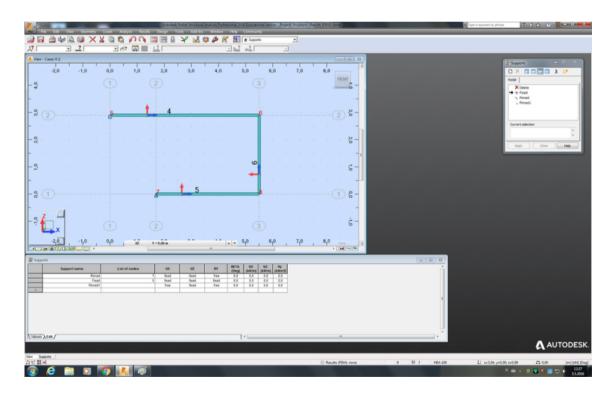



Figure 53. Case 2, Autodesk Robot: definition of supports 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 | odesk Robert Structural Analysis Perfessional 2016 Educational                                                  | waren i Report Structure i Results (FDA) none | 1 Opera Anyon | nlarphone 🕂 S 🛧 🕲 - 💷 🚥 🚥 🚥 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | File Life View Geometr                 |                 |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | Load Definition |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 | 30 40 50                                                                                                        |                                               |               | ( Jan                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                      |                 |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 |                                                                                                                 |                                               | Tare          |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 |                                                                                                                 |                                               |               | Add Hodfy                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                      |                 | <b>1</b>                                                                                                        |                                               | List of       | fefined cases:              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | Special Leads   | a second second                                                                                                 | A A A A A A A A                               |               | Case name Nature Ar         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 | and the second second                                                                                           | and a second second second                    |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 | <b>.</b>                                                                                                        |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 | -                                                                                                               |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 | a de la companya de l | · · · · · · · · · · · · · · · · · · ·         |               | Online Deline all           |
| 1       2       3       Cases: 0         1       2       3       Cases: 0         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                      | 7               | 5                                                                                                               | (1) <b>8-</b>                                 |               | Close Help                  |
| 1       2       3       Cases: 0         1       2       3       Cases: 0         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                 |                                                                                                                 |                                               | _             |                             |
| 1       2       3       Cases: 0         1       2       3       Cases: 0         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                 |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z 🖓 🖓 🖓                                |                 |                                                                                                                 |                                               |               |                             |
| Separt     No     No     No     No     No       Separt     No     No     No     No     No       No     No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 🖳 🖌 👘                                  |                 |                                                                                                                 | Cases: 0.0                                    |               |                             |
| agent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1,0                                   | 0,0 XZ Y-0,00m  | A = 50 .                                                                                                        | 6,0 , 7,0 , 8,0 , 2                           |               |                             |
| Require Learner         List of states         List o |                                        | <               |                                                                                                                 |                                               |               |                             |
| Read         Note         Note <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                      |                                        |                 |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                 | K BZ RY (Deg) (Alling (All                                                                                      | m) (klim/D)                                   | 1             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | hed 5 fee       | nd Sand Band 2.0 2.0 C                                                                                          | 0 6.0<br>6 8                                  |               |                             |
| Separt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                 |                                                                                                                 |                                               |               |                             |
| Separt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                 |                                                                                                                 |                                               | 1             |                             |
| Separt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                 |                                                                                                                 |                                               |               |                             |
| Separt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                 |                                                                                                                 |                                               |               |                             |
| Separt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                 |                                                                                                                 |                                               | 1             |                             |
| Supports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nes Year \                             |                 |                                                                                                                 |                                               |               |                             |
| n bad caa type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                 |                                                                                                                 |                                               |               | A NOTODE.                   |
| 😂 🚔 🖸 🌄 🚳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Supports<br>Is load case types         |                 |                                                                                                                 |                                               |               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) 🤌 📋 🖸                                | S 🚺 🛷           |                                                                                                                 |                                               |               | P 🖮 K P 😨 4 📓 D 6 🔒         |

Figure 54. Case 2, Autodesk Robot: definition of loads 1, load case selection

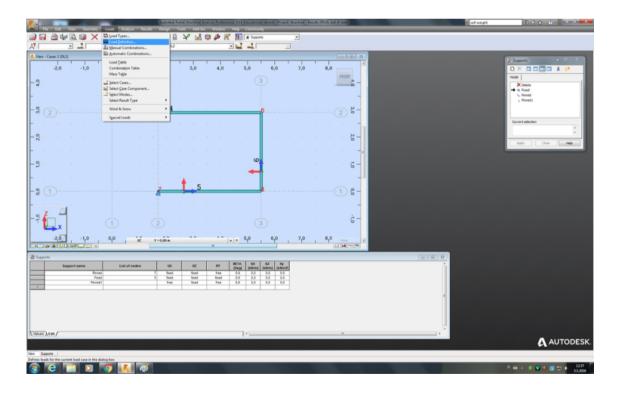



Figure 55. Case 2, Autodesk Robot: definition of loads 1, load type selection

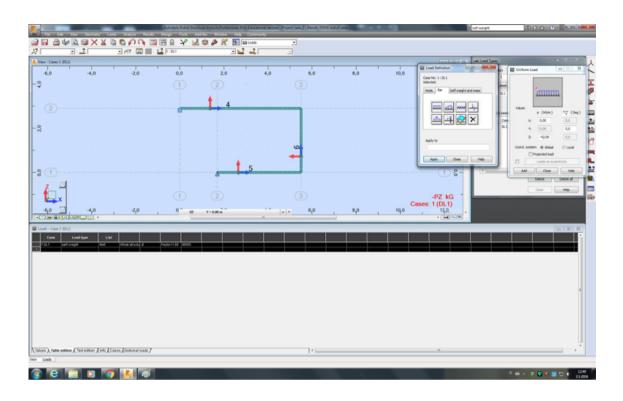



Figure 56. Case 2, Autodesk Robot: definition of loads 1, uniformly distributed load

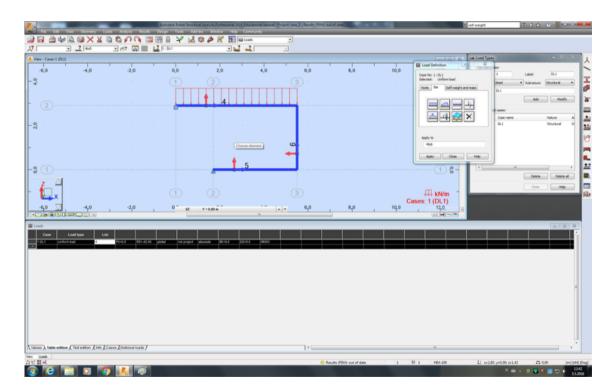



Figure 57. Case 2, Autodesk Robot, steel frame with assigned loads

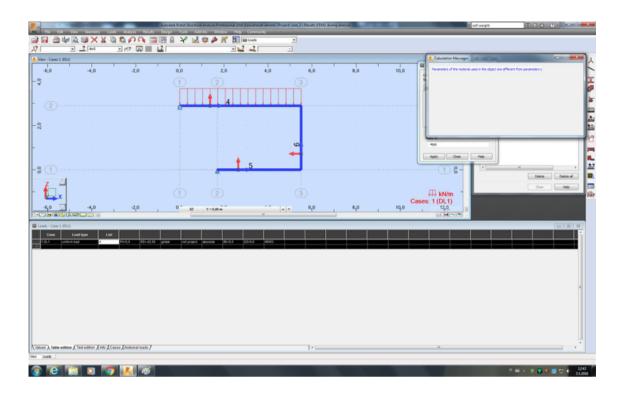



Figure 58. Case 2, Autodesk Robot: analysis



Figure 59. Case 2, Autodesk Robot: moment diagram with table for reactions' magnitudes

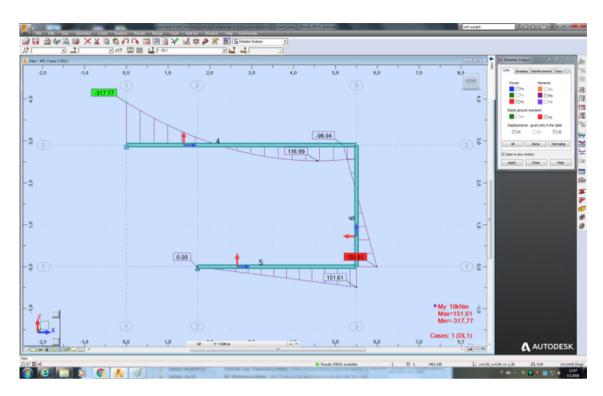



Figure 60. Case 2, Autodesk Robot: final moment diagram

# Appendix 6. Case 2: Steel frame design and analysis in Autodesk Robot Structural Analysis

In this Appendix detailed procedure of model integration between Autodesk Robot and Revitf or the 2<sup>nd</sup> case study is presented.

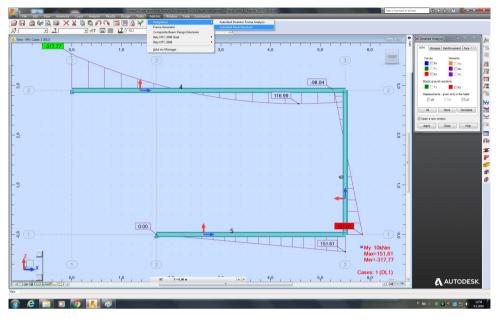



Figure 61. Case 2, Autodesk Robot: establishing the link with Revit 1

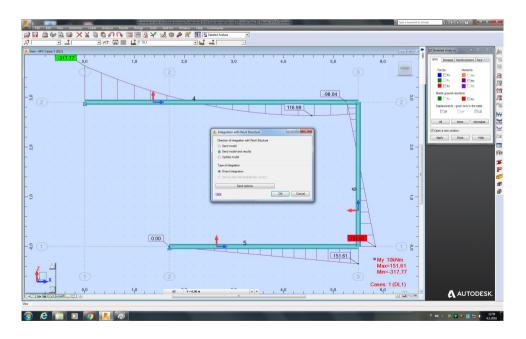



Figure 62. Case 1, Autodesk Robot: establishing the link with Revit 2, properties selection

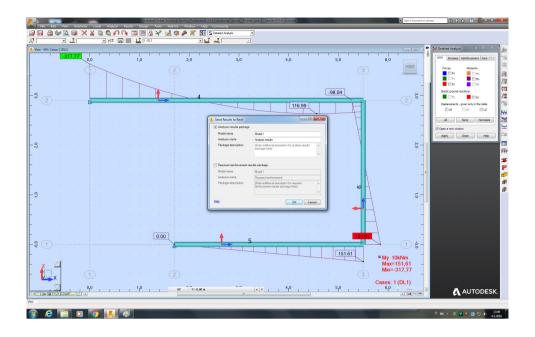



Figure 63. Case 2, Autodesk Robot: establishing the link with Revit 3, properties selection

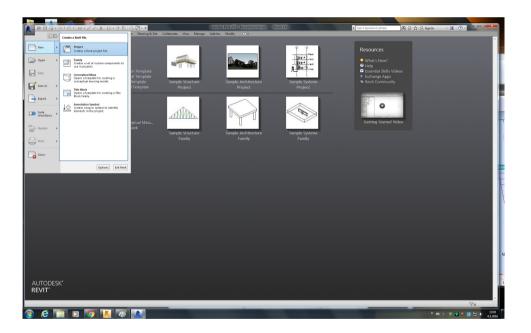



Figure 64. Case 2, Revit: project definition

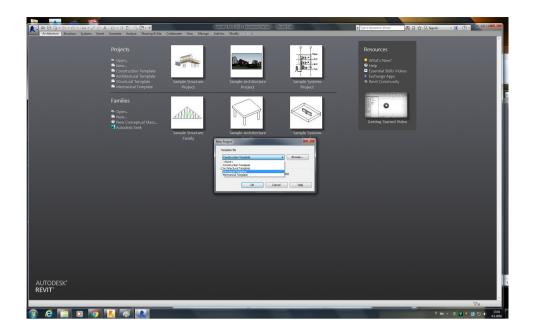



Figure 65. Case 2, Revit: project definition: selection of the environment

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                             |                                                                                                                                                       | ucational Version - Project1 - Structural Plan Level 2 |                                       | 1                 |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|-------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • - 2 ⊘ A ⊗ - ≎ ≌ ⊟ - =       |                                                                                                                                                       |                                                        | <ul> <li>Type a keyword or</li> </ul> | phrase 여운 Sign In | · X 🕘 ·              |
| Architecture Structure Sys<br>Modify Beam Wall Column Roc<br>Select • Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or Truss Brace Beam<br>System | te Collaborate View Manage Add-Ins Mo<br>the Collaborate View Manage Add-Ins Mo<br>the Area Path Fabric Fabric Cover<br>Area Sheet<br>Reinforcement - |                                                        | Dormer<br>Level Gold<br>Datum         |                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                                                                                                                                       |                                                        |                                       |                   |                      |
| Direction         Direction <thdirection< th=""> <thdirection< th=""> <thd< td=""><td></td><td></td><td>Q</td><td></td><td></td><td></td></thd<></thdirection<></thdirection<> |                               |                                                                                                                                                       | Q                                                      |                                       |                   |                      |
| ar (Lip Attas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Qı                                                                                                                                                    |                                                        |                                       | 10                | c                    |
| Schedules/Quantities     Schedules/Quantities     Schedules/Quantities     Schedules/Quantities     Schedules/Quantities     Schedules/Quantities     Schedules/Quantities     Schedules/Quantities     Schedules/Quantities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1:222 口口(4) 路線が少っの時間          | <u>ä</u> <                                                                                                                                            | õ                                                      |                                       |                   |                      |
| eady                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                                       | ർ                                                      | 👻 🖉 \Lambda 🛅 🕅 Main Model            | ×                 | 7 🕰 🛼 🗱 🏷 🕫          |
| s 🤅 📄 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 💿 🛃 🐼 💽                       |                                                                                                                                                       |                                                        |                                       | A E               | i 😳 👂 🗑 🍕 🧾 🗊 🔶 1305 |

Figure 66. Case 2, Revit: workspace for an imported project

# Appendix 6 4(10)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             | nis Professional 2016-Educational version - Project: c<br>Autodesk Revit 2016 - Educational Version |                                                           |                                                             | Type a keyword or phrase | ALS & O                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H · J / D A B · J EE R B · F<br>Annotate Analyze Massing & Site Collaborate |                                                                                                     | region - sectored Plant Devel 2                           | Type a keyword or phrase                                    | AR 또 ☆ 요 Sign In         | · 34 (g) ·                           |
| 700/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | icor Truss Brace Beam bootsted Wall Stab                                    | abric Fabric Cover<br>Area Shoet                                                                    | Model,<br>Group<br>By Shaft Wall Vertical Dorme<br>Dening | Level Grid Set Show Bot Viewer<br>Plane<br>Dotum Work Plane |                          |                                      |
| Structural Plan         W           unal Planc Level         HB Edit Type           cs         R           Scale         1100           Value         1100           Wodel         Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Send model to Revit Structure<br>Revit Levels                               |                                                                                                     | Q                                                         |                                                             |                          | = 10 X<br>Q<br>•<br>•<br>•<br>•<br>• |
| Level Carans Carans (Winking Shore Original<br>By/Graph. Edit<br>C Displa<br>Bay None<br>By Orine<br>Project North<br>ain Daplay Clean all wall<br>Brie Structural<br>MichaelL & Discipline<br>R Analysi<br>None<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>Shore<br>S |                                                                             |                                                                                                     |                                                           |                                                             |                          |                                      |
| Extinct Apply      Invoxes - Project X      Views (all)      Stuctural Plans (Ste)      Ste      Suctural Plans      Level 1      Level 1      Level 2      Lavel 2      Analytical      JO Views      Analytical      So Views      So Views      Analytical      So Views      So Views      Analytical      So Views                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )<br>6                                                                      | С)                                                                                                  |                                                           | ٢C                                                          | )                        |                                      |
| Fant<br>North<br>South<br>Uket<br>Legends<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantities<br>Schedule/Quantit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                     | õ                                                         |                                                             |                          |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1:00 🗆 🗇 🚱 🖓 🖓 🖓 🖓 🖓 🖓 🖓                                                    |                                                                                                     |                                                           |                                                             |                          |                                      |

Figure 67. Case 2, Revit: import process of the Robot project

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Autodask Robot Structural Analysis                          | Professional 2016-Educational version - Project: case_2 - Results (FEM); available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > Type a keyword or phrase                 | 品 5 会 (0) - 0 ×                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - × ル A G - 2 肥 品 田 - F                                     | Autodesk Revit 2016 - Educational Version - Project1 - 3D View: Analytical Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ・ Type a knyword or phrase 品 谷 古 오 Sign In | · X () · · · · · · · · · · · · · · · · · · |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eens Insert Annotate Analyze Massing & Site Collaborate Vie | w Manage Add-Ins Modify   Structural Columns 💿 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cut - 1 = 80 -<br>Jein - 2 ≪ ◆ ◇ ◇ → 1 = = × ◇ =            | Image: Section 1         Image: Section 2         Image: Section 2< |                                            |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oves With Grids                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                            |
| Alter and a second and a second a  |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                            |
| Contrain bals     Apply     Apply     Apply     Stowers.Physical     Apply     Social Flance (Site)     Social Flance (Site)     Contrain Flance (Site)     Contrain Flance     Contr |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                            |
| — North<br>— South<br>— West<br>ShedukesQuantities<br>ShedukesQuantities<br>ShedukesQuantities<br>ShedukesQuantities<br>ShedukesQuantities<br>Renit Links                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1130 <b>2006</b> (2044) (20) - 2000 (21)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                            |
| ck to select, TAB for alternates, CTRL add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ds, SHIFT unselects.                                        | đi - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a 🔚 💷 Main Model 👻                         | V 4 4 C 1 1 71                             |
| ) 🤌 📋 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 💿 🛃 🚳 🔝                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A I                                        | ≕ -: ¤ 😨 🗲 👹 🗊 🔶 1305<br>452016            |

Figure 68. Case 2, Revit: imported Robot model

#### Appendix 6 5(10)

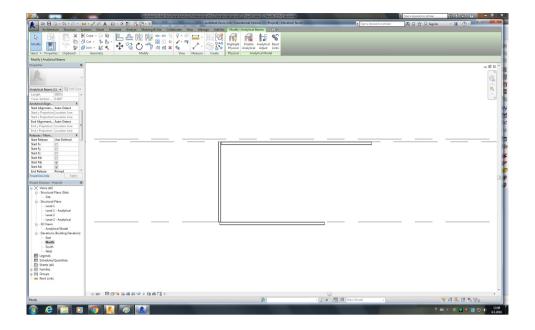



Figure 69. Case 2, Revit: front view of the model

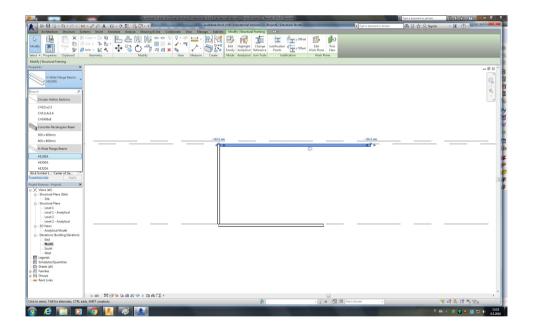



Figure 70. Case 2, Revit: adjustment of a model element 1

## Appendix 6 6(10)

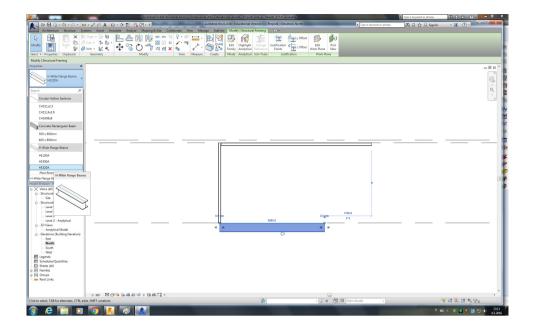



Figure 71. Case 2, Revit: adjustment of a model element 2

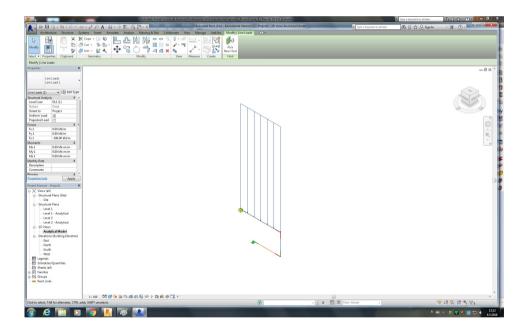



Figure 72. Case 2, Revit: input of new load values

#### Appendix 6 7(10)

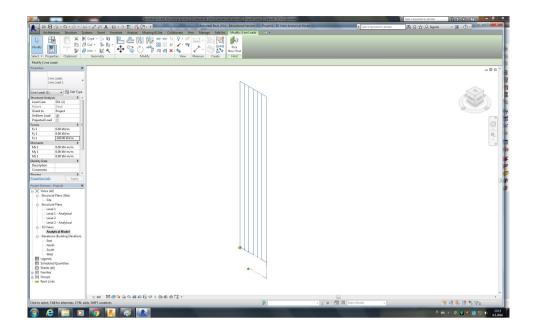



Figure 73. Case 2, Revit: model is updated according to new loads

| Architecture Structure System                                                  |                    | Collaborate View Manage Add-         | 📑 📫 💁                                                                    | Pressure Check Duct Check Fige Che                                    | tek Show Duct Pipe Color Fill<br>uits Disconnects Legend Legend | Company Show Run Energy                                            | n Compare Structural Analysis                                                              |
|--------------------------------------------------------------------------------|--------------------|--------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| badfy<br>Bodfy<br>Condery Leads<br>Cases Cerr<br>Analytical Model<br>petites X | Load<br>Ministions | Space Space Zone Space Cooling Loads | Panel Schedule/ Duct Pressure Pip<br>Schedules Quantities Loss Report Lo | Pressure Check Duct Check Pipe Che<br>ss Report Systems Systems Circu | tek Show Duct Pipe Color Fill<br>uits Disconnects Legend Legend | Energy Show Run Energy<br>Settings Energy Model Simulation         | y Results & Robot<br>n Compare Structural Analysis                                         |
|                                                                                |                    |                                      |                                                                          |                                                                       |                                                                 |                                                                    | Reinforcement Code Cho                                                                     |
| Non-standard +                                                                 |                    |                                      |                                                                          |                                                                       |                                                                 | Rader Storeten<br>Parloren seder<br>Anna Parlor<br>Press T3 for ma | ced analyses and code check after transferring<br>I to Autodesk Robot Structural Analysis. |
|                                                                                | 1:00 日前休息公共前日日~1日月 | 6H .                                 |                                                                          |                                                                       |                                                                 |                                                                    |                                                                                            |
| k to select. TAB for alternates. CTRI, adds.                                   |                    | (0))a (                              | đi                                                                       | - 24                                                                  | Main Model v                                                    |                                                                    | ♥ 4 長 使 ち ♥₂                                                                               |
| the source row on submittee, CTAC 2005,                                        |                    |                                      | 00                                                                       | · 2 N                                                                 | Contract V                                                      |                                                                    |                                                                                            |
|                                                                                |                    |                                      |                                                                          |                                                                       |                                                                 | A é                                                                | 🖷 🗧 🔊 😨 🚸 📓 🗊 🔶 🔒 13.15<br>4.5.201                                                         |

Figure 74. Case 2, Revit: establishing a link with Robot

# Appendix 6 8(10)

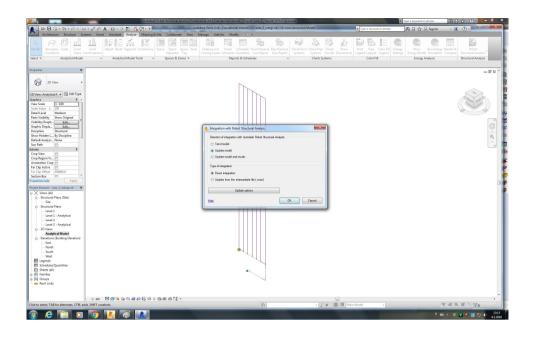



Figure 75. Case 2, Revit: selection of exported properties

| B B G. B. C. H                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | femional 2016-Educational venion - Project: care 2 - Results (FEM): available<br>utodesk Revit 2016 - Educational Version - care 2 integrant - 3D View Analytical Model                                                              | Type a knyword or phrase     Type a knyword or phrase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84 X & 9                                                                 |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Architecture Structure Syste                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      | Marchinese 199 P. Cl X abu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 24 (3 -                                                                |
| Ny Boundary Leads Load                                                                                  | Lead<br>Adjust Parent Supports Consistency<br>Adjust Parent Supports Consistency<br>Adjust Parent Supports Consistency<br>Adjust Parent Supports Consistency<br>Adjust Parent Supports Consistency<br>Support Supports Consistency<br>Support Support Supports Consistency<br>Support Support | Heating and Parel Schedule/ Duct Pressure Pro-Pressure Check Duct Check Pipe Check                                                                                                                                                   | Dut Per CeterFil<br>ColorFil ColorFil Col | rgy Reuts &<br>fon Compare<br>Structural Analysis<br>Structural Analysis |
| ei X                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 9 8                                                                    |
| 30 View •                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| n Analytical II.   B Edit Type  R  cale  1:100  c.vel  Medium  sibility Show Original  yGraph. Edit.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| Displa <u>Edit</u><br>Displa <u>Edit</u><br>te Structural<br>ididen L By Discipline<br>AnalysiNone<br>b |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ()<br>    _1                                                             |
| ew egion Vi                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Integration with Robot Structural Analysis     Integration with Robot Structural Analysis     Update from Flobot Structural Analysis file is completed.     Command completed successfully.     Do you wint to see the versit inport |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                        |
| s Offset 304800.0<br>8 cm m · · · · · · · · · · · · · · · · ·                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| rievs (al)<br>Structural Plans (Site)<br>Structural Plans<br>Level 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| Level 1 - Analytical<br>Level 2<br>Level 2 - Analytical<br>3D Views<br>Analytical Model                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| Bevations (Building Elevation)<br>East<br>North<br>South<br>West                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| egends<br>chedules/Quantities<br>teets (all)<br>amilies<br>roups                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| Revit Links                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| select, TAB for alternates, CTRI, add                                                                   | 1:00 回前後後後の後約60~008前前間・<br>5 SHFT unselects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Za =                                                                                                                                                                                                                               | Wan Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **************************************                                   |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |

Figure 76. Case 2, Revit: access permission request

# Appendix 6 9(10)

| Architecture Structure Systems Inset Anaptate A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Autodesk Revit 2016 - Educational Version - Case 2 jintegrint - 3 nalyze Massing & Site Collaborate View Manage Add-Ins Modify • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3D View: Analytical Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d or phrase 🛛 🖓 등 ☆ 요 Sign In 🔸              | X () -    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|
| eed u pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Space Space Zone<br>Seguritor Tig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | essure<br>Check Duct Check Pipe<br>Systems<br>Check Systems<br>Check Syste | Color Fill<br>Legend Strings Energy Analysis |           |
| ties ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | - 5 %     |
| 30 View         •           sc Analytical b •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         • | The Warring Std                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |           |
| lay-Graph. Eds.<br>is Object. Eds.<br>Structural Hidden L. By Decyline<br>th Analysis. None<br>why<br>New S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The State of  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |           |
| Region Crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relat First spages.     Post First spages.     Post spages.     Post spage s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |           |
| Browser.com,2,mtegrint         X           Views (all)         Stoccharal Plane (Stet)           Site         Stoccharal Plane           Stoccharal Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O - Stage resolution free 1 (second)     Rot Load:     O - Stage resolution free 1 (second)     Rot Load:     O - Stage resolution (second)     Rot Loa:     O - Stage resolution (second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |           |
| Level 2<br>Level 2 - Analytical<br>3D Views<br>Madiylical Model<br>Bevations (Uclosing Devation)<br>East<br>North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • Stage execution than 1 (second)<br>Rot Point support     • Stage execution than 0 (second)<br>• O - Stage execution than 0 (second)<br>Rot Load cases<br>• Stage execution than 0 (second)<br>Rot Load cases     • Stage execution than 0 (second)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |           |
| South<br>West<br>Legends<br>Schedules/Quantities<br>Strets (Jil)<br>Smilles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |           |
| Groups<br>Revit Links                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ↓<br>● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | ,         |
| select, TAB for alternates, CTRL adds, SHIFT unselects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 👻 🌮 🔊 📰 🚛 Main Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · * *                                        | A # 15 70 |

Figure 77. Case 2, Revit: integration procedure



Figure 78. Case 2, Robot: updated model

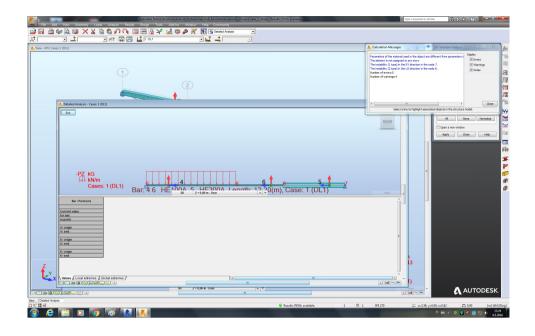



Figure 79. Case 2, Robot: analysis of the updated model

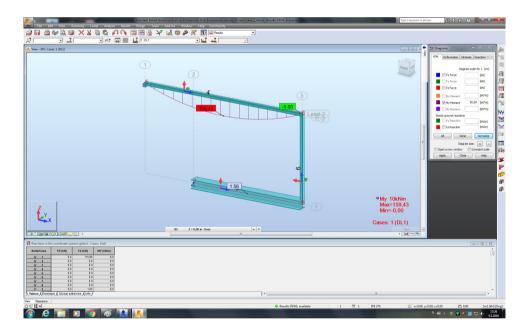



Figure 80. Case 2, analysis results for the updated model