
 

 

 

 

 

 

 

 

 

 

 

Marek Krajewski 

Cross-platform development of the Smart 

Client application with Qt framework and 

QtQuick 
 

 

 

 

 

 
 
 

Information Technology 
2016 

 
 
 



 

 

ACKNOWLEDGMENTS  

 

I would like to thank Dr. Smail Menani for giving me opportunity to participate in 

this project, guidance during the thesis, his support and extreme patience. 

I would also like to thank Rafał Chomentowski for always being willing to share 

his expertise in the Qt Framework. 

 
 
 
 



1 

 

 
VAASAN AMMATTIKORKEAKOULU 
UNIVERSITY OF APPLIED SCIENCES 
Degree Programme of Information Technology  
 
ABSTRACT 

Author   Marek Krajewski 
Title   Cross-platform development of the Smart Client application 
with Qt framework and QtQuick 
Year   2016 
Language  English 
Pages   62 + 1 Appendix 
Name of Supervisor Smail Menani 
 

In this thesis the Qt Framework is evaluated as the tool that can support the cross-
platform development of desktop, mobile and embedded applications.  Hence, 
a hybrid client application is developed to assess its capabilities for creating a 
product providing a good user experience on a wide range of the target devices. 
The application is required to demonstrate implementation of the Graphical User 
Interface, network communication with a server and access to the native devel-
opment environment of the target device while utilizing tools bundled with the 
framework.  The application is successfully developed and tested on the following 
devices: Windows notebook with the full size desktop monitor, Android devices 
with 5-inch and 10-inch touchscreen displays, Raspberry Pi with Raspbian Linux 
and full size desktop monitor. The QML language is used to create a responsive 
GUI, utilizing diverse collection of widgets provided by the QtQuick library. Qt 
API itself is sufficient to create a WebSocket communication with the server and 
allowed for leveraging the native SDK of each tested platform. A custom cross-
compile toolchain is built and used in the development for the Raspberry Pi. 

The result of this work proves that the Qt Framework is a feasible solution for the 
cross-platform development for experienced teams, offering powerful GUI crea-
tion tools and wide range of supported platforms. 

  

 
 

Keywords Cross Platform Development, Qt, QML, Hybrid Client 

 



 

CONTENTS 

ABSTRACT 

ACKNOWLEDGMENTS  

1 INTRODUCTION ............................................................................................ 7 

1.1 Smart Grid ................................................................................................. 7 

1.2 Smart Home .............................................................................................. 8 

1.3 Smart Client ............................................................................................ 10 

1.4 Statement of the problem ........................................................................ 11 

2.2 Evaluation must cover the following aspects: .......................................... 12 

2 PROBLEM ANALYSIS ................................................................................ 16 

2.1 Why Qt/QML? ........................................................................................ 16 

2.2 Client archetypes ..................................................................................... 17 

2.3 Cross-platform support ........................................................................... 19 

2.4 Native access ........................................................................................... 21 

2.5 Server-Client communication ................................................................. 22 

2.6 Development environment ...................................................................... 22 

2.7 Alternative solutions ............................................................................... 23 

2.8 Summary ................................................................................................. 24 

3 CLIENT PROTOTYPE .................................................................................. 27 

3.1 Design ..................................................................................................... 27 

3.2 Remote QML Loading ............................................................................ 29 

3.3 Gateway-Client communication ............................................................. 31 

3.3.1 Single request .............................................................................. 32 

3.3.2 Periodic request ........................................................................... 33 

3.3.3 Gateway requests ........................................................................ 34 

3.4 Graphical User Interface ......................................................................... 35 

3.4.1 Views navigation ......................................................................... 36 

3.4.2 Screen orientation........................................................................ 38 

3.4.3 Native controls ............................................................................ 40 

3.5 Cross compilation ................................................................................... 42 

3.5.1 Toolchain..................................................................................... 42 

3.5.2 Qt Kit ........................................................................................... 44 



3 

 

3.5.3 Remote deployment .................................................................... 45 

3.6 Additional tools ....................................................................................... 46 

3.6.1 Debugger ..................................................................................... 46 

3.6.2 QML Designer ............................................................................ 47 

3.7 Push notifications .................................................................................... 49 

3.8 Camera control ........................................................................................ 50 

3.8.1 Native Java implementation ........................................................ 51 

3.8.2 Qt implementation ....................................................................... 52 

4 SUMMARY ................................................................................................... 55 

5 CONCLUSIONS ............................................................................................ 58 

6 REFERENCES ............................................................................................... 60 

   



 

LIST OF FIGURES AND TABLES  

 

Figure 1 Overview of the project developed at Technobotnia. ............................... 9 

Figure 2 Three-level architecture of Hybrid Client application with multiple views 

implementation.  /9/ .............................................................................................. 18 

Figure 3 Overview of the prototype design........................................................... 28 

Figure 4 Folder structure for QML files on the Gateway ..................................... 30 

Figure 5 Sequence diagram of executing the single request ................................. 32 

Figure 6 Sequence diagram of executing the periodic request ............................. 33 

Figure 7 Sequence diagram of handling the request orignated from the Gateway 34 

Figure 8 Views hierarchy ...................................................................................... 35 

Figure 9 Screenshot of the MainView - Windows ................................................ 37 

Figure 10 Swipe menu - Smartphone .................................................................... 38 

Figure 11 Portrait orientation - Smartphone ......................................................... 39 

Figure 12 Landscape orientation - Smartphone .................................................... 39 

Figure 13 MenuBar, Toolbar and TabView controls on Windows ....................... 41 

Figure 14 MenuBar, Toolbar and TabView controls on Android tablet ............... 41 

Figure 15 Using the Raspberry Pi cross compiler to build qmake. ....................... 43 

Figure 16 Building other optional Qt libraries ...................................................... 43 

Figure 17 Configuration of the cross-compile Raspberry Pi kit in the Qt Creator 44 

Figure 18 Configuration of  Raspberry Pi as a remote test device in Qt Creator . 45 

Figure 19 Panel allowing to quickly switch Kit used in the current build. ........... 46 

Figure 20 Debugger in the Qt Creator................................................................... 47 

Figure 21 Screenshot of the Devices view ............................................................ 48 

Figure 22 Sequence diagram of the Push Notification extension ......................... 50 

Figure 23 Sequence diagram of the ThumbnailSnapper extension. ...................... 51 

 
 
Table 1 Summary of the design choices for the prototype implementation. ........ 24 

 
 
 
 



5 

 

 
 
 
 
LIST OF ABBREVIATIONS 

• PLC – power line communication 

• HMI – human machine interface 

• PC – personal computer 

• GUI – graphical user interface 

• UI – user interface 

• HAN – home area network 

• WPAN – wireless personal area network 

• IDE – integrated development envirnonment 

• QML – Qt modeling language 

• NFC – near field communication 

• AJAX – asynchronous JavaScript and XML 

• SSH – secure shell 

• SSL – secure sockets layer 

• ADB – Android debug bridge 

• API – application programming interface 

• RIA – rich internet application 

• GPL – general public license 

• LGPL – lesser general public license 

 

 

 

 

LIST OF APPENDICES 



 

APPENDIX 1. Source code 

 



7 

 

1  INTRODUCTION 

This thesis started as a part of the larger project researched and developed under 

supervision of Smail Menani, D.Sc. at Technobothnia, Vaasa; which is focused 

mainly on the concept of the Smart Grid and Smart Home. The main goal of the 

project is development of a prototype of the working solution able to provide a 

two ways communication between the typical end-consumer in the electrical net-

work and the rest of the grid’s components.   

One of the required elements in the project was the client application for the end-

consumer, allowing for managing the power consumption, viewing the current 

status and, to a certain degree, also controlling all connected home appliances.  

Chapters throughout this document are organized in three main sections. The first 

section introduces reader to the background concepts of the Smart Grid, Smart 

House and the actual focus of the thesis: the Smart Client. The second section dis-

cusses findings of the research of challenges related to the cross-platform devel-

opment and how Qt framework can help to overcome them. The third section goes 

through the design decisions made based on conducted research, documents the 

development of the application prototype and evaluates Qt framework as the 

cross-platform development tool. 

 

1.1 Smart Grid 

“In short, the digital technology that allows for two-way communication between 

the utility and its customers, and the sensing along the transmission lines is what 

makes the grid smart.” /1/ 

Quote above shows the key point of the smart grid - the electrical grid that is self-

aware and provides ability to exchange information between all actors it consists 

of: a power plant, substation or even the end consumer paying the electricity bill.  



 

Some of the practical implementations of the Smart Grid are /1/ 

• Reduced peak demand of the electricity by a better management of the 

power consumption. For example, scheduling of various home appliances 

or loading electrical cars during the time of the day when electricity de-

mand is the lowest. 

• Prioritizing electricity to the mission critical consumers like hospitals.  

• Smart Home - concept with already existing solutions utilizing the Power 

Line Communication (PLC) and Home Area Network (HAN) to connect 

and manage appliances allowing for lowering energy bills by scheduling 

them according the energy prices throughout the day.  

• Smart Metering - solution already being adopted by many energy compa-

nies allowing for the remote, real time consumption measurements, elimi-

nating costs of the labor related to collecting measurements manually. 

At the moment, the Smart Grid has still a very futuristic sound to it; however, 

with the growing demand and the aging infrastructure it’s already a serious topic 

attracting interest of organizations like Institute of Electrical and Electronics En-

gineers /3/ and International Energy Agency /4/. Furthermore, the Smart Grid 

concepts are already being deployed around the world by, for instance, Italian 

electricity manufacturer Enel /5/ 

1.2 Smart Home 

The Smart Home is a concept of introducing the residential customer of electrical 

network to the Smart Grid by utilizing technologies like Power Line Communica-

tion (PLC) and Wireless Personal Area Network (WPAN). Such infrastructure can 

be also used further to implement the home automation concepts. /2/ 

The following diagram shows a design of the system prototype, developed in 

Technobothnia; which tries to combine features of both: the home automation and 

The Smart Home.  



9 

 

 

Figure 1 Overview of the project developed at Technobotnia. 

Each of the home appliances is equipped in the power meter and the module ca-

pable of providing communication through PLC or WPAN solution (e.g. ZigBee) 

to the Gateway. The Gateway device has multiple purposes. First of all, it is con-

nected through PLC modules to all phases of the electrical grid available in the 

domestic property. Together with the wireless communication module like 

ZigBee, the Gateway gathers the power consumption data and controls all appli-

ances connected to the power grid. 

Customer can view collected data and control the appliances through the Human 

Machine Interface (HMI) located in a convenient place within home area, or using 



 

other devices connected via the Internet network: personal computer, PDA or 

Smartphone.  

The Gateway can also exchange data with the electricity provider using the com-

munication over the power grid or the Internet network. It allows the customer to 

see information about the current electricity price, billing status and notifications 

of the potential issues occurring in the grid. At the same time, the electricity pro-

vider can gather collected data remotely and monitor grid for malfunctions.  

 

1.3 Smart Client 

Having established the background of the thesis, it’s now possible to bring into 

the picture its actual subject: The Smart Client. 

In the context of The Smart Home solution presented in the previous chapter, The 

Smart Client is an application running on HMI, Smartphone or PC capable of 

providing the customer an interface to the home automation, the data gathered on 

the Gateway and the communication with the electricity provider.  

As for this moment, the exact specification of the services offered by the Gateway 

are not yet defined which makes the complete implementation of the client appli-

cation impossible. However, the key requirements are already known and can be 

used to assess which technology should be used to develop the Smart Client ap-

plication.  

 

 

 

 

 



11 

 

1.4 Statement of the problem  

Problem: Evaluate whether Qt framework can be successfully used for develop-
ment of the Smart Client application. Base your evaluation on the Smart Client 
requirements by:  

1) Investigating the challenges related to each requirement.  

2) Finding and choosing the best solution offered by Qt that can fulfill the re-
quirement. Base the research mainly on the official Qt documentation. 

3) Implementing a simple application that proves that the chosen solution satisfies 
the requirement.  

After implementation is finished, summarize which goals could and could not be 
accomplished and why. Compare them with the ideal solutions found during the 
investigation phase.  

Requirements:  

1. Cross-platform support 

Research goals: 

1.1 Evaluate the possible approaches to the cross-platform 

development. Find the best one, considering all other re-

quirements of the Smart Client application.  

1.2 Find if Qt framework, according to the official documen-

tation, can be used for the application development targeted 

on the following platforms: 

• Desktop : Windows, Linux, Mac OS X 

• Mobile: Android, iOS 

• Other: custom embedded device using Linux and ex-

ternal display 

Implementation 
goals: 

1.3 Deploy application on: Windows, Android and Raspber-

ry PI device. 

1.4 Application must contain the implementation goals speci-
fied by all other requirements (unless stated otherwise or re-



 

quirement is not applicable for the particular platform). 

2. Graphical User Interface 

Research goals: 

2.1 Evaluate solutions offered by Qt framework that can be 

used to develop the Graphical User Interface.  

2.2 Evaluation must cover the following aspects: 

• Available controls.  

• Look and feel of the controls. How difficult it is to 

achieve the native look and feel of the target pla-

form? 

• Different screen types and screen sizes. How difficult 

is it to provide GUI usable on all screen types and 

sizes? 

Implementation 
goals: 

2.3 Implement GUI that demonstrates usage of: 

• Charts. 

• Lists 

• Buttons. 

• Multiple views – must consist of at least two views 

and navigation between them.  

2.4 Demonstrate that GUI can be tailored to accommodate 

for the following screen types:  

• Full size desktop monitor (17-25"), using mouse and 

keyboard as input. 

• Typical Smartphone display (5") with touchscreen 

and both: landscape and portrait orientation.  

2.5 GUI does not have to be esthetic; however, must be usa-

ble:  

• Size of the controls adjusted to the screen size 

• Support for the common gestures when using 

touchscreen (e.g. swipe) 



13 

 

• Responsiveness 

  



 

3. Client-server communication 

Research goals: 

3.1 Research what technologies and solutions can be used 

with Qt framework to provide the communication between 

the Smart Client and Gateway. Chose most appropriate one 

for the Smart Client and use it when developing prototype. 

Justify the choice.  

Implementation 
goals: 

3.2 Implement a simple Gateway emulator using the chosen 

technology to implement the communication between the 

Gateway and the Smart Client. 

3.3 Data provided by the Gateway should change over time 

to demonstrate the continuous values update. 

3.4 Implement the same communication technology in the 

Smart Client application.    

3.5 Demonstrate that communication between the Gateway 

and Client works by showing: 

• Single request 

• Continuous request  

• Bi-directional requests (that can originate also from 
the Gateway) 

 

 

 

4. Native access of the client device 

Research goals: 

4.1 Research the possibilities of accessing the native devel-

opment environment of the client device using following sys-

tems: Windows, Linux, Android 

Implementation 
goals: 

4.2 Demonstrate the native access on Android by implement-

ing any functionality using the Android SDK API. 

 

 



15 

 

5. Development tools 

Research goals: 

5.1 List and shortly describe tools offered by Qt framework 

that can help in: 

• Writing code  

• Debugging 

• Designing user interface 

• Cross compilation 

• Deploying application on the target device 

Implementation 
goals: 

5.2 Use the Qt Creator and other offered tools during the pro-

totype development, and assess their usability by comparing 

it to other tools used throughout the university projects.  

5.3 Build a Qt cross compiler on the Linux machine. Use it 

to build the Qt framework binaries and Smart Client applica-

tion for the RaspberryPi2 device. 

 

 



 

2 PROBLEM ANALYSIS  

In order to assess and choose the right technology to meet defined requirements 

it’s necessary to first discuss concepts related to the development of a client appli-

cation. This chapter tries to identify challenges that will have to be addressed dur-

ing the implementation phase using Qt platform, and chose the best tools and de-

sign that can help to successfully build a working client prototype. 

 

2.1 Why Qt/QML? 

Qt is a cross-platform framework allowing for the application development using 

the C++ language, and deployment on the most of major platforms and operating 

system like: Windows, Linux, Android and iOS. It comes with the Commercial 

and Open Source licensing options. The Open Source version is available under 

GNU Lesser General Public License (LGPL) /6/ which is especially important in 

low-budget, educational project like this one. In addition, even if runtime libraries 

for the target platform are not directly supported and available on Qt website, it is 

possible to compile a custom toolchain from the source code. Qt wiki page con-

tains a comprehensive guide explaining the process of cross compiling Qt applica-

tions for Raspberry PI device. /7/ 

Qt framework isn’t the only available technology that could potentially be used in 

the Smart Client project. We have to admit that the motive behind choosing Qt for 

evaluation in this thesis was partially our previous experience with it. Most of the 

Smart Grid project members are students of the IT degree focused on the embed-

ded software development. Hence, it’s understandable that most of them will pre-

fer working with a framework utilizing the familiar C++ language; rather than 

more web-oriented technologies used by the alternative solutions.  

 

 



17 

 

2.2 Client archetypes 

An important aspect that has to be considered before client implementation is its 

archetype. Microsoft’s Application Architecture Guide discusses this topic in de-

tail presenting advantages and disadvantages of each solution /8/ 

• Rich client application – typically, a stand-alone application that can uti-

lize the network connection for accessing the data, and contains most the 

actual business logic. Requires the installation on the client, dedicated for 

each supported platform, which increases difficulty of providing regular 

updates. In return, gives access to the client’s resources and allows for 

writing a responsive and rich GUI. 

• Web application - the whole application is fetched from the server and ex-

ecuted in the web browser. This eliminates the problem of the application 

versioning and makes it accessible for all platforms equipped with a web 

browser. Downside is a slow, restricted user interface; dependence on the 

network access and the very limited access to the client resources. 

• Rich Internet application (RIA) - similarly to the web application, the RIA 

is loaded from the server but executed in a dedicated sandbox. Middle 

ground between the Rich Client application and Web application. Simpli-

fies application updating, and allows for building rich user interfaces and 

better access to the client resources. However, the client must contain the 

required version of the sandbox which forces user to be aware of the ver-

sions compatibility. 

 

In addition, Sten Anderson, in his critique of desktop (rich client) and web appli-

cations /9/ presents yet another type of the client application: Hybrid. On the first 

glance, the Hybrid application resembles RIA, but provides support for the differ-

ent view implementations: 



 

 

Figure 2 Three-level architecture of Hybrid Client application with multiple views 

implementation.  /9/ 

 

The multiple view implementations give the hybrid archetype a strong advantage 

when application has to be supported on both: desktop and mobile clients. Con-

sidering the differences in the screen sizes between the typical desktop and mobile 

device, and the way the user interface is accessed (touch screen vs mouse point-

er/keyboard), it’s virtually impossible to provide a usable user interface with just a 

single view.  

 

According to the Qt documentation, it offers the following means to implement 

the presented client application archetypes:  

• WebApplication - Although Qt itself is able to handle displaying the con-

tent like HTML and JavaScript via QtWebEngine deployed on the client, it 

does not offer any tool to work directly with standard web browsers.  



19 

 

• Rich Internet application – The QtQuick offers possibility to display the 

remote QML files using QtWebEngine together with other web content. In 

addition, any C++ class extending QObject can be exposed, either by us-

ing QWebChannel or qmlRegisterType function (for QML only), giving 

the access to the client resources and additional libraries written in C++.  

• Hybrid – Similar to RIA, uses the QtWebEngine. However, different 

views are served by the server depending on the client device type.  

• Rich Client application - Similar to RIA, QtWebEngine can be used with 

QML files, bundled with the client application. Alternatively, the Qt 

Widgets module offers a set of common desktop widgets that can be used 

to build the GUI directly from the C++ code.   

 

 

 

 

2.3 Cross-platform support 

Developing an application targeted to more than one platform presents a set of 

challenges. Each operating system offers own environment that allows for deploy-

ing applications, accessing system resources, rendering user interface, etc. It 

might impose using certain programming language or compiler, depending on ar-

chitecture of the processor on the host device. This chapter will outline two basic 

approaches to the cross-platform development and then explore how Qt frame-

work deals with it on the supported platforms.  

Applications can be developed separately for each targeted platform using its spe-

cific development environment. For example, Windows application will be writ-

ten in C/C++ utilizing Win32 API and MFC libraries and compiled with Mi-



 

crosoft C++ Compiler. Same application, when ported to Android, will use Java 

language and Android SDK. Just the fact that two different languages are used 

will force developers to maintain two, completely separate code bases for each 

platform. On the other hand, utilizing the SDK of the operating system gives ac-

cess to all of its resources and preserves the native look and feel of the graphical 

user interface. This approach is commonly referred to as the native development 

/10/. 

To decrease the overhead related to the maintenance of multiple codebases the 

platform specific functionalities can be abstracted, producing code that is shared 

between all supported platforms while using different implementations of those 

functionalities. For example, the application wanting to display a graphical user 

interface could leverage toolkits like GTK+ offering a single interface, in wide 

range of popular programming languages, and separate runtime environments for 

Windows, Linux and Mac OS X. /11/  

Qt framework works in a similar fashion providing developers a set of modules 

like QtGUI - for graphical user interface development or QtNetwork - for network 

programming. Officially supported languages are: C++, QML and JavaScript; 

however, additional language bindings are available with projects QtSharp /12/ or 

PyQt /13/  Once deployed, application uses Qt runtime environment, installed on 

the client, to get the actual implementation of used functionalities.    

The full list of platforms supported by Qt can be found on official website, which 

includes: iOS, OS X, Android, Windows, WindowsRT and Linux. Depending on 

the operating system, it’s also possible to use the alternative solutions for handling 

input and display management like: EGLFS, linuxFB, XCB. This is especially 

useful when application is deployed on the custom embedded device with limited 

processing power that uses more lightweight solutions than X11 windowing sys-

tem. 

 

 



21 

 

2.4 Native access 

Occasionally, client applications may want to use the client’s resources and func-

tionalities other that just accessing the user input and rendering the user interface. 

As mentioned in chapter 2.2, those resources are greatly limited by the web 

browser for the Web Applications, mainly for the security reasons. Rich applica-

tions, quite contrary, can access the features like taking pictures with camera or 

reading measurements of the gyroscope by directly accessing API offered on op-

erating system or using a third party library to do so. Rich Internet and Hybrid ap-

plications are restricted only to the features provided by the sandbox they run on.  

Most of the frameworks, used to develop the Hybrid applications, offer a variety 

of features sufficient for most of the mobile applications including: the camera 

access, sensor measurements, push notification, and others. In case when applica-

tion has to use features specific to the particular device, or access a third party li-

brary, some frameworks provide option to extend the basic API. For example, a 

popular mobile framework PhoneGaps allow for registering the custom plugins, 

which can be then accessed from the client code written in JavaScript/HTML. /14/ 

Qt framework is no different. Acting as sort of sandbox, the QtWebEngine is ca-

pable of displaying QML code having access to a vast range of functionalities of-

fered by QtQuick library in form of the QML types. Each QML type is essentially 

a specially formatted C++ class, registered in the QtWebEngine. For example, to 

use a proximity sensor, the QML file has to simply import a QtSensors type. Cus-

tom extensions can be provided in a similar way to the QtWebEngine, giving ac-

cess to the functionalities not supported in QtQuick or even possibility to reuse 

existing C++ libraries. QtWebEngine also offers an option to display 

HTML/JavaScript code together/instead of the QML, while offering a similar 

mechanism of communication with C++ code using the QtWebChannel. /15/ 

 



 

 

2.5 Server-Client communication 

As one of the main requirements of the Smart Client application is exchanging 

data with the Gateway this chapter will explore possible solutions for the client-

server communication supported in the Qt framework. 

A very popular technique used in web applications is AJAX, which uses a JavaS-

cript XMLHTTPRequest (supported by most of the modern web browsers accord-

ing to the W3 specification /16/) to continuously request new data from the server 

without having to refresh the whole website. As the QML JavaScript host envi-

ronment implements the XMLHTTPRequest /17/, the AJAX communication can 

be build using JavaScript directly from the QML code in a very similar fashion.  

One of the AJAX alternatives that became popular in the recent years are the 

WebSockets which, contrary to the request/response type of communication of-

fered by AJAX,  provide a continuous, low-latency and bi-directional communica-

tion with the server. Qt supports WebSockets with by offering a QML type of the 

same name available in the QtQuick library /18/. 

Of course a multitude of other solutions is available outside of the QtQuick by 

using any of the C++ (and not only) libraries implementing web service protocol 

like SOAP or XML-RPC. 

In theory, the Apache Thrift framework can be used to generate interface of the 

services provided by the server as JavaScript code to be used directly from QML 

without writing any C++ extension. /19/  

 

2.6 Development environment 

The Qt Company offers own Integrated Development Environment (IDE) along 

with Qt framework under name Qt Creator which is not only a sophisticated code 



23 

 

editor for C++ and QML but also provides version using version control system 

like GIT or Subversion and build management. /20/ 

Especially useful in cross-platform development is also support for deploying ap-

plications on iOS mobile device, Android device via Android Debug Bridge 

(ADB) or remotely on Linux device via SSH. It’s also possible to use iOS and 

Android emulators directly from Qt Creator. 

Although it’s possible to successfully use Qt framework from other IDEs like 

CLion or Visual Studio the Qt Creator is the only major IDE at the moment that 

provides support for editing QML code and designer for QML/QWidgets.  

Toolchain necessary for building applications comes together with Qt installer for 

all officially supported architectures.  

 

2.7 Alternative solutions 

This thesis focuses primarily on exploring Qt as the framework as a tool for the 

cross-platform development; however, it’s worth comparing it to the other alterna-

tive solutions currently being popular on the market.  

 

PhoneGap - similarly as Qt provides own WebView deployed together with 

HTML/JavaScript code on the client device and can be extended by custom func-

tionalities. Support only mobile platforms. 

Xamarin - uses C# language and Mono .NET framework having Microsoft behind 

it. C# code is compiled to a native or intermediate (IL) language depending on the 

platform. Uses native user controls preserving platform look and feel and supports 

both mobile and desktop platforms. 



 

Haxe - a framework that offers own programming language that can be source-to-

source compiled to other languages supported by the target platforms. In addition, 

Haxe toolkit comes with set of libraries like HaxeUI - for creating the user inter-

face. Supports all major desktop and mobile platforms. 

Java - using JavaFX to develop user interface it’s possible to create applications 

for all major desktop platforms. Mobile devices are not officially supported; how-

ever, it is possible to deploy application on iOS and Android using JavaFXPorts 

by Gluon.  Downside of Java as cross-platform solution is that client requires Java 

Runtime Environment which cannot be deployed together with the application.  

 

 

2.8 Summary 

 

Information gathered in during this chapter has shown that Qt framework should 

be capable of satisfying all major Smart Meter’s requirements as the software de-

velopment tool. 

The following table summarizes the design choices based on this study that will 

be used in the prototype implementation and the practical assessment of the Qt 

framework. 

 

Table 1 Summary of the design choices for the prototype implementation. 

Concept Choice and justification 

Client archetype The Hybrid Application. 

Both, Rich Client Application and Rich Internet Application  

archetypes can be built with Qt. However, the fact the Smart 



25 

 

Client will operate on many devices, with different screen 

sizes and screen types, makes The Hybrid Application the 

best choice.  

GUI technology  QML with QtQuick 

QML seems to be the only way to implement The Hybrid 

Application. This declarative language can be used to im-

plement different GUI version for each platform, in form of 

QML files that could be fetched remotely from the Gateway 

device.  

In addition, the documentation and online sources suggest 

that QWidgets are meant to be used with desktop devices. 

Indeed, QtQuick offers more modern controls/widgets from 

both: visual side and technical side with gesture and anima-

tion support.  

 

Native access QML C++ extensions  

C++ extensions provide an easy way to expose the external 

libraries, written using the native SDK, to the QML views.  

Development tools Qt Creator  

Qt Creator IDE should provide all tools necessary in the pro-

totype development without need to access any third party 

software.  

Client-server 

communication 

WebSocket  

Both: XMLHTTPRequest and WebSocket are viable tech-



 

technology nologies that meet all requirements and are supported by Qt 

libraries. WebSocket has been chosen as the implementation 

of the bi-directional communication between Client and 

Gateway will be easier.  

 



27 

 

3 CLIENT PROTOTYPE 

 

The main goal of the implementation phase of this project is to provide a proof of 

concept, showing that Qt framework can be successfully used in the development 

of a modern, cross-platform application. After presenting the general design of the 

prototype application, the consecutive chapters discuss in detail the implementa-

tion of the requirements' goals, defined in the statement of the problem. 

 

The source code of the application can be found in appendices.  

 

3.1 Design 

Diagram below depicts the basic architecture of Client, Gateway and interaction 

between them: 

 



 

 

Figure 3 Overview of the prototype design 

 

Client: 

The client device requires a minimalistic sandbox that uses a different Qt runtime 

environment depending on the host platform. The Client’s code itself is fairly triv-

ial: it has to start the QML engine, register the optional C++ extensions like the 

push notification or camera control, and provide the QML loader file. Depending 

on the platform/device, it will load the different View from the Gateway. Once the 

View is loaded, the application is controlled completely by the QML code that, 

when needed, uses the C++ extensions provided by the Client.   

 

Gateway: 

The Gateway has two responsibilities regarding the Client: serving the QML files 

over the network and providing various services according to the business logic. 

In the implemented prototype those services consist of:  



29 

 

• Information about devices present in the power grid (their ID, power con-

sumption). 

• Information from the electricity provider like the current power price. 

• Handling the requests to control those devices (changing their parameters: 

turning ON/OFF, updating  thumbnail and others) 

QML files are available to the Client through the HTTP server; whereas the ser-

vices are available by communicating with the WebSocket server implemented 

using Tyrus library. 

  

 

3.2 Remote QML Loading 

All QML files used by the client application are stored on the Gateway device. 

The only exception here is the Loader.qml, with the only purpose to display ap-

propriate error to the user when the connection with Gateway cannot be open. It 

should be noted that this way of implementing application is discouraged as it 

might considerably hinder its performance. Nevertheless, the application proto-

type is simple enough to provide a responsive GUI.  

 

QML files are stored on the Gateway in a simple folder structure: 



 

 

Figure 4 Folder structure for QML files on the Gateway 

 

The QML loading starts when Loader.qml requests the main.qml file from the 

Gateway.  This is done by using the QML type Loader. 

 

Once the main.qml is loaded it can refer to other QML files as if they were on the 

same, local folder. This makes all QML files located on the Gateway unaware of 

the fact they are loaded over the network.  

During the development of the application prototype, the Gateway file sharing 

was handled by using the Mongoose web server running on a PC machine.  

The main.qml file then passes control to the MainModel.qml which initializes all 

views from desktop or mobile directory, depending on the client device type. To 



31 

 

the each module is assigned an appropriate model. Models are shared between all 

Views implementations, hence, are located in the common directory.  

 

 

3.3 Gateway-Client communication 

Data requests made by the clients are implemented using WebSockets. During the 

prototype development, the Java Tyrus WebSocket server was used to emulate a 

working Gateway. On the client side, the Gateway.qml is responsible for main-

taining the connection using the WebSocket QML type. There are three types of 

requests implemented in the prototype application used to implement the Gate-

way-Client communication: 

• Single request – allows client to request a single piece of information or 

change of certain parameter of the system.  

• Periodic request – provides a continuous data exchange allowing the ap-

plication views to keep their values updated.  

• Gateway request – a request initiated by the Gateway used to display any 

kind of notification or alarms to the user. 

It should be noted that all request type described in this chapter are executed 

asynchronously, which keeps the user interface responsive even when waiting for 

the Gateway response. 

 

 

 

 



 

 

3.3.1 Single request 

The following diagram illustrates details of processing a single request from the 

Client to Gateway that changes a device’s parameter: 

 

Figure 5 Sequence diagram of executing the single request 

 

In this example, user modifies a particular parameter of the device by changing 

value of a text field visible in the GUI. Once change is detected by the view mod-

el, it registers the request to the Gateway.qml. The request consists of two ele-

ments: 

• ID of the request – example: a string “updateDeviceName” 

• Additional request parameters – example: ID of the device and new name 

 

 



33 

 

The Gateway.qml sends the registered request to the Gateway device which is 

processed and returned with appropriate data. Request callback, provided by the 

model, is then called allowing to print information to the user that name has been 

successfully changed or print a validation error.     

 

3.3.2 Periodic request 

By registering a periodic request, the view model doesn’t have to maintain any 

kind timer triggering data update. Instead, this responsibility is passed to the 

Gateway.qml. Once registered, the requests are periodically repeated until model 

unregisters them.  

 

Figure 6 Sequence diagram of executing the periodic request 

 



 

3.3.3 Gateway requests 

Since the WebSockets connection between Client and Gateway is maintained 

throughout the whole application’s lifecycle, it’s possible to support the bidirec-

tional communication: 

 

Figure 7 Sequence diagram of handling the request orignated from the Gateway 

 

The view model can subscribe itself to the incoming Gateway requests by regis-

ters a request listener. Whenever Gateway.qml receives a matching request the 

registered callback is invoked.  

 

 

 



35 

 

3.4 Graphical User Interface 

The Smart client prototype contains a simple Graphical User Interface that con-

sists of the following views:  

 

Figure 8 Views hierarchy 

 

MainView contains the top-most controls like MenuBar, Toolbar or SwipeMenu; 

which allow for navigating between the rest of the views. OverviewView is the 

default view, set on the start of the application. It contains a few of the QtChart 

controls visualizing statistics of the power network like power consumption and 

the monthly electricity price. DevicesView lists all devices connected to the pow-

er network and allows for changing device’s parameters through the DeviceDe-

tailView. Although relatively simple, this design is sufficient to demonstrate ca-

pabilities of Qt framework in building a modern Graphical User Interface. 

 



 

As described in the previous chapter, to provide a usable GUI on devices with dif-

ferent operating system and screen type, the prototype application contains two 

implementations of the View layer: 

• Desktop – for personal computer using a desktop operating system and 

an external monitor or other large display without touchscreen. 

• Mobile – for mobile device with touchscreen display of size 4-6 inches 

All screenshots presented in this chapter come from one the following devices 

used in the testing: 

• PC, Windows 8.1 

• PC, Linux Mint 17.3 Cinnamon 

• Nexus 10 tablet, Android 5.0, 10-inch touchscreen display 

• OnePlus One Smartphone, Android (Cyanogen) 5.1.1, 5,5-inch  

touchscreen display. 

 

 

 

3.4.1 Views navigation 

The main responsibility of the MainView is to provide navigation between other 

views of the application.  The desktop implementation of the view uses a Tab-

View control to do it, where each tab contains different view available to the user: 



37 

 

 

Figure 9 Screenshot of the MainView - Windows 

 

Implementation for mobile device uses animated swipe menu. It acts as on over-

lay, invisible when not used. Once a swipe gesture is detected it makes menu visi-

ble on the left side of the screen. Pressing the menu button changes the view un-

derneath and hides the menu.  



 

 

Figure 10 Swipe menu - Smartphone 

 

 

3.4.2 Screen orientation 

Most of the Smartphones and tablets currently available on the market allow user 

to change screen orientation. Three ways were considered to support this feature 

in the prototype’s GUI: 

• Allow only a single screen orientation – application will maintain the same 

orientation independently from the device’s screen orientation. On An-

droid this can be done by modifying application manifest file. 

• QML states – each orientation will have a QML state assigned to it. Once 

orientation changes, so will its state. Then, by manipulating various layout 

parameters, like anchors, state can adjust the view according to its orienta-

tion. 

• Separate view implementation – For the most complex cases, where ma-

nipulating the layout parameters using states is too complicated to achieve 

desired effect, each screen orientation can have a separate implementation 

of the view.  



39 

 

 

The Smart Client prototype uses using states to support both screen orientations:  

 

Figure 11 Portrait orientation - Smartphone 

 

Figure 12 Landscape orientation - Smartphone 

 



 

3.4.3 Native controls 

The controls available through the QtQuickControlls and QtQuickControlls2 

modules offer the look and feel that is similar to the one used by the operating 

system on the target device. For example, the MenuBar control will look and be-

have differently depending whether it is run on Windows or Android. Following 

screenshots of the prototype application demonstrates the application window 

with the MenuBar and Toolbar controls defined by the same QML file: 



41 

 

 

Figure 13 MenuBar, Toolbar and TabView controls on Windows 

 

 

 

Figure 14 MenuBar, Toolbar and TabView controls on Android tablet 

 

Screen shots above show that the same the QML control can provide the user ex-

perience very similar to the one expected on the operating system it is run on.  

 



 

3.5 Cross compilation  

3.5.1 Toolchain 

There are two approaches to develop an application on the Raspberry Pi device: 

directly on the device itself or on another machine using the cross compilation 

toolchain. 

At the moment of writing this report, the latest version of Qt available on Rasbian 

software repository is 5.3.2. Hence, the Qt framework had to be compiled from 

the available source code to match the version used on other platforms: 5.7. Tak-

ing into account the required disk space and the compilation time, the Qt source 

code was compiled on the x86 Linux machine. The side effect of this task is build-

ing a complete Qt toolchain allowing for cross compiling Qt applications for 

Raspberry PI.  

Building Qt framework was done based on the official Qt guide /7/. Following 

components were used: 

• Raspberry Pi Tools containing the arm-bcm2708-linux-gnueai GCC cross-

compiler allowing for compiling code for ARMv7/v6 (depending on 

Raspberry PI version) on a Linux-x86 host.  /22/ 

• Raspbian Jessie /23/ – Debian-based operating system recommended by 

the RPI manufacturer. 

• Sysroot – copy of all required libraries and headers obtained from the tar-

get device and used to configure and build Qt framework.  

• Qt source code /24/ 

• Raspberry Pi v1. device 

First step was to build the qmake and other tools that, together with GCC compil-

er, form a complete Qt cross compile toolchain: 



43 

 

 

Figure 15 Using the Raspberry Pi cross compiler to build qmake. 

 

Qt source code is divided into modules. The Qtbase module contains the most es-

sential features and tools like qmake allowing for building the Qt applications. 

Once Qtbase tools have been compiled all other required modules were built. For 

example, Qtdeclarative module, which contains QtQuick library used to develop 

most of the application’s code:  

 

Figure 16 Building other optional Qt libraries 

 

Once copied back to the Raspberry Pi device, the shared libraries can be loaded 

and used by any Qt application during runtime. 

 



 

3.5.2 Qt Kit 

Qt Creator allows for organizing the available toolchains in so called Kits. Fol-

lowing snapshot shows a Kit configuration dialog with settings used to build the 

Smart Client prototype for the Raspberry Pi. 

 

Figure 17 Configuration of the cross-compile Raspberry Pi kit in the Qt Creator 

 

Each Kit consists of the following elements: 

• Sysroot – root directory of the target device containing headers and librar-

ies used during the build.  

• Debugger 

• Compiler   

• Qt version – location qmake and other Qt configuration files  

• Qt mkspec – additional compiler settings for the target platform/device 

 



45 

 

3.5.3 Remote deployment 

An additional feature of the Qt Creator is the automatic deployment and execution 

of the built application over SSH. Following picture shows settings used to define 

the Raspberry Pi as a target device.  

 

Figure 18 Configuration of  Raspberry Pi as a remote test device in Qt Creator 

 

With the Qt Kits fully defined, it’s possible to quickly switch between running 

application of the host system or remote device: 



 

 

Figure 19 Panel allowing to quickly switch Kit used in the current build. 

 

When run remotely, Qt Creator will open SSH connection with specified device, 

deploy the binaries to the remote directory specified in the pro file, and start their 

execution with standard input/output available in the Qt Creator’s console.  

 

3.6 Additional tools 

3.6.1 Debugger  

As any modern Integrated Development Environment, the Qt Creator offers a 

build-in debugger including features like: 

• conditional breakpoint 

• stack trace  

• monitor of the scope variables 

• Instruction-wise mode for debugging assembly code  



47 

 

 

Figure 20 Debugger in the Qt Creator. 

 

The debugger has been used extensively during the prototype development. Espe-

cially useful was the ability to debug the QML code and remote debugging the 

application running on Android or Raspberry Pi. 

 

3.6.2 QML Designer 

An alternative to develop the Graphical User Interface by manually editing QML 

files is to use the QML Designer, which is bundled with Qt Creator installation.  

While editing any QML file it is possible to switch to the design mode which 

opens the QML Designer view and allows for the graphical editing. Like most of 

the popular UI tools it offers drag and drop style editor combined with settings of 

the various properties: connecting signals, binding and dynamic properties, and 

properties of the QML controls/widgets themselves.  



 

Although QML designer is capable of editing any QML file, the official guide (ci-

tation needed) recommends using the provided wizard that splits a view into two 

QML files: 

• ${FileName}Form.ui.qml – which contains pure QML code without any 

logic written in JavaScript 

• ${FileName}.qml – which binds to the signals exposed by the Form.ui 

file, sets its properties and implements simple JavaScript logic 

 

The SmartClient prototype uses a similar separation when implementing its views. 

For example, the Devices view, which contains list of the devices detected in the 

power network, consists of DevicesForm.ui.qml and Devices.qml files.  

 

Figure 21 Screenshot of the Devices view 

 

The DevicesForm.ui.qml file describes the layout of the QML controls in the 

view, for instance the ListView; whereas, the Devices.qml file handles signals 

triggered by the pressed buttons and fills the ListView with the model’s data. 



49 

 

The QML Designer has been successfully used throughout the project, especially 

for the initial design of the views. However, some of the more complex views 

containing controls like Layouts and Charts could not be processed in the design 

mode. In those cases, the design mode was not available, and files had to be edited 

manually. It should be noted, that at least part of the encountered issues could be 

caused by using the latest Qt 5.7 beta release and fact that it is the first version 

that introduced controls like Charts.   

 

 

3.7 Push notifications 

The push notification is a technique of displaying a notification to the user even if 

application is running in the background. It is commonly used on the mobile de-

vices. It was implemented in the prototype by integrating example available in the 

Qt documentation /21/ and demonstrates two important mechanisms: 

• Creating a C++ extension that can be registered in the QML engine and 

used as a QML type.   

• Using the Android’s native API with Java code without the direct JNI calls 

(the JNI calls are covered in the camera control implementation). 

As demonstrated on the sequence diagram below, QML application calls athe 

function of the PushNotification C++ class whenever notification should be dis-

played. PushNotification object is registered in the QML context as a singleton, 

i.e. only a single its instance is available. Then, the Java Android activity is run, 

which uses directly the Android API to display the notification.  

 



 

 

Figure 22 Sequence diagram of the Push Notification extension 

 

The main benefit of this solution is that complex activities can be written entirely 

in Java and included as additional files in the project *.pro file. Qt Creator is then 

able to bundle them together with other C++ files and deploy on android device.   

 

3.8  Camera control  

Implementation of the camera control is done through the Android SDK library to 

demonstrate how QtQuick application can access the native environment of the 

client. Otherwise, this task could be accomplished through the available Camera 

QML type with much less effort.  Camera control C++ extension is exposed to the 

QML as ThumbnailSnapper type. Invoking its function: snapThumbnail(), opens 

the default Android camera application and allows user to take a single picture  

that is then set as the device’s thumbnail.  

Contrary to the push notifications feature, the camera control is implemented 

without any Java code, purely through the JNI mechanism offered by Qt.  

 



51 

 

The sequence diagram of the ThumbnailSnapper is following: 

 

Figure 23 Sequence diagram of the ThumbnailSnapper extension. 

 

 

3.8.1 Native Java implementation 

Implementation started with writing camera control code in Java using Android 

Studio and Android SDK. It turned out to be a quite efficient way of writing fur-

ther JNI code in Qt. Since the QAndroidJniObject class requires providing a sig-

nature of the method (as QString) being invoked, it’s prone to typos which are de-

tected only during the application execution on the device or emulator.  



 

 

This code, assigned to a button press event, creates a new Intent with IM-

AGE_CAPTURE action. Once started, it opens a default Android camera applica-

tion and allows user to take a single picture. The MediaStore.EXTRA_OUTPUT  

parameter controls the output file to which the final picture should be saved to. 

Once Intent object is fully set the activity is started. 

3.8.2 Qt implementation 

After the activity written in Java has been successfully tested on Smartphone de-

vice, the code was ported to the Qt application.  

The equivalent C++ code is following:  

 



53 

 

Qt allows for calling the native Java API leveraging JNI – Java Native Interface 

called through helper class QAndroidJniObject. 

The QAndroidJniObject itself is representation of a Java class instance: from 

primitive types like int or float to complex classes like java.io.File. It offers num-

ber of methods allowing for instantiating a new class object and execute its meth-

ods.  

For example, the line:  

 

initializes the class Intent under package android.content with constructor taking 

no arguments. Such initialized variable intent, now holds the Intent class instance 

and is further used to call the Java object method “putExtra”: 

 

The second argument of the callObjectMethod function describes the exact signa-

ture of putExtra method. This mechanism allows for calling the overloaded meth-

ods using the same name. The signature must be written using following syntax: 

(argumentType1, argument2Type, …)returnType. Hence, the signature shown 

above represents the following Java method prototype: 

 

QAbstractJniObject offers similar mechanisms for invoking static methods of the 

class and also accessing static/non-static field of an object.  



 

 

The last line of the code starts the activity and provides a callback function 

(through the interface QAndroidActivityResultReceiver) which should be invoked 

once activity execution is finished. The definition of the callback function is 

following: 

 

Prototype of this function is very similar to the native activity onActvitiyResult 

callback:  

 

It performs a simple check validating the result and copies the content of the pic-

ture file into the QString, using Base64 encoding. Encoded picture is then emitted 

as a signal and eventually set as the property of the ThumbnailSnapper QML ob-

ject. 

 

 

 

 

 



55 

 

4 SUMMARY 

 

Cross-platform support: 

• According to the research, the hybrid application has been chosen as the 

most feasible application type for the given requirements.  

• According to the documentation Qt framework can support development 

for all required platforms: Windows, Linux, Android, Mac OS X and iOS 

• Prototype application has been successfully deployed on required plat-

forms: Windows, Android and Raspberry Pi running Raspbian Linux. 

 

Graphical User Interface: 

• According to the documentation, Qt framework is a suitable framework 

for GUI development, offering a wide variety of widgets and controls via 

QtQuick module. 

• Proven that QML language allows for developing a highly customizable, 

responsive and animated user interface. 

• Prototype application successfully implemented GUI suitable for both 

Smartphone and Desktop devices which: 

o Uses QML controls to represent: charts, lists, menu bars, toolbars 

and others.  

o Demonstrates how animation and gestures usage by implementing 

swipe menu 

o With limited set of controls provides the native look and feel of the 

operating system it is run on. 

o Is responsive.  

o Supports portrait and landscape screen orientation when used on 

the Android device. 



 

 

Client-Server Communication: 

• WebSocket chosen as the technology most suitable for implementing the 

client-server communication in the Smart Client. 

• Implemented a Gateway emulator able to provide data to the client with 

WebSocket. 

• Implemented the WebSocket communication in the application prototype 

demonstrating usage of all request types: 

o Single client request 

o Periodic client request 

o Server request 

 

 

Native access of the client device: 

• Implemented the QML C++ extension plugin that is able to send the push 

notifications on the Android device and demonstrates the Android API ac-

cess using Java code.  

• Implemented the QML C++ extension plugin that is able to take a picture 

using camera available on the Android device and demonstrates the An-

droid API access using JNI API provided by Qt framework. 

 

 

 

 

 

 



57 

 

Development tools: 

• Built a Linux cross-compile toolchain able to compile Qt applications for 

Raspberry Pi device. 

• Built the Qt runtime for Raspberry Pi device.  

• Qt Creator was used through the prototype development and assessed. 

• Qt Creator debugger was used through the prototype development and as-

sessed. 

• QML designer was used through the prototype development and assessed. 

 

 



 

5 CONCLUSIONS 

The researched information have been successfully applied in practice and 

demonstrated that Qt framework can be successfully used to develop cross-

platform applications on Android, Windows and Linux operating systems. Study 

was limited to just those three platforms; however, The Qt Company declares 

support also for a few others: Windows RT, Mac OS X and iOS. This makes Qt 

framework one of the very few solutions available on the market which supports 

such a wide number of operating systems and architectures.  

Furthermore, the Qt sources were used to successfully build a cross-compile tool-

chain for the Raspberry Pi device. This is especially important for the Smart Cli-

ent project giving possibility to develop the HMI client on virtually any device 

using a Linux system.  

Tools offered by The Qt Company are of high quality. The Qt creator can rival 

with other major IDEs available for the C++ language. It also offers assistance 

when deploying and debugging application remotely, which turned about to be 

invaluable during the development for Android and Raspberry Pi devices. The 

only tool that did not quite meet the expectations is the QML designer. Although 

it looked very promising at the beginning, in did not work with all controls and 

widgets used in the application, which limited its usage considerably. 

Another Qt downside is the deployment time on the Android device, which com-

paring to the Android Studio, was roughly half a minute longer. This might not 

seem like much, but considering the rather typo-prone JNI API, it makes debug-

ging the Android application a tedious task.  

QML was proven to be a powerful and flexible language allowing for developing 

a highly customizable user interface using an extensive library of QtQuick con-

trols. Style of the most controls can be further customized or, if set to default, 

used to simulate look and feel of the target operating system.  



59 

 

QML can be further extended by custom QML types written in C++. This let de-

velopers use other 3rd party libraries in their project or, using JNI API, call An-

droid native libraries.  

Finally, the quality of documentation offered by The Qt Company is positively 

surprising. It contains extensive examples and very descriptive, up-to-date API 

wiki pages available at any moment through the Qt Creator help mode or web site.  

In retrospective, the topics like client-server communication and implementation 

of the Gateway emulator were not exactly crucial to the outcome of this thesis. 

Time spent on their research and implementation could be used better to investi-

gate more important issues. This evaluation would benefit greatly from better in-

sight into the Qt alternatives currently available on the market. Even though Qt 

seems to satisfy every crucial requirement of the Smart Client, it’s impossible to 

make a decisive verdict without putting it in the comparison with the other popu-

lar frameworks like PhoneGap or Xamarin. Other important topic that should be 

discussed is the capability of the Qt framework to test the application that is being 

developed. It does offer tools like QtTest module (for C++ code) and TestCase 

QML type (for QML code) which should be assessed together with other frame-

works like the Squish GUI Tester.    

 

 

 

 

 

 



 

6 REFERENCES 

/1/ U.S. Department of Energy. The Smart Grid. Accessed 18.5.2016. 

https://www.smartgrid.gov/the_smart_grid/smart_grid.html 

/2/  U.S. Department of Energy. The Smart Home. Accessed 18.5.2016. 

https://www.smartgrid.gov/the_smart_grid/smart_home.html 

/3/  IEEE. Smart Grid. 2016.  http://smartgrid.ieee.org/  

/4/  International Energy Agency. 2016  

https://www.iea.org/topics/electricity/subtopics/smartgrids/ 

/5/  Alessio Montone, Network Digitalisation, Enel Point of View, 24.11.2015. 

http://www.smartgrids.eu/documents/eventsandworkshops/2015/7_ETP_SmartGri

ds_Workshop_24th_November_2015_Alessio_Montone.pdf 

/6/  The Qt Company. Qt Licensing. Documentation for Qt 5.6. 

http://doc.Qt.io/Qt-5/licensing.html 

/7/  The Qt Company. RaspberryPi Beginners Guide. Qt Wiki page. 

https://wiki.Qt.io/RaspberryPi_Beginners_Guide 

/8/  Microsoft Application Architecture Guide, Choosing an Application Type. 

2nd Edition2. October 2009. https://msdn.microsoft.com/en-

us/library/ee658104.aspx 

/9/  Sten Anderson. The Advantage of Hybrid Clients in Enterprise Applica-

tions. 2010. http://www.citytechinc.com/content/dam/citytechinc/pdf/Hybrid-

Clients-in-Enterprise-Apps2.pdf 

/10/  Henning Heitkotter, Sebastian Hanschke, Tim A. Majchrzak. Evaluating 

Cross-Platform Development 

 Approaches for Mobile Applications. Page 3. 2013. 

http://www3.nd.edu/~cpoellab/teaching/cse40814/crossplatform.pdf 



61 

 

/11/  The GTK+ Team. Features. Accessed on 10.4.2016. 

http://www.gtk.org/features.php 

/12/  QtSharp project. Readme. 30.11.2015. 

https://github.com/ddobrev/QtSharp/blob/master/README.md 

/13/  Riverbank. PyQt project Introduction. 2015. 

https://riverbankcomputing.com/software/pyQt/intro 

/14/ Apache Cordova project. Documentation. Accessed: 

17.4.2016http://cordova.apache.org/docs/en/latest/guide/overview/#plugins 

/15/ Qt Documentation. Writing QML Extensions with C++. 

http://doc.Qt.io/Qt-5/Qtqml-tutorials-extending-qml-example.html 

/16/  W3C. XMLHttpRequest Level 1, 30.1.2014.  

https://www.w3.org/TR/XMLHttpRequest/ 

/17/  The Qt Company. Qt 5.6 Documentation. QML Global Object. 

http://doc.Qt.io/Qt-5/Qtqml-javascript-qmlglobalobject.html#xmlhttprequest  

/18/  The Qt Company. Qt 5.6 Documentation. Qt WebSockets. 

http://doc.Qt.io/Qt-5/Qtwebsockets-index.html 

/19/ Apache Software Foundation. Javascript Tutorial. Accessed 10.4.2016. 

https://thrift.apache.org/tutorial/js 

/20/ The Qt Company. The IDE, Qt Creator. https://www.Qt.io/ide/ 

/21/ The Qt Company. Qt 5.6 Documentation. Qt Android Extras, Notification 

example. http://doc.Qt.io/Qt-5/Qtandroidextras-notification-example.html 

/22/ Raspberry Pi Foundation/ Raspberry Pi Tools. Git commit: 

2b2d2046e6928da056207ad9b8a874209880d74d. 

https://github.com/raspberrypi/tools 



 

/23/  Raspberry Pi Foundation, Raspbian Jessie Lite, Release date: 18.03.2016. 

https://www.raspberrypi.org/downloads/raspbian/ 

/24/ The Qt Company. Qt 5 super module. Tag: v5.7.0-beta1. 

http://code.Qt.io/cgit/Qt/Qt5.git/ 



APPENDIX 1  1(1) 

 

 

SOURCE CODE 

The source code of the prototype can be found under the Github repository: 

https://github.com/WatchfulLikeACrane/SmartClient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


