OULU UNIVERSITY OF
APPLIED SCIENCES

Bereket Godebo

INTERFACING ARDUINO IN THE UNIVERSAL WINDOWS

PLATFORM



INTERFACING ARDUINO IN THE UNIVERSAL WINDOWS
PLATFORM

Bereket Godebo

Bachelor’s Thesis

Fall 2016

Degree Program in Information Technology
Oulu University of Applied Sciences



ABSTRACT

Oulu University of Applied Sciences
Information Technology, Embedded Systems

Author: Bereket Godebo

Title of the Bachelor’s thesis: Interfacing Arduino in the Universal Windows
Platform

Supervisors: Eino Niemi, Pekka Alaluukas

Term and year of completion: Fall 2016 Number of pages: 48 + 1 appendix

The objective of this Bachelor’s thesis was to connect Raspberry Pi 2 running
Windows 10 IoT Core via a USB to Arduino. Moreover, the aim was to delegate
Arduino the work of controlling sensors, and to send data to Raspberry PI 2
whenever needed. This project was part of a Home Automation project created
by my Instructor Pekka Alaluukas as a hobby and the devices used in this pro-
ject were provided by the School of Engineering.

In the process of implementation, the project work was divided into tasks such
as, developing a serial module on Raspberry Pi 2, developing its counterpart on
Arduino and developing a protocol to be used for synchronizing the communica-
tion. And then it was proceeded incrementally by adding a functionality as re-
quired on the working modules.

Future improvements can be made in areas such as creating a Windows
runtime component that connects to Arduino, supporting a cancelation of asyn-
chronous operations and throwing an exception for an error that occurs in the
chain of task instead of showing it on the screen.

Keywords: IoT, UWP, C++/CX, Asynchronous, RPi2, Arduino, SQLite3
3



PREFACE

This thesis project was conducted at Oulu University of Applied Sciences,
School of Engineering campus and the devices needed were provided by the
school.

I would like to thank Riitta Rontu, Head of the Department, for facilitating the
thesis work and for her sincere support for me to complete the degree program

in time.

| would also like to thank my supervisor Eino Niemi for his willingness to be flex-
ible, as | have done this project during the summer break, and for being sup-

portive.

I would not have done this thesis project if it was not for Pekka Alaluukas, |
Thank him for the good ideas.

Last but not least, | would like to thank my wife for giving me such a wonderful
daughter who has been an inspiration every day. And also my families who

have continued to believe in me during the long years of studying in Finland.

Oulu, 16.08.2016

Bereket Hizkeal Godebo



TABLE OF CONTENTS

ABSTRACT
PREFACE
TABLE OF CONTENTS
LIST OF FIGURES AND TABLES
ABBREVIATIONS
1 INTRODUCTION
2 BACKGROUND
2.1 Universal Windows Platform
2.2 Asynchronous Model in C++/CX
2.3 Namespaces for Connecting
2.4 Serial On Arduino
2.5 AVR-Toolchain
2.6 Firmata Protocol
2.7 Custom Protocol
3 DEVICES
3.1 Raspberry Pi
3.2 Arduino
3.3 Sensor-AM2301
4 IMPLEMENTATION
4.1 Chain of Tasks
4.2 Get Arduino
4.3 Processing Input On Arduino
4.4 DHT-Lib
4.5 Process Input On RPi2
4.6 Save into SQLite
5 CONCLUSION
REFERENCES

0 N o 0o b~ W

10
10
11
12
13
14
15
16
17
17
18
19
21
21
22
25
25
28
31
33
34



LIST OF FIGURES AND TABLES

FIGURE 1. functional block diagram --------=-===mmmmmm oo 8
FIGURE 2. rpi2 model b with a 900mhz quad-core arm cortex-a7 cpu and 1gb

FAM (L1)--mmmmmmmmmm oo o e --16
FIGURE 3. arduino uno r3 based on atmega328p---------------=-=--=-=-==-mnmmoum- 17
FIGURE 4. am2301 also called dht21. -source datasheet--------------------------- 18
FIGURE 5. am2301 pin diagram and pin description -source datasheet--------- 18
FIGURE 6. am2301 data transmission format -source datasheet------------------ 19
FIGURE 7. am2301 1-Wire timing diagram -source datasheet--------------------- 19
FIGURE 8. chain of tasks in the program----------==-=-=mme e oo 20
FIGURE 9. arduino device property in device manager-------------------=---------- 21
FIGURE 10. sqlite for uwp installation mememmemmememeeeeeeeeeeeeeeae 30
FIGURE 11. adding reference for sqlite library------------=-=-=-ememmmmmemmmee o 31
TABLE 1. firmata protocol description (10).----=-=-===========nmmmmmmmmmm oo 15
TABLE 2. custom protocol description----=-=-=-=======mm-mmmmmmee oo 16
TABLE 3. am2301 timing description -source datasheet VA )



ABBREVIATIONS

RPi2:

APls:

UWP:

WInRT:

USB:

USART:

USB CDC:

SDKs:

STA:

TTL:

VID:

PID:

Raspberry Pi 2

Application Programming Interfaces
Universal Windows Platform
Windows Runtime

Universal Serial Bus

Universal Synchronous Asynchronous Receive Trans-

mit

USB Communication Device Class
Software Development Kits
Single-Threaded Apartment
Transistor-Transistor-Logic
Vendor ID

Product ID



1 INTRODUCTION

The purpose of this Bachelor’s thesis was to communicate from a Windows 10
host to a microcontroller based prototyping platform, Arduino Uno and be able
to receive digital data from a sensor attached to it. This project was part of a
home automation system, which e.g. makes it easy for a user to monitor re-

motely Humidity and Temperature values from a mobile device.

The original requirements of this thesis project were given by the author’s in-
structor Pekka Alaluukas and designed by Eino Niemi, the supervisor together

with the author.

The Arduino was to be connected to a RPi2 running Windows 10 IoT Core via a
USB Connection. In addition, the sensor was to be connected to a digital pin in
Arduino and to send serial data using a 1-Wire protocol.

In the process of implementation, first the APIs provided by the Windows 10 loT
Core to connect to a device attached via a USB were studied. Since a USB is
an industry standard for communicating over a serial bus, the Arduino program-
ming language was studied to determine what functions are provided by the
platform that expose the serial port as a USB. Moreover, as Arduino is a micro-
controller based platform as such serial communication module is a built-in
module. Finally, to have a full control of the transmission of data from the sen-
sor to the Windows 10 host, the available Arduino library that provided an API to

receive sensor data was studied.

This thesis project was carried out by exploring the technical details of the exist-
ing library, the Firmata protocol implementation by Microsoft, which abstracts

the use of a microcontroller for Windows developers. The effort was to increase
the author’s competence in the hybrid field that combines the experience of em-

bedded system development and that of Internet Service development.



Raspberry Pi 2

Running Windows 10 IoT Core

Master/Controller

Process Data & Display

USB

Arduino Uno R3

A 4

<« Buffer Data &
Send

FIGURE 1. functional block diagram

1-Wire

Slave/Controller

AM2301/DHT21

Slave/Sensor



2 BACKGROUND

The connection between the RPi2 and the Arduino comprises on the Arduino
side a UART module which is exposed as a virtual Com port. This abstraction is
implemented by using an internal USB-to-Serial bridge module (1). While on the
RPi2 side, the new extension to the Windows Runtime, the Universal Windows
Platform, provides an API to be able to find Arduino or a similar device with its
Vendor ID and Product ID and then get a reference to it. Finally, it helps config-

ure the connection parameters to fine tune the flow control as desired.

Therefore, this chapter briefly presents the various technologies that were dis-
covered after a careful consideration of different sources relevant to the subject
of the thesis.

2.1 Universal Windows Platform

UWRP is the result of a unified core. Microsoft has undergone a major transfor-
mation that changed the way developers write programs, and use the develop-
ment tools, and most importantly the way they interact with the underlying
runtime environment. The result is the convergence of a program model, which
in effect created a platform where the operating system maintains a set of APIs
across all sets of hardware platforms while still providing flexibility by way of ex-
tensions on a specific set of hardware platforms called Device Family (2).

UWP is then the combination of APIs that are available in all device families and
the extension SDKs that are available to a specific device family. Moreover, by
developing a Universal Windows Platform apps, it is possible to target a specific

device family or a universal device family, which contains all device families.

In this project, the RPi2 runs Windows 10 loT Core, and as explained above, it
contains APIs that are available on a universal device family and also the loT

extension SDKs that are used for the 10T specific functionality. Since the APIs

10



that are used in the implementation of this project take a significant amount of

time, the UWP’s Asynchronous model was used.

2.2 Asynchronous Model in C++/CX

An asynchronous model is the way the underlying runtime abstracts the execu-
tion of a routine that takes time to complete, to run at the same time with the
thread of an execution that invokes it. This facilitates mainly the responsiveness
of the Ul thread while waiting for an operation to complete.

The Ul of a UWP app runs in a Single-Threaded Apartment (3). This approach
eliminates the need to lock a resource that is shared between threads, for the
purpose of synchronization. The use of an asynchronous model, the implemen-
tation of which is the task class in the concurrency namespace, makes it possi-
ble to create a task from within the STA. And upon completion, the continuation
of it is guaranteed to run in the STA resulting in a simplified access to the Ul el-
ements (3). Of course, the task object is created using the UWP’s methods that
return an asynchronous operation or action. The return type of these methods
implement the interfaces IAsyncOperation<TResult> and IAsyncAction, and
their variations which support a progress report. Therefore, an operation returns

a result whereas an action returns void (4.)

In this project a task object was created using a create_task Function from the
same namespace, for its ease of use, since it allows the use of an auto key-
word while creating tasks (5). The task class has a method task::then, which
can be called on the parent task object, and which returns a continuation task
that is executed after the completion of the parent task.

11



2.3 Namespaces for Connecting

The Windows.Devices.SerialCommunication namespace defines a WinRT
class which can be used to communicate with USB devices. Currently, the
namespace supports USB devices within the communication device class -USB
CDC (1).

USB is an industry standard for a communication between computers and elec-
tronic devices. It is categorized in classes to allow the USB host to recognize
the USB device without the need for vendor specific drivers (6.) Moreover, as
the name implies, the communication device class is a class that supports com-
munication and networking functions, and devices in this class include e.g.
Com-port devices. Since Arduino Uno R3 used in this project has an internal
USB to a Serial bridge chip that exposes the UART module as a virtual Com-
Port, the WInRT class defined in the SerialCommunication namespace can be

used to connect to Arduino.

The static methods from this namespace that are used in this project are: seri-
alDevice::FromIdAsync(Platform::String”) and SerialDevice::GetDeviceSelectorFro-
mUsbvidPid(unsigned int, unsigned int). The first method returns a serial device
object given the path that specifies the location of the device within the system.
The second one takes as an argument, the VID and PID of a device and returns
a string called an Advanced Query Syntax, which is used as a search criterion
to find a given device from all serial devices in the system (1.)

In order to access a serial device, a UWP app must specify in its package mani-
fest the name of the capability it uses. This helps to identify the device and its

purpose for its users (1.)

The APIs in the Windows.Devices.Enumeration and Windows.Stror-
age.Streams namespace are used as a support class in the process of con-

necting to the serial device. In the Enumeration namespace there is only one

12



static method that is needed for this project: peviceInformation::FindAl1A-
sync(Platform: :String~). This method returns a collection of objects that describe
connected devices based on the given search criterion, which is described pre-
viously. The Streams namespace is used after the serial object is obtained, and
the two classes which are needed from this namespace are: DataReader and
DataWriter. A receiver and a transmitter object are created using these classes,
they are initialized to the input stream and output stream of the obtained serial

object, respectively.

2.4 Serial On Arduino

All Arduino boards have at least one Universal Synchronous Asynchronous Re-
ceive Transmit module which is exposed as a serial port. Moreover, the serial
communication is accomplished through the digital pin 0 as RX and 1 as TX that
use TTL-compatible logic levels as well as through USB by using a bridging

chip which was described on page 10 (7.)

In the Arduino programming language, the two important functions are: setup()
and loop() (8). The first one is analogous to a constructor for an object. It is only
called once in the beginning or when the board is reset. The second one is

where the main program logic is written and executed forever.

The built in Serial library is used to configure and connect to the serial port.
This library provides several functions that help in connecting to the device and
in sending information as desired. In this project, only four of the functions are
used: begin(), available(), read() and write(). As Arduino is microcontroller
based, configuring its serial module only requires calling the Serial.begin(baud-

rate) in the set-up() function.

The member function Serial.begin(long) which was mentioned above, uses a
default value of 8-N1 for the connection parameters, that is data-bits:8, parity:
None, stop-bits:1 respectively. The overload of this function takes an additional

parameter to change the default values in the frames sent or received.

13



The second member function, Serial.available(), returns the number of bytes
available for reading, in other words the number of bytes in the receive buffer
that has not yet been read. Usually, this function is used together with Se-

rial.read() to get more bytes.

Finally, when Arduino sends back data, it uses the following two functions Se-
rial.write(unsigned char) and Serial.write(buf, len). The second one sends

an array of bytes, buf and of size, len.

2.5 AVR-Toolchain

This topic is being addressed here to simplify the explanation of the DHT library
used to read the digital sensor data. The library was modified in a way that
gives more control on the transmission of data from the sensor via Arduino to
RPi2.

The avr-toolchain is based on the GNU Compiler Collection, and as the name
implies GCC is a collection of compilers for different languages. One important
feature of GCC is that it can use other programs, in a way that chains the output
of one into the other and creates a final output (9). The GNU Assembler and
GNU Linker are the other programs that work with GCC, and are part of another
open-source project called GNU Binutils. When both these open source projects
are built to execute on a host system such as Linux, or Windows, and built to
generate code for the avr-microcontroller target, then they are given a prefix
‘avr-" and as such gcc becomes avr-gcc, GNU assembler becomes avr-as, and
GNU linker become avr-Id. Accordingly, the Standard C library has a version of
it called avr-libc, which includes many of the standard library functions as well
as those that are specific to AVR. Therefore, among others, these open source

programs form a chain called AVR-Toolchain (9.)

14



2.6 Firmata Protocol

The protocol uses an MIDI message format (10). However, the message data is
interpreted in a way that facilitates the raw data transmission between a
microcontroller and a host machine. Furthermore, the protocol has a 4-bit
resolution for transmission of additional data that describe the port or pin
number. Hence, it has the constrain on the support of a maximum of 16 analog
pins and 16 digital ports ( ports are a group of 8-bits in an 8-bit architecture, the

total number of digital pins is 16*8= 128 pins)

TABLE 1. firmata protocol description (10).

MIDI Channel  First byte Second byte
analog I/O OxEO pin # LSB(bits 0-6) MSB(bits 7-13)
message
digital I/O mes- 0x90 port LSB(bits 0-6) MSB(bits 7-13)
sage
report analog 0xCO pin # disable/ena- -N/A-
pin ble(0/1)
report digital 0xDO port disable/ena- -N/A-
port ble(0/1)

In this protocol, the first byte contains a command to be sent or received to-

gether with a pin number for analog 1/O or a port number for digital 1/0. For in-
stance, when sending a report analog pin command: 0xC7, this means send
the value of an analog pin number 7. This is not the whole protocol description

but only the part that is relevant to this project.

15



2.7 Custom Protocol

This is the protocol that is used in this project. It is based on the Firmata proto-
col described earlier in this document (p.15). The main difference is, the number
of data message bytes that are supported. Here, the number is not fixed to two
bytes only, it goes up to 5 bytes. Furthermore, commands that start with RE-
PORT are sent from the host machine and commands that start with DIGITAL
or ANALOG are sent from the board as a response. Only response commands
have additional data with the command. Moreover, the first nibble in the first

byte sent is the command and the second nibble is the additional data.

TABLE 2. custom protocol description

Addi- Bytel Byte2 Byte3 Byte4d Byte5

tional

Data

Report 0XAO0 - - - - -
Digital
Data

Digital
Data

0XBO

data-
status(0
-2)

byte0

bytel

byte2

byte3

byte4

Report
Analog
Data

0XCO0

Analog
Data

0XDO0

pin #

byteO

bytel

For example, a Digital Data response command: 0xB2 is interpreted as a digital

message and data with a status of 2, which is Time-out Error.

16



3 DEVICES

In this chapter devices that are used in this project and their capabilities pertain-

ing to the project are discussed briefly.
3.1 Raspberry Pi

RPi2 is a series of low-cost single-board computers which have gained popular-
ity among hobbyists. They are also used to simplify the teaching of Computer

Science in schools and developing countries (11).

FIGURE 2. rpi2 model b with a 900mhz quad-core arm cortex-a7 cpu and 1gb
ram (11)

17



The board features among others several communication interfaces, 4 USB
ports, a Full HDMI port, and an Ethernet Port. Furthermore, it has enough horse
power to run all of ARM based GNU/Linux distributions as well as Microsoft

Windows 10 IoT Core, which is used in this project (12).
3.2 Arduino

Arduino is an open-source single-board microcontroller which is based on Wir-
ing which is an open-source electronic prototyping platform. The wiring project
was inspired by a previous similar project called Processing which is again an
open-source computer programming language and an integrated Development
Environment that promotes computer programming in a visual context for artists
(13).

FIGURE 3. arduino uno r3 based on atmega328p (13)

Since the board is based on the ATmega328P avr-microcontroller from Atmel,
the Arduino IDE uses GNU avr-toolchain to compile a code and to program the
microcontroller. Hence the avr-libc libraries can be used while writing Arduino
programs, also called sketches. Moreover, for those who want to have more ac-
cess to the underlying microcontroller, avr-libc libraries provide the flexibility
needed.

18



3.3 Sensor-AM2301

AM2301 is a digital humidity and temperature sensor. The sensor features an
ultra-low power consumption, a capacitive humidity sensor, a standard digital

single-bus output and a long transmission distance.

FIGURE 4. am2301 also called dht21. -source datasheet

Pin | Color | Name Description =
@ VDD
A3V-5.2 ..
1 Red VDD Power (3.3V V) o . SDA
2 Yellow SDA | Serial data, Dual—port @ E GND
3 Black GND Ground @I NC
4 NC Empty

FIGURE 5. am2301 pin diagram and pin description -source datasheet

19



Humidiy high Humidity low Temp. high Temp. low Parity bz
I L L { L LR S L | | UL L U | I O L L P )
*
I I | I [ O ) | I | I I | | (8 88 1) I
Sart s M L M L M L M L M L
S S S S S S S S S S
B B B B B B B B B B

FIGURE 6. am2301 data transmission format -source datasheet

70%

FIGURE 7. am2301 1-wire timing diagram -source datasheet

TABLE 3. am2301 timing description -source datasheet

Symbol Parameter min | typ | max | Unit
The Host the start signal down time 0.8 1 20 ms
Teo Bus master has released time 20 30 200 Hs
T Response to low time 75 80 35 Hs
Tee In response to high time 75 80 35 Hs
Trow Signal "0", "1" low time 48 50 55 Hs
Tuo Signal "0" high time 22 26 30 Hs
Tui Signal "1" high time 68 70 75 Hs
Ten Sensor to release the bus time 45 50 55 Hs

20



4 IMPLEMENTATION

In the process of implementation, the project work was divided into tasks such
as, developing a serial communication on RPi2, and its counterpart on Arduino
and developing a protocol to be used for synchronizing the communication. And
it was proceeded incrementally by adding a functionality as required on the

working modules.

4.1 Chain of Tasks

Process data and start

Start timer
gotpulaterthefr . receive response com-
databsou celro mand + Digital/Analog
atabase data
1 -Asynchronous
Get Available 1
Arduino
_Asynchronous Send a Command
‘ -Asynchronous
Display NO I is 1
Error — Size :
message >0 OnTick prepare an
event = alternating
command
Yes
get Arduino from ID
-Asynchronous Configure serial Device
— [nitialize transmitter and
receiver

FIGURE 8. chain of tasks in the program

21



The diagram shown above is not a program flow chart, instead its shows how

the chains of tasks are connected to each other.

4.2 Get Arduino

Arduino Uno (COM3) Properties >
General Port Settings  Driver Details  Events

-~ Arduino Uno (COM3)

Property

Hardware Ids ~

{USBWID 234714PID O0434REV 0001
USE\VID_2341&PID_0043

Cancel

FIGURE 9. arduino device property in device manager

To find this property window, in Windows 10 machine, go to the Device man-
ager and then open the Ports (Com & LPT) node and right click the device and

then select properties.

Once the Hardware Ids is selected from the Property dropdown list, the vendor
ID and product ID can be constructed from the string in the Value text box by
prepending 0X to the number that follows VID and PID. This is shown in the

code snippet below:

J/ arduino pid = 8843 and vid = 2341
static const unsigned int _pid = BxB843;
static const unsigned int _wvid = Bx2341;

22



Before calling the static FindAllAsync(String”) method in the Enumera-
tion::Devicelnformation class, first, a string that contains a search criterion for
finding Arduino must be created, using the static method GetDeviceSelec-
torFromUsbVidPid(unsigned int, unsigned int) in the SerialDevice class.
This is show in the code snippet below:

IasyncOperation<DeviceInformationCollection®>®
Interfacingfrduino UWP::MainPage::ListAvailableArduincsAsync(wvoid)

1
/faenerate an Advanced Query Syntax (AQ5) string that contains
//search criteria for finding the device in the enumerated
ffdevice collection, then call GetDeviceSelectorFromUsbvidPid.
auto agqs = SerialDevice::GetDeviceSelectorFromUsbvidPid({_wid, _pid);

//Pass the retrieved string to FindAllAsync.
//The call retrieves a DeviceInformationCollection object.
return DeviceInformaticn::FindAllaAsync({ags);

The FindAllAsync(String”) method returns an IAsyncOperation<Deviceln-
formationCollection™>" object. Since this is an asynchronous operation, the
task class is used to get the result, which is a DevicelnformationCollection

object, upon completion.

In order to get the serial device, Arduino, four tasks are needed that run one af-
ter the other, forming a chain of tasks. The first one is created using a
FindAllAsync(String”) method. The continuation task, which is created by call-
ing a task::then method on the newly created task, takes as its argument, a
lambda expression, the parameter of which is the return type of the antecedent

task. This is shown in the code snippet below:

23



task<void> InterfacingArduino UWP::MainPage::
GetAvailableArduinoesAsync(void)

1
return create_task(ListAvailablefArduinosAsync()).
then([this](DeviceInformaticnCoellection “arduinoCollection_ )
{
/f Store parameter as a member to ensure the duration of object allocation
_arduinoCollection = arduincCollecticn_;
ffcheck if there is any arduinc connected
if (! arduinoCollection-»Size)
1
AnalogPinValueTextBlock-»Text =
"Arduino is Mot connected! Please Connect it and restart the application™;
CloseArduino();
¥
else
1
//get the iterator object of type iterator<DeviceInformation:
f/ffor the collection and, since i am only interested
|//in the first connected arduino
_deviceInfo = _arduinoCollection->First()->Current;
GetArduinoFromIdAsync( deviceInfo);//creates a new task
b
I3 F
h

It should be noted that the antecedent task returns task<Devicelnformation-
Collection”> and the result of this task is used in the continuation task that
takes the lambda expression. Moreover, within the continuation, a new task is
being created, to ensure that the next task, which needs a Devicelnformation
object, is called only after the antecedent task is complete.

task<voids InterfacingArduino UWP::MainPage::

GetArduinoFromIdAsync(DeviceInformation ~deviceInfo )

1

return create_task(SerialDevice::FromIdAsync(deviceInfo ->Id)).
then([this](SerialDevice *serial device )

{

try
1

// save the serial object to member variable|
_arduino = serial device ;

As can be seen from the above code snippet, the serial device was ready to be

configured with the default value 9600-8-N1.

24



4.3 Processing Input On Arduino

Within an infinite loop, Arduino was programmed to check if there were bytes
available for reading and then responding with an appropriate command + data,
based on the received command. The main loop is shown below:

void loop() {
if(Serial.available() > @)

1

unsigned char rxCommand = Serial.read();

switch({{rxCommand & @xF@))

1

case REPORT_DIGITAL_DATA:
sendDigitalsensorvalue();
break;

case REPORT_ANALOG_DATA:
senda&nalogPinValue();
break;

4.4 DHT-Lib

This is a library by Rob Tillaart for receiving data from DHTxx devices - digital
Temperature and Humidity sensors (14). It provides an interface for varieties of
devices. The library used in this project, which was based on DHT21, had one
function for reading and two public variables that held the Humidity and Tem-
perature values. As shown in FIGURE 6, the device sends 5 bytes of data; The
first two bytes represent the humidity value and the third and fourth bytes repre-

sent the Temperature values, and the last byte represents the parity bit.

As shown in the code snippet below, the library was modified to provide the
whole buffer, the size of the buffer and error messages. In addition, the read
logic was modified to match specifically the timing requirement of the AM2301.

25



int DHT::read2l(uintg&_ t pin)

H
SSfread values
int rv = readSensor(pin, DHTLIE DHT WAKEUP) ;
if({rv != DHTLIE OF)
] {
] =
humidity = DHTLIE TINVALID VALUE:;
temperature = DHT:IE_IH?A:ID_?A:UE;*I
retuorn rv;
¥
1 i
humidity = word(_bits[0], _bits[1l]) * O0.1:
temperature = word({ bits[2] & O0xT7F, bits[3]) * 0.1;
if(_bits[2] & 0x80)// negative temperature
{
cemperature = —temperature;
YRS
ff Test checksum
uintg t sum = bits[C] + bits[l] + bits[Z2] + bits[2]:
if{_bits[=2] !'= =sum)
1 {
return DHTLIE ERROR CHECESUM:
¥
retorn DHTLTE OK;
-}
1/
recurn=s the const buffer, =o a=s not to be modified
modified by Bereket Godebo
xS
const uint8 t % DHT::getBuffer ()
I
return _bits:
-}
15*
return=s the =size of the buffer which i=s= a constant 5
modified by Bereket Godebo
=/
const size t DHT::getBufferSize ()
H
return bufferSize;
-}

In the above code snippet, the public function calls a private function, which
contains the logic to read from the device. It was modified not to use the public
variables but only to return the status. In addition, two more functions were

added that returned the buffer and its size.

26



When sending the digital data, the response command DIGITAL_DATA and the
data status constants were combined according to the status returned from the
read21 function. This is shown in the code snippet below:

size © bufSize
int readstatus

dht.getBuffersize();
dht.read21( DHT21 PIN);

switch({readStatus)

1

case DHTLIB_OK:
txCommand = (DIGITAL DATA | DATA OK);
break;
case DHTLIB_ERROR_CHECKSUM:
txCommand = (DIGITAL DATA | DATA_ERROR_CHECKSUM);
break;
case DHTLIE_ERROR_TIMEOUT:
txCommand = (DIGITAL DATA | DATA_ERROR TIMEOUT);
break;
default:
break;

1/ switch

Next the command and the five data bytes were sent.

The analog message was used as an additional functionality to test the connec-
tion. analogRead() was the function that was used to get an analog value of a
given pin. The function returned a value 0 to 1023, thus it was represented as
Integer which was 16-bit in size. In the code snippet shown below, the first 10
bits were taken from the value returned by the function and put into two 8-bit
variables. Then the response command ANALOG_DATA was combined with

the analog pin number used.

27



analogPinValue = analogRead({analogPinA@);
unsigned char lowerByte = lowByte(analogPinValue);
unsigned char higherByte = highByte(analogPinValue);

// get the lower five bits of lowerByte

{/dataMask = @b@@@1111l

unsigned char firstAnalogDataByte = lowerByte & dataMask;

// get the upper 3 bits of lowerByte

unsigned char threelataBits = (lowerByte >»> 5);

/fcreate the second analog byte combining the remaining three bits

// in the lower byte with the two bits in the higher byte

unsigned char secondAnalogDataByte = (higherByte << 3) | threeDataBits;

//4| bits representing the analog pin number and a command to signal
//that analog message is being sent
txCommand = (ANALOG DATA | analogPinAg);

Next the command and the two bytes were sent.

4.5 Process Input On RPi2

After the serial device handle was obtained and configured, a data writer and a
data reader object were created. It is shown in the code snippet below:
// setup ocur data reader for handling incoming data
_rx =
ref new Windows::Storage::Streams::DataReader(
_arduino-:>InputStream);

_rx->InputStreamOptions =
Windows: :Storage::Streams: :InputStreamdpticns: :Partial;
!/ setup our data writer for handling cutgoing data
tx =

ref new Windows::Storage::Streams::Datalriter(
_arduino->0utputStream);

SendCommand();// a new task is create in this functien

As can be seen above, a new task was created to send a command. It is im-
portant to keep the chain connected, thus a new task was created within a con-
tinuation task. While extending the chain, it has to be ensured that the chain is
not broken.

As part of the design of the app, the method shown below was called repeat-
edly, in order to send alternating commands periodically
28



void InterfacingArduinc UWP::MainPage::SendCommand (wvoid)

1
if {_arduino != nullptr)
1
/fThe intetion is to toggle the command to send.
_txCommand = (_txCommand == Command::REPORT_DIGITAL DATA) ?
Command: :REPORT_ANALOG_DATA :
Command: :REPORT_DIGITAL_DATA;
create_task({SendAsync(_txCommand));
h
b

As can be seen above, a new task was created to send the command.

Here the command was sent and listening to a response from the Arduino was

started, after a successful transmission of the command.

task<void> Interfacingfrduinc UWP::MainPage::SendAsync(Command cmd )
1
uintd_t reportCommand = static_cast<uintd t»(comd_};
_tw-rWriteByte(reportCommand) ;
return create_task({_tx->Storefsync()).

then({[this]{unsigned int bytesWritten)
1
if (bytesWritten > @)
1
ReceiveCommand();
b
s

The following function was used just to check if Arduino was still connected.

vold Interfacingdrduinoe UWP::MainPage::ReceiveCommand(wvoid)

! if {_arduine != nullptr)
1
Receivedsync();
h
b

Since the maximum number of bytes including the command, which were sent
from the Arduino were 6, thus the buffer size was set to 6.
29



task<woid> InterfacingArduino UWP::MainPage::Receivefsync(void)

1

unsigned int readBuffersize = B;

return create_task(_rx->LoadAsync(readBuffersize)).
then([this]{unsigned int bytesRead)

1
if (bytesRead > @)
1
ProcessDatal();
b
)

It is assumed that Arduino always responds with an appropriate command +
data response. As such there is no error messages shown here if there is no re-

sponse.

After a command + data response was received, appropriate variables were ini-

tialized for data processing.

//upper nibbles represent the command
Command emd = static cast<Command>{data & @xF@);

switch (cmd)

1

case Command::DIGITAL DATA:
bytesRemaining = 5;
//Lower nibbles| represent the sensor data status
dataStatus = static_cast<DigitalDataStatus>(data & Gw@F);
break;

case Command::ANALOG DATA:
bytesRemaining = 2;
//Lower nibbles represent the analog pin number
analogPinNumber = static_cast<uinti t>(data & @x@F);

break;
default:
break;
}
while (bytesRemaining)
{
receivedData.push_back( rx-:ReadByte());
bytesRemaining--;
}

In the above code snippet, the remaining bytes were initialized, based on the
command received.
30



When a DIGITAL_DATA response command was received, the remaining bytes

were interpreted as shown in the code below.

humidity = ((receivedData.at(®) << 8) | receivedData.at(1l)) * ©.1;
temperature = (((receivedData.at({2) & @x7F) << 8) | receivedData.at({3) ) * @.1;

Since the checksum had already been calculated, the fifth byte was ignored in
the code snippet above. As shown in FIGURE 6, the most significant bytes were
sent first, and Humidity and Temperature each represented a 16-bit value.
Since the left most bit in the third byte represented a sign bit, the temperature

value was calculated accordingly.

In the following code snippet, an analog value was reconstructed from the two

bytes received.

rxdnaloghata = (receivedData.at(®) | receivedData.at{l) << 5);

4.6 Save into SQLite

SQLite is an open-source embedded, serverless SQL database engine. It is im-
plemented in C and it is a leading device side technology for a local data stor-
age (15.)

In this project, SQLite Library for Universal Windows Platform apps was in-
stalled via Extensions and Updates for Visual Studio. This is shown in FIGURE
10.

31



Extensions and Updates

4 Installed Sort by: | Name: Ascending -
al SQlite for Universal Windo...
Controls SQOLite is a software library that
Samples implements a self-contained, server...

b Updates (3)

=gl x -

Q Uninstall Created by: SOLite Development Team

Date Installed: 25.6.2016
Version: 3.13.0

Release Motes

More Information

1 This type of extension cannot update
autematically. Updates will appear on
the Updates tab.

Templates . . .
SDKs ? SQLite for Windows Runtime
SQLite is a software library that implements a self-
Tools contained, serverless, zero-configuration, transactional... Getting Started
Search Results
P Online

FIGURE 10. sqlite for uwp installation

And then the header #include <sqlite3.h> was included before using the library.

And also as shown in FIGURE 11 below, the
added into References in the project.

k] Solution 'InterfacingArduino-UWP' (1 project) 3
4 %] InterfacingArduino-UWP (Universal Windows) 4
4 B References s
=5 Windows.ApplicationModel.Calls.CallsVoipCond :

=5 Windows.Devices.Printers.PrintersContract g

=5 Windows.Foundation.FoundationContract g

=5 Windows.Foundation.UniversalApiContract 18

=5 Windows.Graphics.Printing3D.Printing3DContrz 11

5= Windows.Networking.Connectivity. WwanContr 12

5 Microsoft.VCLibs
P I External Dependencies
P Assets

™

reference to the library must be

// Header for standard system include files.

i
#pragma once

B#include <collection.h>
#include <ppltasks.h>
#include “App.xaml.h™
#include <sqlite3.h>

FIGURE 11. adding reference for sqlite library

32




5 CONCLUSION

The final product was deployed into the RPi2. It notified the user if either Ar-
duino or the sensor was not attached. Moreover, it sent an alternating command
to Arduino every 3 seconds and saved the data into the local database using
SQLite. The commands were REPORT_DIGITAL_DATA and REPORT_ANA-
LOG_DATA, and Arduino responded appropriately. The application on RPi2
showed the current data on the screen but the data from the database was
shown only after restarting the application. This was because the aim of the pro-
ject was to connect to Arduino and show the current data and save it into the

database.

Accessing the serial device on the RPi2, required experience in Asynchronous
programming in C++/CX. Therefore, referring deferent material on topics such
as concurrency and threads was necessary. The shift from synchronous pro-
gramming to asynchronous programming was not smooth. It required a lot of
practice. On the other hand, the programming language used on RPi2, C++/CX,
an extension to the standard C++, seemed at first as learning a whole new lan-
guage but it turned out that there were a few more constructs to learn to com-

fortably write a code.

Future improvements can be made in areas such as creating a Windows
runtime component that connects to Arduino, supporting the cancelation of
asynchronous operations and throwing an exception for an error that occurs in

the chain of task instead of showing it on the screen.

33



REFERENCES

1. Windows API Reference SerialCommunication namespace. 2016. Mi-
crosoft. Date of retrieval 13.08.2016

https://msdn.microsoft.com/en-us/library/windows/apps/windows.de-

vices.serialcommunication.aspx

2. Guide to Universal Windows Platform (UWP) apps. 2016. Microsoft.
Date of retrieval 11.08.2016
https://msdn.microsoft.com/windows/uwp/get-started/universal-ap-

plication-platform-gquide

3. Asynchronous programming in C++. 2016. Microsoft. Date of retrieval
28.07.2016

https://msdn.microsoft.com/en-us/windows/uwp/threading-

async/asynchronous-programming-in-cpp-universal-windows-plat-
form-apps
4. Windows Runtime APIs IAsyncinfo interface. 2016. Microsoft. Date of
retrieval 13.08.2016
https://msdn.microsoft.com/library/windows/apps/br206587

5. concurrency Namespace. create_task Function. Microsoft. 2016.
Date of retrieval 13.08.2016
https://msdn.microsoft.com/en-us/library/hh913025.aspx

6. Wikipedia. USB communications device class. 2016. Date of retrieval
13.08.2016
https://en.wikipedia.org/wiki/USB

7. Arduino Language Reference. Serial. 2016. Date of retrieval
14.08.2016

https://www.arduino.cc/en/Reference/Serial

8. Arduino. Language Reference. 2016. Date of retrieval 14.08.2016
https://www.arduino.cc/en/Reference/HomePage

9. Standard C Library for AVR-GCC. Toolchain Overview. 2016. Date of
retrieval 14.08.2016

34


https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.serialcommunication.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.serialcommunication.aspx
https://msdn.microsoft.com/windows/uwp/get-started/universal-application-platform-guide
https://msdn.microsoft.com/windows/uwp/get-started/universal-application-platform-guide
https://msdn.microsoft.com/en-us/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://msdn.microsoft.com/en-us/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://msdn.microsoft.com/en-us/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://msdn.microsoft.com/library/windows/apps/br206587
https://msdn.microsoft.com/en-us/library/hh913025.aspx
https://en.wikipedia.org/wiki/USB
https://www.arduino.cc/en/Reference/Serial
https://www.arduino.cc/en/Reference/HomePage

http://www.nongnu.org/avr-libc/user-manual/overview.html
10.Firmata Protocol. V2.3ProtocolDetails. 2013. Date of retrieval
26.07.2016
http://firmata.org/wiki/Protocol
11.Wikipedia. Raspberry Pi. 2016. Date of retrieval 11.08.2016
https://en.wikipedia.org/wiki/Raspberry Pi

12. Raspberry Pi Foundation. Raspberry Pi 2 Model B. 2015. Date of re-
trieval 11.08.2016
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

13. Wikipedia. Arduino. 2016. Date of retrieval 11.08.2016
https://en.wikipedia.org/wiki/Arduino

14. Arduino Playground. Class for DHTxx Sensors. 2015 Date of retrieval
14.08.2016
http://playground.arduino.cc/Main/DHTLib

15.Data access. 2016. Microsoft. Date of retrieval 28.07.2016

https://msdn.microsoft.com/en-us/windows/uwp/data-access/index

35


http://www.nongnu.org/avr-libc/user-manual/overview.html
http://firmata.org/wiki/Protocol
https://en.wikipedia.org/wiki/Raspberry_Pi
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://en.wikipedia.org/wiki/Arduino
http://playground.arduino.cc/Main/DHTLib
https://msdn.microsoft.com/en-us/windows/uwp/data-access/index

APPENDIX

1 El/*

2 Userstory: =:In home the user can check data from RaspberryPi (GUI-Interface)
3 =»The data can be temperature, humidity, state of door (open/closed)
4 =»From Handy the user can check temperature,humidity,state of door
5

6 An implementation of a home automation system using UWP in C++/CX
7 This app runs on RaspberryPi2 and connects to

8 Arduino via a USB and gets Sensor data as well as analog pin value
9

18 By Bereket Godebo DITSSN

11 0AMK-School of Engineering

12

13 MainPage.xaml.h

14 Implementatien of the MainPage class.

15 L=/

16

17 #pragma once

18

19 #include "MainPage.g.h™

28

21 Fnamespace InterfacingArduino_UwWP

22 {

23

24 Bl public ref class AirCondition sealed

25 {

26 private:

27 Platform: :5tring *_humidity;

28 Platform: :5tring *_temperature;

29 Platform: :5tring *_timeStamp;

38 public:

31 AirCondition(

32 Platform: :5tring ~humidity ,

33 Platform: :5tring ~temperature_,

34 Bl Platform::5tring ~timeStamp_) :

35 _humidity(humidity_},

36 _temperature(temperature_),

37 | _timeStamp(timeStamp_) {}

38

39 =] property Platform::String “Humidity

48 1

41 Platform::5tring ~get() { return _humidity; }

42 | b

43 Bl property Platform::String ~Temperature

a4

45 Platform::5tring “~get() { return _temperature; }

46 | h

47 El property Platform::String ~TimeStamp

48 {

49 Platform::5tring “get() { return _timeStamp; }

58 i }

51

52 L i5

53

54 Bl public ref class Database sealed

55 {

56 private:

57 sqlite3 *_database;

58 sqlite3_stmt *_statement;

59 const char * _sqlCreate =

68 "CREATE TABLE IF NOT EXISTS h_t_table(humidity real, temperature real, time_stamp text);”;
61 const char * _sqlInsert =

62 "INSERT INTO h_t_table VALUES(?, ?, ((SELECT time('now', 'localtime’})});";
63 const char * _sqlselect =

64 "SELECT * FROM h_t_table;™;

65 int _result;

36



66
a7
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
L]
91
92
93
94
95
96
97
98
99
1ea
181
le2
183
164
185
186
187
168
1e9
118
111
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132

[f——[—11]

~Database();
Platform::5tring “convertChar(char * originalChar_);

public:
Database(Platform::5tring “path_);
void createTable(void);
void selectFromTable(Windows::Foundation::Cellections::IVector<AirCondition®>* recordings_};
void insertIntoTable(double h_, double ©_);

property int Result

1
int get() { return _result; }
¥
b
public ref class AirConditionViewModel sealed
{
private:
Windows::Foundation::Collections::IVector<AirCondition®>" _recordings;
public:
AirConditionViewModel(Platform::5tring “path_);
property Windows::Foundation::Collections::IVector<AirCondition®»* Recordings
1
Windows: :Foundation::Collections::IVector<AirCondition®>* get()
{
if (_recerdings == nullptr)
1
_recordings = ref new Platform::Collections::Vector<AirCondition®>();
}
return _recordings;
A
¥
g

public enum class Command

{
REPORT_DIGITAL_DATA = @xAB,
DIGITAL_DATA = @BxB@,
REPORT_ANALOG_DATA = @xCe,
ANALOG_DATA = @xDa,

i

public enum class DigitalDataStatus
i
DATA 0K,
DATA_ERROR_CHECKSUM,
DATA_ERROR_TIMEOUT,

g

/11 <summarys

///{ An empty page that can be used on its own or navigated to within a Frame.

A </ summary>

public ref class MainPage sealed

1

public:

static Windows::Foundation::IAsyncOperation

<Windows: :Devices::Enumeration::DeviceInformationCollection »»
MistAvailableArduinosAsync(veid);

37



Source Code

133
134
135
136
137
138
139
14a
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
168
161
162
163
14
165
166
167
168
169
17ae
171
172
173
174
175
176
177
178
179
1868
181
182

MainPage();

APPENDIX

property InterfacingArduino UWP::AirConditionviewModel ~ViewModel

InterfacingArduino UWP::AirConditicnViewModel ~get()

return _viewModel;

1
1
h
1
private:

i

/f arduino pid = @843 and vid = 2341

static const unsigned int _pid = @x@e43;

static const unsigned int _vid = @x2341;

// used for alternatively sending Digital or Analog data request Command
InterfacingArduine UWP::Command _txCommand;

Platform::5tring ~ _path =
Windows::Storage::ApplicationData::Current->LocalFolder-3Path + "\\test.db";//IAUWPe8
AirCenditienViewMoedel * viewModel;

Windows::
Windows:
Windows:
Windows:
Windows:

Windows:

Devices:
:Devices:
:Devices:
tStorage:
tStorage::

:Enumeration::DeviceInformaticnCollection *_arduineCollection;
:Enumeration: :DeviceInformation ~_deviceInfo;
:SerialCommunication::Serialbevice *_arduing;

:Streams: :Dataliriter *_tx;

Streams::DataReader *_rx;

tUI::Xaml::DispatcherTimer ~_timer;

vold SendCommand(veid);
vold ReceiveCommand{void);
vold ProcessData(veid);
vold StartTimer(veid);
void CloseArduino(veoid);

Concurrency:
Concurrency:
Concurrency:
Concurrency:

ttask<void> GetAvailableArduinosAsync(veid);
ttask<void> SendAsync(Command cmd_);
ttask<void> Receivedsync(veid);

rtask<void> GetArduinoFromIdAsync(

Windows::Devices::Enumeration::DeviceInformation *deviceInfo_);

void OnLoaded(Platform::0bject “sender, Windows::UI::Xaml::RoutedEventfrgs "e);
void OnTick(Object® sender, Object™ e);



Source Code APPENDIX

1 El/*

2 UserStory: =>In home the user can check data from RaspberryPi (GUI-Interface)
3 =»The data can be temperature, humidity, state of door (open/closed)
4 =>From Handy the user can check temperature,humidity,state of door
E]

[ An implementation of a home automation system using UWP in CH/CX

7 This app runs on RaspberryPi2 and connects to

8 Arduino via a USB and gets Sensor data as well as analog pin walue
9

1@ By Bereket Godebo DITSSN

11 0AMK-5chool of Engineering

12

1= MainPage.xaml.cpp

14 Implementaticon of the MainPage class.

15 L*f

16

17 El#include "pch.h™

18 L#include "MainPage.xaml.h™

19

28 Elusing namespace InterfacingArduino UWP;

21

22 using namespace Platform;

23 using namespace Windows::Foundaticon;

24 using namespace Windows::Foundation::Collections;

25 using namespace Windows::UI::Xaml;

26 using namespace Windows::UI::Xaml::Controls;

27 using namespace Windows::UI::Xaml::Controls::Primitives;

238 using namespace Windows::UI::Xaml::Data;

29 using namespace Windows::UI::Xaml::Input;

38 using namespace Windows::UI::Xaml::Media;

31 using namespace Windows::UI::Xaml::Navigation;

32

33 using namespace concurrency;

34 using namespace Windows::Devices::Enumeration;

35 | using namespace Windows::Dewvices::SerialCommunication;

36

37 El// The Blank Page item template is documented at

33 [{'fhttp:u".l’ﬁ:o.micrusoft.com.-“leink.-‘?LinkId=492352&c1cid=9x499

39

42 IAsyncOperation<DeviceInformationCollection®»”

41 =l InterfacingArduino UWP: :MainPage::ListAvailableArduinosAsync(wodd)

a2 K

43 =] //Generate an Advanced Query Syntax (AQS) string that contains

44 /fsearch criteria for finding the dewvice in the enumerated

45 i /idevice collection, then call GetDeviceSelectorFromUsbvidPid.

46 autc aqs = SerialDevice::GetDeviceSelectorFromUsbVidPid{_ wid, _pid);
47

48

49 =] //Pass the retrieved string to FindAllAsync.

58 i /{The call retrieves a DeviceInformationCollection object.

51 return DeviceInformaticn::FindAllAsync(ags);

52 L}

53

54

55

56 ElMainPage: :MainPage ()}

57 {

58 InitializeComponent();

59 // populate the ListView data from local db

68 _viewModel = ref new InterfacingArduino_UWP::AirConditionViewModel(_path);
61

62 /4 so that connections initialize after the components are initialized
63 Loaded += ref new Windows::UI::Xaml::RoutedEventHandler(this,

64 &InterfacingArduino_UWP::MainPage::OnLoaded);
65

66

67 B




Source Code APPENDIX

68

&89

78 vold InterfacingArduino_UWP::MainPage::

71 FlOnLoaded(Platform: :0bject “sender, Windows::UI::Xaml::RoutedEventirgs “e)
72 {

73

74

75 GetAvailableArduinosAsync();

76 _timer = ref new Windows::UL::Xaml::DispatcherTimer();

77 _timer->Tick += ref new EventHandler<Object*»(this, &MainPage::0nTick);
78

79

88

81 '}

82

83 task<void> InterfacingArduino UWP::MainPage::

a4 FlaetAvailableArduinosAsync(veid)

85 {

86 return create_task(ListAvailablefArduinosAsync()).

87 El then([this](PeviceInformationCoellection *arduineCellection_)
a8 {

89 // Store parameter as a member to ensure the duration of object allocation
=l _arduinoCollection = arduinoCollection_;

91

92 //check if there is any arduino connected

93 Bl if (!_arduineCollection-:5ize)

94 {

a5 AnalogPinValueTextBlock->Text =

96 "Arduino is Not connected! Please Connect it and restart the application™;
a7 CloseArduine();

98

a9 I 3

1@ =] else

181 {

1e2 Bl //get the iterator object of type iterator<DeviceInformation:
1e3 //for the collection and, since i am only interested

1la4 | //in the first connected arduino

1@5 _deviceInfo = _arduineCollection-»First()->Current;

186

187 GetArduinoFromIdAsync(_deviceInfo);//creates a new task
103 I 3

189

11@

111

12 | s

113 K

114

115 task<vold: InterfacingArduino UWP::MainPage::

116 ElaetArduinoFromIdAsync(DeviceInformation ~deviceInfo_)

117 1

118

119 return create_task(SerialDevice::FromIdAsync(deviceInfo_-3>Id}).
128 Bl then([this](SerialbDevice “serial_device_)

121 {

122

123 // save the serial object to member variable

124 _arduino = serial_device_;

125

126 Bl if(_arduino != nullptr)

127 {

128 Windows::Foundation: :TimeSpan _timeQut;

129 _timeOut.Duration = leeeeeedl;// = 1 second

138




Source Code APPENDIX

131 // Configure serial settings

132 _arduino-sWriteTimeout = timeOut;

133 _arduino->ReadTimecut = _timeOut;

134 _arduino-:BaudRate = 9688;

135 _arduino->Parity =

136 Windows: :Devices::SerialCommunication::SerialParity::None;
137 _arduino->StopBits =

138 Windows: :Devices::SerialCommunication::SerialStopBitCount: :One;
139 _arduino-:DataBits = 5}

142 _arduinc->Handshake =

141 Windows: :Devices::SerialCommunication::SerialHandszhake: :None;
142

143 // setup our data reader for handling incoming data

144 _rx =

145 ref new Windows::Storage::Streams::DataReader(

148 _arduino->InputStream);

147 _rx->»InputStreamdptions =

148 Windows::Storage: :Streams: : InputStreamOptions::Partial;
149

156 // setup our data writer for handling outgoing data

151 Ctx =

152 ref new Windows::Storage::Streams::Dataliriter(

153 _arduino-»0utputStream);

154

155 sendCommand(};// a new task is create in this function

156 I }

157 Bl else

158 {

159 Bl //the variable _aruino can be null at this point

168 J/ if for example, the app does not have 'serialcommunication’
161 | //capabilities specified in the app manifest

162 CloseArduino();

163 I i

164

165 | b

166 3

167

168 Flwvoid InterfacingArduino UWP::MainFage: :SendCommand (void)

169 K

178 Bl if (_arduino != nullptr)

171 {

172 /{The intetion is to toggle the command to send.

173 _txCommand = (_txCommand == Command::REPORT_DIGITAL DATA) ?

174 Command: : REPORT_ANALOG_DATA
175 Command: : REPORT_DIGITAL_DATA;
176 create_task(SendAsync(_txCommand)});

177

178 )

179

180 '}

181



Source Code

182
183
184
185
186
187
188
189
198
191
192
193
194
1385
196
197
193
199
288
281
2@2
283
284
285
286
287
288
289
218
211
212
213
214
215
216
217
213
219
226
221
222
223
224
225
226
227
228
229
238
231
232
233
234
235
236
237
233
239
248
241
242
243
244
245
246
247
243
249
258

[Fltask<void> InterfacingArduino_ UWP::MainPage::SendAsync(Command cmd_)

{

}

uintd_t reportCommand = static_cast<uintd_t>(cmd_);

_tx->WriteByte(reportCommand);

return create_task(_tx->Storefsync()).
then{[this](unsigned int bytesWritten)

1
if (bytesWritten > @)
1
ReceiveCommand();
by
1

Fwveid InterfacingArduinc UWP::MainPage::ReceiveCommand(void)

K

=

if (_arduinc != nullptr)

1
b

ReceiveAsync();

[Fltask<void> InterfacingArduino_ UWP::MainPage::ReceiveAsync(void)

{

}

{

unsigned int readBufferSize = B;

return create_task(_rx->Loadasync(readBuffersSize)).
then{[this](unsigned int bytesRead)

1
if (bytesRead > @)
1
ProcessData();
}
1

Fwveid InterfacingArduinoc UWP::MainPage::ProcessData(void)

Database db(_path};

std: :vector<uintd t»> receivedData;
std::size t bytesRemaining = @;
DigitalDataStatus dataStatus;
uintd t analogPinNumber;

uintle t rxAnalogData = @;

uintd_t data = _rx-*ReadByte();
double humidity;

double temperature;

//upper nibbles represent the command
Command cmd = static_cast<Command>(data & @xFa);

switch (cmd)

1

case Command: :DIGITAL DATA:
bytesRemaining = 5;
//Lower nibbles represent the sensor data status
dataStatus = static cast<DigitalDataStatus»>(data & @x8F);
break;

case Command::ANALOG DATA:
bytesRemaining = 2;
{//Lower nibbles represent the analeg pin number
analogPinNumber = static_cast<uintd t>(data & @x8F);
break;

default:
break;

APPENDIX



Source Code APPENDIX

251 | b

252

253 =] while (bytesRemaining)

254 {

255 receivedData.push_back(_rx-:ReadByte());

256 bytesRemaining--;

257 | b

258

259

268 if (emd == Command::DIGITAL_DATA &&

261 Bl dataStatus == DigitalDataStatus::DATA_OK)

262 {

263 humidity = ((receivedData.at(®) << 8) | receivedData.at(1l)) * @.1;
264 temperature = ({(receivedData.at(2) & 8x7F) << 8) | receivedData.at(3) ) * ©.1;
285

266 =] if (receivedData.at(2) & @x8@)

267 {

268 temperature = -temperature;

269 | b

278

271 CurrentHTValuetextBlock->Text =

272 "Current H{¥): ™ +

273 humidity +

274 "and T(C): "o+

275 temperature +

276 ["\n";

277

278 //save inte the db

279 B if (db.Result == SQLITE_OK)// check if connection is open
280 {

281 db.createTable();// create table if not exits

282 | }

283

284 =] if (db.Result == SQLITE_DONE)}// check if creating table was success
285 {// save the data

286 db.insertIntoTable(humidity, temperature);

287 | 3

288 | b

289 else if (cmd == Command::DIGITAL_DATA &8

298 =] dataStatus == DigitalDataStatus::DATA_ERROR_TIMEOQUT)
291 {

292 CurrentHTValuetextBlock->Text = "Sensor Not connected!™;
293 | b

294 =] else if (cmd == Command::ANALOG_DATA)

295 1

296 rxfnalogbata = (receivedData.at(@) | receivedData.at(1l) << 5);
297

293 AnalegPinValueTextBlock->Text =

299 "&nalog Value at Pin number: ™ +

=] analogPinNumber + ™ is " +

381 rxAnaloghata;

302 | b

383

384 startTimer();

385

386 3

387



Source Code

388
389
31e
311
312
313
314
315
316
317
318
319
32e
321
322
323
324
325
326
327
328
329
338
331
332
333
334
335
336
337
338
339
348
341
342
343
oo
345
346
347
348
345
358
351
352
353
354
355
356
357
358
359
368
361
362
363
364

Elvoid MainPage::StartTimer() {
TimeSpan ts;

_timer-:Interval = ts;
_timer->Start();

L}

ffwhen timer overflows

/freset and send command again
_timer-:Stop();
SendCommand( ) ;

}

{

delete(_arduinoCollection);
_arduinoCollection = nullptr;

delete(_arduino);
_arduino = nullptr;

delete(_deviceInfo);
_deviceInfo = nullptr;

delete(_tx);
_tx = nullptr;

delete{ rx);
_rx = nullptr;

delete(_timer);
_timer = nullptr;

}

InterfacingArduino UWP::AirConditiconViewModel::
FlAirConditionViewModel (Platform: :5tring ~ path_)

1

Database db{path_};
=] if (db.Result == SQLITE_OK)
1

b

db.createTable();

}

ts.Duration = J@@eeeeaL;// in 3 seconds interval

Elvoid MainPage::0nTick(Object™ sender, Object™ e) {

Flwoid InterfacingArduino UWP::MainFage::CloseArduino(woid)

Ef************************************************************
****************************Suppurt ClESS dEfiﬂitiDﬂS********

************************************************************f

APPENDIX

B if (db.Result == SQLITE_DOME)}//Succssfuly created table IF NOT EXISTS
{// then populate the collection if there is any
db.selectFromTable(Recordings);



Source Code APPENDIX

365 ElInterfacingArduino UWP::Database: :~Database()

366 {

367 sqlite3 close(_database);

368 |}

369

370 Platform::5tring ~ InterfacingArduino UWP::Database::
371 ElconvertChar{char * criginalChar_)

372 {

373 stdiisize_t newsize = strlen(originalChar_) + 1;
374 wchar_t * wcstring = new wchar_t[newsize];

375 size t convertedChars = @;

376 mbstowcs_s (&convertedChars, wcstring, newsize, originalChar_, _TRUNCATE);
377 string™ str = ref new Platform::String{wcstring);
378 delete[] wcstring;

379 return str;

388 B

381

382 ElInterfacingArduino UWP::Database: :Database(Platform::5tring ~ path_)
383 {

384 //create path

385 std::string pathStr{path_-»Begin(), path ->End()});
386 const char * path = pathStr.c_str();

387 // open db

388 _result = sqlite3 open_w2(path,

389 & database,

308 SQLITE_OPEN_READWRITE |
391 SQLITE_OPEN_CREATE,

392 NULL};

393 B

394

395 Flwoid InterfacingArduino UWP::Database::createTable(void)
396 {

397 sglite3 stmt *statement;

398

399 if (sglite3_prepare_v2(_database,

40 _sqlCreate,

401 -1,

4@2 &statement,

483 [ @) == SQLITE 0K)

44 iy

485 _result = sqlite3_step(statement);

406 )

487

488 sglite3 finalize(statement);

489 B

41@

411 vold InterfacingArduine UWP::Database::

412 FlselectFromTable (Windows: :Foundation: :Collections: :IVector<AirCondition®»® recordings_)
413 {

414 sqlite3 stmt *statement;

415 Platform::5tring “humidity;

416 Platform::5tring ~temperature;

417 Platform::5tring ~timeStamp;

418 AlrCondition “~data;

419

428 if (sqlite3_prepare_v2(_database,

421 _sglSelect,

422 -1,

423 &statement,

424 B 8) == SQLITE OK)

425 iy

428




Source Code APPENDIX

427 | int cols = sqlite3_column_count(statement);

428 = while (sqlite3_step(statement) == SQLITE_ROW)
429 ‘ 1

438 = for (int col = @; col < cols; col++)

431 I

432 char *ptr = (char *)sqlite3_column_text(statement, col);
433 = if (ptr)

a3 |

435 = switch (col)

436 {

437 case @:

438 humidity = convertChar(ptr);
439 break;

448 case 1:

441 temperature = convertChar(ptr);
4472 break;

443 case 2:

oL timeStamp = convertChar(ptr);
445 break;

445 | b

447 |

448 L ¥/ row complete

445

458 data = ref new AirCondition(humidity, temperature, timeStamp);
451 recordings_->Append(data);

452 I }//while

453 sglite3 finalize(statement);

454 o}

455 B

456

457 Flwoid InterfacingArduino UWP::Database::insertIntoTable(double h_, double £ _)
458 {

459 sqlite3_stmt *statement;

468

451 = if (sqlite3 prepare v2(_database, sqlInsert, -1, &statement, 8) == SQLITE OK)
462 {

453 f/int sqlite3 bind double({sqlite3 stmt*, int, double);
464 if (sqlite3_bind_double(statement, 1, h_ ) ==

465 SQLITE_OK &&

466 sqlite3 bind double(statement, 2, t ) ==
467 [ SQLITE_OK)

468 {

459 _result = sqlite3 step(statement);

47a

471 | b

472

473 L}

474

475 sqlite3_finalize(statement);

476 3



Source Code APPENDIX

1 e

2 UserStory: =>In home the user can check data from RaspberryPi (GUI-Interface)
3 =»The data can be temperature, humidity, state of door (open/closed)
4 =>From Handy the user can check temperature,humidity,state of door
5

6 Part of an implementation of a home automation system using UWP in C44+/CX On the RaspberryPi side
7 This an Arduino program that connects wvia a USB to RaspberryPi 2
8 and sends Digital Sensor data as well as analeg pin wvalue

a

1@ By Bereket Godebo DITBSN

11 0AMK-5School of Engineering

12 L=/

13 #include <dht.h:

14

15 #define DHT21 _PIN 2

16

17

18

19 const unsigned char REPORT_DIGITAL _DATA = @xA@;

2@ const unsigned char DIGITAL_DATA = @xB@;

21 const unsigned char REPORT_ANALOG_DATA = @xCa;

22 const unsigned char ANALOG _DATA = @xDa;

23 const unsigned char dataMask = @x1F;

24

25

26

27

28 int analogPinValue = @;

29 unsigned char txCommand = @;

38

31 J// digital data status to be sent along the command

32 const unsigned char DATA_OK = (@ & exer);

33 const unsigned char DATA_ERROR_CHECKSUM = ( 1 & @w@F);

34 const unsigned char DATA_ERROR_TIMEOUT = ( 2 & 8x8F);

35

36 // these values are to be sent with a resolution of 4-bits thus the mask=8x@F
37 const unsigned char analogPinA® = ( @ & @x8F);

38

39 E/* for future use, for now only analog pin AB is used

48 const unsigned char analogPinAl = ( 1 & @xeF);

41 const unsigned char analogPinA2 = ( 2 & @x@F);

a4z const unsigned char analogPinA3 = ( 3 & @x8F);

43 const unsigned char analogPinA4 = ( 4 & @xeF);

44 const unsigned char analogPinAS = ( 5 & @xeF);

45 *

48

a7 voild sendAnalogPinValue(void);

48 void sendDigitalSensorvValue(void);

49

58

51 DHT dht;

52

53 Fwoid setup() {

54 serial.begin(96@@);

55

56 1

57



Source Code

APPENDIX

auuid loop() {

{

=

1

b

1

= if(Serial.available() > @)

unsigned char rxCommand = Serial.read();

switch((rxCommand & @xF@))
1
case REPORT_DIGITAL_DATA:
sendDigitalSensorValue();
break;

case REPORT_ANALOG_DATA:
sendAnalogPinValue();
break;

Flwveid sendDigitalSensorValue(woid)

size t bufSize
int readstatus

dht.getBuffersize();
dht.read21( DHT21_PIN);

switch(readStatus)
1
case DHTLIB_OK:
txCommand = (DIGITAL DATA | DATA_OK);
break;
case DHTLIB_ERROR_CHECKSUM:
txCommand = (DIGITAL DATA | DATA ERROR_CHECKSUM);
break;
case DHTLIB_ERROR_TIMEOQUT:
twCommand = (DIGITAL DATA | DATA ERROR_TIMEOUT);
break;
default:
break;
¥ fswitch

serial.write(txCommand);
Serial.write(dht.getBuffer(), bufSize);

Fwoid sendAnalogPinValue(woid)

analogPinValue = analogRead(analogPinaB);
unsigned char lowerByte = lowByte(analogPinvalue);
unsigned char higherByte = highByte(analogPinValue};

// get the lower five bits of lowerByte

/fdataMask = @b8ealllll

unsigned char firstAnalogDataByte = lowerByte & dataMask;

// get the upper 3 bits of lowerByte

unsigned char threeDataBits = (lowerByte > 5);

ffereate the second analog byte combining the remaining three bits

S/ in the lower byte with the two bits in the higher byte

unsigned char secondfnalogDataByte = (higherByte << 3) | threeDataBits;

/43 bits representing the analog pin number and a command to signal
//that analog message is being sent
txCommand = (ANALOG DATA | analogPinf@);

/fsend the command and then the two byte data

Serial.write(txCommand);

Serial.write(firstaAnaloglataByte);// a byte containing 5-bits of data
Serial.write(secondAnalogDataByte);// a byte containing 5-bits of data



