

Bereket Godebo

INTERFACING ARDUINO IN THE UNIVERSAL WINDOWS

PLATFORM

INTERFACING ARDUINO IN THE UNIVERSAL WINDOWS
PLATFORM

 Bereket Godebo
 Bachelor’s Thesis
 Fall 2016
 Degree Program in Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Information Technology, Embedded Systems

Author: Bereket Godebo
Title of the Bachelor’s thesis: Interfacing Arduino in the Universal Windows
Platform
Supervisors: Eino Niemi, Pekka Alaluukas
Term and year of completion: Fall 2016 Number of pages: 48 + 1 appendix

The objective of this Bachelor’s thesis was to connect Raspberry Pi 2 running
Windows 10 IoT Core via a USB to Arduino. Moreover, the aim was to delegate
Arduino the work of controlling sensors, and to send data to Raspberry PI 2
whenever needed. This project was part of a Home Automation project created
by my Instructor Pekka Alaluukas as a hobby and the devices used in this pro-
ject were provided by the School of Engineering.

In the process of implementation, the project work was divided into tasks such
as, developing a serial module on Raspberry Pi 2, developing its counterpart on
Arduino and developing a protocol to be used for synchronizing the communica-
tion. And then it was proceeded incrementally by adding a functionality as re-
quired on the working modules.

Future improvements can be made in areas such as creating a Windows
runtime component that connects to Arduino, supporting a cancelation of asyn-
chronous operations and throwing an exception for an error that occurs in the
chain of task instead of showing it on the screen.

Keywords: IoT, UWP, C++/CX, Asynchronous, RPi2, Arduino, SQLite3

 4

PREFACE

This thesis project was conducted at Oulu University of Applied Sciences,

School of Engineering campus and the devices needed were provided by the

school.

I would like to thank Riitta Rontu, Head of the Department, for facilitating the

thesis work and for her sincere support for me to complete the degree program

in time.

I would also like to thank my supervisor Eino Niemi for his willingness to be flex-

ible, as I have done this project during the summer break, and for being sup-

portive.

I would not have done this thesis project if it was not for Pekka Alaluukas, I

Thank him for the good ideas.

Last but not least, I would like to thank my wife for giving me such a wonderful

daughter who has been an inspiration every day. And also my families who

have continued to believe in me during the long years of studying in Finland.

Oulu, 16.08.2016

Bereket Hizkeal Godebo

 5

TABLE OF CONTENTS

ABSTRACT 3

PREFACE 4

TABLE OF CONTENTS 5

LIST OF FIGURES AND TABLES 6

ABBREVIATIONS 7

1 INTRODUCTION 8

2 BACKGROUND 10

2.1 Universal Windows Platform 10

2.2 Asynchronous Model in C++/CX 11

2.3 Namespaces for Connecting 12

2.4 Serial On Arduino 13

2.5 AVR-Toolchain 14

2.6 Firmata Protocol 15

2.7 Custom Protocol 16

3 DEVICES 17

3.1 Raspberry Pi 17

3.2 Arduino 18

3.3 Sensor-AM2301 19

4 IMPLEMENTATION 21

4.1 Chain of Tasks 21

4.2 Get Arduino 22

4.3 Processing Input On Arduino 25

4.4 DHT-Lib 25

4.5 Process Input On RPi2 28

4.6 Save into SQLite 31

5 CONCLUSION 33

REFERENCES 34

 6

LIST OF FIGURES AND TABLES

FIGURE 1. functional block diagram ---8

FIGURE 2. rpi2 model b with a 900mhz quad-core arm cortex-a7 cpu and 1gb

ram (11)---16

FIGURE 3. arduino uno r3 based on atmega328p-------------------------------------17

FIGURE 4. am2301 also called dht21. -source datasheet---------------------------18

FIGURE 5. am2301 pin diagram and pin description -source datasheet---------18

FIGURE 6. am2301 data transmission format -source datasheet------------------19

FIGURE 7. am2301 1-Wire timing diagram -source datasheet---------------------19

FIGURE 8. chain of tasks in the program--20

FIGURE 9. arduino device property in device manager------------------------------21

FIGURE 10. sqlite for uwp installation--30

FIGURE 11. adding reference for sqlite library---31

TABLE 1. firmata protocol description (10).---15

TABLE 2. custom protocol description--16

TABLE 3. am2301 timing description -source datasheet-----------------------------20

 7

ABBREVIATIONS

RPi2: Raspberry Pi 2

APIs: Application Programming Interfaces

UWP: Universal Windows Platform

WinRT: Windows Runtime

USB: Universal Serial Bus

USART: Universal Synchronous Asynchronous Receive Trans-

mit

USB CDC: USB Communication Device Class

SDKs: Software Development Kits

STA: Single-Threaded Apartment

TTL: Transistor-Transistor-Logic

VID: Vendor ID

PID: Product ID

 8

1 INTRODUCTION

The purpose of this Bachelor’s thesis was to communicate from a Windows 10

host to a microcontroller based prototyping platform, Arduino Uno and be able

to receive digital data from a sensor attached to it. This project was part of a

home automation system, which e.g. makes it easy for a user to monitor re-

motely Humidity and Temperature values from a mobile device.

The original requirements of this thesis project were given by the author’s in-

structor Pekka Alaluukas and designed by Eino Niemi, the supervisor together

with the author.

The Arduino was to be connected to a RPi2 running Windows 10 IoT Core via a

USB Connection. In addition, the sensor was to be connected to a digital pin in

Arduino and to send serial data using a 1-Wire protocol.

In the process of implementation, first the APIs provided by the Windows 10 IoT

Core to connect to a device attached via a USB were studied. Since a USB is

an industry standard for communicating over a serial bus, the Arduino program-

ming language was studied to determine what functions are provided by the

platform that expose the serial port as a USB. Moreover, as Arduino is a micro-

controller based platform as such serial communication module is a built-in

module. Finally, to have a full control of the transmission of data from the sen-

sor to the Windows 10 host, the available Arduino library that provided an API to

receive sensor data was studied.

This thesis project was carried out by exploring the technical details of the exist-

ing library, the Firmata protocol implementation by Microsoft, which abstracts

the use of a microcontroller for Windows developers. The effort was to increase

the author’s competence in the hybrid field that combines the experience of em-

bedded system development and that of Internet Service development.

 9

FIGURE 1. functional block diagram

Raspberry Pi 2

Running Windows 10 IoT Core

Master/Controller

Process Data & Display

AM2301/DHT21

Slave/Sensor

Arduino Uno R3

Slave/Controller

Buffer Data &

Send

USB

1-Wire

 10

2 BACKGROUND

The connection between the RPi2 and the Arduino comprises on the Arduino

side a UART module which is exposed as a virtual Com port. This abstraction is

implemented by using an internal USB-to-Serial bridge module (1). While on the

RPi2 side, the new extension to the Windows Runtime, the Universal Windows

Platform, provides an API to be able to find Arduino or a similar device with its

Vendor ID and Product ID and then get a reference to it. Finally, it helps config-

ure the connection parameters to fine tune the flow control as desired.

Therefore, this chapter briefly presents the various technologies that were dis-

covered after a careful consideration of different sources relevant to the subject

of the thesis.

2.1 Universal Windows Platform

UWP is the result of a unified core. Microsoft has undergone a major transfor-

mation that changed the way developers write programs, and use the develop-

ment tools, and most importantly the way they interact with the underlying

runtime environment. The result is the convergence of a program model, which

in effect created a platform where the operating system maintains a set of APIs

across all sets of hardware platforms while still providing flexibility by way of ex-

tensions on a specific set of hardware platforms called Device Family (2).

UWP is then the combination of APIs that are available in all device families and

the extension SDKs that are available to a specific device family. Moreover, by

developing a Universal Windows Platform apps, it is possible to target a specific

device family or a universal device family, which contains all device families.

In this project, the RPi2 runs Windows 10 IoT Core, and as explained above, it

contains APIs that are available on a universal device family and also the IoT

extension SDKs that are used for the IoT specific functionality. Since the APIs

 11

that are used in the implementation of this project take a significant amount of

time, the UWP’s Asynchronous model was used.

2.2 Asynchronous Model in C++/CX

An asynchronous model is the way the underlying runtime abstracts the execu-

tion of a routine that takes time to complete, to run at the same time with the

thread of an execution that invokes it. This facilitates mainly the responsiveness

of the UI thread while waiting for an operation to complete.

The UI of a UWP app runs in a Single-Threaded Apartment (3). This approach

eliminates the need to lock a resource that is shared between threads, for the

purpose of synchronization. The use of an asynchronous model, the implemen-

tation of which is the task class in the concurrency namespace, makes it possi-

ble to create a task from within the STA. And upon completion, the continuation

of it is guaranteed to run in the STA resulting in a simplified access to the UI el-

ements (3). Of course, the task object is created using the UWP’s methods that

return an asynchronous operation or action. The return type of these methods

implement the interfaces IAsyncOperation<TResult> and IAsyncAction, and

their variations which support a progress report. Therefore, an operation returns

a result whereas an action returns void (4.)

In this project a task object was created using a create_task Function from the

same namespace, for its ease of use, since it allows the use of an auto key-

word while creating tasks (5). The task class has a method task::then, which

can be called on the parent task object, and which returns a continuation task

that is executed after the completion of the parent task.

 12

2.3 Namespaces for Connecting

The Windows.Devices.SerialCommunication namespace defines a WinRT

class which can be used to communicate with USB devices. Currently, the

namespace supports USB devices within the communication device class -USB

CDC (1).

USB is an industry standard for a communication between computers and elec-

tronic devices. It is categorized in classes to allow the USB host to recognize

the USB device without the need for vendor specific drivers (6.) Moreover, as

the name implies, the communication device class is a class that supports com-

munication and networking functions, and devices in this class include e.g.

Com-port devices. Since Arduino Uno R3 used in this project has an internal

USB to a Serial bridge chip that exposes the UART module as a virtual Com-

Port, the WinRT class defined in the SerialCommunication namespace can be

used to connect to Arduino.

The static methods from this namespace that are used in this project are: Seri-

alDevice::FromIdAsync(Platform::String^) and SerialDevice::GetDeviceSelectorFro-

mUsbVidPid(unsigned int, unsigned int). The first method returns a serial device

object given the path that specifies the location of the device within the system.

The second one takes as an argument, the VID and PID of a device and returns

a string called an Advanced Query Syntax, which is used as a search criterion

to find a given device from all serial devices in the system (1.)

In order to access a serial device, a UWP app must specify in its package mani-

fest the name of the capability it uses. This helps to identify the device and its

purpose for its users (1.)

The APIs in the Windows.Devices.Enumeration and Windows.Stror-

age.Streams namespace are used as a support class in the process of con-

necting to the serial device. In the Enumeration namespace there is only one

 13

static method that is needed for this project: DeviceInformation::FindAllA-

sync(Platform::String^). This method returns a collection of objects that describe

connected devices based on the given search criterion, which is described pre-

viously. The Streams namespace is used after the serial object is obtained, and

the two classes which are needed from this namespace are: DataReader and

DataWriter. A receiver and a transmitter object are created using these classes,

they are initialized to the input stream and output stream of the obtained serial

object, respectively.

2.4 Serial On Arduino

All Arduino boards have at least one Universal Synchronous Asynchronous Re-

ceive Transmit module which is exposed as a serial port. Moreover, the serial

communication is accomplished through the digital pin 0 as RX and 1 as TX that

use TTL-compatible logic levels as well as through USB by using a bridging

chip which was described on page 10 (7.)

In the Arduino programming language, the two important functions are: setup()

and loop() (8). The first one is analogous to a constructor for an object. It is only

called once in the beginning or when the board is reset. The second one is

where the main program logic is written and executed forever.

The built in Serial library is used to configure and connect to the serial port.

This library provides several functions that help in connecting to the device and

in sending information as desired. In this project, only four of the functions are

used: begin(), available(), read() and write(). As Arduino is microcontroller

based, configuring its serial module only requires calling the Serial.begin(baud-

rate) in the set-up() function.

The member function Serial.begin(long) which was mentioned above, uses a

default value of 8-N1 for the connection parameters, that is data-bits:8, parity:

None, stop-bits:1 respectively. The overload of this function takes an additional

parameter to change the default values in the frames sent or received.

 14

The second member function, Serial.available(), returns the number of bytes

available for reading, in other words the number of bytes in the receive buffer

that has not yet been read. Usually, this function is used together with Se-

rial.read() to get more bytes.

Finally, when Arduino sends back data, it uses the following two functions Se-

rial.write(unsigned char) and Serial.write(buf, len). The second one sends

an array of bytes, buf and of size, len.

2.5 AVR-Toolchain

This topic is being addressed here to simplify the explanation of the DHT library

used to read the digital sensor data. The library was modified in a way that

gives more control on the transmission of data from the sensor via Arduino to

RPi2.

The avr-toolchain is based on the GNU Compiler Collection, and as the name

implies GCC is a collection of compilers for different languages. One important

feature of GCC is that it can use other programs, in a way that chains the output

of one into the other and creates a final output (9). The GNU Assembler and

GNU Linker are the other programs that work with GCC, and are part of another

open-source project called GNU Binutils. When both these open source projects

are built to execute on a host system such as Linux, or Windows, and built to

generate code for the avr-microcontroller target, then they are given a prefix

‘avr-’ and as such gcc becomes avr-gcc, GNU assembler becomes avr-as, and

GNU linker become avr-ld. Accordingly, the Standard C library has a version of

it called avr-libc, which includes many of the standard library functions as well

as those that are specific to AVR. Therefore, among others, these open source

programs form a chain called AVR-Toolchain (9.)

 15

2.6 Firmata Protocol

The protocol uses an MIDI message format (10). However, the message data is

interpreted in a way that facilitates the raw data transmission between a

microcontroller and a host machine. Furthermore, the protocol has a 4-bit

resolution for transmission of additional data that describe the port or pin

number. Hence, it has the constrain on the support of a maximum of 16 analog

pins and 16 digital ports (ports are a group of 8-bits in an 8-bit architecture, the

total number of digital pins is 16*8= 128 pins)

TABLE 1. firmata protocol description (10).

Type Command MIDI Channel First byte Second byte

analog I/O

message

0xE0 pin # LSB(bits 0-6) MSB(bits 7-13)

digital I/O mes-

sage

0x90 port LSB(bits 0-6) MSB(bits 7-13)

report analog

pin

0xC0 pin # disable/ena-

ble(0/1)

-N/A-

report digital

port

0xD0 port disable/ena-

ble(0/1)

-N/A-

In this protocol, the first byte contains a command to be sent or received to-

gether with a pin number for analog I/O or a port number for digital I/O. For in-

stance, when sending a report analog pin command: 0xC7, this means send

the value of an analog pin number 7. This is not the whole protocol description

but only the part that is relevant to this project.

 16

2.7 Custom Protocol

This is the protocol that is used in this project. It is based on the Firmata proto-

col described earlier in this document (p.15). The main difference is, the number

of data message bytes that are supported. Here, the number is not fixed to two

bytes only, it goes up to 5 bytes. Furthermore, commands that start with RE-

PORT are sent from the host machine and commands that start with DIGITAL

or ANALOG are sent from the board as a response. Only response commands

have additional data with the command. Moreover, the first nibble in the first

byte sent is the command and the second nibble is the additional data.

TABLE 2. custom protocol description

Type Com-

mand

Addi-

tional

Data

Byte1 Byte2 Byte3 Byte4 Byte5

Report

Digital

Data

0XA0 - - - - -

Digital

Data

0XB0 data-

status(0

-2)

byte0 byte1 byte2 byte3 byte4

Report

Analog

Data

0XC0 - - - - -

Analog

Data

0XD0 pin # byte0 byte1 - - -

For example, a Digital Data response command: 0xB2 is interpreted as a digital

message and data with a status of 2, which is Time-out Error.

 17

3 DEVICES

In this chapter devices that are used in this project and their capabilities pertain-

ing to the project are discussed briefly.

3.1 Raspberry Pi

RPi2 is a series of low-cost single-board computers which have gained popular-

ity among hobbyists. They are also used to simplify the teaching of Computer

Science in schools and developing countries (11).

FIGURE 2. rpi2 model b with a 900mhz quad-core arm cortex-a7 cpu and 1gb

ram (11)

 18

The board features among others several communication interfaces, 4 USB

ports, a Full HDMI port, and an Ethernet Port. Furthermore, it has enough horse

power to run all of ARM based GNU/Linux distributions as well as Microsoft

Windows 10 IoT Core, which is used in this project (12).

3.2 Arduino

Arduino is an open-source single-board microcontroller which is based on Wir-

ing which is an open-source electronic prototyping platform. The wiring project

was inspired by a previous similar project called Processing which is again an

open-source computer programming language and an integrated Development

Environment that promotes computer programming in a visual context for artists

(13).

 FIGURE 3. arduino uno r3 based on atmega328p (13)

Since the board is based on the ATmega328P avr-microcontroller from Atmel,

the Arduino IDE uses GNU avr-toolchain to compile a code and to program the

microcontroller. Hence the avr-libc libraries can be used while writing Arduino

programs, also called sketches. Moreover, for those who want to have more ac-

cess to the underlying microcontroller, avr-libc libraries provide the flexibility

needed.

 19

3.3 Sensor-AM2301

AM2301 is a digital humidity and temperature sensor. The sensor features an

ultra-low power consumption, a capacitive humidity sensor, a standard digital

single-bus output and a long transmission distance.

FIGURE 4. am2301 also called dht21. -source datasheet

FIGURE 5. am2301 pin diagram and pin description -source datasheet

 20

FIGURE 6. am2301 data transmission format -source datasheet

FIGURE 7. am2301 1-wire timing diagram -source datasheet

TABLE 3. am2301 timing description -source datasheet

 21

4 IMPLEMENTATION

In the process of implementation, the project work was divided into tasks such

as, developing a serial communication on RPi2, and its counterpart on Arduino

and developing a protocol to be used for synchronizing the communication. And

it was proceeded incrementally by adding a functionality as required on the

working modules.

4.1 Chain of Tasks

FIGURE 8. chain of tasks in the program

Start

Populate the
data source from
database

Get Available
Arduino
-Asynchronous

is
Size
> 0

get Arduino from ID
-Asynchronous

Display
Error
message

Configure serial Device
initialize transmitter and
receiver

prepare an
alternating
command

Send a Command
-Asynchronous

receive response com-
mand + Digital/Analog
data
-Asynchronous

Process data and start
timer

OnTick

event

NO

Yes

 22

The diagram shown above is not a program flow chart, instead its shows how

the chains of tasks are connected to each other.

4.2 Get Arduino

 FIGURE 9. arduino device property in device manager

To find this property window, in Windows 10 machine, go to the Device man-

ager and then open the Ports (Com & LPT) node and right click the device and

then select properties.

Once the Hardware Ids is selected from the Property dropdown list, the vendor

ID and product ID can be constructed from the string in the Value text box by

prepending 0X to the number that follows VID and PID. This is shown in the

code snippet below:

 23

Before calling the static FindAllAsync(String^) method in the Enumera-

tion::DeviceInformation class, first, a string that contains a search criterion for

finding Arduino must be created, using the static method GetDeviceSelec-

torFromUsbVidPid(unsigned int, unsigned int) in the SerialDevice class.

This is show in the code snippet below:

The FindAllAsync(String^) method returns an IAsyncOperation<DeviceIn-

formationCollection^>^ object. Since this is an asynchronous operation, the

task class is used to get the result, which is a DeviceInformationCollection

object, upon completion.

In order to get the serial device, Arduino, four tasks are needed that run one af-

ter the other, forming a chain of tasks. The first one is created using a

FindAllAsync(String^) method. The continuation task, which is created by call-

ing a task::then method on the newly created task, takes as its argument, a

lambda expression, the parameter of which is the return type of the antecedent

task. This is shown in the code snippet below:

 24

It should be noted that the antecedent task returns task<DeviceInformation-

Collection^> and the result of this task is used in the continuation task that

takes the lambda expression. Moreover, within the continuation, a new task is

being created, to ensure that the next task, which needs a DeviceInformation

object, is called only after the antecedent task is complete.

As can be seen from the above code snippet, the serial device was ready to be

configured with the default value 9600-8-N1.

 25

4.3 Processing Input On Arduino

Within an infinite loop, Arduino was programmed to check if there were bytes

available for reading and then responding with an appropriate command + data,

based on the received command. The main loop is shown below:

4.4 DHT-Lib

This is a library by Rob Tillaart for receiving data from DHTxx devices - digital

Temperature and Humidity sensors (14). It provides an interface for varieties of

devices. The library used in this project, which was based on DHT21, had one

function for reading and two public variables that held the Humidity and Tem-

perature values. As shown in FIGURE 6, the device sends 5 bytes of data; The

first two bytes represent the humidity value and the third and fourth bytes repre-

sent the Temperature values, and the last byte represents the parity bit.

As shown in the code snippet below, the library was modified to provide the

whole buffer, the size of the buffer and error messages. In addition, the read

logic was modified to match specifically the timing requirement of the AM2301.

 26

In the above code snippet, the public function calls a private function, which

contains the logic to read from the device. It was modified not to use the public

variables but only to return the status. In addition, two more functions were

added that returned the buffer and its size.

 27

When sending the digital data, the response command DIGITAL_DATA and the

data status constants were combined according to the status returned from the

read21 function. This is shown in the code snippet below:

Next the command and the five data bytes were sent.

The analog message was used as an additional functionality to test the connec-

tion. analogRead() was the function that was used to get an analog value of a

given pin. The function returned a value 0 to 1023, thus it was represented as

Integer which was 16-bit in size. In the code snippet shown below, the first 10

bits were taken from the value returned by the function and put into two 8-bit

variables. Then the response command ANALOG_DATA was combined with

the analog pin number used.

 28

Next the command and the two bytes were sent.

4.5 Process Input On RPi2

After the serial device handle was obtained and configured, a data writer and a

data reader object were created. It is shown in the code snippet below:

As can be seen above, a new task was created to send a command. It is im-

portant to keep the chain connected, thus a new task was created within a con-

tinuation task. While extending the chain, it has to be ensured that the chain is

not broken.

As part of the design of the app, the method shown below was called repeat-

edly, in order to send alternating commands periodically

 29

As can be seen above, a new task was created to send the command.

Here the command was sent and listening to a response from the Arduino was

started, after a successful transmission of the command.

The following function was used just to check if Arduino was still connected.

Since the maximum number of bytes including the command, which were sent

from the Arduino were 6, thus the buffer size was set to 6.

 30

It is assumed that Arduino always responds with an appropriate command +

data response. As such there is no error messages shown here if there is no re-

sponse.

After a command + data response was received, appropriate variables were ini-

tialized for data processing.

In the above code snippet, the remaining bytes were initialized, based on the

command received.

 31

When a DIGITAL_DATA response command was received, the remaining bytes

were interpreted as shown in the code below.

Since the checksum had already been calculated, the fifth byte was ignored in

the code snippet above. As shown in FIGURE 6, the most significant bytes were

sent first, and Humidity and Temperature each represented a 16-bit value.

Since the left most bit in the third byte represented a sign bit, the temperature

value was calculated accordingly.

In the following code snippet, an analog value was reconstructed from the two

bytes received.

4.6 Save into SQLite

SQLite is an open-source embedded, serverless SQL database engine. It is im-

plemented in C and it is a leading device side technology for a local data stor-

age (15.)

In this project, SQLite Library for Universal Windows Platform apps was in-

stalled via Extensions and Updates for Visual Studio. This is shown in FIGURE

10.

 32

 FIGURE 10. sqlite for uwp installation

And then the header #include <sqlite3.h> was included before using the library.

And also as shown in FIGURE 11 below, the reference to the library must be

added into References in the project.

 FIGURE 11. adding reference for sqlite library

 33

5 CONCLUSION

The final product was deployed into the RPi2. It notified the user if either Ar-

duino or the sensor was not attached. Moreover, it sent an alternating command

to Arduino every 3 seconds and saved the data into the local database using

SQLite. The commands were REPORT_DIGITAL_DATA and REPORT_ANA-

LOG_DATA, and Arduino responded appropriately. The application on RPi2

showed the current data on the screen but the data from the database was

shown only after restarting the application. This was because the aim of the pro-

ject was to connect to Arduino and show the current data and save it into the

database.

Accessing the serial device on the RPi2, required experience in Asynchronous

programming in C++/CX. Therefore, referring deferent material on topics such

as concurrency and threads was necessary. The shift from synchronous pro-

gramming to asynchronous programming was not smooth. It required a lot of

practice. On the other hand, the programming language used on RPi2, C++/CX,

an extension to the standard C++, seemed at first as learning a whole new lan-

guage but it turned out that there were a few more constructs to learn to com-

fortably write a code.

Future improvements can be made in areas such as creating a Windows

runtime component that connects to Arduino, supporting the cancelation of

asynchronous operations and throwing an exception for an error that occurs in

the chain of task instead of showing it on the screen.

 34

REFERENCES

1. Windows API Reference SerialCommunication namespace. 2016. Mi-

crosoft. Date of retrieval 13.08.2016

https://msdn.microsoft.com/en-us/library/windows/apps/windows.de-

vices.serialcommunication.aspx

2. Guide to Universal Windows Platform (UWP) apps. 2016. Microsoft.

Date of retrieval 11.08.2016

https://msdn.microsoft.com/windows/uwp/get-started/universal-ap-

plication-platform-guide

3. Asynchronous programming in C++. 2016. Microsoft. Date of retrieval

28.07.2016

https://msdn.microsoft.com/en-us/windows/uwp/threading-

async/asynchronous-programming-in-cpp-universal-windows-plat-

form-apps

4. Windows Runtime APIs IAsyncInfo interface. 2016. Microsoft. Date of

retrieval 13.08.2016

https://msdn.microsoft.com/library/windows/apps/br206587

5. concurrency Namespace. create_task Function. Microsoft. 2016.

Date of retrieval 13.08.2016

https://msdn.microsoft.com/en-us/library/hh913025.aspx

6. Wikipedia. USB communications device class. 2016. Date of retrieval

13.08.2016

 https://en.wikipedia.org/wiki/USB

7. Arduino Language Reference. Serial. 2016. Date of retrieval

14.08.2016

 https://www.arduino.cc/en/Reference/Serial

8. Arduino. Language Reference. 2016. Date of retrieval 14.08.2016

https://www.arduino.cc/en/Reference/HomePage

9. Standard C Library for AVR-GCC. Toolchain Overview. 2016. Date of

retrieval 14.08.2016

https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.serialcommunication.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.serialcommunication.aspx
https://msdn.microsoft.com/windows/uwp/get-started/universal-application-platform-guide
https://msdn.microsoft.com/windows/uwp/get-started/universal-application-platform-guide
https://msdn.microsoft.com/en-us/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://msdn.microsoft.com/en-us/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://msdn.microsoft.com/en-us/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://msdn.microsoft.com/library/windows/apps/br206587
https://msdn.microsoft.com/en-us/library/hh913025.aspx
https://en.wikipedia.org/wiki/USB
https://www.arduino.cc/en/Reference/Serial
https://www.arduino.cc/en/Reference/HomePage

 35

http://www.nongnu.org/avr-libc/user-manual/overview.html

10. Firmata Protocol. V2.3ProtocolDetails. 2013. Date of retrieval

26.07.2016

http://firmata.org/wiki/Protocol

11. Wikipedia. Raspberry Pi. 2016. Date of retrieval 11.08.2016

https://en.wikipedia.org/wiki/Raspberry_Pi

12. Raspberry Pi Foundation. Raspberry Pi 2 Model B. 2015. Date of re-

trieval 11.08.2016

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

13. Wikipedia. Arduino. 2016. Date of retrieval 11.08.2016

https://en.wikipedia.org/wiki/Arduino

14. Arduino Playground. Class for DHTxx Sensors. 2015 Date of retrieval

14.08.2016

http://playground.arduino.cc/Main/DHTLib

15. Data access. 2016. Microsoft. Date of retrieval 28.07.2016

https://msdn.microsoft.com/en-us/windows/uwp/data-access/index

http://www.nongnu.org/avr-libc/user-manual/overview.html
http://firmata.org/wiki/Protocol
https://en.wikipedia.org/wiki/Raspberry_Pi
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://en.wikipedia.org/wiki/Arduino
http://playground.arduino.cc/Main/DHTLib
https://msdn.microsoft.com/en-us/windows/uwp/data-access/index

 36

APPENDIX

 37

Source Code APPENDIX

Source Code APPENDIX

Source Code APPENDIX

Source Code APPENDIX

Source Code APPENDIX

Source Code APPENDIX

Source Code APPENDIX

Source Code APPENDIX

Source Code APPENDIX

Source Code APPENDIX

Source Code APPENDIX

