

Trung Truc Truong

Unit Testing in E-commerce Web Optimisation

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineering

Thesis

7 November 2016

 Abstract

Author(s)
Title

Number of Pages
Date

Trung Truc Truong
Unit Testing in E-commerce Web Optimisation

34 pages
7 November 2016

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option Mobile and .NET Programming

Instructor(s)
 Iilkka Kylmäniemi, Lecturer

The purpose of this final year project was to find out the possibility of the unit testing in e-
commerce web optimisation with the support of Frosmo Oy’s internal tools. The tests were
also designed to work under the current implementation of Frosmo’s codebase.

The thesis focuses on deepening knowledge in e-commerce UI single tag development,
Jasmine as a test framework and unit testing for current components. The focus was on
developing understanding about unit testing by developing unit tests on two components
including product tracking and conversion tracking.

Jasmine was used as a test framework as it is the main tool support by Frosmo’s develop-
ment team. The unit tests result in creating many different tests for many clients and spread-
ing knowledge to the company’s employees at the same time.

Keywords Unit testing, e-commerce, Jasmine

Contents

1 Introduction 1

2 Introduction to unit testing 1

2.1 Overview of test driven development 1
2.2 Overview of behaviour driven development 5

3 Unit testing with Jasmine 7

3.1 Overview about Jasmine 7
3.2 Describes and specs 7
3.3 Expectations 7
3.4 Matcher 8
3.5 Spies 10
3.6 HTML fixtures 11

4 Introduction to single tag UI development in e-commerce 11

4.1 Overview of single tag UI development 11
4.2 Basic concepts 12

5 Unit testing in action 13

5.1 Testing environment 13
5.1.1 Operating system 13
5.1.2 Text editor 14
5.1.3 Jasmine test framework 14

5.2 Unit testing for product tracking 14
5.2.1 Product tracking concept 14
5.2.2 The unit test for product tracking 15
5.2.3 How product tracking module works 16
5.2.4 Scenarios 17
5.2.5 Applying unit tests 17

5.3 Unit test for conversion tracking 20
5.3.1 How conversion tracking concept 20
5.3.2 Unit testing for conversion tracking 21
5.3.3 Applying unit tests 26

6 Discussion 30

7 Conclusion 32

References 1

1

1 Introduction

Unit testing is playing more and more important roles in software as well as web devel-

opment. The idea of it is to keep the code more maintainable and documented to devel-

opers. By implementing small pieces of code with the support of many test frameworks,

developer can quickly response to any changes that happened unintentionally [1].

In e-commerce web optimisation, JavaScript is one of the key programming languages

that runs in the browser’s engine. Since JavaScript runs in the client side, it is challenging

to control client’s runtime. In contrast to the server side where a specific version of

backend server application can run, it is not possible to force clients to use latest version

of JavaScript with the expected behaviours in the site from a developer’s point of view.

As JavaScript object is mutable [2], there is chances that a module is overriding another

module making the code less predictable.

Jasmine, as a behaviour driven development test framework, enables the possibility to

write automatic tests to developers [3].

In e-commerce web optimisation development from beginning, it is hard for developers

who have little knowledge on unit testing to start the process of testing. They are usually

struggling in questions such as what to test, how big a scope the tests should cover or

sometimes how to write a basic test.

Spreading the knowledge of unit testing task was created at the company to discover the

possibilities of unit testing. The goal of the thesis is to introduce the basic concepts of

unit testing and its implementations in e-commerce web optimisation with JavaScript as

the main programming language.

2 Introduction to unit testing

2.1 Overview of test driven development
When developers write code, it is challenging to know if it works and does it do what it

should do. Traditionally developers have to manually check the codes by stepping

through the debuggers to verify that it is working or check the output of the programmes

and work out whether it is correct. This manual test usually takes a huge amount of time

2

during the software development process. However, this traditional method also de-

pends on how good the developer is at testing code and how confident he or she is at

covering all the scopes of codes. Lately after the manual tests, it is still hard to know if it

still works. More importantly, it is also hard to know if the new features that the develop-

ers just added recently did not break the codes that were made many months ago. Tra-

ditionally, programmers have designed their codes, implemented them and then tested

them. Each of these phases requires a long time, sometimes even several months as

seen in figure 1. [4.]

Figure 1 - Traditional Software Development Process [4]

Testing especially is every long and often ran over its scheduled time, which causes the

whole project to be late. Sometimes, as there are many bugs discovered every day which

need to be fixed and the project could never get finished. Testing tasks were mostly

manual and they were not repeatable resulting in many buggy products. Hence, regres-

sion bugs were very common by the time. Regression bug is when something used to

work and then stops working because of some new features or bug fixes. Because of

the threat of regressions, manual testing takes a very long time as you have to re-test

the product after every change, not just the part of the product that has been changed.

3

As the product grows bigger, the amount of time needed to test it grows. The other rea-

son testing takes so long is because most of the time labelled as testing is not actually

used to test; it is used to fix the bugs that were found during testing. Yet, there is often

another problem when the code base grows bigger, it also grows more and more fragile

which increases the chance of putting in a bug when working on some new code. [5.]

There was a high cost of change when working with the large code bases especially.

The bigger the code base the more features that have been implemented and the longer

it would take to add to the code a new feature that was not predicted. The figure 2 below

shows that the cost of change is proportional to the size of the code base. [5.]

Figure 2 - Cost of change

The response of this high cost of change was trying to nail more and more things down

in the design phase so that there would be less change later on. However, it rarely

worked. Things could never be all decided in the design phase because there will be

new design phases during the software development. Code spends most of its life in

maintenance phase that is being worked on after it has been released [6]. In this case,

4

stopping change was the wrong thing. Instead, we need a software engineering discipline

which embraces change and lowers the cost of change to software over time.

The developers including Kent Beck and the other founders of extreme programming

had the desire to lower the cost of change to make software more malleable and easier

to change over time. They came up with the Test Driven Design which is sometimes

called test first design. [7.]

In TDD philosophy, instead of having three distinct phases including design, implement

and test, the process is turned around to do test/design and implement. In this process,

each of these phases are much shorter than the original phases. Instead of a phase

taking several months, they take only several minutes. Developers work in smaller steps

that are simple enough that they cannot get them wrong. [8.]

An application can be developed with TDD will perform the following steps as seen in

figure 4 [8]:

- Write a failing test

- Make the test pass

- Refactor the code

- Repeat the above steps

- When there are no more tests that can be thought of or no more codes
needed for refactoring, the process is done.

5

Figure 3 - TDD process

2.2 Overview of behaviour driven development
Behaviour-driven development (BDD) was introduced by Dan North to address short-

comings of TDD [9]. This method focuses on the describing the behaviour of the system

from the point of its stakeholders. BDD acts as a framework for collaboration and com-

munication between developers, testers, project managers and clients.

BDD is written based on user story point of view and the criteria for the assertions is the

story’s behaviour [10]. The assertion criteria are described in these formats:

- Given: Initial context

- When: When event happens

- Then: Some results after that

6

BDD can be described as in the following figure 5

Figure 4: BDD process [11].

Test and design are one phase as we also design the system by writing tests which will

use the system. This helps us to design the system which is easy to use and easy to

test. A by-product of this design activity is automatic unit tests which can be easy to run

to prove that the system still works. This means that developers can easily and quickly

regression test the whole code base and verify that they have not broken any features

that used to work. On the other hand, if developers break something, they can fix it right

away within a few minutes of breaking it which is obviously the cheapest time to fix the

bug because the longer the bug has been in the system the harder it is to fix. A long-

standing bug is hard to fix for a couple of reasons. Firstly, new code may be relying on

the buggy behaviour, so it is impossible to remove without breaking something else.

Secondly, it is hard to remember why one has to write the body code and what the de-

veloper was trying to achieve when he wrote it. [11.]

Writing automatic tests and running them every time one changes the code base allows

to verify whether the new code has any unexpected side effects and to fix any bugs which

were introduced immediately. This method is much quicker than having a long testing

phase at the end of the development. Also, it makes the developers braver as they do

not need to be scared of changing the existing code in case they break something be-

cause it is easy to find out straight away and fix the bug or revert the added code. [11]

7

Test driven development is the practice of writing an automatic test to test the code be-

fore it is written [11].

3 Unit testing with Jasmine

3.1 Overview about Jasmine
Jasmine is a behaviour-driven development test framework which enables developers to

write automated JavaScript unit tests. Behaviour-driven development is introduced by

Dan North to extend test-driven development with features from domain-specific script-

ing language and object-oriented analysis in order to serve developers with tools and a

common process to work together on software development. [3.]

3.2 Describes and specs
In Jasmine, in order to start a new test suite, the global function describe is called. This

function takes two parameters including a string of the title of the test and a function

containing all tests. In Jasmine, a test is called as a spec. A describe can contain one or

many specs. In order to define a spec, Jasmine provides a global function it which takes

a couple of parameters similar to that of describe. [3.]

Here is an example of a Jasmine test suit

1. describe("My test suit", function() {
2.
3. // variables for all specs
4. var myConversionRate;
5.
6. // Define a spec
7. it("Title of a Spec", function() {
8. // do some testing here
9. });
10.
11. it("Another spec", function() {
12. // do some testing here
13. });
14.

3.3 Expectations
In Jasmine, assertions are called as expectations. An expectation can result in either

true or false and take only one argument. A matcher, which takes the expected value as

its argument, is chained with an expectation. [3.]

1. expect(false).toBe(false);

8

In the above example, expect is an expection and toBe is a matcher.

In order to evaluate negative assertions, a not is then chained after expect().

1. expect(true).not.toBe(false);

3.4 Matcher
Matchers do Boolean comparison between the actual values and the expected value by

being chained after expectation and taking actual values as its arguments. [3.]

There are many matchers provided by Jasmine:

- toBe(): To compare using identity (= = =) operator

1. var a = 6
2. expect(a).not.toBe(6)
3. expect(a).toBe(5)

- toEqual(): Compare simple variables, literals and functions

1. expect(a).not.toEqual(6)
2. expect(a).toEqual(5)

- toMatch(): Use regular expressions for comparion

1. var str = "Frosmo Oy"
2. expect(str).toMatch(/Frosmo/)
3. expect(str).not.toMatch(/Orange/)

- toBeDefined(): Check if a variable or a function is defined.

1. expect(a).toBeDefined(); // Will pass
2. expect(a).not.toBeDefined(); // Will not pass

- toBeNull(): Check if variable is null

1. expect(a).not.toBeNull();
2. expect(null).toBeNull();

- toBeTruthy(): Check if an expression or variable is true

1. var b = true;
2. var c = false;
3. expect(c).not.toBeTruthy();
4. expect(add(1,2)).toBeTruthy();
5. expect(b).toBeTruthy();

- toBeFalsy(): Check if an expression or variable is false

9

1. expect(add(0,0)).toBeFalsy();
2. expect(b).not.toBeFalsy();

- toContain(): Check if a collection such as an array has an item or not

1. var frosmonaults = ["truc", "omid", "catarina"]
2. expect(frosmonaults).toContain("truc")

- toBeLessThan(): To compare numbers in mathematics

1. expect(3).toBeLessThan(4)

- toBeGreaterThan(): This is the negative version of toBeLessThan()

- toBeCloseTo(): Check if a number if close to another number. This takes 2 ar-

guments, the first is the number and the second is decimal precision.

1. expect(5.1234).toBeCloseTo(5.1, 1); // Pass
2. expect(5.1234).not.toBeCloseTo(5.1, 2); // Pass

- toThrowError(): Check if a specific exception was thrown from a function

1. var frsm = function() {
2. throw new TypeError("A custom Exception from frsm");
3. };
4. expect(frsm).toThrowError("custom");

- jasmine.any(): If we are not aware of the actual value but know the type, this

can help

1. expect([12,456]).toEqual(jasmine.any(Array));
2. expect({}).toEqual(jasmine.any(Object));
3. expect(90245).toEqual(jasmine.any(Number));

- jasmine.objectContaining(): Compare partially in key-value cases

1. var employee = {
2. name: "Truc",
3. age: 99,
4. department: "Customer Service Team"
5. }
6. expect(employee).toEqual(jasmine.objectContaining({
7. name: "Truc"
8. }));
9. expect(employee).toEqual(jasmine.objectContaining({
10. age: jasmine.any(Number)
11. }));

10

3.5 Spies

A Spy is an emulation of an object or a function regardless of the function/object being

defined or not. In Jasmine, a spy can stub any function and detect any function call to

that function as well as the arguments being passed on. A spy can stub function but can

exist only within it and describe. A spy function needs to be public in order to be spied

on. [3.]

There are some special matchers for spies as in the following:

- toHaveBeenCalled(): Return true if the spy is called

- toHaveBeenCalledWith(): Return true if the spy is called with arguments

1. describe("A spy", function() {
2. var foo, bar = null;
3.
4. beforeEach(function() {
5. foo = {
6. setBar: function(value) {
7. bar = value;
8. },
9. getBar: function() {
10. return bar;
11. }
12. };
13. spyOn(foo, 'setBar');
14. foo.setBar(123);
15. fetchedBar = foo.getBar();
16. });
17.
18. it("tracks that the spy was called", function() {
19. expect(foo.setBar).toHaveBeenCalled();
20. expect(foo.setBar).toHaveBeenCalledWith(123);
21. });
22.
23. it("should not affect other functions", function() {
24. expect(bar).toEqual(123);
25. });
26.
27. it("when called returns the requested value", function() {
28. expect(fetchedBar).toEqual(123);
29. });
30.
31. })

- toCallThrough(): Since Jasmine replaces the actual implementation of the func-

tion on which spyOn() is called, therefore if there is a need to get an actual out-

put of a function we have to chain spyOn() with and.callThrough().

1. spyOn(frosmo, "test").and.callThrough();

- returnValue(): Return a specific value from a function after creating a spy by

chaining and.returnValue().

11

1. spyOn(site.utils, 'getHref').and.returnValue("http://domain.com");

- callFake(): Provide own implementation of function because actual implementa-

tion might take time to execute or can be some other reasons. In this case we

can chain and.callFake(). This will take a function as an argument.

1. spyOn(site.utils, "ajaxCallToBasket").and.callFake(function(grade){
2. return true;
3. });

- throwError(): When there is a need for a function to throw an error, we can
chain a function with and.throwError().

1. spyOn(site.utils, "getValue").and.throwError("Service is down");
2. expect(site.utils.getValue).toThrowError("Service is down");

3.6 HTML fixtures
Test fixtures provide basic states on which the test is running such as a piece of HTML,

the definition of an object and so on. For example, if there is a need to tests on the form

submission, the HTML form has to be available when the test is running. [3.]

The HTML codes that contain the HTML form is a fixture:

1. beforeEach(function() {
2. $('body').append('<form id="example-form"></form>');
3. });

4 Introduction to single tag UI optimisation in e-commerce

4.1 Overview of single tag UI optimisation development
The single tag platform is a web UI development solution for improving website function-

ality and personalizing online user experience. The platform works in the front end

through JavaScript via tags that are placed directly in the web page HTML code as seen

in figure 5. [12.]

12

Figure 5: Third party script being inserted to customer’s website.

Front-end-based implementation brings two major advantages:

- The majority of the development happens in the visitor’s browser, rather than in

the back end, so making changes and implementing new functionality is very

fast. This means less server technology and fewer resources are needed, which

makes UI development inexpensive. [12.]

- JavaScript can modify anything on a web page [13], so we can create flexible

customizations that allow addressing specific pain points, such as shopping cart

abandonment, customization of product recommendations, or need to change

the UI quickly and temporarily for a campaign.

4.2 Basic concepts
Web UI development generally means designing a website’s user interface so that a

website visitor can find information and complete relevant tasks easily and intuitively

These are some of the most important concepts related to UI development that are pop-

ularly used in this field:

- Personalization: Making real-time changes to a website based on the attributes

and behaviour of the visitor. Personalization adapts the options presented to the

visitor to guide them through a funnel. Technically, web personalization is im-

plemented by applying specific changes to the website based on visitor seg-

mentation. The goal of personalization is to provide a more relevant user expe-

rience and, as a result, drive conversion and create revenue. Personalization

can also be used to cross-sell or upsell products and create brand loyalty

through engagement. To do this effectively, it is needed to understand visitors’

interests and motivations. [14.]

13

- Conversion: Getting website visitors to do what the shop owner would like them

to do. This can be buying products or, for example, signing up for newsletters,

downloading a brochure or white paper, or watching a video. What is defined as

a conversion depends on separate business goals. [15.]
- Conversion rate: The percentage of all visitors that actually make a conversion.

The conversion rate is constantly increasing and decreasing due to seasonal

changes, marketing campaigns, and sales. If only counting the number of con-

versions, it may stay the same even though the traffic on the website has in-

creased, meaning that an increasing number of visitors see the content but a

relatively decreasing number responds to it. [15.]
- Conversion tracking: The method used to count conversions and assign them to

displayed or clicked content [16].
- Segmentation: Grouping website visitors based on their behaviour, location, or

other variables to enable effective adaptive content. It is possible to define a set

of rules that place a visitor into one or more segments – or remove a visitor

from them. Segments are used to target specific types of visitors with content

that meets their interests. Content variations displayed to a visitor depend on

the segment that the visitor is in. [17, 25-34.]
- Adaptive (or dynamic, or smart) content: Content on a website or in an email

that changes based on the visitor’s behaviour, location, and other variables,

creating a customized user experience. One of the most common applications

of adaptive content is to provide product recommendations in a web store

based on the products the visitor has recently viewed. [18.]
- A/B testing: The most common way to test optimized or personalized content. In

A/B testing, visitors are split into two groups (A and B, respectively) and show

different content variations to those groups. By using analytics tool, project

planners are able to see which content variation performed the best, that is, re-

sulted in the highest conversion rate or average order value. [19.]

5 Unit testing in action

5.1 Testing environment

5.1.1 Operating system
Jasmine is cross platform for testing JavaScript code where there is browser. Therefore,

it can be used on top of any operating system ranging from Linux, Windows to MacOS.

In the scope of this project, Linux CentOS Linux version 7.2 is the system of choice. In

14

this scope of this project, there are usages of Frosmo’s own tool and code modules.

These includes some automation tools and utility helper functions.

5.1.2 Text editor
Sublime Text 3 will be the main code editor for this project to implement unit tests. Sub-

lime Text supports Package Control which allow developers to install additional features

to support the workflow such as code completion for Jasmine or JavaScript. [20.]

5.1.3 Jasmine test framework
The previous sections have introduced about Jasmine test framework and a number of

its functionalities. Jasmine does not depend on any JavaScript framework. The Jasmine

version of choice for this project is 2.0. With the current setup, the folder structure would

look like in figure 6.

Figure 6: Jasmine folder structure.

Each folder in the figure above plays different roles in implementing tests:

- Support: Containing Jasmine’s general configuration when running tests

- Helpers: Containing special supporting files or configurations for projects that

require.

- Fixtures: Containing HTML fixtures that Jasmine will use when there is a need

for testing DOM elements.

- Customers: Containing set of tests for customer’s projects.

5.2 Unit testing for product tracking

5.2.1 Product tracking concept
Gathering data is considered as one step in UI development in order to get to know more

about customer’s behaviours on the site. There are some data analytic tools, such as

Google Analytics, that can help to gather user’s data such as site traffic, traffic source,

page views, new and returning visitors, session duration, and bounce rate.

15

The more complete the data is, the better to understand how visitors behave and what

engages, motivates and attracts them. Product tracking contributes significantly into this

data pile. Product tracking provides basic information on the products the website has,

such as product names, categories, prices and a number of product page visits each

product gets. One common use of product tracking data is product recommendation that

offers a set of products based on visitor’s interests. [21.]

5.2.2 The unit test for product tracking
The aim of this unit test is to verify the product tracking is working correctly in its own

scope and sending correct data to the backend such as correct product names, prices,

categories. Since the data source is dynamic and taken directly from the customer’s

product page, developers cannot always assume the input data types to be valid without

validating them first before saving to the database. Besides, if developers are not able

to handle their implementations properly, they might send many errors in customer’s site

and break some of the functionalities of the original website as seen in figure 7.

Figure 7. Errors that are visible in the console window

Therefore, it is necessary to have a set of unit tests in order to guide developers to the

right way and to make the project more maintainable. Also, having unit tests for product

tracking can help avoid unpredictable changes coming from the customer’s site without

any developer’s knowledge. For example, in case the customer changes the structure of

the product page it is easier to find out where the error happens in order to debug it.

Also, if there are many developers taking part in different parts of the project, the tests

will help to make the codebase more consistent by forcing them to write functions that

can pass the tests.

16

5.2.3 How product tracking module works
Product data such as product name, code, category, image are taken from the sites via

different methods.

Product data includes:

• Product name: Define the name of the product

• Product ID: Define product’s ID to identify product

• Product category: Define which categories the product belongs to

• Product image: Define product’s preview image

• Product price: Define the current price of the product

• Product discount price: Define the current discount price of the product

• Product promotion label: Define other properties of the products such as prod-

uct availabilities, product’s colour.

These product’s properties will be put in an JSON object. After that the main method

‘handleItem’ will verify and send data to backend.

1. /**
2. * Product Tracking
3. * Save product data to back end.
4. *
5. */
6. function _trackProduct() {
7. easy.addExceptionHandling(function (){
8. var product = {};
9. product.myProductName = _getProductName();
10. product.myProductId = _getProductCode();
11. product.myProductCategory = _getProductCategory();
12. product.myProductImage = _getProductImage();
13. product.myProductPrice = _getProductPrice(_getProductNew-

Price(), _getProductOldPrice());
14. product.myProductUrl = _getProductUrl();
15. product.myProductDiscountPrice = _getProductDiscountPrice(_getProduct-

NewPrice(), _getProductOldPrice());
16. product.myProductPromotionLabel = my.JSON.stringify({
17. product_stock_availability: _getProductStockAvailability(),
18. boot_guarantee: _isBootGuarantee()
19. });
20. easy.dataLayer.handleItem(product);
21.
22. }, {
23. code: easy.ERROR_SITE_PRODUCT
24. })();
25. }

17

5.2.4 Scenarios
Assuming that we already have product tracking functionality up and running and there

is no test written for it yet. The product tracking collects data from the page and from

global scope variables from the page.

The unit test is needed in this case to make the test file remain its consistency no matter

how many developers are working on it the same time.

The test can be initialized by creating a new test file in the specs folder namely ‘product-

TrackingSpec.js’. The reason why the file name ends with Spec is because when running

tests, Jasmine will include all JavaScript files that contain the Spec keyword in their file

names in the Spec folder.

The test file will begin with the following structure.

1. describe("product tracking", function () {
2.
3. beforeEach(function () {
4. // Define condition before running tests
5. });
6.
7. it("should send product data", function () {
8. // Some methods to handle productData are called here.
9. expect(easy.dataLayer.handleItem).toHaveBeenCalledWith(productData);
10. });
11.
12. afterEach(function (){
13. // Clean up after the tests.
14. });
15.
16. });

5.2.5 Applying unit tests
In order for the test to work properly it is needed to proper environment that is close to

the real environment. These can be provided within the ‘beforeEach’ function. In Jas-

mine, ‘beforeEach’ is called before executing any assertion.

First, there is a need to declare required values needed for the tests to run.

1. describe("customer1 productTracking", function () {
2.
3. var easy, site, utils, page, productConfigs, expectedResults, extra-

Data, productParser;

18

4. easy = frosmo.easy;
5. site = frosmo.site = frosmo.sites.customer1;
6. utils = frosmo.sites._utils;
7. page = window.jQuery('<div></div>').html(window.fixtures.customer1_prod-

uct_page)[0];
8. productConfigs = site.productTracking.configs;
9.
10. expectedResults = {
11. id: 'VRSCVDA010014',
12. name: 'Bayan Kol Saati',
13. urn: '389',
14. type: 'bayan saat',
15. category: 'saat',
16. subCategory: 'bayan',
17. price: '3689.00',
18. discountPrice: '1844.50' ,
19. manufacturer: 'Versace',
20. gender: 'Bayan',
21. sale: true,
22. color: 'Siyah',
23. case: 'Yuvarlak',
24. strap: 'Deri',
25. glass: 'Safir' ,
26. style: 'Klasik Saatler',
27. tech: 'Analog'
28. };
29. productParser = utils.productParser(page, productConfigs);
30.
31. })

In the above codes, we can see that some external modules are called to prepare for the

tests. Also, DOM fixture is also created by jQuery’s ‘html’ method which sets the HTML

content of the element based on the html string that it receives as the input. Besides

there are some results that we expect the tests to validate. [22.]

• ‘site’ is the predefined namespace for the current testing customer

• ‘productConfigs’ is a module defined in product tracking implementation to de-

fine how to retrieve data from the page and how to validate them before return-

ing.

• ‘utils’ is a module written by the enterprise to levitate part of the implementation

for developers.

• ‘productParser’ is a module to process data based on the values it receives

which are the DOM page and configurations

In Jasmine tests, it is not possible to get same value via global methods such as ‘win-

dow.location.href’ in the testing environment and in production environment. Therefore,

it is needed to mock the fake value via a helper function from Jasmine ‘spyOn’. Since

Jasmine tests run on localhost, the method of getting current URL will return a localhost

19

address instead of the real URL. In this case we can use ‘spyOn’ to the function that gets

the current URL by the following code

1. beforeEach(function () {
2. spyOn(site.utils, 'getCurrentUrl').and.returnValue(customUrl);
3. });

‘spyOn’ helper function will replace all the function call to ‘site.utils.getCurrentUrl’ with its

own implementation and force it to return our custom url.

The actual tests are written within Jasmine’s ‘it’ functions

1. easy.utils.each(productConfigs, function (attrData, attrName) {
2. it("Test individual attribute name: " + attrName, function () {
3. var foundData;
4.
5. foundData = productParser.parseProductAttribute(attrData, attrName);
6. expect(foundData).toEqual(expectedResults[attrName]);
7. });
8. });
9. });
10. })

The code above actually initializes many tests at once by using the ‘each’ iterator. The

loop will go through each method in ‘productConfigs’ and test what it returns with the

accordingly expected values.

In order to see the result in the browser, the tests are run and the browser returns the

result as seen in the following figure:

20

Figure 8. Expected test result from product tracking

As can be seen from the figure above, the code looped through every single configuration

of the ‘configs’ module and test it with the expected values that we defined. This test

returns correctly what we expect with green lines.

5.3 Unit test for conversion tracking

5.3.1 How conversion tracking concept
As mentioned in product tracking, gathering data is very important in making better user

interface for customers. Conversion tracking involves in tracking what items that custom-

ers purchased and their quantities. This helps the company to figure out which factors

affect the most on the decision to buy a product from customers and can make adjust-

ment through the user interface. While product tracking gives the site owner a picture of

which products customers view the most, conversion tracking delivers what customers

actually end up buying instead. Conversion tracking is one of the key factors in helping

to define if the business is going well. [15.]

The conversion tracking is done by tracking the customer’s baskets in basket page. In

that page, products in the customer’s basket will be saved in either local storage or to

the back-end. After the customers have made a successful payment, data about the

purchased products that were saved before will be sent to the central server

21

5.3.2 Unit testing for conversion tracking
Conversion tracking in this topic is implemented by ordinary method of adding items in

customer’s basket page to local storage along with total order value. These items are

sent to the backend when users have completed their transactions. The conversion

tracking is implemented as below

1. /*global easy, site*/
2. site.conversionTracking = (function () {
3. var dom = document;
4. var sessionStorage = easy.store;
5. var initialized = false;
6.
7. /**
8. * Send product conversion to back-end
9. * @param {DOM} $html [HTML DOM]
10. */
11. function _sendProductConversion($html) {
12. var products = sessionStorage.get('productBasket');
13. var orderTransactionTotal = sessionStorage.get('transactionTo-

tal') ? sessionStorage.get('transactionTotal') : null;
14. // Exit if there is no products
15. if (!products || !products.length){
16. return;
17. }
18. // Handling (sending) the transaction
19. easy.addExceptionHandling(function () {
20. easy.dataLayer.handleItem({
21. transactionId: _getTransactionID($html),
22. transactionProducts : products,
23. transactionTotal: orderTransactionTotal
24. });
25. _clearBasketProducts();
26. _clearBasketAddToCartProducts();
27. }, {
28. code: easy.ERROR_CONVERSION_SEND
29. })();
30. }
31.
32. /**
33. * Get transaction ID from DOM
34. * @param {DOM Node} $html [the current product node]
35. * @return {String}
36. */
37. function _getTransactionID($html) {
38. return $html.querySelector('.main a') ? $html.querySelec-

tor('.main a').innerHTML : $html.querySelector('.main p').in-
nerHTML.split(" ")[2].replace(/[^0-9]+/g, "");

39. }
40.
41.
42. /**
43. * Get product data from the page and save to localStor-

age with easy store
44. * @param {HTML DOM} $html [the DOM]
45. */
46. function _saveProductsToLocalStorage($html) {
47. var products = [];
48. var addToCartProducts = [];
49. var productList = $html.querySelectorAll('table#shopping-cart-ta-

ble tbody tr');

22

50. var productPageList = sessionStorage.get('addToCartProducts') || [];
51. // Clear all products if basket page is empty
52. if (!productList.length) {
53. _clearBasketProducts();
54. _clearBasketAddToCartProducts();
55. return;
56. }
57. easy.addExceptionHandling(function () {
58. easy.utils.each(productList, function (product) {
59. var comparedId = _getProductId(product);
60. products.push({
61. id : comparedId,
62. name : _getProductName(product),
63. category : _getProductCategory(product),
64. price : _getProductPrice(comparedId, product),
65. quantity : _getProductQuantity(product)
66. });
67. // Reduce the size addToCartProducts in sessionStorage
68. var existProduct = easy.utils.find(productPageList, func-

tion (product) {
69. return product.id === comparedId;
70. });
71. if (existProduct) {
72. addToCartProducts.push(existProduct);
73. }
74. });
75. var transactionTotal = _getTransactionTotal($html);
76. sessionStorage.set('productBasket', products);
77. sessionStorage.set('transactionTotal', transactionTotal);
78. sessionStorage.set('addToCartProducts', addToCartProducts);
79. }, {
80. code: easy.ERROR_PRODUCTS_GET_ERROR_CONVERSION
81. })();
82. }
83.
84. /**
85. * Get transaction total from DOM
86. * @param {DOM Node} $html [the current product node]
87. * @return {String}
88. */
89. function _getTransactionTotal($html) {
90. return site.utils.formatCurrency($html.querySelector('.mnm-grand-to-

tal span.price').innerHTML);
91. }
92.
93. /**
94. * Get Product id from DOM
95. * @param {DOM Node} $html [the current product node]
96. * @return {String}
97. */
98. function _getProductId($html) {
99. return $html.querySelector('a.product-image').getAttribute("ti-

tle").split(" ")[0];
100. }
101.
102. /**
103. * Get current product name from DOM
104. * @param {DOM Node} $html [the current product node]
105. * @return {String}
106. */
107. function _getProductName($html) {
108. return $html.querySelector('a.product-image').getAttribute("ti-

tle");
109. }
110.

23

111. /**
112. * Get current product category from DOM
113. * @param {DOM Node} $html [the current product node]
114. * @return {String}
115. */
116. function _getProductCategory($html) {
117. return $html.querySelector('a.product-image').getAttribute("ti-

tle").split(" ")[1];
118. }
119.
120. /**
121. * Get current product quantity from DOM
122. * @param {DOM Node} $html [the current product node]
123. * @return {String}
124. */
125. function _getProductQuantity($html) {
126. return parseInt($html.querySelector('input.qty').getAttrib-

ute("value"), 10);
127. }
128.
129. /**
130. * Get current price since the price showing in the bas-

ket page is incorrect
131. * current price is taken from sessionStorage saved in previ-

ous pages
132. * @param {String} id [id of the current product]
133. * @param {DOM Node} $html [HTML node of the current product]
134. * @return {String} [Product price]
135. */
136. function _getProductPrice(id, $html) {
137. var basketPrice = site.utils.formatCurrency($html.querySelec-

tor('span.cart-price span.price').innerHTML);
138. var productList = sessionStorage.get('addToCartProducts');
139. // Return normal basket price if we did-

n't get any price from previous product pages;
140. if (!productList) {
141. return basketPrice;
142. }
143. // Check the real price we stored from previous page;
144. var existProduct = easy.utils.find(productList, function (prod-

uct) {
145. return product.id === id;
146. });
147. return existProduct ? existProduct.price : basketPrice;
148. }
149.
150. /**
151. * Clear products that users to cart in product page
152. */
153. function _clearBasketAddToCartProducts() {
154. sessionStorage.remove('addToCartProducts');
155. }
156.
157. /**
158. * Clear products in baskets page that is supposed to be empty
159. */
160. function _clearBasketProducts() {
161. sessionStorage.remove('productBasket');
162. }
163.
164. /**
165. * Save product when users click on add to cart in Product Page
166. * @param {DOM} $html [HTML DOM of the current product page]
167. * @param {function} varOriginalClickEvent [Original click event]
168. * @param {click event} mouseEvent [Click event by default]

24

169. */
170. function _saveProductWhenAddToCartIsClicked($html, varOrigi-

nalClickEvent, mouseEvent) {
171. var productList = sessionStorage.get('addToCartPro-

ducts') || [];
172. var existProduct = null;
173. var comparedId = $html.querySelector(".product-defini-

tions h2").innerHTML.split(" ")[0];
174. // Check if we already have the product in the storage already
175. existProduct = easy.utils.find(productList, function (prod-

uct) {
176. return product.id === comparedId;
177. });
178. // Save product if not exists in our storage
179. if (!existProduct) {
180. var rulePriceSelector = $html.querySelector(".price-

info .special-price.has-rule-price .rule-price");
181. var priceSelector = rulePriceSelector ? rulePriceSelec-

tor : $html.querySelector(".price-info .special-price .price");
182. var currentPrice = site.utils.formatCurrency(priceSelec-

tor.innerHTML);
183. productList.push({
184. id : comparedId,
185. price: currentPrice
186. });
187. sessionStorage.set('addToCartProducts', productList);
188. }
189. // Return normal click event;
190. varOriginalClickEvent();
191. }
192.
193. /**
194. * Save product when users click on add to cart in Category Page
195. * @param {function} varOriginalClickEvent [Original click event]
196. */
197. function _saveProductWhenAddInCatPage(varOriginalClickEvent) {
198. var target = event.srcElement;
199. var parent = target.parentElement.parentElement;
200. parent = parent.className!=="product-info" ? parent.parentEle-

ment.parentElement : parent;
201. var myPrice = site.utils.formatCurrency(parent.querySelec-

tor('p.special-price span.price').innerHTML);
202. var myId = parent.querySelector('h2.product-name a').in-

nerHTML.trim().split(" ")[0];
203. var productList = sessionStorage.get('addToCartPro-

ducts') || [];
204. productList.push({
205. id : myId,
206. price: myPrice
207. });
208. sessionStorage.set('addToCartProducts', productList);
209. // Return normal click event;
210. varOriginalClickEvent();
211. }
212.
213. function init() {
214. easy.events.on(easy.EVENT_DOM_READY, easy.addExceptionHan-

dling(function (){
215. // Handle add to product cart in product page
216. if (site.pages.isProductPage()) {
217. var btn = dom.querySelector('button.btn-cart');
218. var varOriginalClickEvent = btn.onclick;
219. btn.onclick = null;
220. easy.domEvents.on(btn, 'click', _saveProductW-

henAddToCartIsClicked.bind(this, dom, varOriginalClickEvent));

25

221. }
222. // Handle add to product cart in category page
223. if (site.pages.isCategoryPage()) {
224. var addToCartBtns = dom.getElementsByClassName("btn-

cart");
225. easy.utils.each(addToCartBtns, function (btn) {
226. var varOriginalClickEvent = btn.onclick;
227. btn.onclick = null;
228. easy.domEvents.on(btn, 'click', _saveProductWhenAd-

dInCatPage.bind(this, varOriginalClickEvent));
229. });
230. }
231. // Handle in basket page
232. if (site.pages.isBasketPage()) {
233. _saveProductsToLocalStorage.apply(this, [dom]);
234. }
235. // Send conversion in checkout successful page
236. if (site.pages.isCheckoutPage()) {
237. _sendProductConversion.apply(this, [dom]);
238. }
239. }));
240. initialized = true;
241. }
242.
243. return {
244. init: init,
245. initialized: initialized,
246. dom: dom
247. };
248. })();

In actual entrance for the conversion tracking is in the ‘init’ method. In the ‘init’ method,

it can be seen that the codes have been implemented with DOM event listener. When

DOM is ready the actual codes will be executed. Since all the information about the

product cannot be taken in basket page, it is necessary to record what users have added

to their basket in previous pages including product page and category page. In basket

page, the product is then saved to local storage for later use. If user has made the pur-

chase successfully, the private method ‘_sendProductConversion’ will handle the data

sending to our backend.

It is also important to notice that in this file, there are many ‘apply’ methods implemented.

These ‘apply’ guarantee that when Jasmine is running, the conversion tracking will get

proper scopes. [23.]

From the conversion tracking implementation, there are many unit tests to cover. Among

those tests, two most important tests are

• Product data should be saved correctly to local storage in basket page

• Product data should be sent to the back end when transaction is completed

successfully.

26

5.3.3 Applying unit tests
Conversion tracking unit tests should follow the following basic structure.

1. describe("customer1 conversionTracking", function () {
2.
3. // Declaration of necessary properties
4.
5. beforeEach(function () {
6.
7. });
8.
9. it("Should save correct data to local storage in basket page", func-

tion (){
10. // Tests assertion will be here
11. });
12.
13. it("Should send data from local storage to backend", function (){
14. // Tests assertion will be here
15. });
16.
17. afterEach(function () {
18.
19. });
20.
21. });

In the declaration of properties, the test needs a proper environment to run and, there-

fore, external modules should be included

1. describe("customer1 conversionTracking", function () {
2.
3. var easy, site, utils, page, oldSiteValue,expectedResult;
4.
5. easy = frosmo.easy;
6. site = frosmo.site = frosmo.sites.saatvesaat;
7. utils = frosmo.sites._utils;
8. page = window.jQuery('<div></div>').html(window.fixtures.basketPage)[0];
9. successPage = $('<div></div>').html(window.fixtures.success_pay-

ment_page)[0];
10. //...
11.
12. });

it can be seen that with fixtures for basket page and successful payment page are cre-

ated. These will be used later in separated tests.

The first test will verify if the products in the basket pages will be saved correctly to local

storage. In order for the products to be saved there are several conditions that need to

be thought of before making the test

- Current page is basket page, not in other pages.

- The method of handling saving products to local storage needs to be spied on

with ‘spyOn’ function.

27

- The conversion tracking is only triggered after DOM ready event takes place.

Since the Jasmine tests run locally, there is not sufficient information for Jasmine to

identify which current page it is testing on. In order to reduce the work for developers,

Jasmine provides ‘SpyOn’ helper function. In this case, ‘spyOn’ function will be used to

page identifier methods which will basically replace current implementation of the page

and force it to return defined value.

1. // Always return false when checking if current page is Product Page
2. spyOn(site.pages, 'isProductPage').and.returnValue(false);
3. // Always return false when checking if current page is Category Page
4. spyOn(site.pages, 'isCategoryPage').and.returnValue(false);
5. // Always return true when checking if current page is Basket Page
6. spyOn(site.pages, 'isBasketPage').and.returnValue(true);

Besides, it is also needed to see what is passed to the function that will handle the saving

data to local storage. Therefore, ‘spyOn’ will be used to help retrieve input in order to

compare with the predefined values. It is, however, important to notice that with ‘spyOn’

function, the actual implementation will be replaced by Jasmine’s own implementation of

the function. In this case, the function that handles the saving data to local storage has

to be executed to save values for coming test. Hence the ‘callThrough’ method is called.

1. spyOn(easy.store, "set").and.callThrough();

It is now needed to trigger DOM ready event manually from helper’s library so that the

tests can be executed. DOM ready event means that all the HTML has been received

and parsed by the browser to the DOM tree.

1. // Initialize conversion tracking
2. site.conversionTracking.init();
3. // Trigger DOM ready event
4. easy.events.trigger(easy.EVENT_DOM_READY);

Now the actually assertions for the tests will be written with the familiar expect function.

In these assertions, the tests expect the function that will handle saving data to local

storage to be called with defined values. In this case, products in the baskets and total

basket value are tested.

1. expect(easy.store.set).toHaveBeenCalledWith('productBasket',
2. [
3. {
4. id: 'DZ4408',
5. name: 'DZ4408 Erkek Kol Saati ',

28

6. category: 'Erkek',
7. price: '1199.00',
8. quantity: 1 },
9. {
10. id: 'DZ4405',
11. name: 'DZ4405 Erkek Kol Saati',
12. category: 'Erkek',
13. price: '1319.00',
14. quantity: 1
15. }
16.]
17.);
18. expect(easy.store.set).toHaveBeenCalledWith('transactionTotal', '1838.50');

The second test will verify if after users make the successful order, the product infor-

mation will be sent to the backend. In order for the test to run correctly there are several

conditions that need to be met:

- Current page is a successful payment page, not any other pages.

- The function that handle sending data to the backend needs to by spied on with

‘spyOn’ function from Jasmine.

In the first condition, similarly to the previous implementation, the ‘spyOn’ will be applied

to methods in page identifier and will return a defined value instead of actual ones.

1. // Always return false when checking if current page is Product Page
2. spyOn(site.pages, 'isProductPage').and.returnValue(false);
3. // Always return false when checking if current page is Category Page
4. spyOn(site.pages, 'isCategoryPage').and.returnValue(false);
5. // Always return false when checking if current page is Basket Page
6. spyOn(site.pages, 'isBasketPage').and.returnValue(true);
7. // Always return true when checking if current page is successful Check-

out Page
8. spyOn(site.pages, 'isCheckoutPage').and.returnValue(true);

Now it is time for the actually assertions for this test. In this assertion, the test verifies if

the function handle sending data to backend to be called with defined values. In this

case, the products that were saved to the basket in previous test.

1. site.conversionTracking.init();
2. expectedResult = {
3. transactionId: '100002218',
4. transactionProducts: [
5. {
6. id: 'DZ4408',
7. name: 'DZ4408 Erkek Kol Saati ',
8. category: 'Erkek',
9. price: '1199.00',
10. quantity: 1 },
11. {
12. id: 'DZ4405',

29

13. name: 'DZ4405 Erkek Kol Saati',
14. category: 'Erkek',
15. price: '1319.00',
16. quantity: 1
17. }],
18. transactionTotal: '1838.50'
19. };
20. expect(easy.dataLayer.handleItem).toHaveBeenCalledWith(expectedResult);

After taking a look at each steps, it is time to assembly all the components into the Jas-

mine’s test code as below

1. describe("customer1 conversionTracking", function () {
2.
3. var easy, site, utils, page, oldSiteValue,expectedResult;
4.
5. easy = frosmo.easy;
6. site = frosmo.site = frosmo.sites.customer1;
7. utils = frosmo.sites._utils;
8. page = window.jQuery('<div></div>').html(window.fixtures.customer1_bas-

ket_page)[0];
9. successPage = $('<div></div>').html(window.fixtures.customer1_success_pay-

ment_page)[0];
10.
11. it("Should save correct data to local storage in basket page", func-

tion (){
12. spyOn(site.pages, 'isProductPage').and.returnValue(false);
13. spyOn(site.pages, 'isCategoryPage').and.returnValue(false);
14. spyOn(site.pages, 'isBasketPage').and.returnValue(true);
15. spyOn(site.conversionTracking, 'getDom').and.returnValue(page);
16. spyOn(easy.store, "set").and.callThrough();
17. site.conversionTracking.init();
18. easy.events.trigger(easy.EVENT_DOM_READY);
19. expect(easy.store.set).toHaveBeenCalledWith('productBasket',
20. [
21. {
22. id: 'DZ4408',
23. name: 'DZ4408 Erkek Kol Saati ',
24. category: 'Erkek',
25. price: '1199.00',
26. quantity: 1 },
27. {
28. id: 'DZ4405',
29. name: 'DZ4405 Erkek Kol Saati',
30. category: 'Erkek',
31. price: '1319.00',
32. quantity: 1
33. }
34.]
35.);
36. expect(easy.store.set).toHaveBeenCalledWith('transactionTo-

tal', '1838.50');
37. expect(easy.store.set).toHaveBeenCalledWith('addToCartProd-

ucts', []);
38. });
39.
40. it("Should send data from local storage to backend", function (){
41. spyOn(site.conversionTracking, 'getDom').and.returnValue(success-

Page);
42. spyOn(site.pages, 'isProductPage').and.returnValue(false);
43. spyOn(site.pages, 'isCategoryPage').and.returnValue(false);
44. spyOn(site.pages, 'isBasketPage').and.returnValue(false);

30

45. spyOn(site.pages, 'isCheckoutPage').and.returnValue(true);
46. spyOn(easy.dataLayer, "handleItem");
47. site.conversionTracking.init();
48. expectedResult = {
49. transactionId: '100002218',
50. transactionProducts: [
51. {
52. id: 'DZ4408',
53. name: 'DZ4408 Erkek Kol Saati ',
54. category: 'Erkek',
55. price: '1199.00',
56. quantity: 1 },
57. {
58. id: 'DZ4405',
59. name: 'DZ4405 Erkek Kol Saati',
60. category: 'Erkek',
61. price: '1319.00',
62. quantity: 1
63. }],
64. transactionTotal: '1838.50'
65. };
66. expect(easy.dataLayer.handleItem).toHaveBeenCalledWith(expecte-

dResult);
67. });
68.
69.
70. });

The test will be run the again with the command

 ./jasmine.sh customer customer1

After running, Jasmine will run the test on the browser. By opening the result address

provided by Jasmine, the above test result can be viewed. The test returns in green

colour implying that they have been passed correctly as seen in figure 9.

Figure 9. Expected test result from conversion tracking

6 Discussion
Product tracking unit test includes tests to different attributes of the product in the page.

By using loop function, the test helps to reduce a considerable amount of time by avoid-

ing repeated codes. The results in browsers show all in green colour. This helps to indi-

cate that the tests have been implemented correctly and the code works as supposed.

Conversion tracking unit test includes tests to verify if the products have been saved

correctly in basket page to local storage and sent to the back end from local storage if

31

user has paid the order successfully. After the tests are run, the browser returns green

results to both of the tests. This helps to verify that the codes are implemented correctly.

Unit test plays a more and more important role in e-commerce development. There are

many methods to cover including test driven development and behaviour development.

During the implementations of the tests for this project, Jasmine as a behaviour driven

development method was used as a main tool for unit testing.

After implementing the tests, there have been some important things that developers

need to understand before or even after the tests. First of all, all the methods that need

to be tested by Jasmine have to be exposed to public scope. If the methods are kept in

private scope, Jasmine cannot inject its own implementation causing the tests to fail.

One example could be the method to get the current URL. Since Jasmine runs locally,

the current URL will be the local address instead of the expected URL in the implemen-

tation which will cause the code to malfunction in some cases. Besides, Normal native

API from browsers such as ‘window’ or ‘document’ should be written insides functions

because similarly to the case above, since Jasmine runs on its own local server, the data

gotten from browsers’ API will not be the same as it is in production for customers. It is

needed to wrap them insides methods such as ‘getWindow’ or ‘getDom’ so that in testing

environment, Jasmine can replace those API with its own implementation and return

defined values instead. The ‘getWindow’ and ‘getDom’ can be re-written as bellow and

should be exposed to global scope: [3.]

1. function getWindow(){
2. return window;
3. }
4. function getDom(){
5. return document;
6. }

In the testing code base, there are functions called insides functions when Jasmine tests

are running. In that case, those called functions will run in its own scopes that might lead

to unexpected results [2]. In order to fix that, it is important to know how to use function

all with proper scopes. Luckily browsers have provided methods such as ‘apply’ or ‘bind’.

These methods will execute the codes with the given scopes. [23.]

However, in some browsers such as PhantomJS or old browsers, these methods do not

exist when running tests resulting tests to fail. In such cases, the alternative way is to

32

write a pollyfill method for function prototypes as bellow. These help to make sure that

the tests will not fail when running in such browsers. [24.]

1. if (!Function.prototype.bind) {
2. Function.prototype.bind = function (oThis) {
3. var myArgs = Array.prototype.slice.call(arguments, 1);
4. var functionToBind = this;
5. var fNOP = function () {};
6. var fBound = function () {
7. return functionToBind.apply(this in-

stanceof fNOP && oThis ? this : oThis, myArgs.concat(Array.proto-
type.slice.call(arguments)));

8. };
9. fNOP.prototype = this.prototype;
10. fBound.prototype = new fNOP();
11. return fBound;
12. };
13. }

Since the code module can be very complicated, it is difficult to actually find out what to

test. In this project, the unit tests are written for the key features of the code base. In the

conversion tracking unit test, for example, there are tests to check if the data is saved

correctly and sent correctly to the database. Small tests will help to cover all necessary

cases.

The time to implement these tests varies from developers to developers depending on

the experiences. During the scope of this project, there is some feedback retrieved from

developers. For new developers, this process can last longer due to the lack of under-

standing how the system works to write the tests. Besides, they are not aware of what

piece of code should be tested. For senior developers, they also often forget to update

the tests after changing the codes due to some extra requirements. This results in a

considerable extra amount of time to implement a project. However, this helps to keep

the codebase consistent and easier to maintain. For some developers, when they are

updating some part of the codebase, they are not aware that they are breaking a function

somewhere else. This can easily cause errors. If being ignored, developers may deploy

it into production that might cause bad consequences.

7 Conclusion
The goal of this project was to understand how unit testing would be used in e-commerce

development and its practicalities with Jasmine as a test framework. Writing the test

cases requires deep understanding on how the system works and necessary functional-

ities provided by Jasmine. Mastering Jasmine is a long process, yet it is worth it. The

33

clean documentation and examples provides by Jasmine online document [3] will help

developers to grasp basic ideas in a short time with small efforts.

Unit testing helps to increase the quality of the code in a long term. However, it will take

time to fully adopt in the design and development of e-commerce development since it

is different from tradition software development. This method also requires willingness

of developers to learn new testing frameworks as well as understanding the codebase.

Besides, it is important to receive support from project managers as well as the manage-

ment teams as this method will make project delivering time delayed longer than usual

due to high learning curve but this will reduce by time as developers will get hands on

more and more with it.

1

References
1 Beck, Kent, Test-driven development by example. Addison-Wesley, 2003.

2 David Flanagan, JavaScript: The definitive guide, 4th edition. O’Reilly Media,
2001

3 jasmine.github.io/. Documentation [Online]

URL: http://jasmine.github.io/

Accessed 5th September, 2016

4 Project Management with the IBM Rational Unified Process: Lessons from the
trenches. IBM Press, 2006.

5 Research.IBM.com. Documentation [Online]

URL: http://www.research.ibm.com/haifa/Workshops/verification2007/pre-
sent/Dor_Nir_web.pdf.

Accessed 5th September, 2016.

6 www.iso.org. Documentation [Online]

URL: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_de-
tail.htm?csnumber=39064

Accessed: 5th September, 2016.

7 quora.com. Forum [Online]

URL: https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-
test-driven-development

Accessed: 5th November, 2016.

8 Kent Back, Test Driven Development: By Example Addison-Wesley Longman,
2002.

9 dannorth.net. Blog [Online]

URL: https://dannorth.net/introducing-bdd/
Accessed: 5th November, 2016.

10 www.codemag.com. Documentation [Online]

URL: http://www.codemag.com/article/0805061

Accessed: 5th September, 2016

11 Munish Sethi, Jasmine Cookbook. Packt Publishing, April 2015.

2

12 Frosmo Website. Documentation [Online]

URL: www.frosmo.com/en/solutions/tech

Accessed: 5th September, 2016

13 Flanagan, David, JavaScript: The Definitive Guide (6th ed.). O'Reilly & Associ-
ates, 2011.

14 inc42.com. Documentation [Online]

URL: https://inc42.com/resources/effective-personalisation-website/

Accessed: 5th November, 2016

15 compass.com. Article [Online]

URL: http://blog.compass.co/ecommerce-conversion-rates-benchmarks-2016/

Accessed: 5th November, 2016

16 support.google.com. Documentation [Online]

URL: https://support.google.com/adwords/answer/1722022?hl=en

Accessed: 5th November, 2016

17 Hoek, J., Gendall, P. and Esslemont, D., Market segmentation: A search for the
Holy Grail. Journal of Marketing Practice Applied Marketing Science, Vol. 2, no.
1, 1996.

18 www.intelligentcontentconference.com. Article [Online]

URL: http://www.intelligentcontentconference.com/5-ws-adaptive-content/

Accessed: 5th November, 2016

19 www.wired.com. Article [Online]

URL: https://www.wired.com/2012/05/test-everything/

Accessed: 5th November, 2016

20 sublimetext.com. Documentation [Online]

URL: https://www.sublimetext.com/

21 Weimer, J, Research Techniques in Human Engineering. Englewood Cliffs, 1995.

22 api.jquery.com . Documentation [Online]

URL: http://api.jquery.com/html/

3

Accessed: 5th September, 2016

23 developer.mozilla.org . Documentation [Online]

URL: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Glo-
bal_Objects/Function/apply

Accessed: 5th November, 2016

24 github.com/ariya/phantomjs . Forum [Online]

URL: https://github.com/ariya/phantomjs/issues/10522

Accessed: 5th September, 2016

Appendix 1

1 (1)

Appendix 2

1 (1)

