VAMK

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES

Lakachew Tadesse, Lakew

WEB AND MOBILE APPLICATION
FOR A SERVICE COMPANY

Information and Technology
2016

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my thesis supervisor Timo
Kankaanpaé, for his continuous support, motivation, and in lighting my path. His
guidance helped me throughout the project and added to my software projects
knowledge. | would also like to thank Péivi Auranen for her support during my

paper work.

My sincere thanks also goes to Dr. Ghodrat Moghadampour, for having me ac-
quired all the necessary base knowledge in regards to writing and implementing a

software project.

Last but not least, | would like to thank my fellow class mate and roommate Yonas
Azmera for his sincere support, and assistance during my study and thesis work.

His support has made my thesis work fun, short, and entertaining.

VAASAN AMMATTIKORKEAKOULU
(UNIVERSITY OF APPLIED SCIENCES)
Degree Program in Information Technology

ABSTRACT

Author Lakachew Lakew

Title Web and Mobile application for a service company
Year 2016

Languages English

Page 72

Supervisor Name Timo Kankaanpaa

As companies grow managing the work becomes harder and harder, thus the ad-
vantages of technology come into hand for increasing communication and facilitat-

ing work.

This thesis documents the design and development of a web and mobile application
for a service company. The web and mobile applications are built using Laravel and
Android Studio respectively. These two applications are designed to communicate

with one another so that similar data can be used across these two platforms.

This thesis was developed in such a way that the work data are stored in a central-
ized location (Cloud Server), so that all privileged personnel can access such data
to update and view the work progress using a web browser and a mobile application.
The purpose of the web application is to register, assign, display, collect and send
data from and to the mobile application. The mobile application displays assigned

works, sends and receives data to and from the web application.

The web application is built using PHPStorm IDE with Laravel Framework and the
Android application is built using Android_Studio IDE on Android Os. The com-
munication between the two applications is handled by using a JSON Web Token
(Restful API). These used technologies along with the implementation are docu-

mented in this thesis.

CONTENTS

1

INTRODUCTION ...ttt sre e 7
1.1 Development CONSIAINTS..........cccveieiiieie e 7
SOFTWARE ANALYSIS ..ottt 8
2.1 Requirements SPeCifiCation...........ccccvveieiieiiieii e 8
2.2 Functional SPeCITICAtIONoiiiiiiiieeee e 10
2.2.1 USE CASES ..ttt ettt ettt ettt ettt 10
2.2.2 Sequence Diagrams........cccccveireieieene e 12
pZ0C B o T ST] oL SRS 32
2.3.1 Web Application MOCKUPSccooeriiriiniiniininieieese s 32
2.3.2 Mobile Application MOCK-UPSccooeiirininieieiene e 38
2.4 Data REQUITEMENTc.viiieiieeie et 42
2.5 Non-Functional reqUIremMeNntscccccevvereiieeieere e 44
APPLICATION DESIGN ..ot 45
3.1 Three-tier Organization..........cocooviiiirieienese e 47
3.2 Framework APPlICALIONS.cccveieeiiiie i 47
3.3 Architectural DeSIGNcccveiuiiieiieie s 47
USED TECHNOLOGIES ...t 50
4.1 WWED 8PP ceeiieiieiete ettt 50
4.1.1 Laravel Framework ... s 50
A O0] 11 0 [0 1= PR PR 51
A.1.3 VAGIANT ..o 51
4.1.4 Laravel HOMEStead.........cceiieriieiecie e 51
415 ViIrtUal BOX......oiiiiiiiieieieiee s 52
4.1.6 Alexpechkarev/google-maps.........cccoveveieeieeiesieeie e seeseenens 53
4.1.7 Cornford/googlemapPerccviuereierierireree s 53
4.1.8 Tymondesigns/JWE-auth...........ccccoreiiiiiiiiince e 53
4.1.9 POSIMANoiiiiiiiieiie et 54
4.2 MODIIE PP c.veeieiee e 55
4.2.1 ANAroid STUAIOcoiieiecieciece e 55

£.2.2 JaVAIWT (JIWT) oo 56

4.2.3 Material DeSIQNcccceiieieiieie e 56

IMPLEMENTATION ...ttt 58
5.1 Building the Web applicationcccoeviiiiiiiiinicce e 58
5.1.1 Alexpechkarev/google-maps........cccoeeeiiiininieiieieie s 58
5.1.2 Cornford/googlemappercccvcveiveieiiie s 59
5.1.3 Tymondesigns/JWt-auth.............ccccovereiiieieenncie e 60
5.2 Building the Mobile appliCationccccooeiiiiiiiiiincc e 62
5.2.1 Java JSON Web ToKen (JIWT) ..ocveieiieiierieeieseeie e 62
5.2.2 Material DeSIgN.......c.ccovovieiiiiiiicieece e 63
TESTING AND ANALYSIS ...ttt 65
6.1 TOSTING.c.eeeieetiitieii ettt 65
8.2 ANAIYSIS. ...ttt 67
LEARNING OUTCOME ..ottt 68
7.1 Future developmeNtccooiiiiiieee e 68
SUMMARY et e e 70

REFERENCESo 71

LIST OF FIGURES

Figure 1- Mobile Application Use Case diagram 11
Figure 2 - Web Application Use Case Diagram 12
Figure 3 - Sequence Diagram for Adding Employee 13
Figure 4 - Sequence Diagram for Adding Customer 15
Figure 5 - Sequence Diagram for Adding Work 17
Figure 6 - Sequence Diagram for Assigning Work to employee 19
Figure 7 - Sequence Diagram for viewing all customers 21
Figure 8 - Sequence Diagram for viewing Employees as required 23
Figure 9 - Sequence Diagram for viewing Works as required 25
Figure 10 - LoginActivity Sequence diagram 27

Figure 11 — UserWorkActivity sequence diagram (starting activity, refreshing lists, selecting work)

29
Figure 12 — WorkActivity (sequence diagram for: checking, starting, and stopping Work) 31
Figure 13 — Welcome page mock-up for computer browser 33
Figure 14 - Welcome page mock-up for mobile browser 33
Figure 15 — Web app Home page with computer browsers 34
Figure 16 — Web app Home page with mobile browsers 35
Figure 17 - Selected Work Mock-up 36
Figure 18 — Add New Customer ‘Registration Form page’ 37
Figure 19 - Assign Work to Employee Page Mock-up 1 37
Figure 20 — Assigning work to employee page Mock-up 2 38
Figure 21 - Login Activity 39
Figure 22 — Assigned user work lists Activity 40
Figure 23 — selected user work Activity 41
Figure 24 - Database Architecture V2 43
Figure 25 — Deployment diagram, which shows the hardware and software connections for the
hole application 46
Figure 26 — Three-tier organization 47
Figure 27 — Web application Architectural Design 48
Figure 28 — Mobile Application Architectural Design 49

Figure 29 — Material design principles 57

LIST OF ABBREVIATIONS

IDE Integrated Development Environment
SDK Software Development Kit

VM virtual machine

PHP PHP: Hypertext Pre-processor

API Application Programming Interface
JWT JSON Web Token

URL Uniform Resource Locator

JIWT Java JSON Web Token

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
WN Work Number

MVC Model, View, and Control

1 INTRODUCTION

This Web and Mobile Application for a Service Company thesis documents the
development of mobile and web application for a company called Jiko Ltd. Jiko is
a cleaning company providing services in Vaasa and Seindjoki, Finland. The com-
pany was established in 2002 with one employee but now the company has more

than 80 employees.

The company Jiko Ltd is seeking a way to get the employees’ work status immedi-
ately rather than waiting for the employees to submit their working hours, which is

done in the middle or end of every month.

This thesis addresses the obstacles by using Web and Mobile applications. The web
application can be accessed by the office workers (e.g. manager, accountant, devel-
oper) to add individual data (customer, work and employee) and assign work to the
employees. The mobile application is used by the field workers to get their tasks

and inform there working hours.

I am a Vaasa University of Applied Sciences student, part time working at UpCode
Ltd and Jiko Ltd. Due to the frequent communication with Jiko Ltd manager/owner
on building an application for solving the mentioned work obstacles, this thesis was

developed.

1.1 Development Constraints

Constraints faced while developing the application are as follows:

e Only one developer.
e Implementation of the latest tools.

o Necessity of real time test.

2 SOFTWARE ANALYSIS

Nowadays companies are capable of having a web application that can only be
managed/controlled by the company personnel. A good example of such a web ap-
plication is GitHub, a group of people located in different continents, who can use
the same repository to work on without being hindered by their location. Likewise,
Jiko Ltd will also deploy a web application which can only be accessed by the com-
pany employees.

Jiko Ltd requires to have two applications, one running on a mobile phone and the
other on the web. The mobile operating system chosen is Android and PHP for the
Web application. In the next section, the requirements specification will be de-
scribed.

2.1 Requirements specification

The project requirements have three levels of importance, where #1 indicates “must
have”, then followed by importance number #2 indicating “should have” or what
the customer requested, and finally importance number #3 “could have” or nice to

include in the application but not necessary.

The project has been requested by Mr. Jyrki Kallislahti, the owner/manager of Jiko
Oy. The specification requirements for both applications are mentioned in the fol-

lowing tables 1 — 2.

Table 1: Android application Requirements specification

Ref. Claim and description Importance
Al Email as a user ID 1
A2 Login 1
A3 Button for registering work start time 1
A4 Button for registering work end time 1
A5 Display employee works 2
A6 Provide address 2

AT Provide work description 2

A8 Send GPS coordinate 3

A9 Work list refreshing button 3
Al0 Lost password recovery 3

Table 2: Web application requirements specification

Ref. Claim and description Importance
w1 Provide welcome page for public user 1

W2 Login 1

W3 Login is allowed for only privileged personnel 1
w4 Register new employees 1

W5 Register Work 1
W6 Assign work for an Employee 1

W7 Register Customer 2

Work address is provided in both Map and text

w8 -~ 2

description.

W9 View work data for a range of days. 2
W10 | View works as a list 2
W11 | View finished and unfinished works 3

View employee’s data in a periodic range
ind_1- fi st _ qth
W12 Period-1: first half of the month (1% - 15") and 3
Period-2: second half of the month (16" - 28",
30th or 3lst)

W13 | View employee contact information. 3
W14 | View Assigned and not assigned employees 3
WIS Customer is allowed to sign in and view, there 3

request.

2.2 Functional specification

2.2.1 Use Cases

Since both applications provide different functionalities, each project has a different
Use Case diagrams (figure representation of the user interaction with the applica-

tion), which are shown in the following sub section:

2.2.1.1 Mobile Use Case

In this section, the mobile application Use Case diagram will be discussed. As can

be seen in Figure 1, login is omitted since all use cases require authentication.

The “Work list” Use Case, as the name implies, lists the assigned works for the
employee. When the ‘work list’ page (Activity) is accessed the work lists are re-
trieved from the server, but if the employee wants to check for new work without
leaving the work lists activity, the refresh button can be used to update the work
lists. When the Activity is refreshed, the code behind the interface sends a request

to the backend to collect all the assigned works for the employee.

When the required work is selected among the list, Work Activity is generated for
providing the ‘work start’, ‘work end’, and ‘view description’. Each Use Case pro-
vide a service for the employee as the name implies, i.e. for starting/setting the start

time, end time and/or view some description as needed.

Y

Forgot Password

AT

Field Worker

Start Work

Figure 1- Mobile Application Use Case diagram

O

2.2.1.2 Web Use Case

In the web application the usage of the application is more complex compared to
the mobile use since there is a lot more functionalities that are going to be handled
by the web application. But for simplicity reasons, this Use Case diagram is pro-
vided with the general representation of functionalities, as shown in Figure 2. The
detailed functionalities of the application will be described later on.

ry

Manage Employee Manage Work

Manage Customer Manage Map

Office Worker

Manage User Work

Figure 2 - Web Application Use Case Diagram

As can be seen from Figure 2, the Office Worker (user) can manage all the models
i.e. add, view and assign different functionalities. This interaction with the applica-
tion requires login in before accessing the functionalities, but the login and logout

Use Cases have been removed for visual clarity.

2.2.2 Sequence Diagrams

Sequence diagrams are one of the best ways for visualizing/knowing how this pro-
ject is working under the interface. It also helps us easily find the best way for

managing the work flow and/or finding new ways for handling data.

2.2.2.1 Web Sequence Diagrams

In this section the most usable Sequence Diagrams of the web application shown

and each diagram is followed by a small explanation.

(uesiBal L L7

=R

(JesiBapisod 1 7 _

_

_

_ _
slasreisiBey

@

|
|
_
_
»
|
|
—HH (MeisiBexeb L) L)L
(Julo-uonensiBemous 1. | |

[Juonng Lmym._mmw_ U0 212 <~ WIoH ||II4 T

<

_
_ _
JgllonuooyIny

@,

_
_
Vﬁ (J(Je1siBar LN JmMe1A 77| T_E
_
|
_
_
_

(Me1siBafielb 1))

< (Jeafo|dwg mep<-ppY Uo paxala i !

maln uonensibay safojdw3

MBIA g8

JenIopn 8310

¥

ﬂ safo/dw3 ppy ps

Figure 3 - Sequence Diagram for Adding Employee

As can be seen from Figure 3, for adding an employee, the Office Worker will first
need to fill up a form. To display the form, the employee must first use the *Add
new Employee’ from the Add tab, which is located in the top navigation bar. By
selecting the ’Add New Employee’ the web app route redirects to the getRegister
method, which is located in the AuthController Class, after confirming if the user
token is authenticated the AuthController class access the showRegistrationForm
method from the RegisterUsers Class, which displays the View for the Employee
Registration form.

After filling the Registration form the submit button posts the data to the postRegis-
ter method, which is found in the AuthController. After validating the form data, it
is redirected to the register method in the RegisterUsers Class, which will store the
data into the database.

EA (MeysiBal L | g ,

_
(mapppe LC ; (Juonng _Bm_mmm U0 P33 <= WOy |14 ¢

(JuwuoJlsioisnoisb ¢ P

A (JwioJuonensiBeMmous oL | L >

() ,LLio} uonensiBal 1eWolsnd JMalh 7 | FV_D
_
_
_

H
|
|
|

4
_
_
_
_
_

l1e1516ayisllOISND) “ 11BN I8ljonuoDIsWosng

® @

(Juuo Juslioisnoleh w_\._\

(MaLUoISND M3 <-PPY LD pEy3ID 1

MBI UoneNsIBay JaLoisny

MBIA GOM

4
_
_
_

IsIop 8310

¥

18LU0ISND) PPY PS

Figure 4 - Sequence Diagram for Adding Customer

As can be seen in Figure 4, for adding a customer, the employee will first need to
fill up the customer form. To display the form, the employee must first use the ’Add
new Customer’ from the *’Add’ or ’Customer’ Tab, which is located in the top nav-
igation bar. By selecting the ’Add New Customer’ the web app route redirects to
the getCustomerForm method, which is located in the CustomerController Class,
after confirming if the user token is authenticated the CustomerController class ac-
cess the showRegistrationForm method from the CustomerRegister Class, which
displays the View for the Customer Registration form.

When the Customer form is submitted, the Data is sent to the addNew method,
which is found in the CustomerController. After validating the form data, it is redi-
rected to the register method in the CustomerRegister Class, which will store the
data into the database.

_
_
F (Meisibed L L'E

(Imenppe LT

(J{ssswiosno)yume-{ LLIof Miom JmMa 1wz {L |,

{(Juuopopmeb L1 L

_
_
_
_
|
o_gm_mmﬁ_ U0 paxl|d <- Wloj |Ii4 ¢

L

(uwuoquonensiBagmoys || |

_ _
_ _

_ _
1815168 HOp I8)loNUO IO

) @

355%_5359 L

<

|1

(JHop MBN<-PPY UO PaX21|2 1|,

MIA UONENSIBEY MIOA

MBIA GO

_mfoi_mu_to

_ HOM PPY PS

Figure 5 - Sequence Diagram for Adding Work

As can be seen in Figure 5, for adding Work, the Office Worker will first need to
fill up the Work form. To display the form, the employee must first use the *Add
new Work’ from the *’Add’ or "Work’ Tab, which is located in the top navigation
bar. By selecting the >Add New Work’ the web app route redirects to the getWork-
Form method, which is located in the WorkController Class, after confirming if the
user token is authenticated the WorkController class access the showRegistration-
Form method from the WorkRegister Class, which displays the View for the Work

Registration form.

When the Work form is submitted, the data is sent to the addNew method, which is
found in the WorkController. After validating the form data, it is redirected to the
register method in the WorkRegister Class, which will store the data into the data-

base.

(Mesibal L ¢

()(syIopnasn 'seaio|dila 'SHIOM, UM<~ UDISSE SHIOM, M IA T FWﬁ

(Jubisse g <

({uopig piugnsy ubissy ¢
_

()(esfo|dwz peubissy 'UonRdUISIP IOMIMBIA (| 7

[
_
_
Lﬁm_@mmi_hokgimmj :

®)

(Hom 128185 T

WIoJUBEsYa8 1111 rr (N(sxlopalesn 'sesfojdius "sylom,)Um=-{ UBISSE SHIOM MBIA T |

(JuloquonensiBeEmous (L)L |

18]|0NUOHIOAAIS

@

[
(Jwio4ubissyieb || _
_
_
|

MB1A LUONE.ISIBax HIOA

MBIA

IO, UBISS Y <-SMI0f U0 202 0|

meoi_mgto

ﬁ MIop, UBISSY ps

Work to employee

igning

Figure 6 - Sequence Diagram for Ass

As can be seen from Figure 6, works can be assigned using the *Assign Work’ under
the Works Tab. When the *Assign Work” is clicked it redirects route to access the
"getAssignForm’ method, which is located under the *UserWorkController’, this
method checks the authenticity of the user and redirects to the ’showRegistration-
Form’ method, which is founder in *UserWorkRegister’ method for displaying the
"Work Assign View’.

The *Work Assign View’ displays two drop down lists, one for the listing the works
and the other for listing the employees. Choosing the work will display, the work
information and employees list assigned for that work. This information helps the
user to confirm if the right work is chosen and also to check the assigned employees.
Knowing this information, the user can assign an employee. Assigning the em-
ployee will first need to pass through *UserWorkController’ for validation, and if
the validation is passed it will redirect to the *UserWorkRegister’ for storing the

assigned information into the database.

()(sJaWoisna)ylims=-(J8LWoIsna, MaIs (L) |
_
|
(ingmous || | <
| | _4 (ily<-18woisng uo pexid | _
_
_m__obcou__mESm:u : | _ 1a3IOpN 82140 ¢
O SI3LUOISND) MBIA, MBIA QSN *
j 18WoIsnD) M3l Ps

Figure 7 - Sequence Diagram for viewing all customers

As can be seen in Figure 7, in order to display all customers, the user is required
to select the ’All” under the Customer Tab. Clicking on *All’ redirects the route to
’showAll” method, which is found under the Customer Controller. This method
returns all the customers data to the ’Customer View’ page, which is displayed on
Table 3.

sd View Employee

.
o
S
=
=
(=]
@]
a— Fo] H b -
S A A A
=
E
w
@ i & T =
@ @ @ @ >
@ D @ D =
k=] o k=] o =
[=1 [=% a [=% g
= £ = £ =
g s 5} s 2
= z = z =
2 2 2 2 =
= > = = =
= = + sl = D + =
= = T| — | — = o =] =
Z| - % I3 5| o w| o Z o
@ © < 0 = %
£ o © = ° =)
e o T
o ~ @ Z -
=3 . o 2
R A S A SN s -
o (o]
z ™
2
2
0
> - | | | | —
g F \ A A A A
@
= = 0
= — = E
S = =1 2 =
o [1}] at]
o] = = % £
5 = 2 7 o
0 (] w (UI &
I & @ = 2
@ on c &
5 =T n
=< o
=
oK S -
S
=
@]

Figure 8 - Sequence Diagram for viewing Employees as required

Employees can be viewed in different forms; among the many ways the most com-

mon ones are shown in the Figure 8. The different forms are discussed in the fol-

lowing Table 3.

Table 3: Available Employee view types with description

No.

Function

Description

1 All

Displays all Employees

2 Active

Displays all Active Employees

3 Assigned

Displays only Assigned Employees. Assigned Em-
ployees are those employees which have a task to do

and the task is not completed

4 Not Assigned

Displays only those Employees which are not as-
signed, i.e. employees who have completed their

work and are currently not working.

5 Selected Em-
ployee

All the above mentioned functionalities provide the
user with a list of employees. The lists display the
employees full name and phone number only if the
user wishes to display full information of the em-
ployee the user can click on each employee name to

display full information

Since all the methodology described in Table 3 follow the same sequence only one

of the methodology sequences will be discussed. When the user selects *All’ under

the Employee Tab, the route is redirected to access the ’getAll” method, which is

located in the ’EmployeeController’. This method collects all the Employee data

from the database and forwards it to the “View Employee’ page, which displays the

retrieved data in a table providing the employee name along with the phone number.

If the user wishes to get full information of the employee he/she can click on the

name for displaying full information of that employee.

j (PHiop pepejes malp ')
(dewsiopeielsusb |1

|

|

(OriAgieb |1y

(Jdewsxiopaielausb || ¢

(Jsiopa pausiulmsIa Z L e
|

(Ptidaa 8L uo I
1

F— —]

Jpeysiufed 1) ¢

(Jdepsiomeelalst 1717 L

_
_
_
|
(JS4I0M PEUSIULUR MBIA T 1 T

]

< ()SHIOM PBUSILUIH MBIA, €

(Jdewsiiopraielaual L L L

<

Y S e Y

1gjonuondep 12][0LUODMIOM, |

Q ®

e e o

SHOM, PRUSIUUN MBIA T

T _

Béo?_ms_to :

_
_
(Jpeusiuyumed 1 - 0
_
_
_
(Jssiop lle malip 7171
_
|
_ OlvieB <11 |_A
_ _
_ _
MIOA MBTA, SHIOAN MBIA M31A 2N

¥

ﬁ IO, MEIA PS

Works as required

iewing

Figure 9 - Sequence Diagram for v

Works can be viewed in different forms; among the many ways the most common
ones are shown in Figure 9. The functionality of different forms is described in

following Table 4.

Table 4 — Available work view types with description

No. Function Description

1 View All Works | Displays all Works

2 Unfinished Works | Displays all unfinished Works

3 Finished Works Displays only Finished Works

4 Selected Work Displays the selected Work in details

Since all the display methodology follow the same sequence only one of the meth-
odology sequences will be discussed. When the user selects *Finished Works’ under
the Work Tab, the route is redirected to access the *getFinished’ method, which is
located in the *WorkController’. This method collects all the finished works from
the database and access the "MapController’ for generating the map using the col-
lected Works data. After generating the Map, the data is forwarded to the View
Work page, which displays the retrieved data using a marked map and the work

information using a table.

When displaying works as a list (i.e. All, Unfinished, and Finished Works) the ap-
plication not only displays the data but also provides a means of updating the status
and a link for displaying full information of the selected work. As can be seen in
the above Figure 9 when a work is selected from the ‘View Works’ page, it is routed
to a method called ‘getByld’ method under the WorkController Class, which gen-

erates a Map and redirect the data to a ‘View Work’ page.

2.2.2.2 Mobile Sequence Diagrams

In this section, the most usable sequence diagrams for the mobile application are

shown followed by a small description explaining the diagram.

=
2
s
(&)
<
o
<.
o il
=
@
u
0
=
@
X
[=]
=
@
T
[
@
8
5 S
L 15
c
E 2
g :
Os-—————+% -
T -
w —
- —

1.1.1.1: setlUser()

1.1.1: onResponse()
T1 1.1.1.1: onResponse()

Vo\leyClontrol\er
|

=
w
(5]
=
[=y
QD
(W
|
=
=
(]
z

= —

s

>

< q

=

| A

o

1

1. Fill Login credential -= register()

Fiiii

Field ‘Worker
\
\

sd LoginActivity

Figure 10 - LoginActivity Sequence diagram

When opening up the mobile application the user is requested to login, using his/her
email address and password, which are provided by the administrator. When the
user submits this required information, the application uses a ‘VoleyController’
Class for connecting to the server and authenticating the user credentials. If the user
is authenticated, a valid token will be generated from the server side and responded
back to the application, at this time the Login Activity will be destroyed and Us-
erWorkActivity will be generated. On the other hand, if the user is not authorized
an error message pops up informing the user to retry.

When the server responds for authorized user, it sends user credential along with
the generated token. The token is used for further interaction with the server as long
as the user did not sign out or close the application. The application uses the re-
sponded credential to set the user information. This credentials are stored in a local
database (SQL.ite) till the user signs out. The credentials are stored by using the

‘setUser” method of the ‘UserController’ Class, as can be seen in Figure 10.

At this point the user has logged into the application and ‘LoginActivity’ will be
terminated but meanwhile ‘UserWorkActivity’ will be generated. This ‘UserWork-

Activity’ sequence diagram is shown in Figure 11.

. 1
GA (Jevesiouo 'L’z [[puompees 7 |
| 1 |
_
| | |
| | |
| _
| _
| e _
“ | (lesuodseiptoplesnieb L1 L L L)L _
| _
_ | |
! _ %A (PHONVBSI8S 11 1 _
_ (Jasuodsayuo L L L L L MIONUBSISS L L L7
_ _ _ Nelesiouo .| 1L > _
_
_ _ _ ._.A (usyoL18b 1| _
| | | |] |
| _ _ _ (Jeieaiouo 1| _
_ _ _ _ _
| _ _ _ _1 _
| _m__obco_oéo_,s : _m__obco_o»m__o\/ : _mm_j : | 6{9‘5_ plalg
RIANYHIOM O O O fIAnayHIopIESM *

ﬂ Rnnayiopiesn ps

Figure 11 — UserWorkActivity sequence diagram (starting activity, refreshing

lists, selecting work)

Generating the ‘UserWorkActivity’ page goes through multiple sequences before
displaying the view content. As discussed in the previous ‘LoginActivity’ Sequence
diagram, the user credentials have been stored in the ‘User’ Model (SQLite), this
User object is used for providing the token using ‘getToken’ method of the User
Class. This token is what the server side application uses to authenticate the user
and also know who is accessing the server so that the server responds for that par-
ticular user. So, using the ‘VolleyController’ the mobile application will connect to

the server and get the available works, which will be listed in the ‘UserWorkActiv-

ity’.

The refresh button, which is found in the UserWorkActivity, regenerates the page
I.e. generating ‘UserWorkActivity’ and refreshing the page goes through the same
process. If the user is assigned to a work, there will be lists of work available for

the user, which can now be selected to check out or start work.

ks
E
=
@4
<4 A 4
g a —| —
2 E= E=
o o
= o) @
Ed = =
= - 2 2
2 z 5 S
g S = I T =
2 e g S 2 S
@ [Z = c =
@@ o =} E a E
x =% w
. z o4 = =4 h
= x ~ 5 ~
L — - o ~ —
o = -~ = o3 = <t
o — — - T
= - =~
5 @ 1 1 1
o—— — — — —— - _— J— 1 -
==
£
=l
>
@
=)
=
@
wu =
D] ————— ————— + —
& =
g =} ‘ w —
E=| 5]
=} =] S a
<@ @ =] S
. @© m E=1
= @ m
= @ = [}
@ ® © £
= 2 = © =] @
L = 8 a Z @ 5
L & 3 5 i} 3 =
g = el [= @ = =
5 = @ @ @ ®
= =4 =2 —_ [/ - '3 [<H}
=) 5 5 53 = b= O o
Q o = =1 c
Ot ; 5 oz a
=) — 5] @ w o @ @
= - =] = T = @
T ~ g @ Z ®
& ® = b g = 2
> & S © [}
= = - [G] [@
=2 - z - o
S| ® - = -~ -
2| e < a o <t
@ Q o™
2| 2
o) (=]
= o ~
2 o -
= = =
L
@]
5
= = L‘
= h 4 ‘F
E =)| =
=
2
= Z|
g =}
£ £
=1 =
m m
o
5 2
@ Gl
@ <
T
=
=
OKE—————————mmm— o] B
@
ic
=
=
=]
e
=
s
o
w

Figure 12 — WorkActivity (sequence diagram for: checking, starting, and stop-

ping Work)

As can be seen in Figure 12, the “WorkActivity’ is the most complicated activity
with multiple message exchanges with the server. When the ‘WorkActivity’ is gen-
erated it connects to the UserWorkController (in the background) for retrieving the
user work information and status. This is accomplished by using the ‘getUserWork’

method.

Using the stored user credentials and selected work id (from the UserWorkActiv-
ity), the application connects to the server using the VolleyController for retrieving
the Map information. This Map holds the information whether the work has previ-
ously been activated or not. If not, the page is created without the starting time (start
button is active), otherwise the page will have additional information of the started

time (start button is not active but stop button is active).

2.3 Mock-ups

2.3.1 Web Application Mockups

Jiko Web application is a private site used for the employees only and for such
reason Jiko web application has only two public page. This public pages are the
Welcome and the Contact page. The remaining pages are all for the Jiko Ltd regis-

tered employees only.

This web application is built to be mobile responsive, i.e. the web application looks
elegant when accessed with a mobile application browser also. For showing these
looks both the computer browser and mobile browser mock-ups are documented

side by side.

In order to avoiding redundancy, one common Mock-up is used with a small de-

scription.

2.3.1.1 Welcome page Mock-up

Jiko Oy Contact Login

Jiko Oy Web Application

This site is only for registered users so please Login to access the site,

Use the following button to go to public site.

For contacting us please use contact us link on top of this page.

Thank you for visiting us!!!

Figure 13 — Welcome page mock-up for computer browser

38 7 .4l 85%M 12:41

(Y) pi-jiko.apphost.jubic.net

Jiko Oy

Jiko Oy Web Application

This site is only for registered users so please
Login to access the site.

Use the following button to go to public site.

For contacting us please use contact us link on
top of this page.

Thank you for visiting us!!!

Figure 14 - Welcome page mock-up for mobile browser

The above Figure 13 and 14 are mockups for the welcome page of the web appli-

cation. This page is a public page used for redirecting to the Jiko Ltd public site

(www.jiko.fi), contact page, and a login page for the visitor. The contact page is

also accessible for the public visitors in case they need the phone numbers or email

addresses of the company personnel.

2.3.1.2 Home page Mock-up

JikoOy Add- Works - Customer - Contact

Employee -

Unfinished Works

Korsholm

Allvitampi
a w1 Molitraske!
il e
ez |
0] e}
—_— v
717) w
-, ez 1
’ +
J%‘Q 5 (£
Google : " Mapdsta =206 Googe Terms of Usa_ Raport 2 map amar
D Address Status D Address Status
Clickto Click ti
1 85329 Walker Glen Apt. 723 Firi;Wak 5 29122 Murazik Lane Apt. 677 Firich w‘;k
Tick b
é 1338 Delphia Fort Apt. 183 14 ;—m;w;k

- Clickto Clickto
1 566 =3 F
15 Firk % 18 566 Nikita Falls Finiish Work
. " " - o
20 268 Kelsi Viaduct Suite 955 26 5 Dibbert Isle

31 Wolfiintie 30

33

Figure 15 — Web app Home page wi

Work 32 Liuskekivenkatu 12 65300 Vaasa

Click to
Finksh Work

n

Click te
inish Work
Qlick to
Finish Work

th computer browsers

Lakachew -

) I ijiko.apphost.jubic.net

Jiko Oy

Unfinished Works

Map Satellite

Korsholm

%
Google %
OOGI€ \ap data ©2016 Google Terms of Use

ID Address Status

1 Kuusilahdentie Click to
165280 Vaasa Finish Work

4 Hietalahden Click to
stadion vaasa Finish Work

7 near Kairatie 2, Click ta
65350 Vaasa Finish Waork

liriksentie 7 Click to
Vaasa Finish Work

Figure 16 — Web app Home page with mobile browsers

When the user logins in, the first page that appears is the unfinished works page,
also used as the home page, since the office’s common task is to check the unfin-

ished works.

As can be seen in Figures 15 and 16 the page displays the Map followed by list of
works. The list contains Work id, address, and status. Due to the available space
with computer browser the lists are shown in two columns but the mobile browser
displays only one. The Map provides each work location with a marker for two

dimensional representations.

The list is not only for displaying the customer name address and status but also

linked and buttoned to provide further-information and update-status respectively.

Customer and Address columns are equipped with a link to provide further infor-
mation on the selected work (Figure 17). However, the status column contains a

button for updating the status of the work to be completed.

2.3.1.3 Selected Work Mock-up

Jiko Oy Add ~ Works ~ Employee ~ Customer ~ Contact Lakachew v
Selected Work
Map Satelite m
725
Korsholm
/5 P
Google 2 N Map data ©2016 Google Terms of Use Report a map error
Customer Information Work Information

ne Asratenesh Kebede Work Address Papinsaarentie 2, 65610 Mustasaari

C ame Ethiographic Not Completed
one 0911660441 te 2016-10-04

email asrateneshk@yahoo.com Edit Work

Edit Customer

Figure 17 — Selected Work Mock-up

In the previous Mock-up (Figure 15 - 16), the list holds the Work address, but the
addresses provide the user a link to check detailed information of the work. Clicking
on this address link the user is redirected to the selected work information page,
which is shown in Figure 17 above. This page provides information of the work and
the customer. The map assists in finding the work location by providing only the
selected work marked, which increases user comfort and visual assistance. For the
coming future this page will also provide the user with the hours being counted for

the selected work task.

2.3.1.4 Register page Mock-up

There are three different registration pages: the customer, work, and employee reg-
ister. Since all use the same design and mechanism, it is enough to show only one

registration Mock-up and represent the other registration pages (Figure 18).

As can be seen in Figure 18, the registration page provides the user with a user-
friendly form. Not all of the fields are required to be filled and those, fields that are
required to be filled are indicated with a **’ sign. The registration pages also provide

security by restricting the user from entering more than the required characters, and

validating the data entered on the server side before storing the data.

Jiko Oy

Company Name
Contact Name*
E-Mail Address*

Phone No

Address
& Register

Figure 18 — Add New Customer ‘Registration Form page’

2.3.1.5 Assign Work to Employee Page Mock-up

Assigning work to employees is one of the most vital parts of this web application.
Every field worker is using such assigned task to perform his/her duties and also
the recorded data are stored and accessed using assigned identification number.
When first opening up this page, there are two drops down lists hanging side by
side, where one is for choosing the work and the other for the employee to assign

the work to. The Mock-up is shown in Figure 19.

Jiko Oy Add ~ Wiorks - Employee ~ Customer - Contact Lakachew -

Assign'Work to Employes

Work Employee

- e ~
Choose One v Chooseone .

Figure 19 - Assign Work to Employee Page Mock-up 1

By selecting the work from the drop down list the user will be able to see the work
description and the assigned employees as shown in Figure 20. Such information is
useful for checking the details of the work selected, are enough employees assigned

for the work, and who is assigned for the work.

JikoOy Add~ Works~ Employeev Customer~ Contact Lakachew ~

Assign Work to Employee

Work Employee
Asratenesh Kebede - 1 Choose one...
& Assign

Work Description Assigned Employees

Contactname Asratenesh Kebede
Name Phone

Company Ethiographic
name Lakachew Lakew 0400219833
Phone 0911660441
Email asrateneshk@yahoo.com

Work Address Papinsaarentie 2,65610
Mustasaari

Work Status Not completed

Registration 2016-10-04 23:19:28
Date

Figure 20 — Assigning work to employee page Mock-up 2

2.3.2 Mobile Application Mock-ups

Unlike the Web application, there are only three Mobile Application Mock-ups,
even though the background tasks are more complicated. In this section, all the

Mobile Mock-ups are shown along with their description.

2.3.2.1 Login Activity Mock-up

This page is what the user sees first when opening the application. The user can
login or request for a new password if forgotten, as can be seen in Figure 21.

QlIHNAPCWwWwEdRB 320 7.4 23%820:28

Jiko Oy Login X

JIKCS

lakachew@gmail.com

esssssssens

LOG IN

Forget Password?

Figure 21 - Login Activity

2.3.2.2 User Works Activity

When the user is Authenticated, the user credentials like the name and user distin-
guishing key are stored in the User object model, so in every connection made to
the server this credentials are used in order to provide the users the assigned tasks

and record their activities.

3 % 4100%M03:39

Assigned Works

WN-32 3339 Halvorson Crossroad Suite

WN-29 87896 Wilfredo Pike Suite 741

WN-17 842 Willms Prairie Apt. 539

Figure 22 — Assigned user work lists Activity

As can be seen in Figure 22, the page provides the user with a list of works which
are assigned to the specific user only. In order to distinguish the various works list,
each one is provided with a unique Work Number (WN) and Address. Whenever
the work is completed the Office employees will update the status of the work to
‘Finished’, which in turn will remove the work from the mobile user lists, till then
the mobile users will see all the assigned tasks. The refresh button, which is located
at the top right corner, helps the user to update the work lists so that the finished
works will be removed and new assigned tasks will be added. Each work list is
clickable and takes the user to the selected works page; such a page is shown in
Work Activity sub section below.

2.3.2.3 Work Activity

The work activity is a page where the user interacts with the selected task (assigned
work). This page interaction will be recorded on the server side, which will be vis-
ible for the office employees.

O 3 % 4100%M03:40

¢ Jiko Oy Work Loger

WN-32

4489 Halvorson Crossroad Suite 009

Praesentium saepe sed dicta tempora
ut.

Figure 23 — selected user work Activity

As can be seen in Figure 23, the user is provided with more information about the
task. Figure 23 is a good example for showing an activated work (START WORK
is not active in other work it has already been activated), i.e. if the work is active or
not is registered on the server side and the user can activate the work and log out of
the application and get the same activated data when returned to the Work Activity
page. This is accomplished for the reason that every record made to the work is
stored in the server and the application checks or gets the data from the server for
building the page. In turn also, no information is lost if by any means the mobile

shuts down. This mechanism enables the office employees to track the work activity

remotely in real time.

2.4 Data Requirement
Since similar types of data are being used among the two clients, the data require-

ments for both applications can be document together in this section.

Models/Database tables used for the documented project are shown in the following
database diagram (Figure 24).

dWLSAWIL 38 payepdn ¢
AV 1SAWIL 1 pajean ¢
{D0ZJaWHOWY A S52UPPE ¢

{5k YuvHDHwA auoyd -k
(SEYUYHIHR A IBWS ¢
(St) v HOHWA 2 Wel jaejueo ¢
(SE)HYHDHY A Swel Auedwod

ANI P!

A SIRWOosND [

O o

LI pisDopyom ¢
(SE)d HodWA uogeaydde

NYID0FIRE & o — —

319N10a 3prane] ¢
378N0a =pmibua) ¢
NP

A mnmEn.

AWV LSIWIL 38 pagepdn ¢
ANV LSIWILIE peas ¢
(DOZ)UWHDY A uonduasap
My 1008 PRYSILY ¢

(002 JuWHDWY A S53.1ppe ¢
NI P SJ3W03snD ¢

INIp!
Sxom [

e

XP I T5I95M SHIOM™ IISM 3
P TSHJOMT SHI0MT I35 2y

AdWINTEd

NI prsiasn ¢

1NI P52 WasnI s3Iom ¢

NI PIsyom ¢
di¥1S3WIL 32 paepdn ¢
dlWy 1S3WIL 18 paeans ¢

INI P!

A HAOM IBSN _“ |

—_—_————————
[

LML PisyJom Jasn ¢
diYLSIWIL 3 payepdn ¢
dIY LS3WIL I pean ¢
(DOZ)HYHDH A UondLDS3p -

ANI P!

& sBopjIom _“

dWW1S3WIL ¥ parepdn ¢

dll LSIWILIE pRjean ¢
(SEYuYHIHY A 363 1d ¢

T TYHYHIYY A USH0) T U3qWa Wl -
(09ydwHIY A plomssed
{02}y Houw A Buoyd ¢

(GE dTHD Y A 2L ¢

(St dvHIYY A 3 weu s
(SEJUYHIMY A 2 WeL 35y »

ANI P!

A SI35N _H..

The database architecture design was shown so that the relationship among the

Figure 24 - Database Architecture V2

Models can be easily be visualized.

2.5 Non-Functional requirements

The non-functional requirements for Jiko Itd are listed below:

e Security
o authorized personnel should only be allowed to access the applica-
tions.
o Level 1 Secured communication between client and server.
o The user can recover a lost password.
e Performance
o The server should respond in less than 2 second for all requests.
o The application should provide different functionalities to handle
different requirements.
e Capacity
o The server is made to handle a maximum capacity of 1000 employ-
ees to be safe even though there are about 80 employees at this mo-
ment.
o Server storage should be a scalable, for the initial stage 10GB is
used.
e Availability
o Available at all times
o Onlyin Finland
o Internet required
o Backup
o System recovery

o Up after reboot.

3 APPLICATION DESIGN

The application is designed in such a way that the web application is hosted in a
cloud server. The connection between the mobile app, the web app, and the database
is handled on the server. The Deployment Diagram or the application hardware and

software connection is shown in Figure 25.

Cloud Server

MySQL - database

Deployed Web application

web Service

Web browser Wobile application

Jiko web site web service

Figure 25 — Deployment diagram, which shows the hardware and software con-
nections for the hole application

3.1 Three-tier organization

In three-tier organization applications, three physical tiers are used. This tiers are
shown in Figure 26.

Presentation Logic Data

LLLLLE
I
[
LLELLE

=1
aliazlala

=TT

AllAalla]»e

Client Server Database
Figure 26 — Three-tier organization

3.2 Framework Applications

Frameworks are built to assist on the construction of the web application based on
a single programming language. Generally, application frameworks support and
guide the developer to use short, maintainable, and convenient methods for building
an application. Such methodology encourages other developers to easily understand
the project and collaborate on the development since the application will be built
on a general guide line. This guideline is not a onetime developed architecture but
rather a serious of development (and is still in progress), which makes usage of
Framework popular among developers. Generally, frameworks are built to support
mapped URL, integration of tools (API), object-relational mapping (ORM), Boot-

strap, and many more tools and features are being added from time to time.

The detailed part of the technologies used for each application is documented in the

coming Used Technologies Chapter.

3.3 Architectural Design

In order to make the application easily maintainable and scalable, building a proper
architecture is required. Best practice for building such architecture is considering
the separation of tasks. The most widely used architectural design is the Model,
View, and Control (MVC) Architecture. In this section the architectural design for

both mobile and web applications is documented.

Control

CustomerRegister

- attribute0 : int

+ getCustomerForm() : view.customer form
CustomerController + postRegister{$request : Request) : view.customer.form

MapController -
UserWorkRegister

+ showRegistrationForm() : view.work assign
+ register($request : Request) : visw.work assign

UserWorkController

AuthController

+validator($data : Arrays) : Validator
+ create($data : Arrays) : void

EmployeeController

WorkController WorkRegister

+ showRegistrationForm() : view work form
+ register() . view waork form

] \
View N
] =] =] Model
contact layouts errors auth
O 503 login
app
O Customer Work
welcome register
work employee customer UserWork User
works form employee customers :
O O O O Map Worklog
assign work employees form

Figure 27 — Web application Architectural Design

As can be seen in the above Figure 27, there is a distinct separation of tasks. The
most distinct packages are Model, View and Control. Then each of the packages is
further divided into sub sections, model and class so that each performs a specific
task. i.e. the “WorkController’ task is controlling everything related to the Work

Model and Work View, but again the ‘WorkRegister’ is separated since its task

involves extra functions, which is changing the model data content. The same goes

for the remaining Controller class’s.

Furthermore, the Mobile Architectural design is developed in such a way that there
Is a distinct separation of tasks, as the web application. i.e. MVC architectural de-

sign, which is shown in Figure 28.

Controller

| [
dispatch..,

< UserController MapController MyRecyclerAdapter CustomViewHolder| |UserWorkController
'_‘_‘_‘_‘_‘—_‘—A F Y
T
i Y
> UserWorkDBHandler
dispatch
Use h
dispatgh
Fragment Model
p. .
>
Adisp User a— WorkLog
LoginFragment » Reset Password dispatch|
UserWork WorkLogMap
i dispatch
Use : i
returni T‘ - e
dispatch : dispatch
i - I
e LoginActivity UserWorkActivity N WorkActivity
H —_—
Ulse J L dispjtch

Network (VolleyController)

>
Login SetUserWork PostStartMap PostStopMap

Figure 28 — Mobile Application Architectural Design

4 USED TECHNOLOGIES

The technologies and tools used for building the applications are documented in
this chapter.

41 Webapp

The web application is built using Laravel Framework and will be hosted in a cloud
server. The Framework uses Composer, Vagrant and Virtual Box for installing and
deploying Laravel projects on a localhost or PHP hosting server. For the Jiko Ltd
web application also other relevant technologies are used, and they are listed in the

following sub-sections.
4.1.1 Laravel Framework

Laravel Framework is a free, open-source PHP web framework, created by Taylor
Otwell. The framework is intended for the development of web applications sup-
porting the MV C architectural pattern. The framework also provides an expressive
and elegant syntax for coding and managing the project. Laravel attempts to take
the redundant hustle out of development by easing common tasks used in the ma-

jority of web projects, such as authentication, routing, sessions, queueing and cach-

ing.
The Laravel framework has few system requirements including:

e PHP>=559

e OpenSSL PHP Extension
e PDO PHP Extension

e Mbstring PHP Extension

e Tokenizer PHP Extension

However all of its requirements are bundled when using the Laravel Homestead
virtual machine. For such reason it is recommended to use Laravel Homestead in-

stead of downloading the Laravel project alone. /2/

Laravel is a well-documented framework with a lot of community involving in the
development and supporting side. Laravel have integrated powerful tools needed
for large, robust applications. It has an excellent architectural design for control
container, expressive migration system and an integrated unit testing support, which

are all needed to build any kind of web application.

This framework supports the addition of other tools by using a dependency man-
ager known as Composer.

4.1.2 Composer

Composer is a tool for dependency management for PHP. It allows the developer
to import and install libraries to the project. Composer is not only limited on im-
porting it but also updates, downgrades, locks and removes packages during devel-

opment or afterwards. /1/
4.1.3 Vagrant

Vagrant is a tool for building complete development environments detached from
the local operating system. With an easy-to-use workflow and focus on automation,
Vagrant lowers the development environment setup time by just tweaking few con-
figurations, which in turn increases development or production parity, and makes

all vagrant project work on similar work environment or machine. /3/

Laravel can be installed in VVagrant development environment and all advantage of
Vagrant is inherited. For such reason Laravel developing team have created a small
tool known as Homestead for easing the integration of this two technologies and

also for simplifying the transfer of project along with the development environment.
4.1.4 Laravel Homestead

Laravel Homestead is developed and distributed by Vagrant. Vagrant box provides
you a wonderful development environment without requiring you to install PHP,
HHVM, a web server, and any other server software on a local machine. No more
miss-configuring the development environment and requiring specific operating

system. Vagrant boxes are completely disposable if not required or clean booting

the server. If something goes wrong with the virtual machine (VM) while develop-
ing, it can be switched to a new VM by destroying the running VM and deploying

a new one, in minutes while all local files are still intact.

Homestead can be used in Windows, Mac, or Linux system and it includes the fol-

lowing:

e Ubuntu 16.04

o Git

e PHP7.0

e HHVM

e Nginx

e MySQL

e MariaDB
e Sqlite3

e Postgres
e Composer
¢ Node (With PM2, Bower, Grunt, and Gulp)
e Redis

e Memcached

e Beanstalkd.

All of this can be used to develop not only Laravel Framework but different types
of web applications, which rank homestead among the best virtual machine hosting

local server configuration. /4/

Laravel Homestead requires a virtual machine. On this documentation Virtual Box
is used. This tool is documented in the following section.

415 Virtual Box

Virtual Box is a cross-platform virtualization application. In other words, it can run

on Windows, Mac, Linux or Solaris operating systems. Using Virtual Box extends

the capabilities of your existing computer so that it can run multiple operating sys-

tems (inside multiple virtual machines) at the same time. /5/
4.1.6 Alexpechkarev/google-maps

Alexpechkarev/google-maps (Collection of Google Maps APl Web Services for
Laravel) is an API build for Laravel projects for requesting Google maps APl in a
convenient way Using Google Maps APIs web services. This Laravel API can be
found using Packagist, by the name “alexpechkarev/google-maps”. As when used

on this project alexpechkarev/google-maps version is 1.0.5.

Packagist is the storage site where all public PHP packages installable with Com-
poser are found, or in other word Packagist is the main composer repository. Any
of composer handled dependencies can be searched and downloaded from the pack-
agist site (https://packagist.org).

Google Maps APIs web services, is officially realized by Google and is a collection
of HTTP interfaces to Google services providing geographic data for maps using

applications.
4.1.7 Cornford/googlemapper

Cornford/googlemapper (an easy way to integrate Google Maps with Laravel) is an
API built for Laravel projects so that it can access Google Maps for getting google
map along with of two dimensional global view, also being able to assign markers,

view level, direction, and all available google utilities.

This API is chosen because the map is being built and assigned markers program-

matically and finally rendered on the view while the user can interact with the map.

4.1.8 Tymondesigns/jwt-auth

Tymondesigns/jwt-auth (JSON Web Token Authentication for Laravel and Lumen)

is a simple tool, which can be added to Laravel projects and providing a simple

means of authentication. This tool can be added to the project by using Composer,
then addressing the service provider, configuration the aliases and payload to point
to the jwt-auth tool and then publishing and generateing the JWT configuration and

key respectively.

JWTs are an encoded representation of JSON object. JSON might have zero, one
or many name/value pairs, and such information is being converted into URL-safe
(base64 encoded) while maintaining its unreadability (encrypted), and unmodifia-
ble (signed).

JWTs can have different usage and implementation depending on the communica-
tion needed. For this thesis project, the usage is to authenticate the mobile user to
the server and allow the authorized personnel to upload and download information

to and from the server.

A JWT sample token would look something like this:

“dBjftKJFTrd Trfg98Gu. mB92KK29skkkHDJFO.wInLjUj8j97THGvD”

This is a Base64 encoded string. When it is broken apart there are three distinct
separate strings. This separator is the dot in between long strings. Each of the sec-

tioned strings have their own representation and usage.

The first section is the header that describes the token, followed by the payload,
which contains the data and finally the signature hash that is for checking the va-
lidity of the token. /8/

41.9 Postman

Postman is a software built for sending and receiving data to and from a server. This
application works for all kind of servers as long as it has a URL local/remote ad-
dress. The application provides a lot of ways for the parameters, headers, authori-

zation and many more features to add on http/https request. /10/

Postman is not only used for the development of the web application but also for
the mobile application. Postman can be downloaded as a Chrome application for

windows OS, that is Postman uses chrome’s privilege for accessing the Internet.

4.2 Mobile app

The Mobile Application is built using Android Studio, the official IDE (Integrated
Development Environment) for Android application development. Android Studio
has reached the current stage with a series of update or changes to the IDE.

Building an Android application requires different set of development tools, most
of the tools required for this application are included in Android SDK (Software

Development Kit). The added tools are discussed in this section.
4.2.1 Android Studio

Android Studio is the Official IDE for developing an Android application. The ap-
plication is owned, developed, and maintained by Google. Google has announced
in 2013 that Android Studio is freely available for anyone to develop Android mo-
bile applications for both personal and business use. At this time of project devel-

opment Android studio is at Version 2.1.2. /7/

The Android studio development is based on IntelliJ IDEA, in other words, on top
of IntelliJ’s powerful code editor and developer tools, Android Studio offers even
more features that enhance the productivity of Android applications. The features
provided are:

e A flexible Gradle-based build system,

e A fast and feature-rich emulator,

¢ A unified environment where all Android applications can be developed,

¢ Instant Run to build changes without building a new APK (Android Appli-
cation Package),

e Code templates and GitHub integration,

e Extensive testing tools and frameworks,

e Lint tools to catch performance, usability, version compatibility and other
problems,

e C++ and NDK support

e Built-in support for Google Cloud Platform, making it easy to integrate
Google Cloud messaging and App Engine.

4.2.2 Java JWT (JIWT)

JIWT (Java JSON Web Token) is a library used for communication between appli-
cations. JJWT is particularly designed for Java and Android applications.

The aim of JJWT is to provide an easily usable and understandable library for cre-
ating and verifying JSON web Tokens (JWTs) on the Java Virtual Machines (JVM).
This library was created by Stormpath’s CTO, Les Hazlewood and now the library
IS being maintained by a community. /11/

4.2.3 Material Design

Material Design is a Google support library for assisting on the design of mobile
applications. It allows developers to build elegant user interfaces with multiple type
of patterns at their disposal. The support library has based certain principles for
building application with user-friendly standards, which have been achieved with a

lot of research at the Google Development Centre.

Using Material Design allows for a unified experience across platforms with differ-
ent size and resolution. Design patterns is built to work in both the older and the
latest models of Android operating systems (AOS), but on the older devices the new
features will be omitted keeping the desired information still working on older de-
vices. Some features even work on older AOS. The principles of material design

are shown in Figure 29.

Material is the metaphor Bold, graphic, intentional Motion provides meaning

Figure 29 — Material design principles

5 IMPLEMENTATION

The above mentioned technologies where all used for building the applications. In
this chapter the implementation of the two applications is documented.

5.1 Building the Web application

The web application is built with Laravel framework. As mentioned above (in the
used technologies section) Laravel projects add tools by using Composer. The im-

plementation of this tools will be explained in the following sub sections.
5.1.1 Alexpechkarev/google-maps

Jiko Ltd web application uses Alexpechkarev/google-maps API for converting text
addresses to geographical location as in longitude and latitude. Since such web ser-
vices have a limited request allowed per day for Google services, the application
architecture is made in such a way that the retrieved google responses are saved so
that there won’t be a need to access the google services every time an address is

needed.

In order to use such service from Google, the “Google Maps Geocoding API” needs
to be activated. Such privilege is possible after having an authenticated credential.
Once the user is authenticated (has an account), the user can generate a server key
or credentials (type of API key), which are used to access whenever a request is
needed from Google. The key is included in every request made to Google so that
Google can monitor the traffic flow and location. Google also provides such moni-

tored values in the “Google APIs” web application. /6/

The geographical coordinates can be collected using the following code:

fcollection = collect();

try
{
stresponse = (array) ‘\GoogleMaps::load('geocoding')
-»getParam(['address' => faddress])
->get():

flongitude = json_decode (fresponse[0])->results[0]->geometry->location->lat;
flatitude = jaon_decode ($response[0])->results[0]->geometry->location->1ng;

f(collection = $collection-»merge([flongitude, $latitude]):
lcatch (\ErrorException $e)

i

collect{['error' => 'Address not found']):

f

fcollection =

!
Code 1 - Collecting the geographical coordinates from Google Maps

5.1.2 Cornford/googlemapper

Cornford/googlemapper API can be downloaded/installed using a composer. There
are two ways downloading this tool, one is using the command line and the other is

using composer.json as shown in Code 2 and Code 3 respectively.

$ composer reguire cornford/googlemapper:2.10|

Code 2 - command line code for downloading and installing the mapper tool

"recuire": |
Pcnrnfnrdfgnuglmapper": rAZ. 10"
be

Code 3 - Imbedding the mapper tool using the composer.json file

In order to use such service from Google, the “Google Maps JavaScript API” needs
to be activated. Such privilege is possible after having an authenticated credential.
Once the user is authenticated (has an account), the user can generate a server key
or credentials (type of API key), which are used to access whenever a request is
needed from Google. The key is included in every request made to Google so that

Google can monitor the traffic flow and location. Google also provides such moni-

tored values in the “Google APIs” web application. /6/

An Implemented snipped code, for generating a Map marked with work location
(coordinate) making the centre point at Jiko Ltd office is shown in Code 4.

Mapper::map{63.0925796,21.6516582,
['draggable' => false,
'eventMouseDown' => 'console.log("mouse down"):',

'zoom' => 12,

'cluster' => false,
'markers' =>
['title' => 'diko Oy',
'scale' =» 1000,
'"animation' => 'DROP']1]):

//going through all requested works L;31

foreach {$works as swork)

{
$work = Work::find({$work['id']):
sworkCustomer = Swork->getCustomerName () 7
if (isset ($work['longitude']))
{
Mapper::informationWindow ($work['longitude'],swork(['latitude'], $workCustomer,
['clusters' => ['size' => 10, 'center' => true, 'zoom' => 15],
'markers' => ['symbol' => 'circle',
'scale' => 1000,
'animation' => 'DROP']]);
}
}

Code 4 — Generating Marked Works Map

5.1.3 Tymondesigns/jwt-auth

Tymondesigns/jwt-auth API can be downloaded/installed using a composer. com-
poser can be used in two ways. One is using the command line as shown in Code 5

and the other is using the composer.json file as shown in code 6.

§ composer reguire tymon/jwt-auth:0.5.9|

Code 5 - Command line code for downloading the Tymondesigns/jwt-auth.

"require": {
|"tymunfjwt—auth": "AD.5.9"
by

Code 6 — Adding Tymondesigns/jwt-auth tool using composer.json file.

Jwt-auth has multiple usages. Each usage is as important as the others and for this

reason the Implementation of the jwt-auth is shown in this section.

The jwt-auth api is used firstly for authenticating the mobile application users, and
for providing a key for accessing the server if authenticated. The key lasts for a time
-to-live (ttl) limit of 1 week. The implemented code for authentication using jwt-

auth api is shown on Code 7.

try{
if (! $token = JWIRuth::attempt(['email' => femail, 'password' => fpassword])) {

return response () -» son(f 'error' =» 'invalid credentials’' .

return 5this->invalidCredential {('invalid cridentials');

}
lcatch (JWIException $e) [
" handling: informing "something went wrong'

rablurn res = izon il 'error' =» "could not create token'

return $this->respondNotFound ('could not create token'):

}

Code 7 — Authentication by user name and password

The generated token will be sent back to the mobile application. On the mobile
application side this is when the mobile user gets authenticated and allowed to log
into the application. And once the application has started all the user requests will
be authorized by checking the token. Such authorization methodology is shown on
Code 8.

try {

if (! fuser = JWTAuth::parseToken()->authenticate()) |
return $this->invalidCredential ('user not found'}):

}

1 catch (TokenExpiredException se) |
return $this-»exceptionThrowResponse ("token expired", fe-»getitatuaCode());

} catch (TokenlnvalidException Se) |
return Fthis->exceptionThrowResponse ("token inwvalid", fe->getStatuaCode()):

} catch [JWIException $e) |
return &#this->exceptionThrowResponse ("token absent", fe->getitatuslode()):

}
Code 8 — Authentication by using the token

As can be seen from Code 8, if the authentication fails, the response will contain an

error message, which can be used on the mobile app to inform the user.

5.2 Building the Mobile application

In this section the implementation of the added tools will be documented. The tools

used are shown in section 4.2.
5.2.1 Java JSON Web Token (JJWT)

The JJWT is used for handling authenticated user credential with the server. That
is the server token response can be manipulated using the JJWT library. This library
can be integrated to the application by using the Gradle dependencies as shown in
Code 9.

dependencies {
compile 'io.jsonwebtoken:jjwt:8.5.@"
}
Code 9 — Gradle code for adding the JJWT tool

Collecting the user credential from the token using the JJWT api is shown on Code
10.

try |
Claims claims = Jwt3.parser().parseClaimsJwt (jwtHeaderAndClaim) .getBody ()

int id = Integer.parselnt({claims.getSubject().toString()):
user.setId{id);
user.setEmail {(claims.get ("email") .toString())
user.setFirstlame (claims.get("first name").toString()):
user.setlastName (claims.get ("last name").toString());
user.setPrivilege {claims.get ("privilege") .toString()):
user.setCreatelt (claims.get("created at").toString());
user.setToken (this.token) ;

iz5et = true;

leatch (Excepticn =)/
Log.e("Claims Exception ", e.toString()):

!

Code 10 — Implementation of JJWT
5.2.2 Material Design

In the used technologies chapter, the features of Material Design are discussed. In
this section the implementation of the application will be shown along with the

code.

Material Design support libraries can be added to the application project by ad-

dressing the tools address in the Gradel file, as shown on Code 11.

dependencies |

conpile 'com.android.support:recyclerview-vi:24.0.0'
conpile 'com.android.support:cardview-v7:24.0.0'
compile 'com.android.support:design:24.0.0°'

compile 'com.android.support:support—rd:24.0.0°

1
Code 11 — Adding the Material Design support libraries

The Material Design support library has been used for a different part of the appli-
cation development. For this reason, one part of Material Design usage will be

shown.

One of the Material Design supports was used for listing the works for the user or

when viewing the UserWorkActivity page. Each work on the list has its own view

class known as Recycle Viewer. This RecycleViewer class can be used to generate
and connect the view (layout-resource) to the object value like the work id, and

address. Code 12 shows the implementation of RecyclerViewer class.

goverride

public CustorViewHolder onCreateViewHolder (ViewGroup wiewGroup, int viewIype)
{

mView = LayocutInflater. from({viewGroup.getContext()).inflate(R.layout.user work layout,
PiewGrnup, false);

return new CustomViewHolder (mView);

Boverride

public wold ocnBindViewHolder (CustomViewHolder customViewHolder, final int positicon)
{

UserWork userWork = userWorklList.get(position):

custorviewHolder. titleTextView. setText ("WH-" + userWork.getId({)):

View.0OnClickListener clicklListener = getOnClicklListener{position);
customViewHolder. rowlayout. setOnClicklListener {clicklistener);

public View.OnClickListener getOnClickListener({final int position) {
return (view) —» |
UserWork userWork = userWorklList.get({poasiticon):
Toast.makeText (mContext, userWork.gethddress(), Toast.LENGTH SHORT) .show():
Intent intent = new Intent (mContext, WorkActivity.class):;
intent.putExtra ("user work list id", positicon);
nContext.starthetivity {intent);

B0verride

public int getltemCount() { return (null '= userWorklList ? userWorkList.size() : 0); }

Code 12 — Recycler View class generating a custom made list

The getltemCount method first counts the number of lists available so that such
number of lists will be created. When through the Code there will be such a number
the onBindViewHolder method will be accessed. On each access the view holder
will be initialized with the work information and an OnClickListener will be as-

signed to each work row. A sample of the list is shown in Figure 22.

6 TESTING AND ANALYSIS

This section provides an overview the tests made to check the applications features
and the analysis of the skills achieved through developing the applications.

6.1 Testing

The Web application is first deployed on a local host server for testing all the fea-
tures without going through other configurations concerning the server and mobile
application. After building most of the application functionalities the application is

ready to be tested on a cloud server.

For testing the web services, Postman was used for both the local host and the cloud
server. By using Postman, the web services response can be tested/checked while
building the web services. A test sample snippet is shown in Image 1 and 2 (below)

for both authorized and un-authorized user responses respectively.

POST htrps://api-jiko.apphost.jubic.net/apifvd/authenticate?email=lakachew@gmai Params Send R Save

Authorization Generate Code

Type No Auth
Body (8) Status: 202 Accepted Time: 409 ms
Pretty JSON 5 Save Response

1 |"eyl@eXAi0ilKV1QiLCIhbGciOilIUzIINiIIS
.eylzdWIi0jIsImlzcyI6Imh@dHEz0lwvXCheGktamlrby5hcHBob3NaLmplyml jLmS1ldFwwYXBpXC92NFwyYXVeaGVudGljYXRITiwi
aWFBIjoxNDCyMDMBOT c5LCI1eHALIOjEBNZ TwMz g 1Nz ks Imp@asI61d Y cy0TAINZK2ZMDViNdhYzVINzcwMz kSN c2NTgz TiwiakQio
FIsImZpcnN@xX25hbWUioiIMYWthy2hldyIsImxhc3RfbmFtZSI6TIkxha2V3TiniZWlhakwi0ilsYWwthy2hldeBnblFpbC5ib2@ilClwaG
SuZSIGTjAGMDAYMTk4MzMIiLCIweml2alx1Z2Ui0i]B7G61pbiTs ImNy ZWFBZWRTYXQiOiIyMDE2L TA4L TE1IDA40 U300 QwIiwidXBkYXR
1ZF9hdCI6IjIWMTYEMDgtMTYEMTCEMDAGMFTifQ. r3jb3wfF@Im21G1h3hgl_UFMnBhqlSTDeci4bVREFXw"

Image 1 — Postman response snapshot for authenticated user

POST hups:/fapi-jiko.apphostjubic.netv/apifvd/authenticate?email=lakachew@gmai Params Send e Save

Authorization Generate Code

Type No Auth

Body @ Status: 401 Unauthorized Time: 201 ms

Pretty JSON 5 Save Response

119

2- "error”: {

3 "message”: "invalid cridentials”,
4 "status_code”: 481

s | 3

& |}

Image 2 — Postman response snapshot for un-authorized user

Such responses checked in Postman are results that needed to be handled in the
mobile application so Postman usage is not just only for the testing the web appli-

cation response but also for testing the mobile web services.

The mobile application was tested with a built in android emulator with API Level

17 for common check-up and an API Level 21 device (Samsung S6) was used.

After going through all of the above mentioned tests, the project was hosted on
Jubic Ltd OpenShift Cloud server and further development and/or tests was made
to make the application operation smooth. This test might be the last step for the
development stage, but there will be application development and testing as long as

the customer requests additional features.

6.2 Analysis

Running the application on Openshift Cloud server was challenging due to the lack
of assistant tool for the project framework (Laravel) when this application was be-
ing developed (Aug, 2016). But once the application has integrated with the Cloud,
Openshift provides different features for handling the server.

7 LEARNING OUTCOME

As the developer of this project, | had a prior knowledge of building web and mobile
application developments. The Laravel Web applications were new to me including
JSON web Tokens, Android Material Design and Cloud host management. For this
reason, this application has given me a time consuming challenge but at the end it
was a great achievement with an addition of knowledge with experience of this new

and popular technology.

In each new technology implementation, the most challenging part was the initial
stage, that is knowing how the technology is working and how it can be integrated
to the project. This stage requires an in-depth understanding of both technologies,

so that they perform as desired.

Finally, being self-motivated is my key competence for the thesis accomplishment.
I knew from the beginning that I was going to learn multiple technologies which
would require time and dedication. At the end | am satisfied to see that all the tech-

nologies are communicating and performing as desired.

7.1 Future development

One of the features this project accomplishes is the fact that this application is scal-
able. That is, its architecture is built so that more features can be added. Not only is
the addition of features possible but addition of memory (volume) is also possible

in case the number of employees and/or company grows.

Finally, there are some features that | do not want to pass without mentioning, they

are:

e Each employee can login into the server to check his/her work status and
update a few things like profile and work description.

e Customers can also login and check their work progress.

e Letting the customer add work.

e Letting the customer provide feedback of the work accomplished.

e Creating amethod and page for calculating the distance from the office (Jiko
Ltd) to the working place (customer).

Some features listed might not be as important as the others so most of the updates

will be requested by the company (Jiko Ltd).

8 SUMMARY

Jiko Oy benefits the following by using this software:

1. Instantly collecting employees work hours when the work is done.

2. Getting a better data on knowing who is working where by using the as-
signed employee’s page.

Revising the available work locations using Google map.

Easley assigning employees.

Easley check available, active, and unassigned employees

Easley registering works, customers and employees.

Avoiding paper work, which can be lost and misplaced.

© N o g &~ w

Having the application at hand since the web application is built to work on

a smart phone, tablet and laptop.

Building the application with the documented approach accomplishes a stable, scal-
able, and upgradable application. A person with a good knowledge of the Laravel
project can easily start developing the application in less than a day. The same axes

for a developer in starting to develop the mobile application.

Finally, the application is hosted on a cloud server, which makes the server response
quick even for companies located in different continents, if the company wishes to
branch out in different countries. Still, cloud services are relatively cheap since the

company pays for the used space only.

9 REFERENCES

Numbered Website Resources/References

/1/ Composer official site. https://getcomposer.org/doc/00-intro.md

12/ Laravel Official site. https://laravel.com/docs/5.2

/3/ Vagrant official site: https://www.vagrantup.com/about.html

/4] Laravel Homestead https://laravel.com/docs/5.2/homestead

/5/ Virtual Box official site. https://www.virtualbox.org/manual/ch01.html

16/ Google Maps APIs — Authentication https://developers.google.com/maps/doc-

umentation/geocoding/get-api-key

/7] Android Developer site: https://developer.android.com/studio/index.html

/8/ JISON Web token for Java and Android: https://stormpath.com/blog/where-to-

store-your-jwts-cookies-vs-html5-web-storage

19/ Android API Level: https://source.android.com/source/build-numbers.html

{10/ Postman: https://www.getpostman.

111/ JSON Web Token for Java and Android: https://stormpath.com/blog/jjwt-

how-it-works-why

https://getcomposer.org/doc/00-intro.md
https://laravel.com/docs/5.2
https://www.vagrantup.com/about.html
https://laravel.com/docs/5.2/homestead
https://www.virtualbox.org/manual/ch01.html
https://developers.google.com/maps/documentation/geocoding/get-api-key
https://developers.google.com/maps/documentation/geocoding/get-api-key
https://developer.android.com/studio/index.html
https://stormpath.com/blog/where-to-store-your-jwts-cookies-vs-html5-web-storage
https://stormpath.com/blog/where-to-store-your-jwts-cookies-vs-html5-web-storage
https://source.android.com/source/build-numbers.html
https://www.getpostman/
https://stormpath.com/blog/jjwt-how-it-works-why
https://stormpath.com/blog/jjwt-how-it-works-why

