
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stanislav Simovski 
 

Centrally managed launcher application for 
Android-based MDM solution with re-branding 
capabilities 

Helsinki Metropolia University of Applied Sciences 

Bachelor 

Media Engineering 

Thesis 

7.11.2016 

 



 Abstract 

 

 

Author(s) 
Title 
 
Number of Pages 
Date 

Stanislav Simovski 
Centrally managed launcher application for Android-based MDM 
solution with re-branding capabilities 
47 pages + 2 appendices  
5 May 2010 

Degree Bachelor of Engineering 

Degree Programme Media Engineering 

Specialisation option Digital Media 

Instructor(s) 
 

Kari Salo, Principal Lecturer 
Juha Ranta, Chief Architect 

Mobile Device Management (MDM) is gaining popularity among businesses and large or-
ganizations as it allows for improved integration of that organization’s IT environment, while 
preserving user’s or employee’s ability to personalize the device within the organization’s 
guidelines. However, despite there being demand for it, there is no solution available that 
provides mobile devices to end users with a customized User Interface (UI), branded after 
the organization owning it. That is the problem this solution aims to solve - to provide a fully 
cloud-managed service with a customized user interface on the Android platform. Customi-
zation of the UI is achieved through a Launcher Application, while mobile management itself 
is utilizing Samsung KNOX technology, available on most Samsung smart devices.  
 
This thesis focuses on designing and implementing a set of components to enable robust 
remote configuration of the launcher’s UI. Configuration is transported in JSON format, and 
a cloud-based platform can be used to generate this configuration file, which is then deliv-
ered to the MDM platform. Organization IT admins are, therefore, given full control to enforce 
not only security policies, preventing unauthorized usage of devices, but they can also cus-
tomize the end user experience and to ensure that organization’s visual identity is appropri-
ately represented during usage. This platform has shown to be of interest to hotel chains, 
restaurants, schools, libraries and other organizations that wish to rent mobile devices for a 
limited time to the public, allowing short term use in public places, but preserving user’s 
privacy, while promoting company’s identity at the same time. 

Keywords MDM 
JSON 
Android 
Re-branding 
UI 
Autonomous 
Remote 



 

 

Contents 

1 Introduction 1 

2 Theoretical background 2 

2.1 Section preface 2 

2.2 Information availability and aspects of NDA 2 

2.3 Android launcher 3 

2.4 Mobile Device Management overview 3 

2.4.1 Definition 3 

2.4.2 Typical features 3 

2.4.3 Relevancy 4 

2.4.4 Existing solutions 4 

2.5 Centralized Desktop Management 5 

2.5.1 Image-based management 5 

2.5.2 Management using administrator agents 7 

2.5.3 Mention of relevancy 8 

2.6 Technologies used 8 

2.6.1 Android mobile operating system 8 

2.6.2 JSON 11 

2.6.3 Samsung KNOX 12 

2.7 Usage of Open Source technologies 13 

3 Practical work 14 

3.1 Launcher system architecture 14 

3.1.1 Preface 14 

3.1.2 “Chokepoint-based design pattern” 14 

3.1.3 UI interaction 16 

3.1.4 Launcher components 18 

3.1.5 Application lifecycle 19 

3.1.6 Performance and reliability considerations 21 

3.1.7 Reading and parsing configuration data 23 

3.1.8 Media asset loading 26 

3.1.9 Localization 27 

3.2 Launcher codebase implementation 27 

3.2.1 Preface 27 

3.2.2 Start-up sequence 27 

3.2.3 Data acquisition and processing 29 

3.2.4 Mapping JSON configuration to Android view configuration 30 



 

 

3.2.5 Fault prevention mechanisms 33 

3.3 Other components of the solution 34 

3.3.1 Preface 34 

3.3.2 Obtaining and delivering JSON configuration 34 

3.3.3 Network services 36 

3.3.4 MDM services 37 

3.3.5 Samsung KNOX 37 

3.3.6 Inter-process communication 38 

3.3.7 Backend API (brief mention) 38 

4 Results 39 

4.1 Deployment strategy 39 

4.2 Performance and usability 39 

4.3 Data handling 41 

4.4 Faults 42 

5 Discussion 43 

5.1 Obstacles in development 43 

5.1.1 Launcher application 43 

5.1.2 MDM system and deployment 44 

5.2 Lessons learned 45 

5.3 Limitations and opportunities 45 

6 Conclusions 45 

6.1 Restatement of project goal 45 

6.2 Summary of results 46 

6.3 Implications of results 46 

6.4 Future work 46 

7 References 47 

 

 

 

 

 

 

 

 



1 

 

1 Introduction 

 

Mobile Device Management (MDM) is in relatively high-demand now, due to continued 

growth of the mobile devices industry. As hardware continues to improve, enterprises 

see more ways to incorporate mobile solutions into their business, whether by issuing 

them for the duration of the employment contract or allowing employees to use their 

own devices, supplying integration solutions. However, until now, most MDM solutions 

have focused on continuous use by, for example, employees. Although this is a product 

idea to market – as it increases employee efficiency at a relatively low cost [1], never-

theless, I have observed at work that there is also high demand for managed mobile 

devices intended for public use. This new demand is most likely a result of continuous 

reductions to smartphone and tablet prices, as well as a popular trend of digitalization. 

When renting devices for short to medium periods of time (from a few hours to a few 

weeks) to end customers, there are several important problems that need to be solved: 

 Data privacy: an organization must ensure that user’s private data will be se-

curely erased once the loan time is over. 

 Device security: device’s security policies must not be vulnerable to trivial cir-

cumvention. 

 Deployment: same or similar software setup must be deployed to many de-

vices. 

 Management: devices must be centrally managed, with the ability to control key 

functions, such as factory reset, data wipe or push notifications on one or more 

of them from the cloud-based control panel. 

 Integration: management platform and devices themselves must allow for inte-

gration with the organization’s own IT solutions, such as hotel ERB systems, 

custom applications or organization’s own cloud services. 

MDM solutions such as VMware AirWatch, IBM Maas360 or Soti provide some of these 

functionalities, such as data privacy, automatic enrolment or centralized management.  

However, I was not able to find any solutions on the market that provide even some 

level of UI customization without resorting to “Kiosk mode”(running a single purpose-

built application on the device). [2] [3] [4] 

 

At Hublet Oy, we focus on a different type of MDM, providing a hardware and software 

solution for public use. Short-term loans for visitors in places such as libraries, hotels, 



2 

 

restaurants of simply lounges in different places is the focus of our business model. 

While working there, I had the opportunity to observe that niche of the market, and saw 

rather high demand for our solution, and could also get customer feedback first-hand 

about the types of features, which customers desired for the intended application of 

such a solution. Specifically, during the summer of 2016, there has been a lot of inter-

est in an MDM solution that allows for transmission of brand identity throughout use. 

Among those who were interested were several hotel and restaurant chains, as well as 

an insurance company. Given the interest demonstrated by our customers, it was clear 

that a solution, which is targeted for public use of mobile devices is needed, and 

providing such a solution is the goal of this project. A scalable and fully-featured MDM 

solution is a very large topic, therefore for the purposes of this thesis I will focus on our 

solution’s most innovative aspect: cloud-managed user interface. Since Android is our 

target platform, customization of the interface was achieved by developing a highly 

configurable Android launcher application. Development of this launcher application, its 

system architecture, deployment and challenges faced along the way constitute the 

scope of this thesis. 

2 Theoretical background 

2.1 Section preface 

This section describes technologies relevant to this project, why those technologies are 

used and how they are relevant. It also outlines solutions the market provides as alter-

natives, what those solutions possess, and what they lack, which makes this project 

relevant. 

2.2 Information availability and aspects of NDA 

Due to the highly secure nature of this industry, most of the material and research is 

not available to the public. MDM solutions are for the most part focused on B2B con-

tracts, and as such contain a fair amount of confidential information, preventing publi-

cations. In addition, cloud-managed user interface on mobile devices is something that 

has never been done before, which limits the amount and quality of relevant materials. 

It could be speculated that the reason for such low availability is that until recently there 

was no demand for such solutions due to high prices of smart mobile devices. Regard-

less of the reason, this solution is highly innovative, which limits the amount of availa-

ble information that could be applied to its development. 

 



3 

 

In addition to the above, I am also required to maintain a certain level of non-disclosure 

in order not to compromise platform security and preserve customer confidentiality. 

Therefore, I may be forced to use ambiguous names when describing certain compo-

nents: for example, exposing certain class names can compromise security and as 

such I will refer to them by their intended purpose instead of a real class name. Also, 

some custom Android Intents, permissions and Content Provider schemas are used, 

which I am also not able to disclose. However, all that information is simply implemen-

tation details, which are not essential to, or representative of the project’s overall idea, 

and thus should not compromise this paper’s academic value. 

2.3 Android launcher 

In Android, a launcher application is the user’s first level of interaction with the Android 

OS. A launcher typically consists of a set of home screens (desktops), which host sev-

eral different UI components such as Widgets – miniature application views, that can 

be imbedded in other applications [5] or static components such as application 

shortcuts. A user is typically starting other applications from the launcher and there are 

many applications which do not allow any other UI-based start-up method, other than a 

launcher shortcut. Most launchers, except those intended for use as “Kiosk mode” ap-

plications (an application designed to be the only one users can interact with, and pre-

vents any other applications from being run), also have a so-called “application 

drawer”, which contains icons allowing the user to graphically launch any application 

installed and launchable on the device. It could be speculated that this is the reason 

why launchers got their name, however the true reason for this fascinating phenome-

non is not within the scope of this thesis. There are several different launcher applica-

tions available on Android, besides the default one, developed by Google (see Appen-

dix 1). 

2.4 Mobile Device Management overview 

2.4.1 Definition 

Mobile device management (MDM) is a type of security software used by an IT 
department to monitor, manage and secure employees' mobile devices that are 
deployed across multiple mobile service providers and across multiple mobile op-
erating systems being used in the organization. 
Mobile device management software is often combined with additional security 
services and tools such as Mobile Application Management to create a complete 
mobile device and security Enterprise Mobility Management solution. [6] 

2.4.2 Typical features 

A typical MDM solution usually includes at least the following set of features: 

 One or more software platforms supported 



4 

 

 Ability for users to enrol their device to the MDM solution 

 Remotely locking devices 

 Remotely wiping device data/performing factory reset 

 Wiping certain pre-defined data directories on the device 

 Role-based authentication 

Other features may include location tracking, hardware control (e.g. disabling device 

camera, or forcing a vibration signal), single sign on integration (e.g. signing into the 

device with the organization’s account), etc. [4] 

2.4.3 Relevancy 

As the topic of this thesis itself is not specifically about the MDM solution, it is important 

to explain the relevancy of this component to the topic, on which I am focusing: custom 

cloud-controlled Android Launcher application. Because this launcher application is tar-

geted at organizations deploying many devices at once to one or more of their facilities, 

it must have a robust and scalable distribution method as well as be configured autono-

mously, without end-user interaction. As there were several reasons to make this appli-

cation capable of being independent (more information on that will be in the next chap-

ter), it’s primary method of integrating with the customer’s IT environment will be the 

MDM system that installs it. And while this launcher application can function without a 

custom settings provider, its primary feature set would be lost. As such I required an 

MDM system that bundled integration with the cloud API with a specific component that 

would supply this launcher application with custom setting. It makes sense to offload 

customer-specific information handling into the MDM component for security purposes 

and to make sure that the launcher application itself is not extremely environment-de-

pendent. 

2.4.4 Existing solutions 

There are many MDM solution available today. Among the biggest are SITI MobiCon-

trol, VMWare AirWatch and IBM MaaS360. Samsung also provides an MDM solution 

for its devices, using Knox API. In Finland one of the biggest MDM providers is Mira-

dore. However, all these systems are targeted towards employees, rather than public, 

and as such do not provide the level of visual customization required for brand commu-

nication throughout the end user experience. 

 

Android system itself does also provide a very simple API, called Device Administrator, 

aimed at use by an MDM platform, but it’s feature set is very limited. Most MDM sys-



5 

 

tems on Android are built using this API, which allows basic functionality such as eras-

ing device data (factory reset), locking the device, password strength checks and en-

forcement and a few others, such as location tracking. MDM solutions often extend 

upon these functionalities, although there is not a lot of flexibility one can achieve with-

out building a custom image of the Android system. Samsung KNOX API is based on 

Android Device Administrator; however, KNOX extends Device Administrator so much 

that, its base functionality is negligible compared to what KNOX allows developers to 

do. 

 

The exact details of device enrolment to any of these systems varies on customer per 

customer basis, therefore they are not openly available, however in general several 

methods are supported, including out of the box setup, where some generic enrolment 

software is pre-installed on all manufactured devices, and managed devices simply 

need to be registered in the MDM cloud using information from the purchase. Most of 

the existing MDM solutions, however, are targeted towards employees and Bring Your 

Own Device (BYOD) concept, and as such provide tools for enrolment of any device, 

usually via manual installation of the MDM administrator agent application. 

 

Since the launcher application, providing the UI, is not dependent on the environment 

under which it runs, it theoretically is capable of being installed under any existing 

MDM system, that provides application control capabilities, such as installing applica-

tions silently and modifying default application settings. 

2.5 Centralized Desktop Management 

As this solution’s UI is primarily delivered through a launcher application, which is re-

sponsible for the visuals and interaction with device’s desktop, it is useful to explore 

centralized desktop configuration solutions that exist on other platforms. 

2.5.1 Image-based management 

Traditionally centralized management has been done through system images (ROMs). 

The benefits of using a standardized pre-configured image date back 20 years ago [7], 

and now cover all the major operating platforms. Metropolia, for example, uses net-

work-distributed images to configure computers inside the campus area, and most sys-

tem providers have a remote desktop management solution as well, such as Microsoft 

Remote Desktop or Apple Remote Desktop [8] [9]. While not specifically aimed at it, 

pre-configured ROMs can include custom desktop configuration. The benefits of this 

approach are increased predictability – since the system is configured the same on 



6 

 

every machine, the only varying factor during deployment is the configuration of ma-

chine’s hardware, and a high level if control achieved through manually constructing a 

precise snapshot of an operating system with all of its settings.  

 

At Hublet, our current solution uses a customized Android ROM image to enable re-

mote management of devices. All of the devices have to be flashed with this custom 

image, in order to ensure that our software stays on it, gets the required level of access 

and is secure. This approach has proven to work, with some difficulties, however, there 

are many disadvantages to this approach: 

 From my personal experience pre-set images significantly increase loading time 

on boot, especially if the configuration is tied to the user profile. In Metropolia 

campus I have measured the start time of the computer to be on average 

112(+/-2) seconds (measured on 6 different computers using the timer on my 

phone), compared to 12 seconds that my home desktop PC takes to boot, from 

pressing the power on button, to being in a work-ready state. Similar experience 

was observed at Aalto university, which uses the same technique to pre-config-

ure their on-premises devices. 

 Global changes to the configuration are slow, as they require the computer to 

restart. While management software usually provides a way to enforce a restart 

to all managed devices, it doesn’t change the fact that due to having to down-

load and update the image, or re-download a new image entirely, any global 

change to the system configuration will take a long time to deploy, significantly 

disrupting workflow, and potentially having a significant cost to the organization, 

if it employs many managed devices. 

 Not compatible with BYOD concept. When using a custom ROM device’s oper-

ating system is replaced with the organization’s custom image. If the end user is 

not willing to replace the system running on their own device with a managed 

image, then organization’s IT department cannot effectively manage their com-

puter. As BYOD gains popularity, ROM-based management solutions will most 

likely lose value. 

 On mobile, as I have mentioned, every device using a custom ROM must first 

be flashed with it before being shipped to the customer. This adds to the cost of 

deployment, as flashing large quantities of devices is inefficient outside of the 

production factory. Furthermore, updating the system is extremely cumber-

some, due to a large risk of making device unusable during the process, and a 

large amount of precautions that need to be taken to enable a robust update 



7 

 

process. Of course, the above issues of long loading times for each new user 

are true for the mobile devices as well, and we had to work around that by mod-

ifying the lifecycle of the device, so that it performs the boot and applies config-

uration changes during downtime. 

2.5.2 Management using administrator agents 

There are commercial solutions which attempt to solve the issues caused by Image-

based management by enabling end users to enrol any device to management system 

using administrator agent applications. Administrator agents are a type of applications 

which can perform device management by accessing various system settings on the 

system for which they are built. This is not an official term, therefore it’s definition is 

subjective, but the purposes of this text, it shall be sufficient. One of the most feature-

complete solutions for device management across both major desktop and major mo-

bile operating systems is ManageEngine. It uses built-in administrator functions in the 

systems it supports, which allow the admin agent application to perform device man-

agement over the network. A centralized management UI can be used by IT adminis-

trators to enforce security policies on managed devices. Because there are differences 

between operating systems as to which settings are and are not available for the admin 

agent to control, the feature set of any management solution will vary on a system by 

system basis.  

 

For Windows ManageEngine does provide a certain level of UI management through 

desktop configuration such as shortcuts, wallpapers, text DPI, resolutions, tray icons, 

as well as modify the admin agent logo to adjust the organization’s brand. Through ap-

plication policies it is also possible to modify the visuals of the operating system by in-

stalling applications such as Stardock Fences, which allow for changes to how desktop 

behaves. It should be noted, however, that while management solutions provide a way 

to enforce application policies, they do not necessarily provide a way to control configu-

rations of these applications. For example, we frequently get requests from customers 

to enable an application to run with certain settings on all their devices, and while the 

increased level of access does allow our admin agent to access application’s internal 

persistent storage directory, it requires specific application knowledge to be configured 

each application to be run with pre-set settings. [10] 

 



8 

 

2.5.3 Mention of relevancy 

As a final note in this section, I would like to mention, that most of the existing solutions 

are aimed at companies, which wish to manage devices used by their employees. As 

such they are focused on separating private data from corporate data, as well as long-

term usage and long-term accounts and integration. The solution described in this work 

is aimed mostly at public use, in schools, libraries, hotels or restaurants, as well as any 

other organization wishing digitalize their customer experience. As such it must accom-

modate short-term usage, and ensure privacy between loan periods. All data and set-

tings are treated as temporary and persist for the duration of the loan, which simplifies 

data management, however settings changes must happen very quickly as long load-

ing times for every loan would be very inconvenient considering that usage sessions 

are much shorter. 

2.6 Technologies used 

2.6.1 Android mobile operating system 

Android is the largest mobile operating system in the world. It is founded and main-

tained by Google and is an open source technology.  

As can be seen from the figure above, Android had 87.6% market share in the second 

quarter of 2016 [11]. This dominance was reached through a non-restrictive distribution 

1  Figure 1 Source: IDC, Smartphone OS Market share 2016, 2015 



9 

 

system and open source licensing model. Being open source Android significantly low-

ers the barrier to entry for hardware manufacturers, as they have a fully featured mo-

bile operating system that they can modify to suit their needs or release devices with 

the stock version provided by Google. In addition, Android does not enforce the usage 

of Google services such as Google maps and Gmail, even though the system comes 

with those services built in. As such all of end-user components, including the app 

store can, in theory, be replaced by vendor’s own versions, if they so choose. Together 

these features lower the barrier to entry and facilitate user-centric competition, which, 

as many believe, has led to Android’s dominance in the mobile OS market. [12] [13] 

 

There were multiple reasons why Android had to be chosen for this MDM platform. The 

biggest reason, however, was the fact that both I and my colleagues were already fa-

miliar with the system, and the first iteration of our product uses Android with a custom 

ROM image. As such we had a lot of experience with the Android platform, and transi-

tioning to a different one would incur too high a cost. Furthermore, it was decided to 

use Samsung KNOX technology to provide our MDM agent with increased level of con-

trol and security. As Samsung uses their custom version of Android for all their devices, 

and KNOX is only available on Samsung devices, Android would have to be the plat-

form for which we need to develop. And finally, among the two major operating sys-

tems for mobile devices (iOS and Android), Android is the one which allows for modifi-

cations to the user’s home screen and application drawer, making it the best candidate 

for our solution’s aim to provide customers with extensible rebranding options. 

 



10 

 

 

Figure 2 Android System Architecture. Source: [14] 



11 

 

As Figure 2 shows, Android runs on Linux Kernel, which provides the lowest level of in-

teraction with device’s hardware components, threading, power and memory manage-

ment. On top of the Linux Kernel, Android uses Hardware Abstraction Layer (HAL), 

which provides higher level access to device’s hardware such as Bluetooth or Wi-Fi to 

application developers. Prior to version 21 of the android API (Lollipop), Android appli-

cations ran on Dalvik runtime. On API level 21 and higher, Android Runtime (ART) is 

used as the default runtime, and applications run in separate processes, each with their 

own instance of the runtime. Applications may even declare to use multiple processes 

per application, and we utilize this ability in our solution, to enable smoother operation 

and lower the risk of reaching memory limits while running RAM-heavy tasks. Both 

ART and Dalvik execute DEX bytecode, which is a bytecode format designed for An-

droid, and is what Android applications compile to. Again, referring to Figure 2, it can 

be observed that native C and C++ libraries are also used together with the runtime 

(though they are not run using it). Android uses many open source C++ such as 

OpenGL and, in modern versions, Vulkan for graphics, as well as Libc for native C 

code, which are exposed to app developers through Native Development Kit (NDK). 

The core of most applications is build using Java API, through which the entire Android 

OS feature set is exposed to application developers. [14] [15] 

 

2.6.2 JSON 

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is 
easy for humans to read and write. It is easy for machines to parse and generate. 
It is based on a subset of the JavaScript Programming Language, Standard 
ECMA-262 3rd Edition - December 1999. JSON is a text format that is com-
pletely language independent but uses conventions that are familiar to program-
mers of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, 
Python, and many others. These properties make JSON an ideal data-inter-
change language. [16] 

 

JSON is used in this project, as a format for the launcher configuration. I decided to 

use Google’s Gson open source library for processing of this format because it is highly 

tested and maintained by Google, which provides a certain level of guarantee that it will 

not be abandoned. JSON is the de-facto data format for back-end web APIs, which, 

combined with its high readability and the fact that providing a web-based centralized 

management was one of the primary goals of this project, made it an obvious choice as 

the data format. In addition, JSON has low network footprint, due to its compact size, 

which reduces latency and can be especially beneficial in areas with weak or incon-

sistent connectivity. 

 



12 

 

There are certain difficulties which must be taken into consideration, however, when 

using this format: 

 JSON is not strict. It does not have a wide variety of types. For example, it does 

not distinguish between floating point numbers (e.g. 1.563) and full integers 

(e.g. 2). Gson provides parsing capabilities to transfer JSON numbers into the 

correct Java type, but it requires knowledge of which type to expect from the 

source. 

 JSON is not a native Android configuration format. App configuration in Android 

is stored in XML files, and the same format is used for view configuration, there-

fore JSON files need to be parsed before settings defined in them are applied. 

This introduces extra complexity into the application design, as it adds a rather 

significant amount of complexity to the code. 

 JSON schema cannot be enforced. Enforcing compliance with a custom JSON 

schema is outside the scope of this project, and would also introduce too much 

overhead, as all configuration files would need to be read twice: first to verify 

validity and then to parse the actual data. Since smooth and responsive user 

experience was one of the goals for this project, such approach could not be 

taken. It is possible to verify validity of the file upon creation, however that is 

outside the scope of this thesis. 

2.6.3 Samsung KNOX 

Samsung KNOX is one of the most secure mobile management platforms on the mar-

ket. It consists of multiple features, that operate on different layers of the device on 

which it runs: from extensive OS control, to verifying OS integrity and detecting whether 

the device has been tampered with. KNOX operates on very low level, going as far as 

being embedded into hardware of KNOX-enabled devices. It received certifications of 

technology security requirements from various government organizations throughout 

the world, including Finnish KATAKRI II certification (approved 09.2015). [17] 

 

The primary 3 reasons for choosing to tie our MDM platform with Samsung KNOX were 

1. It is extremely thorough and secure, which means that using it would allow us to 

guarantee data security to virtually any organization, including military. 

2. It is built into every modern Samsung device. This was a critical feature, as 

manual enrolment of large quantities of devices into our MDM system would 

significantly slow down deployment and incur heavy costs. Samsung Knox in-

cludes a feature for enrolling any device into an MDM system over the air out of 



13 

 

the box, without any manual installation, which would allow our customers to 

easily set up their Hublet devices when installing them on site. 

3. Our current iteration already utilizes Samsung devices and we have strong con-

tacts and relations with the company. 

 

One of the biggest issues with Samsung Knox is that this technology is still relatively 

new. Samsung KNOX was first announced at Mobile World Congress 2013 on 26th of 

Feburary. [18]. This would make it almost 4 years old. While for most IT sectors this is 

a long time, usually IT security takes longer to mature. KNOX API architecture is still 

being actively changed, and due to its low level integration, there can be rather large 

gaps in available features between different devices, as KNOX cannot be fully updated 

due to it being embedded in the hardware. 

2.7 Usage of Open Source technologies 

Open Source is getting more and more popular. The quality of open source libraries 

and solutions can, in my experience, easily compete with commercial alternatives, and 

as such various open source technologies, besides Android OS itself, have been uti-

lized in this project. A downside to open source code is that there is no warranty, and 

no guarantee that a library will be maintained in the future. In addition, open source 

code often does not go through as rigorous testing as commercial code does, and as 

such can contain bugs and other issues, which can affect the product in unexpected 

ways. As of this moment the following open source technologies are used in this pro-

ject: 

 Android and it’s support libraries 

 Apache Commons (utility methods) 

 Gson (JSON processing) 

 Mockito (for tests) 

 EventBus (for help with synchronization) 

 Picasso (for image processing) 

I attempted to avoid using too many dependencies to minimize security risks and lower 

the application package size. 



14 

 

3 Practical work 

3.1 Launcher system architecture 

3.1.1 Preface 

This section describes system architecture of the configurable launcher application, 

which is a focus of this thesis. It will contain description of context in which the applica-

tion needed to be developed, important considerations for the overall application de-

sign, and details of the application’s architecture and the components it requires. More 

logic-oriented description of the core concepts of this application will be presented in 

the implementation section. 

3.1.2 “Chokepoint-based design pattern” 

One of the ways to prevent so-called “crash loops”, where the launcher crashes, and 

upon being restarted by the system immediately crashes again, was to follow the so-

called chokepoint-based design pattern. I coined the term myself for lack of a better al-

ternative, because the idea is that all the possible code paths must go through this 

common sequence, a “chokepoint”, of sorts, hence the name.  

 

This software design pattern is based around “chokepoints” –  pieces of code which are 

very simple, and unlikely to crash, that start off a complex sequence of code, which 

may crash. A requirement for a chokepoint is that it must always run first, and that all 

chokepoints must be in a “normal” user flow. That is: they must never be created to 

cover edge cases, such as, for example, when the program is run on a device for which 

it is not intended. The assumption is that when appropriately used, more generic 

chokepoints will cover those edge cases anyway. Another requirement of a chokepoint 

is that it must only contain two code paths: normal and failure. A normal code path 

kicks off more complex code, while a failure code path must attempt to circumvent the 

issue and restart the complex code. In Android it was usually a good idea to treat 

onCreate methods as chokepoints, because the system runs these methods before 

most of the app’s code. 



15 

 

 

Figure 3 Chokepoint-based code design 

From the diagram, above it can be seen that there are a mostly two ways that this ap-

proach can fail: when the recovery method crashes and if the crash watcher itself 

crashes, in case a more complex monitoring method is used (such as a monitoring 

thread). For that purpose, it is usually a good idea to keep the crash watcher and the 

recovery methods as simple as possible, so that they do not increase the chances of the 

application crashing, instead of lowering them. In my code, I tried to avoid complex mon-

itoring logic and used generic try/catch blocks when writing chokepoints. 



16 

 

  

Figure 4 Example of a chokepoint: handling errors in fetching launcher configuration data 

In Figure 4, launcherJson could be null or malformed, which would crash the applica-

tion, as it requires launcherSettings variable. If an error occurs the recovery 

method is to instantiate the variable using baked in verified settings with the default 

constructor – new LauncherSettings(HubletLauncherApplication.this). This 

code runs in the Application class and is invoked as one of the call-backs set in the  

onCreate method. When all settings have been correctly parsed, and verified, this 

method will set a flag that unlocks application’s main UI, allowing for further interaction. 

While the application is locked, further interaction is prohibited and a pre-set image is 

displayed. It should be noted, that in the code snippet in Figure 4, the “Complex code” 

from Figure 3 is also instantiation of the LauncherSettings class. This code launcher 

parsing logic for the launcher settings JSON, and while it is repeated in the recovery 

block, the general assumption is that baked in settings used in the classes “recovery 

constructor” are well-tested and will not crash. Furthermore, the “Continue execution” 

node in Figure 3 does not prohibit further chokepoints in that code path, assuming they 

are each covering a complex code path responsible for one isolated set of functionality 

(e.g. parsing, displaying UI elements, animating or storing data). Chokepoints may also 

be located inside the recovery code path, but that is not a good practice. 

3.1.3 UI interaction 

Typically, Android launchers enable user navigation between launcher screens by hav-

ing two sets of swiping views – home screens and application drawer (from now on: 

just drawer, for short). Users switch to the drawer by pressing a button that is fixed on 

the home screen views and they can switch back to the home screens by pressing An-

droid’s pre-defined home button (on many devices it is a physical button, instead of an 

try { 
    launcherSettings = new LauncherSettings(HubletLauncherAppli-
cation.this, launcherJson.getAsJsonObject()); 
    updateLauncherSettingsListeners(); 
} catch (ClassCastException | NullPointerException e){ 
    Log.e(LOG_TAG, "CRITICAL ERROR! Json settings null or wrong           
format. Settings will not be applied. Using built in de-
faults."); 
    Log.e(LOG_TAG, "Launcher settings: \n"+ HubletUtil.jsonTo-
PrettyString(launcherJson)); 
    e.printStackTrace(); 
    if(launcherSettings == null) launcherSettings = new Launch-
erSettings(HubletLauncherApplication.this); 
} 
if (allSettingsReady()) unlock(); 

 



17 

 

active area on the touch screen). This method of interaction stems from Android’s de-

fault launcher, which many of the existing launchers are based on. Drawer, as well as 

home screens, in all publicly available launcher applications, are based on a fixed grid. 

Users can move items between grid cells, however they are not allowed to modify the 

grid size and only widgets can usually be scaled in size, in a very limited way. Further-

more, other Android launchers are not autonomous and require user interaction to 

change any settings, and default launcher application requires user interaction to be 

set in system preferences. Due to the requirements of this project to have a launcher 

that can be deployed, configured and run without any user interaction, forking Android’s 

default launcher and basing this solution on that was not an option. A lot more freedom 

in UI customization was required than a fixed grid can provide, and refactoring the code 

to use a different layout would have been less efficient than starting from scratch. Also, 

entire MDM solution that the launcher belongs to, must be fully autonomous from the 

end-used perspective, and not require any interaction to configure. Therefore, this 

launcher was designed and implemented completely from scratch, without any existing 

codebase, and UI interactions for it were designed to meet project’s requirements. 

 

Primary means of interaction within this launcher application was designed to be swip-

ing. There are multiple possible desktop and drawer screens that the launcher can be 

configured to have, however since re-branding and completely customizable UI was 

one of the primary goals of this project, I designed the UI interactions in a way that 

does not depend on any buttons. By swiping between desktop and drawer screens ver-

tically and within desktop and drawer horizontally, users can navigate launcher’s UI 

components without the need for extra pre-set buttons, allowing customers more con-

trol over launcher visuals. In addition, since Android’s visual convention is to animate 

between drawer desktop views by shifting them vertically, while allowing users to swipe 

between individual screens horizontally, visual convention is also not broken. By using 

a customized ViewPager(VerticalViewPager) for vertical swiping between drawer 

and desktop sections, while having standard horizontal ViewPager for navigating be-

tween screens it was possible to achieve seamless navigation between all application 

components without any extra fixed UI components that customers can’t modify, and a 

button to switch to drawer using the convention that most android users are accus-

tomed to is also available as an option, should the customer choose to use it. 



18 

 

3.1.4 Launcher components 

The launcher application contains a set of higher-level components that are each re-

sponsible for a subset of the overall functionality. One of the primary reasons for split-

ting application code into components was to facilitate chokepoint-based design re-

quirement of having high level chokepoints for each set of complex functionality. The 

following diagram shows launcher component structure as well as primary responsibili-

ties of each component: 

 

Figure 5 High level component overview 

Application class

• Receives settings

• Stores settings objects (other components access them through 
application context)

• Controls application state (locked/unlocked)

• Allows any application component to listen for settings changes

Launcher control service

• Can trigger settings change events

• Continuously gets the settings from an available source

• Informs any class bound to it, if new settings are detected

Data classes

• Parse settings

• Provide helper methods for UI classes (such as getting already 
constructed LayoutParams objects

Activities

• Sets up UI components

• Listens to and refreshes UI on settings changes

UI components

• Contain custom configurable views

• Apply settings from Application class

• Use Picasso library to load required image assets

Broadcast Receivers

• React to system-wide changes and events

• Can trigger settings change events

• Update settings when appropriate to match system changes



19 

 

To maximize code flexibility, components have been designed to have as little depend-

ency on each other as possible. For example, while in the current implementation Ac-

tivity and Fragment classes are the ones listening to settings change events and re-

loading higher level components when any are detected, the implementation of the lis-

tener interface can be made in any class, including individual UI components, which 

may wish to listen to changes specifically pertaining to that component. Also, while cus-

tom UI components can be configured using the data (settings) classes, they are not 

required for those views to display. In addition, none of the settings classes require 

other application components, and can be easily copied and used in another project, if 

desired. 

 

For platform compatibility, I attempted to avoid creating too much custom view logic 

and layouts, and instead used combinations of Android provided views, configuring 

them through mapping JSON settings to Android LayoutParams objects and other An-

droid-provided configuration methods. The reasoning behind this approach is to avoid 

having too much custom, unconventional logic, which may introduce severe problems 

as the Android platform develops. The assumption in this case was that further ver-

sions of Android will attempt to avoid breaking changes to components using Android 

system APIs, however the same is not guaranteed for components implementing cus-

tom logic. 

3.1.5 Application lifecycle 

A default launcher application in Android starts at boot time automatically. By design of 

our solution, the MDM system is responsible for configuring devices to set this custom 

launcher as a default one. Once the launcher starts it is responsible for obtaining set-

tings from a content provider, if one is available, and applying them. Application class is 

used to start the launcher control service, which begins obtaining settings. As that op-

eration, can take a non-negligible amount of time, the application class continues exe-

cution, by starting an activity that provides the user with a non-interactive basic activity 

to communicate that the launcher is starting. When the launcher is ready to display its 

home screen, this basic activity is automatically removed and the primary activity is 

started. This primary activity is the highest-level container for all the launcher’s UI com-

ponents. As of this moment the launcher only contains these two activities. It may be 

beneficial in the future to add more activities, for example: for configuration from a de-

vice running in “administrator” mode, however that is outside the scope for the current 

implementation target.  



20 

 

 

Figure 6 High level application start-up sequence with chokepoints 



21 

 

Figure 6 details individual high-level tasks of each component in the start-up sequence, 

as well as chokepoint placement in each of them. As can be seen from Figure 6, there 

is no direct connection to the launcher control service, due it being started by the Android 

system. While it can often be assumed that the service starts almost immediately upon 

being bound to, it is not guaranteed, meaning that data exchange between the service 

context binding to it, must be properly synchronized to avoid null pointers and race con-

ditions. Because the service is local (i.e. it runs in the same process as the main appli-

cation), there is no need to implement interposes communication, and using a simple 

interface call-backs is sufficient. The application class adds itself to the service’s listeners 

for the OnNewSettingsListener interface and, when the service obtains new settings, 

it simply calls the appropriate interface method on all listeners. 

 

Figure 6 also shows that the only way to launch main activity is through the lock status 

listener. When Application class creates all settings objects (either with settings from the 

service or built-in fallback settings), it changes the lock flag and informs all listeners for 

the lock status of this change. Welcome activity implements the lock listener interface. 

If, and only if, it detects that the application is unlocked, it will dismiss itself and start the 

main activity. This was done for two main reasons: to prevent the event of UI changing 

due to new settings while the user is interacting with the application (UI refresh is forced 

the first time, while further updates to settings will apply when the affected view is not in 

focus), and to prevent the user from seeing potentially unauthorized content. 

3.1.6 Performance and reliability considerations 

As a primary way of interacting with the user, a launcher application requires more reli-

ability than most other types of applications. If a launcher crashes and does not re-

cover, the user has no way of launching any other applications, and in the case, that 

this launcher is the only one installed on the device, it can be extremely difficult to re-

cover, as the user would be unable to access the MDM UI to reset the launcher or 

open application store to downloading and install a different launcher. For that purpose, 

reliability had to be one of the primary concerns during design of this application.  

 

Following chokepoint-based design is one of the ways to keep the code base relatively 

crash-resistant, however that design pattern is focused on preventing crashes, at any 

cost, rather than attempting to recover and preserve application functionality. While it is 

extremely important that the application does not crash, several other precautions have 

been taken to account for less critical errors, and preserve most of the application func-

tionality, while disabling that, which has failed: 



22 

 

 Settings classes were designed to use fields, each having a default value. If a 

setting fails to be parsed, the field’s default value will be used for that parame-

ter.  

o For example:  

public AnimationSettings touchDownAnim = new 

AnimationSettings(); 

o The above field contains animation settings for a UI element settings ob-

ject. AnimationSettings have a default constructor which simply 

does not have any animation defined.  

o A UI element using such settings will not have any animation, but it’s 

other functionality will still be intact. 

 All items that require media assets (e.g. images) use a default image that 

comes bundled in the application package. When an asset is requested from 

the network, it replaces the default asset, however if that operation fails, default 

assets will be used for the requesting UI element, preserving remaining func-

tionality that may not have been broken. 

 

In addition to reliability; performance has also been considered when designing the ap-

plication’s overall architecture. Since the launcher’s main UI consists of two sets of 

views, each of which using it’s own layout and view hierarchy, Android’s ViewPager 

classes have been chosen as a primary UI elements to display launcher screens. Per 

Android convention, FragmentPagerAdapter is responsible for binding data to 

ViewPager pages. For this launcher two adapter classes could be used: 

FragmentPagerAdapter and FragmentStatePagerAdapter. 

FragmentPagerAdapter is optimized to work with Android Fragments (UI compo-

nents that can be used to display relevant data in a standardized layout) [19]. Because 

launchers typically do not have many pages, and the ones this launcher uses can also 

contain media obtained from the network, FragmentPagerAdapter is a better choice 

than FragmentStatePagerAdapter. While FragmentStatePagerAdapter con-

serves more memory by destroying the fragments when they are not in view, it also 

means that those fragments need to be fully recreated, their settings re-applied and as-

sets either downloaded or fetched from the cache, every time a user swipes them into 

view. As such for small number of complex fragments such as those used by this appli-

cation, FragmentPagerAdapter works better, by allowing Android system to recycle 

existing fragments instead of destroying them. 

 



23 

 

To minimize network footprint and provide users with smooth experience, image assets 

are loaded using Picasso open source library. Picasso automatically downloads, 

caches and scales images and can set them into target views [20]. Since it is rather 

popular, developed and maintained by a well-established enterprise and contains all 

the required functionality for this project’s requirements, I decided to use it for image 

processing and caching. Picasso maintains an automatic cache in the app’s private di-

rectory on the device, which allows users to see media assets even if there is a net-

work interruption, as well as significantly reduce loading time (varies depending on the 

amount and size of assets set by the MDM system administrator). 

3.1.7 Reading and parsing configuration data 

Before data is read, it must be acquired from a content provider. By design, Hublet 

MDM solution consists of a set of components that interact with each other, allowing 

the customer to configure a set of devices that run this solution per their requirements. 

Settings for each component, including the launcher are therefore customer-specific 

and can have varied origins, as well as customer-specific integration (e.g. they may be 

modified based on end-user authentication method – if the user authenticated with 

Shibboleth that might result in different device settings than if they did not authenticate 

at all, and just picked the device up to watch a video). To allow greater flexibility without 

inflating launcher code too much, it was decided that the best approach would be to of-

fload the data acquisition to a separate Android application – the MDM agent app, 

which connects to backend network services, handles authentication and obtains ses-

sion-specific settings both for the device itself and any other Hublet components, such 

as the launcher. 

 

To allow for even more flexibility of deployment, it was decided to use a standard An-

droid mechanism for providing application-specific data – Content providers. A content 

provider is a class that can be implemented in any Android application. It reads data 

from files and data structures (e.g. an SQLite database) and can provide pointers to 

that data to any application that is authorized to query it. The pointers are Cursor ob-

jects, which in Android are used to retrieve data from SQLite databases. A cursor is 

usually pointed by the Content provider at a specific row that matches caller’s query cri-

terias. Caller application, in this case: the launcher is then responsible for using the 

provided cursor to retrieve the data from the table. Because this is a native Android 

mechanism, it can be safely assumed, the breaking changes to this  

 



24 

 

One of the primary requirements for configuration data was to account for malformed or 

invalid input at a very high level. Since configuration data is delivered in JSON format, 

there are no strict rules for it’s structure or conformance of data within to the specific 

scheme expected by the launcher’s parsing logic. For that reason it was decided to of-

fload all parsing to a set of specialized settings classes, each of which takes a Gson li-

brary’s JSON object and attempts to read and map it’s data to the respective Java 

fields. 



25 

 

 
Figure 7 Settings classes 



26 

 

Figure 7 shows a set of classes that parse JSON objects. In interest of space and for 

the sake of being concise, insignificant class fields and methods are not displayed in 

the diagram. These classes can all be instantiated using JSON configuration. As could 

be seen from Figure 6, launcher control service is the component responsible for ac-

quiring new settings. It retrieves JSON in String format from a provider, if any are avail-

able in the system, compares it to the currently available settings (if none are active, it 

will compare to null), and if the newly obtained settings are different, it attempts to 

parse the string into a Gson library’s object representing the appropriate JSON struc-

ture (e.g. JsonObject, JsonArray or JsonPrimitive) and if that succeeds, the 

service calls listeners for those settings groups that have been changed. Since it is a 

locally bound service, any application class that runs in the same process can techni-

cally bind to it and register itself as a listener. However, in the current design, as illus-

trated in Figure 7, the application class is listening for those changes and propagates 

them through its own listener interfaces, that any application component can listen to 

by obtaining application context and adding that component to the listener list, as well 

as implementing the appropriate interface, which can look something like this: 

3.1.8 Media asset loading 

Launcher may be configured to retrieve assets from the network. In clear majority of 

cases, it is expected for those assets to be images, though it may also be icon labels, 

sounds or any other form of media. However, in the current implementation only cus-

tom images for icons, as well as static graphics on the home screen are supported. 

Loading of images is handled using Picasso library for network images. This is typically 

done when creating a view that holds the image. Thus, until an android view requiring 

the image is not created, the settings object contains that image’s url. When Picasso 

loads an image using the same settings object, it will use a locally cached version of 

this image, stored using library’s automatic caching. 

 

Icons may also be created using Android’s ResolveInfo objects, as can be seen from 

constructor of ImageSettings class in Figure 7. In this case icon drawable is being 

retrieved from the ResolveInfo object and stored in the settings object’s instance. 

This may be improved by using a memory mapped file to store icons instead of keeping 

HubletLauncherApplication application =  
((HubletLauncherApplication) context.getApplicationContext());         
application.addDesktopSettingsListener(this); 
 

Figure 8 Example of making the current object listen to changes in desktop settings 



27 

 

them in memory all the time, however since the number of screens in a launcher appli-

cation is not usually large, and the user is expected to navigate between them relatively 

often, it may still be beneficial to keep the icon image data in memory with the settings 

object, to ensure that there are no slowdowns when switching between launcher 

screens. 

3.1.9 Localization 

Localization was one of the requirements for this project. When designing the system 

architecture for this entire project, I tried to avoid complexity as much as possible, to 

make the code more readable and each part of the system easy to understand within 

its context. Localization was one of requirements, that could introduce a lot of complex-

ity into design of the application, so it was important to implement it such that it did not 

introduce any more complexity than absolutely required. As such a decision was made 

to allow any configuration JSON object to contain a localizations attribute. Within 

this attribute must be a set of language code and each language points to another 

JSON object. That JSON object is essentially a copy of the parent configuration JSON, 

and can contain attributes matching any in the parent object. After the parsing logic 

reads the parent, if it encounters localizations attribute, it will read the object under 

the language code matching the system’s current language, overwriting any attributes 

in the settings with the ones provided by the localized version. This way the complexity 

of the code is reduced, and customers have more control over localization: they can 

swap any attribute, including images and dimensions of items for certain languages, 

but don’t have to provide full translations for every item, if they do not wish to. 

3.2 Launcher codebase implementation 

3.2.1 Preface 

This section is an overview of code. It contains little information on the design philoso-

phy or justification for why a decision was made – that is discussed in the previous sec-

tion. Instead this section details specifics of application’s code as well as certain data 

structures. It may provide justification for why particular logic was chosen for certain 

parts of code. Due to high amount of details involved in the implementation, the cover-

age is not full – only the functions most relevant to the scope of this thesis are covered. 

3.2.2 Start-up sequence 

Application’s custom code being is the Application class’s onCreate method. When 

the launcher starts, it binds its local control service in auto-create mode, meaning if the 

service is not running, Android system will automatically create it. After that it initializes 



28 

 

data structures containing references to listeners. Other application components can 

then listen to changes in settings, as well as lock status. Finally, the application checks 

the status of the lock flag – if the launcher was restarted, and already has valid settings 

available, the lock flag would have been saved in the persistent settings, and can indi-

cate that there is no need to wait for settings to process and verify. Then the Welcome 

activity is started.  

 

Welcome activity first checks whether the application is locked by checking the lock 

flag from the application context (Application class). If the launcher is unlocked, it will 

immediately start the main activity without displaying anything. If the launcher is still 

locked (i.e. settings have not finished processing yet), welcome activity displays a basic 

full screen view without any interaction, to inform the user that the launcher is being 

started. There is capability for the welcome activity to display custom content defined 

by the customer, however that functionality is currently disabled before the application 

can be tested enough to ensure that this functionality would not interfere or crash other, 

more important functions. Welcome activity registers itself as a listener to the lock sta-

tus of the application, and once the Application class informs it is unlocked, the Wel-

come activity is automatically dismissed with an animation and the application’s main 

activity is started. 

To prevent malicious use, the first thing that Main activity does is re-verify application’s 

lock status, and if it is locked (i.e. Main activity was started explicitly, bypassing the 

Welcome activity, while the application was still locked), it will return to the Welcome 

screen (activity) and stop further execution. If the application is unlocked normal flow 

continues. Main activity places all its further UI components inside a custom 

RootLayout class extended from Android LinearLayout. This is done to allow for 

global overlays to be easily displayed over the rest of application’s UI. RootLayout 

contains a view that is invisible by default, which overlays all other views in the applica-

tion. Using a static method, any UI component can obtain a reference to the overlay to 



29 

 

display relevant information, such as the number of pages, the user can swipe be-

tween.  

After Root layout is initialized, the VerticalViewPager is instantiated to display 

launcher’s primary sets of views, as demonstrated in Figure9. In the current implemen-

tation, this vertical view pager will have 2 pages: Desktop and Drawer, allowing the 

user to swipe vertically between them. As per the android standard, mapping data to 

views when using a recycler view such as ViewPager, is done by an adapter class 

(MainViewsAdapter in Figure 9), thus all application settings are passed to the 

adapter and it is set to manage data for the vertical view pager. Finally, main activity 

registers a broadcast receiver for the home button press, which returns the user to the 

home screen set of views, to follow Android’s convention. 

3.2.3 Data acquisition and processing 

The idea behind a “push UI” is that once the administrator makes changes, they should 

quickly and automatically reflect in devices they control, be “pushed” to those devices. 

To obtain new settings as fast as possible, I created a service, which runs a thread with 

Android Looper attached to it, that continuously asks the content provider for updated 

settings. Application that implements this content provider is responsible for obtaining 

correct settings in time using whichever mechanism it prefers. On the launcher control 

service, a runnable is posted to that Looper thread on the service using Android’s 

Handler.post() method. This runnable obtains cursor objects for each set of config-

urations (desktop, drawer and global launcher configuration), converts them to Gson 

JSON objects and compares them to existing settings. If the settings do not match (i.e. 

they are new), and the parsing succeeded, it will trigger it’s call back methods on the 

listener. Only one listener can be set per runnable instance. At the end of one cycle the 

runnable will use Android’s Handler.postDelayed() method to post itself again to 

the same thread after a few seconds. This cycle repeats until the error count of the run-

mainViews = new VerticalViewPager(this); 
LauncherSettings launcherSettings = ((HubletLauncherApplication) 
getApplication()).getLauncherSettings(); 
DesktopSettings desktopSettings = ((HubletLauncherApplication) 
getApplication()).getDesktopSettings(); 
DrawerSettings drawerSettings = ((HubletLauncherApplication) 
getApplication()).getDrawerSettings(); 
mainViewsAdapter = new MainViewsAdapter(getSupportFragmentMan-
ager(), launcherSettings, desktopSettings, drawerSettings); 
mainViews.setAdapter(mainViewsAdapter); 
 

Figure 9 Setting main views (desktops, i.e. home screens, and application drawer screens) 



30 

 

nable reaches a certain threshold or the application shuts down. A method in the ser-

vice must be explicitly called by an object that binds to it to start this settings acquisi-

tion. Currently it is started in the Application class’s onCreate method. 

3.2.4 Mapping JSON configuration to Android view configuration 

Most of the challenges in mapping JSON configuration to Android view parameters lay 

in creating Android LayoutParams object from the respective JSON object. Since the 

project required to allow control over precise position of items on the home screen, no 

grid is used there. Instead I use a custom ManagedRelativeView class, extending 

from Android’s RelativeLayout, and each item placed on the home screen is added 

to that view. As such, each desktop item configuration must be parsed into extended 

RelativeLayout.LayoutParams object. ItemSettings class is responsible for this 

parsing. For most of the JSON parsing I used a loop and switch statement method for 

plucking attribute keys that program currently supports, and ignoring other values. This 

makes the code more readable and allows for much easier addition of extra parame-

ters as the application develops to support them. 



31 

 

 

Figure 10 JSON object parsing logic 

for (Map.Entry<String, JsonElement> entry : layoutSett.entrySet()) { 
    switch (entry.getKey()) { 
        case "alignment": 
            JsonObject alignment = entry.getValue().getAsJsonObject(); 
            String[] rules = {"right", "left", "below", "above"}; 
            SparseIntArray mappings = new SparseIntArray(4); 
            int targetId = 0; 
            for (String rule : rules) { 
                if (alignment.get(rule) != null) { 
                    targetId = alignment.get(rule).getAsString().hashCode();                   
                    switch (rule) { 
                        case "right": 
                            mappings.put(RelativeLayout.RIGHT_OF, targetId); 
                            break; 
                        case "left": 
                            mappings.put(RelativeLayout.LEFT_OF, targetId); 
                            break; 
                        case "below": 
                            mappings.put(RelativeLayout.BELOW, targetId); 
                            break; 
                        case "above": 
                            mappings.put(RelativeLayout.ABOVE, targetId); 
                            break; 
                    } 
                } 
            }... 
 

Figure 11 Code example of JSON parsing logic (snipped) 



32 

 

Figures 10 and 11 show the implementation of the logic used for almost all the parsing 

in the application. As can be seen from Figure 11, the action taken when a supported 

attribute is encounters, is not necessarily a function. In fact, most of the time the attrib-

ute value is simply checked, where appropriate and then added to the field, which is 

later read by the UI element using this setting. The JSON for the part of parsing logic in 

Figure 11 could look like this: 

The item is therefore set to be positioned in relation to items with the indicated names. 

In case there are conflicts in positioning order or the items don’t exist, Android handles 

those cases without any errors. Result may ben unexpected, but the application will not 

crash.  

 

When instantiating items from the configuration, a view is created for each desktop 

item, and its ID is set to the hash code of the item’s name: 

        itemView.setId(itemSetting.name.hashCode()) 

Such logic was chosen to allow for assigning readable names for each item, while still 

being able to set unique Android IDs (which must be integers) using those names. 

Other settings include offsets (how far the item is offset in either direction after being 

aligned per the above rules, padding, size, etc.). 

 

In the drawer, this logic could be omitted, since it is based on a grid, and therefore 

each item has the same layout parameters, set by the 

StaggeredGridLayoutManager that operates Drawer screen grid. Instead customers 

are given control over which applications or items are displayed in each drawer screen, 

the size of the grid (number of columns, which controls the size of individual icons), 

margins and padding as well as parameters common to each set of views, such as 

background images, screen titles or item animations. These parameters are parsed us-

ing the same logic as desktop items. 

 

To support multiple devices, it was decided to use relative units for all position and di-

mension values. LauncherSettings is responsible for dividing current device’s 

"alignment": { 
  "left": "internet_shortcut", 
  "right": "youtube_icon", 
  "below": "company_logo", 
... 
 

Figure 12 Example of JSON for alignment rules 



33 

 

screen both vertically and horizontally by an increment value provided in the configura-

tion. Other settings compute size based on these increments. For example, if the num-

ber of increments is set to 100, and a desktop item width is set to 30, it will occupy 30% 

of the screen’s current width (based on orientation). This allows the application to sup-

port many different screens and pixel densities, without restricting customer’s control 

over precision of position and dimension settings (as if they want higher precision, they 

can simply increase the number of increments, reducing the unit size). 

3.2.5 Fault prevention mechanisms 

Most of the fault prevention mechanisms are contained inside chokepoint code, as well 

as in having default values for settings. Each settings class is comprised of public 

fields, which UI elements read. As such all those fields are given a default value that 

does not cause the UI element to crash if read. When a JSON configuration is read 

successfully, those default values are replaced with the ones supplied in that configura-

tion. Nevertheless, an error can still occur if a JSON configuration is read, but the val-

ues supplied are not expected by the element reading this configuration field. I tried to 

design the code of this application in such a way that those cases are handled by 

chokepoints, however that is not always possible to achieve. To cover most likely crash 

scenarios, I have identified several key conditions, to which application is most vulnera-

ble, and added chokepoints to catch each, with a fallback mechanism, in case a crash 

or an invalid state is detected: 

1. Content provider is absent or crashes: 

 Runnable that is responsible for obtaining configurations uses a 

try/catch block an and internal failure count. If an exception is caught, 

or the obtained data is not in expected format (A table row containing a 

json string and a timestamp), the failure count is incremented. Failure 

count is decremented when a successful operation is performed. If the 

failure count reaches a pre-set threshold, the runnable will stop re-

posting itself. 

2. Parsing new settings fails 

 Only Application class holds all the settings objects; all other compo-

nents can access them through the application context reference. This 

way I could place a chokepoint for when settings fail to parse into a sin-

gle place – Application’s callback methods for the configuration runna-

ble’s interface. When a configuration (desktop, drawer or launcher) 



34 

 

fails to parse, it will be set to the built-in generic configuration that is 

bundled with the launcher package. 

3. UI elements get created in an invalid state 

 A common problem in Android, that is not unique to this implementa-

tion, is the state of UI elements. Most often crashes can occur due to 

invalid context or unexpected view hierarchy settings. Unfortunately, 

there is no way to catch multiple occurrences of these crashes within a 

chokepoint, as the system API creates views itself. Therefore, I simply 

did my best to verify the state of UI elements such as fragments before 

populating them with views. In addition, I used fixed container layouts 

for each of the programmatically instantiated custom views, to prevent 

view hierarchy issues that can result from an invalid configuration. 

3.3 Other components of the solution 

3.3.1 Preface 

This section will briefly outline other components in the developed system, which are 

important to the intended functionality of this launcher application. While not directly a 

focus of this thesis, those components are still part of the whole solution and were de-

signed to work together with the launcher, affecting its implementation and codebase 

design. 

3.3.2 Obtaining and delivering JSON configuration 

To modify UI of the launcher application in the way that customers desire, JSON con-

figuration had to be obtained from the cloud-based management platform, which con-

tained integration with customer’s IT environment, as well as a management interface. 

Having the launcher interact with this cloud platform made little sense, as it would 

vastly increase the codebase, with code that is not relevant to the purpose of a 

launcher – to provide users with UI for interacting with other applications. Therefore, a 

separate application is handling data procurement, and may also require user input 

such as credentials to obtain launcher configuration specific to that user, the tablet de-

vice itself, its location or any other malleable input. 



35 

 

 

 

Figure 13 Obtaining JSON configuration 



36 

 

Figure 13 shows, that there are two data sources with which Network service interacts: 

cloud API and local SQLite database. Network service connects and authenticates with 

the cloud API. Once that is complete, the cloud knows which customer this device be-

longs to, and can serve a generic customer-specific configuration. That configuration is 

stored in the SQLite database table, and will be served as a fallback, when no more 

specific valid configuration could be obtained. Afterwards the service inquires whether 

the backend API can provide a more tailored configuration for a set of parameters con-

figured individually for each customer (e.g. the time of day, location of device, current 

user, etc.). If such configuration is available, the network service obtains it and stores in 

the same SQLite table. As Figure 13 details, a timestamp is used when storing this 

data. This timestamp is taken from the system current time in UNIX format, and is later 

used for fallback logic to be able to revert to or swap settings based on the time they 

were acquired. The timestamp is also used for debugging purposes. When the 

launcher queries settings from the content provider that is implemented in the same ap-

plication as the network service, it will be given the most appropriate valid set of config-

urations that are currently in the SQLite table. If no configurations are available, the 

content provider will inform the service that configuration is required, and will wait for a 

few seconds to see if the database gets any updates. If there have been no updates, it 

will return nothing, otherwise it will re-run the query and return the most recent availa-

ble set of configurations. 

 

You may notice from Figure 13, that new configuration is simply stored in the local da-

tabase, and no messages are sent to inform any listeners that new configuration is 

available. While it may change in the future, currently this is by design – Network ser-

vice updates configurations when appropriate, but it is up to the launcher to request 

new configurations. After updating configurations, the launcher will receive the newest 

set upon its next request. At the moment, this is accomplished using the launcher con-

trol service, the specifics of which were outlined in the previous section. 

3.3.3 Network services 

Currently the MDM solution has one network service. This service is responsible for all 

networking operations, and is roughly equivalent in functionality to Android’s Google 

Play Service. The network service runs in a separate process and handles interactions 

with backend API, downloading APKs and configuration JSONs and storing down-

loaded data on the device, when appropriate. The decision to separate this service to a 

separate process is based on two major factors: 



37 

 

1. Network and file operations can be expensive and require a lot of memory. In 

Android, background services that take too much memory are killed in case 

there is a memory shortage (which could happen if the user, for example, 

launches a demanding game). By separating this service into a separate pro-

cess, the chances of it being killed by the system become very small.  

2. Direct interaction with the service can increase component inter-dependency, 

which was undesirable for this project. By having the service in a separate pro-

cess each component had to be designed to be able to operate without getting 

data from the network service, which lessened the negative impact of network 

interruptions or other network and file handling-related issues. 

3.3.4 MDM services 

MDM is performed by a separate administrator agent application. This application uti-

lizes Samsung KNOX API to be able to control most aspects of the Android operating 

system, as well as certain device hardware settings. Like the launcher, MDM compo-

nent obtains configuration settings from the network services, parses and applies them 

to devices it runs on. MDM service is critical to autonomous operation of other compo-

nents, because Android is built around the idea of user interaction and control, which 

makes managing devices remotely without user interaction very difficult. The MDM ser-

vice makes sure that all applications and operations required for autonomous operation 

of the solution have required permissions and that there are no settings in the system, 

which block operation of these components. In addition to that it, of course, allows cus-

tomers to apply restriction policies on all the managed devices, as well as remotely 

configure them as they see fit. Furthermore, it also provides a user interface for “Admin 

mode” devices to be able to configure administrative settings on the device itself. Cus-

tomer organization’s IT staff must authenticate themselves on the device, before they 

can access this administrator interface. 

3.3.5 Samsung KNOX 

Samsung KNOX is proprietary technology, developed by Samsung corporation, which 

we utilize to extend our level of control within the device. It allows to programmatically 

change almost any system setting on an Android device, and is available on all modern 

Samsung devices. Being able to programmatically configure the system is critical to the 

operation of the MDM services, as by default Android will require user interaction to 

edit device settings. KNOX is based on Android’s native “Device Administrator” feature, 

which gives applications with administrator privileges control over certain device func-



38 

 

tions, such as controlling the camera, wiping device data or requiring password to un-

lock the device, as well as remotely locking it. This feature is, however, very limited, 

and most of the MDM functionality required for this solution is not provided by it. KNOX 

extends this feature substantially, allowing the device to be fully managed after a few 

simple one-time setup steps. In addition, KNOX includes an enrolment feature, which 

to enable scalable deployment of the MDM admin agent application on as many de-

vices as customers decide to purchase. Furthermore, an enrolled device stays enrolled 

even after a factory reset, which is also very important for managing a large quantity of 

devices. This feature was critical to our requirements as some of our potential contracts 

using this solution can reach thousands of devices, and the cost of manually installing 

our solution on each of them would be too high. 

3.3.6 Inter-process communication 

As there are multiple components in this solution, that run in different processes, a ro-

bust inter-process communication (IPC) method was required. Android provides sev-

eral IPC methods, each tailored to specific use cases. In the context of this solution, a 

two-way communication method was required for securely issuing requests to different 

components. For that I decided to use Android’s Messenger objects. Messengers are 

wrappers around Android’s Binders, which are used in Android for lightweight remote 

procedure calls [21] [22]. Designing our own AIDL (Android Interface Definition Lan-

guage, used in Android for custom IPC interfaces) interface seemed unnecessary, as 

Messenger contained all functionality required for our components to communicate. 

Main limitation of Messenger is that it can only be used to communicate with Services 

(for example activities cannot use it to communicate to activities in another process), 

however in our solution, only communication with Services was needed. Therefore, I 

created a set of classes that wrapped request-response logic using our company’s own 

protocol, for safe communications between solution’s components. These classes pro-

vide interfaces to services and activities that use them, simplifying communications by 

abstracting synchronization logic and making code more readable. 

3.3.7 Backend API (brief mention) 

Lastly I wish to briefly mention the backend API. While the focus of the project is the 

solution that runs on Android, almost all customer-specific integration as well as cus-

tomization of the launcher and device settings happens on this cloud API. I cannot 

write any details about the structure and logic of the cloud services for security rea-

sons, however it is important to note that this component is the one responsible for the 

correct construction of configuration data, and providing them in an expected and valid 



39 

 

format. The system has been designed in a way that lets it obtain data from any net-

work location (including local network), if it has a server that can provide data in the 

correct format, however it does not include any logic for “fixing” the data, if it is partially 

malformed or invalid, and will simply discard all the data if it encounters any issues. 

4 Results 

4.1 Deployment strategy 

Using Samsung KNOX Enrolment has proven to be very difficult due to lack of infor-

mation available on the usage of the system, however a seamless deployment was 

achieved in the end. Once the MDM system’s administrator agent is installed and 

started by KNOX Enrolment, it downloads other components, including the launcher, 

and sets their relevant roles and permissions. When the launcher is set as default for a 

device, next press of the home button starts it. At that point the MDM agent would have 

already acquired the relevant launcher settings, so when the launcher requests set-

tings, it obtains appropriate settings for the current user and applies them. The wel-

come screen is then removed and the user can begin interacting with the launcher. 

Since MDM agent is responsible for acquiring launcher settings, any customer-specific 

authentication methods would need to be handled by the agent, before launcher is in-

stalled. However, if something goes wrong during authentication, or if the device loses 

internet connection while the launcher settings are obtained, the launcher can still run 

using its bundled settings. 

4.2 Performance and usability 

As a launcher is primarily a UI application, performance was heavily monitored during 

development, and has proven to be surprisingly good, even without many specific opti-

mizations (other than the ones implied by design, such as using ViewPager and holder 

patterns). There are no on-screen frames per second counter in Android, however an-

droid debug bridge displays skipped frames during debug runs, if there are noticeable 

slowdowns.  

 

 

 

 

 

 

 



40 

 

Test device Highest reported skipped frames 

Samsung Galaxy Tab E 9, on a configuration with 10 high-resolu-

tion custom images on the desktop 

screen 

Samsung Galaxy Tab A 0 

Samsung Galaxy Note 10.1 0 

Sony Xperia Z3 0 

Table 1 Performance tests 

Table 1 shows the number of skipped frames reported by Android system over ADB 

bridge. As can be observed only Galaxy Tab E reported any skipped frames, to which I 

can also add that this happened only once, during the first swipe to the drawer screen. 

Presumably the system later cached images used in the views, increasing performance. 

 

Since running applications in debug mode is always slower than running release ver-

sions, it is safe to assume that launcher would not lag on any of the tested devices. 

During performance testing, I did every possible UI interaction with 3 different sets of 

configurations. It should be noted, however, that of all tested devices only Galaxy Tab 

E was the only low-end one, while the rest of test devices are considered medium to 

high end. Note, also, that this test was for standalone launcher application, and not the 

entire solution, because Samsing KNOX only works on Samsung devices, which have 

never been flashed with any non-Samsung OS. Since Sony Xperia Z3 is a Sony de-

vice, and we have flashed the Galaxy Tab E with our custom image, no KNOX-enabled 

applications could run on those devices. 

 

During testing, from an end user perspective there were no crashes when supplied 

configuration and system settings were both valid and compatible, however UI reloads 

in response to settings change have not been very consistent. The launcher is pro-

grammed to apply new visuals upon configuration change, when the view affected by 

changes is not currently on screen. This was done to avoid jarring experiences such as 

UI changing while end-users are interacting with it, however during testing new configu-

rations sometimes didn’t apply even when view was reloaded. Most likely cause of this 

behaviour is Android’s fragment handling logic, where it preserves the fragment in-

stances between configuration changes, and as such the chokepoint that starts recrea-

tion of the view may not be triggered. Furthermore, it was revealed that even after nu-

merous improvements and safety checks, certain combinations of JSON settings can 



41 

 

cause a crash even after bypassing all chokepoints. This most likely indicates that 

some of the settings classes do not have strict enough validity checks. 

 

Overall the launcher has proven to work rather smoothly and well when the configura-

tion is the same, however crashes and inconsistent behaviour still occur when the con-

figuration is being changed, as well as for certain combinations of settings. Another 

possible usability issue caused by certain configurations is the size of application’s 

icons. Launchers typically display applications in fixed grids and each application’s icon 

size is therefore fixed. In this case, however, customers can modify sizes of icons in 

both the drawer and the home screen, which can result in pixelated images if the appli-

cation does not supply an icon of big enough size, of if the custom image from the net-

work is not optimized for the target device’s DPI (dots per inch, often used to measure 

screen pixel density). 

4.3 Data handling 

Three different types of data have been required in this solution so far: 

 Media assets 

 APK files 

 JSON configurations 

Media assets are mostly images, required by the launcher application. I offloaded their 

network handling to Picasso library, which has proven to work very reliably. Even when 

multiple relatively large (500x500 pixels) images were used for icons on the home 

screens, Picasso has loaded and scaled them very quickly. On a network with a down-

load speed of 24Mbit/s, using 5 images of size 300KB-1.2MB, the delay before all im-

ages appeared was approximately 200 milliseconds on the first run. After the first run, 

the delay was completely unnoticeable, because Picasso library retrieved those items 

from cache. 

 

APK files are required for the MDM admin agent to install other components of the sys-

tem, such as the launcher, and in some cases – install third-party applications from out-

side Google Play Store. While downloading the APK itself has proven to be rather sim-

ple, an issue was encountered with Android versions 6 (Marshmallow) and higher, 

where default system behaviour is to disallow installation of non-Google Play applica-

tions on the device without explicit end-user approval. Due to the requirement that reg-

ular users must be prohibited to modify such settings, the MDM agent had to be used 



42 

 

to set correct system settings and allow installation of downloaded APKs. This was 

achieved through the use Samsung KNOX API. 

 

JSON configuration is required for both the MDM agent, as well as the launcher. MDM 

agent receives JSON configuration that is used to manage the device, while the 

launcher needed to be provided with UI settings that would correspond to the current 

environment, state of the device and customer’s own configuration. Since most of the 

integration with customer’s own IT environment is done on the backend API, the 

backend was responsible for delivering the correct data. The MDM agent, which con-

tained network service used for procurement of these JSON configurations, then was 

responsible for supplying the backend with relevant data. While some basic testing was 

done for these interactions, and JSON configurations were successfully fetched and 

applied, as of the time of righting this text, there have not been production implementa-

tion of this system, so it is difficult to say how it would perform when the scale in-

creases. 

4.4 Faults 

There have been multiple failures during development of this system, most of which 

could have been avoided by having access to more information about the APIs that are 

being used. Since the focus of this thesis is the launcher, I will focus on the problems 

with the launcher application. 

 

One of the most common and difficult to solve issues, has proved to be dealing with er-

roneous JSON configurations. Even with multiple checks for validity of the JSON string, 

default parameters when JSON does not have them, and type checking during parsing, 

there were still ways to create a configuration which would pass all checks and then 

cause a crash when being applied to a UI component. One possible solution to this 

problem would be, of course, to make sure that JSON strings are being correctly gen-

erated, with the valid attributes and values on the backend service that provides them, 

however that is still not a complete solution, as customers may wish to have their own 

JSON service providing the configurations. 

 

A severe problem was encountered when certain system settings were changed. Modi-

fying those system-wide preferences caused the launcher to enter a crash loop. This 

meant that the launcher crashed before it could allow user any interaction, which could 

in some cases, render the device completely unusable due to inability to access the 



43 

 

MDM agent application and disable the launcher, or revert the problematic system set-

ting (as system preferences could be disabled with a security policy that only an MDM 

agent could override). While the cause for this problem has already been identified, the 

solution has not been tested at the moment of writing this thesis, since this problem 

only occurs outside of development environment, and as such testing takes a relatively 

long time. 

 

A usability issue was encountered during testing related to the navigation between dif-

ferent launcher views. At first use, users that were accustomed to standard launcher 

behaviour were confused at the absence of the drawer button. That confusion, how-

ever, passed rather quickly, once they realized they can swipe between views. A more 

prominent issue was absence of an indicator about which view, relative to others, the 

user is currently viewing. A solution to that is already planned, using RootLayout’s 

overlay view, however it has not been implemented at the time of writing. 

 

A significant codebase design flaw has been identified in the structure of the item view 

UI component. This UI component serves as a basis for all item views displayed on the 

desktop and the drawer. Being a basis, it’s structure should have been a lot more ge-

neric. Currently the view is a compound view – an ImageButton and TextView con-

tained within a LinearLayout. While this structure works well for displaying icons, it is 

not ideal for extensions, as the methods it provides are all focused on modifying prop-

erties of it’s text view and image button. This has proven problematic when adjusting 

descending view objects to operate in different scenarios (such as grid view, list view, 

being non-interactive or displaying them with different sets of layout parameters). 

5 Discussion 

5.1 Obstacles in development 

5.1.1 Launcher application 

One difficulty that has been impeding development since it began is small amount of 

information on building this type of application. Launchers are not a typical application, 

which is why there are relatively few of them compared to other application types. 

Thus, development details specific to launcher application were often very difficult to 

debug.  

 



44 

 

For example, a launcher must have a way to display all installed applications in the 

drawer. Most materials I went through illustrated a method of obtaining a list of installed 

application packages, and then creating a shortcut for each. However, this approach 

does not work for a launcher, because some application packages may have multiple 

launchable activities and a launcher must create a shortcut for each of them. There-

fore, a solution was to use ResolveInfo objects for this problem, which was not an 

easy solution to obtain. That, however, also introduced a problem, as some applica-

tions indicate several launchable components under the same name (presumably for 

different system versions). In this case the results had to be filtered by name, and an 

icon created for each launchable component with a unique name. 

 

That was just one example of an issue specific to developing launcher applications. 

There have been numerous other problems related to this application unique configura-

tion method and the MDM environment it had to run in. Majority of those issues are not 

common enough to be researched, and had to be solved in-house, which has caused 

significant slowdowns in development times. 

5.1.2 MDM system and deployment 

As mentioned in section 2, Samsung KNOX is still relatively new, and there have been 

several issues using the API due to missing or vague documentation and lack of infor-

mation available for problem resolutions. One of the main problems when developing 

the MDM component was handling different permissions and license activations. To 

call KNOX API, an application must be declared as a “Device Administrator” in Android 

system settings and activate all required KNOX licenses. Only then it can proceed to 

install and set the launcher. Synchronizing all these settings and licenses to achieve 

the correct state has proven to be a challenge, although the issues were eventually 

overcome. 

 

Linked to the above, Samsung KNOX Enrolment was a poorly documented technology 

and has led to a lot of confusion during initial deployment and automation tests. The 

goal of the project is to achieve a state of autonomous deployment, where the only 

thing required from the customer is to connect the device to a Wi-Fi network, before the 

system gets installed and starts working. That has proven to be quite a challenge, due 

to missing information on how Samsung KNOX Enrolment affects the code of MDM 

agents it installs. 



45 

 

5.2 Lessons learned 

One of the main lessons learned from developing a management platform is the im-

portance of providing fail-safes at almost every step. Due to a highly secure environ-

ment, there are many scenarios where there is no way to recover from a crash loop or 

another program failure, because the program in question is the only component that 

has any control over the system. As such it is a good idea to always have a very simple 

error-prone separate monitoring mechanism, which checks that everything else works 

well, and can provide a way to do an emergency reset if an unrecoverable issue is en-

countered. 

5.3 Limitations and opportunities 

As mentioned in section 2.4.4, due to the way this launcher was designed, it can be de-

ployed under any existing MDM, which allows altering application policies, and even be 

deployed standalone, directly for end users. However, significant parts of the whole so-

lution are its autonomous deployment, security and configuration, which would be lost, 

if the launcher is used standalone or with another MDM solution. To preserve those 

features, the solution must be run on a Samsung Android device, due to its extensive 

use of Samsung KNOX API. 

 

Another limitation of this project is that it can only be used on Android devices and is 

highly dependent on internet connection. Without a connection to our backend API, 

many of the management and monitoring functionalities, and all autonomous function-

ality is lost. 

 

On the other hand, one of this solution’s big strengths comes for the modularity of its 

codebase design. Due to all components being designed to work independently, and all 

interaction being done using standardized Android methodology, it is possible to indi-

vidually develop, update and swap each component, without disrupting overall system 

integrity. This makes the solution easier to maintain and expand, as well provides rela-

tively strong safeguards against changes in future versions of Android affecting this 

MDM platform’s and launcher’s integrity. 

6 Conclusions 

6.1 Restatement of project goal 

The goal for this project was to provide organizations with a solution for managing a 

scalable number of mobile devices running Android mobile operating system and being 



46 

 

able to centrally configure not only their settings, but also appearance of the interface. 

This was to be achieved using a set of components including an MDM administrator 

agent for managing device settings, network services for interacting with cloud API and 

a custom launcher application that could be configured using supplied JSON settings. 

6.2 Summary of results 

When the system was deployed through Samsung KNOX Enrolment technology, it 

could download and install the custom launcher application, setting it as default and re-

trieving custom settings for it. The launcher application could successfully query the 

settings and apply them, customizing its visuals as defined in the configuration. 

 

The system has shown to work well, when settings have been properly formed and de-

livered, however it has shown to be vulnerable to malformed or invalid settings, as well 

certain system configurations. Supplying certain combinations of settings has shown to 

crash the launcher, bypassing all the safety checks, and changing certain system pref-

erences could cause the launcher to enter a crash loop, where it would crash shortly 

after starting, prohibiting any action from being taken. In addition, certain usability prob-

lems have been found with the user interface, which need to be resolved. 

6.3 Implications of results 

Considering the scale on which this system can be deployed, I am reluctant to call it 

ready for production. Initial results are very promising and they show that the underly-

ing system design and logic work and can achieve the desired goal, however there are 

still several critical areas that need to be improved to increase the safety of usage of 

this system. More testing is clearly required for the configuration processing logic, as 

well as applying the configuration to UI. Furthermore, the launcher needs to be better 

equipped to deal with unexpected system preference changes.  

 

If this solution is deployed on hundreds or thousands of devices, and a configuration 

changes in either device settings, or launcher settings causes a crash loop or another 

serious issue, the consequences of such failure could be catastrophic. It cannot be 

shipped to production until such a failure can be completely prevented or at the very 

least, functionality included that allows all affected devices to be remotely reset back to 

working settings through a centralized management console. 

6.4 Future work 

As a highest priority now, the system must be able to provide a way to remotely reset 

devices, even if none of the components work. Such functionality could be achieved by 



47 

 

having a separate very simple MDM agent application that is installed alongside the 

main one, which consists of a service that monitors status of all other components of 

the solution and is also connected to the cloud API and capable of receiving one com-

mand. If the device is rendered unusable, the IT staff can issue a command to this 

“heartbeat” service to perform a factory reset on the device. Since the service would 

have the same permissions as any other MDM agent, it would be able to perform such 

an operation. In addition, Samsung KNOX allows for different MDM agent applications 

to override each-other’s settings, if they run within the same context and have the 

same permissions, so if reset is disabled on the affected device, the heartbeat service 

would be able to re-enable it and perform the reset. 

 

In addition, UI improvements also need to be done on the launcher itself. Most of the UI 

issues have planned improvements that are in development right now, however could 

not be completed at the time of writing. Adding a visual indicator to inform users of how 

many screens they can swipe between will be one addition. Also, response of the 

launcher to configuration changes could be improved to be more reactive without dis-

rupting user experience. Furthermore, the launcher needs an ability to host application 

widgets, which all other launchers have, as well as react to application installation and 

uninstallation. Both these features are currently in development, but have not been fin-

ished yet. Several smaller improvements and bug fixes also need to be made to the 

current implementation to improve class structure and flexibility of the configuration. 

 

As a bottom line, I would conclude that the system and the launcher are developed 

enough to not be considered prototypes or proofs of concept anymore, however they 

are not yet ready to be beta tested. Before piloting can be conducted, a significant 

amount of polish and bug fixing needs to be done and an emergency failsafe function-

ality needs be added. 

7 References 

 

[1]  N. D. Bui, A. G. Kravets, L. T. T. Nguyen and T. A. Nguyen, “Tracking events in 

mobile device management system,” in Information, Intelligence, Systems and 

Applications (IISA), 2015.  



48 

 

[2]  IBM, “IBM - Maas460 - Finland,” 2016. [Online]. Available: 

https://www.ibm.com/marketplace/cloud/mobile-device-management/details/fi/en-

fi. [Accessed 01 November 2016]. 

[3]  VMware, “Enterprise Mobility Management - AirWatch,” 2016. [Online]. Available: 

https://www.vmware.com/products/enterprise-mobility-management.html. 

[Accessed 01 November 2016]. 

[4]  P. Ferrill, “The Best Mobile Device Management (MDM) Solutions of 2016,” 2016. 

[Online]. Available: http://uk.pcmag.com/cloud-services/76018/guide/the-best-

mobile-device-management-mdm-solutions-of-2016. [Accessed 01 November 

2016]. 

[5]  Google Inc., “App Widgets | Android Developers,” 2016. [Online]. Available: 

https://developer.android.com/guide/topics/appwidgets/index.html. [Accessed 05 

November 2016]. 

[6]  V. Beal, “What is Mobile Device Management? - Webopedia Definition,” 2016. 

[Online]. Available: 

http://www.webopedia.com/TERM/M/mobile_device_management.html. 

[Accessed 1 November 2016]. 

[7]  L. Liebmann, “Boot ROMs ease desktop management through centralized booting,” 

Computer Technology Review, p. 24, 1996.  

[8]  Apple Inc., “Apple Remote Desktop,” [Online]. Available: 

http://www.apple.com/remotedesktop/. [Accessed 3 November 2016]. 

[9]  L. Poggemeyer, “Remote Desktop clients,” 2016. [Online]. Available: 

https://technet.microsoft.com/en-us/windows-server-docs/compute/remote-

desktop-services/clients/remote-desktop-clients. [Accessed 03 November 2016]. 

[10]  Zoho Corporation Pvt. Ltd., “Remote Windows Desktop Management and 

Administration Software - Documents,” 2016. [Online]. Available: 

https://www.manageengine.com/products/desktop-central/help.html. [Accessed 03 

November 2016]. 

[11]  IDC, “Smartphone OS Market Share, 2016 Q2,” 2016. [Online]. Available: 

http://www.idc.com/prodserv/smartphone-os-market-share.jsp. [Accessed 03 

November 2016]. 

[12]  T. Koerber, “Let’s Talk About Android – Observations on Competition in the Field 

of Mobile Operating Systems,” SSRN, New York, 2014. 



49 

 

[13]  Google Inc., “Android is for everyone,” Google Inc., 2016. [Online]. Available: 

https://www.android.com/everyone/. [Accessed 07 November 2016]. 

[14]  Google Inc., “Platform Architecture,” 2016. [Online]. Available: 

https://developer.android.com/guide/platform/index.html#native-libs. [Accessed 03 

November 2016]. 

[15]  Google Inc., “ART and Dalvik,” 2016. [Online]. Available: 

http://source.android.com/devices/tech/dalvik/index.html. [Accessed 03 November 

2016]. 

[16]  ECMA International, The JSON Data Interchange Format ECMA-404 1st Edition, 

Geneva: ECMA International, 2013.  

[17]  SAMSUNG, “Knox Technology | Samsung Knox,” 2016. [Online]. Available: 

https://www.samsungknox.com/en/knox-technology. [Accessed 03 November 

2016]. 

[18]  GB Media, “Live from the Mobile World Congress: Samsung announces technology 

to assist in the security of BYOD,” 26 Feburary 2013. [Online]. Available: 

http://www.gbmediastudios.com/live-from-the-mobile-world-congress-samsung-

announces-technology-to-assist-in-the-security-of-byod. [Accessed 03 November 

2016]. 

[19]  Google Inc., “Android Developers,” 2016. [Online]. Available: 

https://developer.android.com/index.html. [Accessed 06 November 2016]. 

[20]  Square, Inc., “Picasso,” 2016. [Online]. Available: http://square.github.io/picasso/. 

[Accessed 06 November 2016]. 

[21]  Google Inc, “IBinder | Android Developers,” 2016. [Online]. Available: 

https://developer.android.com/reference/android/os/IBinder.html. [Accessed 07 

November 2016]. 

[22]  Google Inc., “Messenger | Android Developers,” 2016. [Online]. Available: 

https://developer.android.com/reference/android/os/Messenger.html. [Accessed 

07 November 2016]. 

 

 

 

 

 



Appendix 2 

1 (3) 

 

 

Appendix 1 

Home screens of different Launcher applications. 

  

16 ZenUI launcher homescreen (Source: 
http://droidxhacks.blog-
spot.fi/2015/09/ported-asus-zenfone-2-
launcher-themes.html) 

14 Samsung TouchWiz launcher 
homescreen (Source: http://im-
ages.anandtech.com/doci/9558/Scr
eenshot_2015-10-02-00-47-30.png) 

15 Android Nougat default launcher 
homescreen (Source: https://upload.wiki-
media.org/wikipedia/en/7/78/An-
droid_7.0_Home_Screen.png) 



Appendix 2 

2 (3) 

 

 

 

Appendix 2 

Different homescreen configurations of this project’s launcher (Taken on Samsung Gal-

axy Tab A) 

  

Figure 17 Modified icons for web shortcuts and applications. Custom non-interactive graphics can also be 
used as an anchor for other icons. All images are obtained from the cloud and cached. 



Appendix 2 

3 (3) 

 

 

 

Figure 18 All icons can be positioned relative to each other, and relative to sides of the screen, or centred. 
All units are relative - no hardcoded pixels. Separate background images are supported on each home 
screen and each orientation. 

 

Figure 19 Default desktop screen configuration bundled with the launcher package (used as fallback) 


