

Hermanni Piirainen

Optimizing web development workflow

Metropolia University of Applied Sciences

Bachelor of Engineering

Media Technology

Bachelor's Thesis

1.11.2016

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Hermanni Piirainen
Verkkokehityksen työnkulun optimointi

39 sivua + 3 liitettä
1.11.2016

Tutkinto Insinööri (AMK)

Koulutusohjelma Mediatekniikka

Suuntautumisvaihtoehto Digitaalinen media

Ohjaajat

Toimitusjohtaja Tapio Nurminen
Lehtori Ilkka Kylmäniemi

Insinöörityön tavoitteena oli tutkia moderneja JavaScript-pohjaisia työkaluja ja tekniikoita
verkkokehityksen eri vaiheiden optimoinnin näkökulmasta. Työssä selvitettiin myös Node.js-
ajoympäristön toimintaperiaatteita. Node.js toimii lähes kaikkien työssä esiteltyjen työkalujen
pohjana. Työn tarkoituksena oli vertailla perinteistä ja modernia verkkokehityksen työnkul-
kua aina projektin aloittamisesta lopputuotteen siirtämiseen tuotantopalvelimelle sekä sitä,
mihin ongelmiin uudet työkalut yrittävät löytää ratkaisuja.

Perinteisessä työnkulussa suuri osa työvaiheista sisältää manuaalisia, toistuvia tehtäviä, joi-
den nopeampaan ja tehokkaampaan suorittamiseen sellaiset työkalut kuin npm ja Gulp pyr-
kivät. Insinöörityössä tutkittiin ja vertailtiin työkaluja, joiden avulla verkkokehitystä voidaan
optimoida ja automatisoida. Vertailtaessa työkalut jaettiin kolmeen osa-alueeseen: verkko-
sovellusten riippuvuuksien hallinnan työkaluihin, tehtävänsuorittajiin ja projektin aloittamista
tukeviin työkaluihin.

Insinöörityön lopputuotteena valittiin SPA-arkkitehtuuria (single-page application) noudatta-
valle verkkosovellukselle sopivat kehityksen eri vaiheita tukevat työkalut. Valitut työkalut oli-
vat kehitysriippuvuuksien hallintatyökalu npm, front-end-riippuvuuksien hallintatyökalu Bo-
wer ja tehtäviensuorittaja Gulp. Työkalujen käyttöä varten luotiin myös kokoonpano, jonka
avulla toistuvien tehtävien manuaalisesta suorittamisesta päästiin eroon. Kokoonpanon
avulla valitut työkalut ja niiden toiminnot saatiin lisäksi integroitua: esimerkiksi Bowerin avulla
hallinnoitavat front-end-riippuvuudet saatiin koottua yhteen tiedostoon Gulpilla suoritettavan
tehtävän avulla. Gulp-tehtävien avulla saatiin lisäksi aikaan muun muassa Node.js-kehitys-
palvelin, joka mahdollisti sovelluksen kehittämisen ja testaamisen reaaliaikaisesti monilla eri
laitteilla, ja sovelluksen tuotantoversion automaattinen kokoaminen sekä siirto tuotantopal-
velimelle muutaman komennon avulla.

Insinöörityössä huomattiin, että työkalujen kehitystahti on erittäin nopea: uusia työkaluja luo-
daan viikoittain. Kehityksen mukana pysyminen vaatii vaivannäköä, mutta tärkeintä ei ole
opetella työkalujen eroja, vaan ymmärtää niiden konsepti ja periaatteet sekä se, mihin on-
gelmiin ne kehittäjälle tarjoavat apua.

Avainsanat verkkokehitys, optimointi, Node.js, npm, riippuvuuksien hallinta,
tehtävänsuorittaja

 Abstract

Author
Title

Number of Pages
Date

Hermanni Piirainen
Optimizing web development workflow

39 pages + 3 appendices
1 November 2016

Degree Bachelor of Engineering

Degree Programme Media Technology

Specialisation option Digital Media

Instructors

Tapio Nurminen, CEO
Ilkka Kylmäniemi, Lecturer

The goal of this final year project was to research different JavaScript-based tools and tech-
niques from the perspective of optimizing the different phases of web development. Node.js,
a JavaScript runtime environment, and its principles were also examined in this project, as
it serves as the basis for most of the tools introduced in the project. The purpose of the
project was to compare the traditional and modern web development workflows, from scaf-
folding a new project to transferring the application to the production server, and to research
which problems the modern tools are trying to solve.

In the traditional workflow most phases include manual, repetitive tasks, that tools such as
npm and Gulp are trying to run faster and more efficiently. Tools that provide optimization
and automation to web development were compared in the project. These tools were divided
into three sectors: dependency management tools, task runners and scaffolding tools that
help start a new project.

The end result of this project, namely, a collection of tools suitable for developing a single-
page application was selected. The selected tools were the development dependency man-
agement tool npm, front-end dependency management tool Bower and task runner Gulp. A
setup eliminating the need to running different recurring tasks manually was created for
these tools. The functionalities of these tools were also integrated, for example the front-end
dependencies managed by Bower were collected and concatenated to a single file with a
Gulp task. Other Gulp tasks provided among other things a Node.js development server,
with which it was possible to develop and test the application with multiple devices in real
time, and a way to build and deploy the production version of the application with just a few
commands.

During this research it was noticed that the progress of modern development tools is ex-
tremely fast, as new tools are being introduced on a weekly basis. It takes effort to try to
keep up with the progress, but the most important thing is not to learn the differences of
each new tool, but rather to understand the underlying concepts and principles of those
tools, and which problems are they trying to solve.

Keywords web development, optimization, Node.js, npm, dependency
management, task runner

Table of contents

1 Introduction 1

2 Comparing web development workflows 2

3 Node.js and npm 4

3.1 Event loop 5

3.2 Installation process 6

3.3 Managing modules with npm 8

4 Workflow optimization processes and tools 10

4.1 Dependency management 10

4.2 Task running 15

4.3 Scaffolding 24

5 Optimization setup for a custom web application 27

6 Results 30

7 Summary 33

References 35

Appendices

Appendix 1. Package.json

Appendix 2. Bower.json

Appendix 3. Gulpfile.js

1

1 Introduction

The world of front-end development has experienced major changes during the last

years. Gone are the days of manually downloading files, and large, rigid and all-encom-

passing software tools. One of the principal catalysts for the changes has been Node.js,

a JavaScript runtime environment that has enabled creating all sorts of JavaScript-based

front-end development tools. With the rising of Node.js and its counterpart, Node Pack-

age Manager, the emphasis for modern front-end tools has switched from creating a

single, monolithic tool to handle all aspects of development, to small modules or plugins

that concentrate on solving little problems, and solving them well [1, 2].

Older, graphical tools have mostly been replaced by Node.js-based command line tools,

that provide better and more universal configuration options, and allow developers to

reuse and share their configurations for better integration. With these modern tools de-

velopers can optimize and automate parts of all phases of the development workflow.

New projects can be initialized with scaffolding tools, front-end or development depend-

encies can be installed and managed with dependency management tools, and devel-

opment tasks can be automated with task runners, all within seconds or minutes.

With the right tools and a functional setup for the development workflow, the developers

can focus on creating better code and solutions for the web application, rather than man-

ually running repetitive tasks that the computer is capable of doing more efficiently. The

purpose of this research is to examine Node.js and the different tools and techniques it

enables, that help optimize and automate as many aspects of the development workflow

as possible. This research aims to find a practical front-end development setup for a

customized single-page web application. The goal is to optimize all phases of the work-

flow, from creating a server for developing to deploying the final version of the application

to the production server.

2

2 Comparing web development workflows

Finding the right workflow is crucial for a successful web project. The process of finding

the right setup, though, is not simple. With the multitude of tools available and with new

tools being created daily, it can be hard to determine the best tools, especially because

the projects vary so vastly, and there is no one-fits-all setup that will work for every pro-

ject and every developer. [3] The web development workflow is all about trying different

tools and coming up with the setup that works for the project at hand.

In a traditional web development workflow for example installing and maintaining third

party packages and frameworks would include first searching for a web page that offers

a downloadable version of a package, such as jQuery. If the package was updated, the

developer would need to download and replace the old version of the package with a

new one. This process would have to be done for each package individually, and when

packages are downloaded manually, there is no good way of knowing if and when a

package has been updated. Downloading and transferring the package files manually is

time-consuming, especially when there are dozens of packages to be maintained. The

process of checking for updates and downloading them might be so tedious that the

updating process is left neglected, and the application will run outdated code. [4] This

example describes the problems of the traditional workflow, the main question being

"why do a task manually, when a computer can do it faster and better?".

For some developers and projects, an old-fashioned workflow might work well, especially

if the project does not involve any modern development tools or languages such as Sass

(Syntactically Awesome Style Sheets), a powerful extension for the CSS language. In

projects that use for example only plain HTML and CSS, there might not be any repetitive

tasks that need to be run with short intervals, like compiling Sass into CSS. But almost

all projects can profit from optimizing or automating at least some parts of the develop-

ment process, whether it be optimizing images for smaller file size or minifying assets

such as CSS files for production usage.

Zell Liew divides a normal web development workflow into six processes:

 scaffolding

 developing

3

 testing

 integrating

 optimizing

 deploying [3].

All of these processes can be optimized with the right tools and techniques. Finding the

right tools is necessary but not always easy because of the multitude of similar but still

different tools and packages. Many tools with a graphical user interface (GUI), such as

CodeKit and Hammer, have been created with which developers can minify files and

automate other tasks as well. GUI tools, as they are visually intuitive, may feel easier to

adopt, especially for beginners, compared to the text-based command line interface (CLI)

tools. Tools with a GUI are usually more rigid and only provide customizing options to a

certain extent The GUI tools have limitations that become visible especially when a pro-

ject involves more than one developer. All of the other developers working on a project

might have different operating systems and preferred GUI tools for developing. These

tools can have highly different functionalities, and developers can end up in situations

where integrating their code with others becomes tricky, or if a tool does not have a

functionality that is needed, they might have to change the tool to a completely different

one [5].

CLI tools can often defeat these problems, as they are more flexible, highly configurable

and most of the time work across all platforms and operating systems. The configuration

options for these tools can then be shared with other developers working on the project,

which makes integrating the code easier, as everyone working on the project can use

the same set of tools and configurations regardless of their operating system. Command-

line based tools usually come with a steeper learning curve, so they require some time

to get used to them. However, because of their configurability and the ability to share

and reuse the configurations with other developers and projects, command-line tools are

definitely worth learning.

4

3 Node.js and npm

Multiple technologies have been created in order to aid developers achieve their goals

quicker and easier and to provide universal solutions to the problems the traditional work-

flow has had. One of the technologies that has enabled these modern tools for workflow

optimization is Node.js, an efficient JavaScript runtime environment that runs on top of

the Google-developed V8 JavaScript engine [6].

Client-side JavaScript is executed in the user's web browser, very much like the two

other client-side scripting languages HTML and CSS. Client-side JavaScript handles pro-

cessing and responding to user input and making requests to the server. Client-side –

generally known as front-end – JavaScript has been popular since its birth [7, p. 2].

Node.js though runs server-side or in the back-end, which means it takes care of re-

sponding to client-side requests and serving the correct content to the end-user. The

field of server-side scripting has traditionally been controlled by scripting languages cre-

ated solely for back-end purposes, such as Python and Ruby. Since the launch of

Node.js it has become a significant competitor to these more traditional server-side lan-

guages.

Node.js has a strong ecosystem around it, meaning it is actively developed and main-

tained by a large amount of people. A large part of the Node.js ecosystem stems from

its modularity. A massive amount of packages, also known as modules, has been written

for Node.js. Packages allow the core language to be kept simple while maintaining a

comprehensive set of functionalities. Packages are small Node.js programs that add fea-

tures for the developers to use along with the core language. In its simplest form a

Node.js package is only a directory containing files. [8] Currently there are 292 322 pack-

ages written for Node.js, and the average growth is 402 new packages per day [9].

Node.js comes shipped with npm, which stands for Node Package Manager. Basically

npm is two things: a huge registry which holds information and metadata about all of the

Node.js packages people have published, and a command line tool used for searching,

installing and updating these packages [8]. All npm packages must include a configura-

tion file called package.json. This file includes all of the information about the package,

such as version number, keywords, license and repository information. It also specifies

all of the files that should be downloaded when a user wants to install this package. [10]

5

3.1 Event loop

The main advantage of Node.js is its non-blocking I/O (input-output) model. This means

that all code is processed asynchronously, whereas in traditional programming the sys-

tem halts while waiting for a response from the server. Java and other server-side lan-

guages have tackled this problem by implementing multithreading to allow multiple pro-

cesses to run concurrently [7, p. 3]. A thread is an independent process separated from

the main program. The main problem with multiple threads is that they share memory,

so extra precautions are needed when multiple threads are accessing a single variable.

[11, p. 2; 7, p. 3] When simplified, Node.js always has a single thread, but it can still run

concurrent processes. Concurrency in Node.js is accomplished by its event loop. Node.js

uses an event-driven model, where events and state changes trigger callback functions.

Callback functions allow Node.js programs to traverse through code lines without paus-

ing to wait for responses or spawning multiple threads for processing. Whenever an op-

eration returns something, the result can be processed by a callback function. [12]

Several other programming languages also include the concept of an event loop, but all

of them incorporate it via external libraries. The event loop in Node.js is part of the lan-

guage core and the loop does not need to be initiated by a blocking start call like for

example in Python's Twisted engine. [6; 13] Node server will simply begin waiting for

events as soon as the server is started, without an additional call [14].

Figure 1 demonstrates a normal life cycle of an event in the Node.js event loop. An event,

for example a user input, occurs and is passed to Node.js event queue. Each event in

the queue enters the event loop, which then delegates the event to a thread pool. Alt-

hough all of the Node.js application's JavaScript runs on a single thread, a thread pool

is still needed for some tasks. When a result is returned from the thread pool, the callback

function is passed back to the event queue. The event queue and thread pool in Node.js

are managed by a library called libuv, which means that the developer does not need to

and cannot access the thread pool. [15] The event-driven and non-blocking model give

Node.js a considerable speed advantage when compared to more traditional server-side

scripting languages [16].

6

Figure 1. Node.js event loop [17].

3.2 Installation process

Node.js can be installed on a machine either by downloading the Node installer from the

official download page https://nodejs.org/en/download/ or by using a package manager

from the command line, such as Homebrew for Mac OSX or Yum or APT for Linux oper-

ating systems. After the installation process is complete, success of the installation can

be verified by executing node --version and npm -v via the command line. These com-

mands tell Node.js and npm to print out their current versions. The flags --version and -

v both have the same meaning, with --version being more verbose and easy to under-

stand. An example of a successful installation verification can be seen in figure 2.

Figure 2. Verifying a successful installation of Node.js and npm.

Npm is used via the command line. New packages can be installed either globally or

locally, depending on the use case of the package. Packages should be installed globally

7

whenever the tools need to be used via the command line, since globally installed pack-

ages' executable files can be used from any directory. This is possible, because installing

packages globally places the module files and executables into the PATH environment

variable, for example into directory called /usr/local/. [18] The location of the executable

file of a program can be printed by executing which <program>, for example which node.

In most cases accessing the default directory requires administrative permissions, which

means that installing packages globally via npm would require using the sudo command.

With sudo user can execute commands as the superuser [19]. Using sudo is not recom-

mended when installing npm packages, a better solution is to configure npm to use a

different location for installing packages, a location where no administrative permissions

are needed [20].

In figure 3 the path for npm is changed from the default location to the user's home

directory. A new directory called .npm-global is created on the first line, and on the sec-

ond line current working directory is printed. Npm config command is an npm-specific

command that can be used to view or change the npm's configuration variables. The

third command in the figure changes the prefix variable to point to the newly created

directory. This command ensures that all things npm-related will be installed into this

directory. If a new global package is installed at this point, the package will be installed

into the correct directory. This means that using the packages executable file should be

possible from any directory. Trying to use the executable will not work, since the new

path variable is not yet part of the system-wide path. This step is shown in figure 3 on

the fourth line. This command will add the new path into the existing path represented

with $PATH, so that when executable files are executed, the system will know to look

from the defined directory as well. The last command in figure 3 runs the script file .profile

into which the new path was added. After these steps when running an executable file

of an npm-installed global package from any directory, the system should print out the

path that was set as the new npm prefix. [21]

Figure 3. Changing the path of npm.

8

3.3 Managing modules with npm

Npm has many built-in commands, the most used of them being npm install. Global

packages are installed with flag -g or --global. [22] Running for example npm install -g

htmlhint will not only install a package called htmlhint but it will also install all the pack-

ages that htmlhint is depending on. Those sub-dependencies can also have their own

dependencies and so on, this is called a nested dependency tree. An excerpt of a nested

tree can be seen in figure 4. All packages below htmlhint are sub-dependencies of that

package. Multiple depths of dependencies can be seen in this figure, for example pack-

age balanced-match is on the fifth level of this dependency tree.

Figure 4. An excerpt of the nested dependency tree of a package.

Dependencies in a flat dependency tree model all exist on the same level. It is therefore

simpler in its design. A simplistic example of a flat dependency tree can be seen in figure

5. The application in the figure depends on three modules: A, B and C. Dependency C

also depends on dependency A. This may cause problems, if the developer decides or

has to update the version of dependency A to be able to for example utilize a new func-

tionality that only the newer version of the package provides. Updating dependency A

means that dependency C must also be compatible with the newer version of depend-

ency A. If dependency C is incompatible with the newer version, it creates a dependency

conflict. Being unable to update modules because of conflicts is called dependency hell.

[23]

9

Figure 5. An example of a simple flat dependency tree [23].

Nested dependency tree model solves this problem by allowing each module to install

their dependencies separately. If the tree in figure 5 was nested, it would mean that

dependency C would install a separate version of dependency A so that the application

could then depend on a completely different version of dependency A, and could be

updated without conflicts. The design of a nested dependency tree is more complicated

the more dependencies the application has, and there might at some point be multiple

different versions of the same module to serve the needs of all of the modules. This

solution does of course increase the needed disk space, but the fact that modules are

usually small in size and not having to resolve conflicts are the things that make the

nested dependency tree model superior in most cases. [23]

Modules in npm can be uninstalled with the command npm uninstall, which has all the

same flags that the install command has. The nested dependency tree model allows the

developer to only state the name of the main module that is no longer needed, npm then

checks if each of the main modules own dependencies can be uninstalled as well. All

installed packages can be listed with npm list, which prints out all of the installed pack-

ages' names and versions. The list command can be configured to only show an individ-

ual level of the dependency tree with an optional flag --depth, for example npm list --

depth=0. Modules can also be searched from the npm registry via command line with

the command npm search keyword. Npm will then return a list of matching package titles

and descriptions. Additional info about a certain package can be fetched with the com-

mand npm view package. For example, npm view htmlhint will show all of the information

about htmlhint package that is stored in the npm registry. Field names can be added to

10

the command to only show data from those fields, for example npm view htmlhint author

repository.url. Packages that are installed and have newer versions available in the reg-

istry can be listed with npm outdated, and they can be updated with the command npm

update, for example npm update htmlhint -g. Npm also provides a few optimizing com-

mands, npm prune, which removes unused packages and npm dedupe, which traverses

through the dependency tree and tries to flatten the tree by removing duplicate packages.

For example, if dependencies A and B are depending on the exact same version of pack-

age C, the tree can be simplified by moving C up the tree and uninstalling the duplicate

packages from under both A and B. [22]

4 Workflow optimization processes and tools

4.1 Dependency management

Most web applications have at least some dependencies such as front-end libraries like

jQuery or Angular. Downloading front-end libraries manually for each project can be re-

petitive and time-consuming, let alone updating them. The traditional way of adding a

new front-end dependency would be to first open the library's official website and down-

loading the source. Then the source needs to be copied to a folder containing all of the

assets, and a link to the JavaScript or CSS file needs to be added to the HTML file

accordingly. Updating an existing dependency would also add manually checking for

updates and removing the old version of the library to the process. [24]

Bower is a tool developed by Twitter in 2012 that specializes in front-end dependency

management. It basically downloads and updates libraries and other assets with a simple

command-line API, but it also helps integrating project dependencies with other devel-

opers. Bower is managed with a project-specific configuration file called bower.json, that

resembles the package.json file that npm is using. When a developer wants to reuse the

same front-end dependencies as in another project or share project dependencies with

other developers, only bower.json needs to be shared. Bower has to be installed globally

so that its commands can be run in every directory. [25]

Bower is installed with npm, so in order to use it, Node.js and npm must be installed.

Bower also requires the command-line tool git to be installed, since it uses Git reposito-

ries in GitHub or similar services to download the assets. For Linux, git can be installed

11

with Yum or APT. For Mac and Windows users git can be installed by installing GitHub

for Mac or GitHub for Windows as git is included in them. Optionally Windows users can

download it from Git website, and Mac users can install Xcode Command Line Tools

application, which also includes git. After installing requirements, Bower itself can be

installed with npm just like any other global package: npm install bower -g. Installation

can be then verified with bower --version. [25; 26]

Each project that uses Bower needs to have the manifest file bower.json. This file can

be created either manually or automatically by moving to the project root directory and

running bower init. Bower init launches an interactive dialog which allows modifying each

field to the project’s needs. An example file created with bower init is seen in figure 6.

Most of the objects in the file are really needed only when the developer wants to register

a package to Bower in order for other developers to be able to use it as a dependency

in their own projects.

Figure 6. Bower.json after running bower init.

Most important part of bower.json is the dependencies object. All of the application's

dependencies will be listed inside that object. Bower commands closely resemble those

used by npm. Suitable libraries and assets can be searched with bower search com-

mand, for example bower search jquery. Installing a package is done with bower install

package --save. The flag --save writes the dependency into the dependencies object of

12

bower.json, which helps identifying and maintaining the installed assets and reusing

same project configuration. Bower installs all dependencies into a single root directory,

called bower_components by default. The name and location of the components direc-

tory and other options can be changed with a JSON file called .bowerrc [27]. Bower

allows users to install libraries simply with a registered package name such as jquery or

with a Git endpoint or an absolute URL. Sometimes also registering local assets such as

customized or bundled script files is necessary. This is also possible with Bower by

providing bower install a path to the local asset file. Semantic versioning or semver is

used by Bower so that developers can have better control on which version of the library

they want to install. Semantic versioning consists of three parts, for example 1.2.21

where the major version is 1, minor is 2 and patch is 21. Installing an exact version of an

asset can be done with bower install package#1.5.3, but Bower also supports semver

ranges. Ranges allow developers to state for example that a version greater than 1.5.3

but less than 1.6.0 is needed with the command bower install package#~1.5.3. [28]

Some examples of different types of installs with Bower are seen in figure 7. On the first

row a registered package jquery is installed with a semantic versioning range. This range

represented by a tilde character would translate to greater or equal to 1.11.0 but less

than the next major (2.0.0) or minor (1.12.0) update. Replacing the tilde with a caret

would only prevent updating to next major updates [28]. Second row installs a git pack-

age with exact versioning of 1.2.30. Exact versioning will always prevent updating until

the versioning is changed. The third command in the figure uses an explicit versioning

range. This command will install the latest version inside the specified range. In the last

command a local JavaScript file app.js is registered as a Bower component with the

name "appJS" and therefore it is copied to bower_components as well.

Figure 7. Different ways to install Bower dependencies.

Figure 8 shows the resulting dependencies object in bower.json configuration file. Each

dependency is represented as a key-value pair, where the first part, the key, is the name

of the dependency and the second part, the value, is either the version or the combina-

tion of URL and version of the dependency. Assets are called by their name in Bower

commands, so executing bower uninstall --save appJS would remove the local asset

13

app.js from both bower_components and bower.json. When re-using or using a shared

bower.json file for a new project, all of the dependencies stated in the dependencies

object can be installed with a single command bower install. If a version control system

such as git is used in a project, the best practice is to only commit the manifest file to the

repository, so the whole bower_components directory is omitted in order to keep the

repository simpler and smaller in size [29].

Figure 8. Bower.json dependencies object resulting from commands in figure 7.

The dependencies object only shows the semantic versioning that was set for each pack-

age, but command bower list shows the explicit versions that were installed with the

specified version ranges. Resulting versions of the commands in figure 7 are seen in

figure 9. In the figure it can for example be seen that jQuery version 1.11.3 was installed

since it is the latest version in the 1.11.x range.

Figure 9. Result of bower list command showing the actual installed versions.

Bower resolves all dependencies to a flat dependency tree, which means that only one

version of each package can be installed in a single project [25]. The flat dependency

tree is usually not a problem for projects with few dependencies considering possible

conflicts can be resolved manually. For very large projects with dozens of dependencies

where three or more dependencies creating conflicts with each other, the flat tree model

might be an insuperable issue. [30]

For most modern web applications npm is usually already involved in the project. In ad-

dition to being a dependency manager for tools needed just for development, npm can

14

also serve as a front-end package manager. According to Jaakko Salonen, using Bower

in a project that already has npm configured is redundant [30].

Each package registered in npm registry must have a package.json file stating its de-

pendencies, and so does each project that is using npm. Basically every project is there-

fore like a single package that has its dependencies and other information written in its

own package.json manifest file, with the exception that it will not be published to the npm

registry. A new package.json file can be created interactively with the command npm init.

The process of creating the file and the end result is almost identical to the process of

creating a bower.json file.

Project-specific front-end dependencies are installed locally instead of globally to allow

different projects to have different versions of the same packages, and as npm uses a

nested dependency tree, a single project could also include several versions of the same

dependency. To install npm packages locally, npm install must be executed without the

--global or -g flag. This will install the package into a directory in the project root directory

called node_modules. Although it is possible to just download packages with npm, in

almost all cases it is reasonable to also save all installed dependencies to the manifest

file. Adding flag --save to install command will add the dependency into the dependen-

cies object in the package.json file, again similar to the process of installing a package

with Bower. As semantic versioning is nowadays a de-facto standard, version ranges

can also be used with npm. There are no big differences whether npm packages are

installed globally or locally, the same commands concerning global packages apply to

both use cases.

The main differences between the two major dependency managers are the different

tree models they utilize and the processes used to wire the dependencies into the pro-

ject's source code. Both tree models have their pros and cons. Bower's flat tree reduces

duplication and is easier to comprehend, but as a downside can sometimes cause con-

flicts when the project has multiple dependencies. Npm's nested tree allows multiple

versions of the same dependency so therefore conflicts are rare, but may also bloat

project size.

With both tools, developers can choose their favored style of injecting the dependencies

into the source code. One option is to simply use the file paths directly, for example

<script src="bower_components/jquery/jquery.js">, but this approach is not optimal since

it requires developers to manually add a script tag for each new dependency and check

15

each package's package.json file for which files inside a package are to be added to the

source code and in which order. With Bower it is recommended to use individual tools

that automate injecting correct files in correct order such as Wiredep or to automate the

wiring process with task runners such as Gulp or Grunt.

4.2 Task running

Developing, building and deploying a web application includes a lot of different tasks,

most of them repetitive. Let's consider a normal workflow when using a CSS pre-pro-

cessing language like Sass. Common tasks when using Sass might include

 compiling Sass into CSS, that browsers can interpret

 adding browser-specific vendor prefixes

 styling the CSS against certain formatting rules

 minifying the compiled CSS file.

All of the tasks listed above require either using browser-based solutions or installing a

separate command line tool for each task. These tools are usually created for specific

purposes, for example cssnano is a JavaScript-based command line tool that minifies

CSS files. Running these tasks without a task runner requires executing the commands

for each task separately. Some tools can be easily configured to automatically watch for

file changes and automatically run the task whenever a change is made, but setting a

tool to watch for file changes requires an ongoing command line process that cannot be

interrupted for it to work. The workflow described above may feel like it doesn't take so

much time that it would need to be automated. But if for example CoffeeScript, an exten-

sion language to JavaScript, is used in the project, CoffeeScript files also need to be

compiled into JavaScript and the resulting JavaScript files formatted, validated and min-

ified. When compiling HTML from HTML templating engines such as Handlebars or Jade,

or optimizing image assets are added to the workflow, the whole process can get very

repetitive and complicated very quickly.

16

This is where JavaScript-based task runners come in handy. They combine all of the

tasks that a developer needs to do over and over again into a single configuration file.

Using task runners makes the configurations of different tasks easier to understand,

maintain and share. They also alleviate the problem of remembering the correct com-

mand syntaxes for each different command line tool. Modern JavaScript task runners

have similar functionalities and use cases as older task runners like Make or Rake, but

they are designed specifically for automating front-end development tasks.

The most popular JavaScript-based task runners are Grunt and Gulp. Both of them – like

all JavaScript task runners – rely on the multitude of small packages and wrappers called

plugins. Plugins are created by the tool maintainers as well as the large community of

developers using the tools. Normal workflow of adopting a task runner in a project con-

sists of installing the task runner itself, installing plugins that are needed in the project,

creating the configuration file and configuring the tasks.

The basics of Grunt and Gulp are the same, but they also differ in a few things. Grunt

can be thought of as configuration-based whereas Gulp is more code-driven [31]. They

also have differences in the way they handle the files when running tasks. Grunt is file-

based as it relies on temporary intermediary files written between each task. This means

that each task uses an input-output disk operation. [32] Configuring two tasks that are

chained, for example compiling a Sass file into CSS and adding vendor prefixes, requires

first compiling the Sass file main.scss into a temporary file on disk, for example tmp.css

and then passing the temporary file to the autoprefixer task to compile the final CSS file

main.css. Gulp is stream-based as it uses Node streams that can be piped together and

work in-memory, removing the problem of using temporary files [31]. Writing and reading

files to and from the disk is usually more time-consuming than using streams, so Gulp

has a speed advantage over Grunt [33]. Zander Martineau's speed comparison tests

show that same tasks in Gulp are at least twice as fast as in Grunt [34]. These differences

also result in major distinctions in the syntaxes both of these tools use.

As Grunt and Gulp are both Node.js-based tools and depend on npm's package.json file,

Node.js and npm are required when using either of these tools. The command line tools

for both task runners must be installed globally with npm install --global grunt-cli or gulp-

cli. In addition to installing the global CLI tools, Grunt and Gulp must also be installed as

local development dependencies for each project with npm install --save-dev grunt or

gulp. The --save-dev flag installs packages as development-only dependencies to differ-

entiate them from front-end dependencies used in the actual application. As Grunt and

17

Gulp plugins are regular npm packages, they can be installed similarly via npm by looking

up the correct package name either from the tools' webpage or by using npm search

command.

Grunt was first created in 2012, but the first officially stable version 1.0.0 was only re-

leased as late as April 2016 [35]. Gulp in turn has been more liberal with their version

history; version 1.0.0 was publically released in September 2013 only a few months after

the initial release of the project [36]. To date there are 5 889 plugins in the npm repository

that are marked as Grunt plugins and 2 637 Gulp plugins [37, 38].

The configuration file used by Grunt is called Gruntfile.js, and it has to be created in order

to use Grunt. The configuration file consists of four parts: a wrapper function, configura-

tions for individual tasks, plugin loading functions and task definitions. [39] An example

configuration file can be seen in figure 10.

The wrapper function (marked with 1 in the example figure) is a simple function that is

used to encapsulate all of the Grunt configurations inside a module ready to be used by

other Node.js-based modules. Task configurations (2) are placed inside the grunt.in-

itConfig function as JSON objects or arrays. In the example file sass and autoprefixer

are names of tasks, more specifically they are the names that are used to point to specific

plugins called grunt-contrib-sass and grunt-autoprefixer. Inside both objects there are

two subtasks that are created to allow using different options for development and pro-

duction versions. Subtasks are optional and can be created freely when needed. The

subtasks for the sass task consist of two objects, options includes all configurable set-

tings that can be set for this task, and files which states the output and input files. Avail-

able options for each plugin may vary, plugin-specific options can be viewed in the

plugin's repository or npm page. Grunt plugins are often just wrappers written for an

existing command line tool to make it work in Grunt. For example, grunt-contrib-sass

command is a wrapper for the sass command line tool. All plugins must be loaded (3)

inside the Gruntfile.js in order to be able to use them. Grunt has a method called

loadNpmTasks that loads the tasks of the specified plugin. Grunt will not understand the

plugins' task names unless this method is called for each plugin. Custom tasks can be

created and registered in the bottom of the Gruntfile.js (4). This is done by calling the

method registerTask and passing it two parameters: a name that is assigned to the task

and an array of tasks that will be executed when this particular custom task is run. The

tasks will be executed in the specified order. In both of the tasks registered in the exam-

ple file sass task must be run before autoprefixer, because autoprefixer cannot handle

18

scss files. Grunt tasks are called from the command line by their names, for example the

task called production is run with grunt production. The default task can be run simply

with grunt.

Figure 10. An example Gruntfile.js.

The equivalent of Gruntfile.js in Gulp is gulpfile.js. The Gulp configuration file only con-

sists of two parts: plugin loading and task configurations. An example gulpfile.js having

identical tasks as the Gulpfile.js in figure 10 is demonstrated in figure 11. In the first part

(marked with 1 in the figure) all needed plugins are imported with Node.js method require

by passing the plugin name as a parameter. As all plugins are initially just variables

saved inside the file, the naming convention in Gulp is less strict than in Grunt; the plugins

can therefore be called anything within the regular JavaScript variable naming rules. In

the task configuration part (2) each task is created with task method. All tasks must be

given a name with which it can be called from the command line. The tasks in the exam-

ple file also have callback functions which are executed whenever the task is being

called.

19

As mentioned earlier, the utilization of streams is one of the biggest differences between

the concepts of Grunt and Gulp. A Node.js stream is a way to continuously read or write

data in-memory. Streams are built-in into Node.js as a module called stream. [40] Inside

the task method in the Gulp configuration file there are three main methods used: src,

pipe and dest. Src and dest are methods of vinyl-fs, a module created by the Gulp de-

velopers. Gulp handles all files as vinyl file objects, as sort of virtual files [41] or objects

of metadata representing files [42]. The src method accepts strictly-specified file names

such as main.scss, directories such as scss/ or glob patterns such as **/*.scss as a pa-

rameter, and returns a stream of vinyl files [43]. This stream can then be passed on to

the plugins to work on. Passing the streams is achieved with pipe, a method of the stream

module. For example, in the task production the stream containing the scss/main.scss

file in vinyl format is piped three times, first to the sass plugin for compiling into CSS and

then on to autoprefixer to add the automatic vendor-prefixes. Plugin options can be con-

figured inside the plugin function call. The last pipe in the task includes the dest method,

which accepts a directory as parameter and writes files from the stream. Each task can

have several calls to the dest method, if some files need to be written after a certain pipe

is done.

Figure 11. An example gulpfile.js.

A good convention is to create one task per purpose, for example compiling Sass files

into a CSS file. Keeping tasks simple helps keeping the gulpfile.js organized and re-

20

usable. Custom tasks can be chained into bigger build processes. For example, the task

of re-creating the production version of the application could consist of compiling and

minifying all the assets, running unit tests and copying the needed files into a build di-

rectory. This is achieved by specifying task names inside square brackets like

gulp.task('build', ['styles', 'scripts', 'images', 'test']). This syntax means that before running

the task called build, the tasks inside the square brackets are executed. In this example

the build task does not contain a callback function, so the task is finished after all the

tasks have finished. In case there is a callback function, it is fired after all the tasks spec-

ified inside the square brackets have finished. This is particularly useful if running a task

requires another task to be run before it. Gulp uses a module called orchestrator to exe-

cute all tasks with maximum concurrency, so it always tries to run all tasks possible in

parallel to maximize the performance [44]. Grunt instead does not run tasks concurrently

by default but can also be configured to work like Gulp.

One of the main reasons to use a task runner over multiple individual command line tools

is the ability to watch for file changes and run tasks whenever changes occur. Most of

the command line tools do have this feature, but using multiple tools with watch com-

mands require one command line session per tool. With task runners all the configura-

tions can be done in one place and file changes can be watched with a single command.

Gulp has a watch method built-in whereas Grunt requires using a plugin called grunt-

contrib-watch. The basics of file watching in both tools are the same; a glob pattern of

file paths and a list of tasks to be executed on file changes are passed on to the method

or plugin responsible for file watching. In Gulp this is very similar to using the task

method, for example grunt.watch('scripts/**/*.{js, coffee}', ['js', 'test']). This example is

watching for JavaScript or CoffeeScript file changes inside any subdirectory of scripts,

and will run tasks js and test whenever a watched file is changed. The same example

using Grunt can be seen in figure 12.

Figure 12. Grunt watch task configuration.

21

There are major differences between Grunt and Gulp, the most visible being the syntax

they use. The syntax however is a matter of taste, some developers prefer configuring

all tasks separately as JSON objects with Grunt and some like the Gulp way of piping

tasks together and thus creating easy-to-understand build streams. Gulp has a speed

advantage over Grunt, but a normal user will probably start noticing the differences in

task executing times only when working with a very large project or constantly running

some time-consuming tasks. For most users, it does not matter whether the execution

of a task takes 400 ms instead of 40 ms.

Running build tasks does not necessarily require an external tool at all. As with depend-

ency management tools, npm can also be used as a substitute task runner. This would

again remove the issue of installing and introducing an external task running tool like

Grunt or Gulp, as npm is already used in most projects anyway. According to Keith Cirkel,

using other tools than npm in task running are adding unnecessary bloat to projects. For

example, instead of using the jshint command line tool itself, Grunt and Gulp rely on

separate wrapper plugins in order to use its features. In addition to this, to achieve iden-

tical functionalities as the original tools might also require other plugins that add features

to Grunt or Gulp themselves, such as Grunt's grunt-contrib-watch for file watching or

gulp-util, a Gulp plugin that adds more functionalities to Gulp tasks. Whenever a com-

mand line tool like jshint is updated, Grunt and Gulp users might have to wait for the

plugin developers to react to the update and release an updated version for the plugin

as well. Cirkel says that the Grunt and Gulp way is relying too much on wrapper plugins

written for existing tools and thus complicates maintaining projects. [45, 46]

Npm can be configured to run external tools quite easily. In package.json configuration

file, there is a property called scripts. Tasks can be defined within this property as JSON

key-value pairs. Running external tools with npm requires the tool to be registered as a

development dependency inside the package.json file, the same as when installing Gulp

or Grunt or any of their plugins. The difference in running the tasks from npm compared

to Gulp or Grunt is that npm does not require a wrapper plugin. It can run tools such as

jshint or sass directly. An example setup for running an npm task can be seen in figure

13. In the example, both jshint and sass tools are installed as development dependen-

cies, and two tasks are registered inside the scripts object. Tasks can be executed by

running npm run <taskName>, in the example file npm run lint or npm run styles. Running

a task will simply execute the command inside the value of the task in the default shell

of the operating system [45]. The example in figure 13 is very simple, and the only ad-

vantage in running the example tasks from npm compared to running them directly from

22

shell is that the syntax is simpler, as developers do not need to remember the correct

syntaxes of each tool separately, only remembering the task name is enough. This is

especially handy when running more complex tools that have multiple specific flags and

options that need to be set.

Figure 13. Simple task definitions in npm.

The true advantages of running npm as a build tool come from the utilization of regular

shell commands. This means that tasks can be chained or their output piped together

and normal shell commands can also be used inside the task definitions. Whereas Gulp

or Grunt require a plugin for removing files or directories, npm can utilize the rm shell

command directly. [45] An extended version of the example configuration utilizing more

npm capabilities can be seen in figure 14. Running npm run build with the configuration

in the example file, three npm tasks would be run with shell command && chaining them

together and moving onto the next task in the chain whenever the previous task was

completed successfully. In the end there is also a shell command echo that will simply

print the following string to the command line after all tasks are completed. The start task

is a built-in task in npm, and it can be executed with simply running npm start. The start

task is usually used for starting the application, for example spinning up a Node.js server.

In the example file an external command line tool browser-sync is used for starting the

application. Npm also includes other built-in tasks such as test, which is used for running

test suites for the application.

23

Figure 14. Extended npm task configuration utilizing shell features.

Developers can also hook into built-in npm tasks with pre- or post-prefixes. For example,

creating a postinstall task will be automatically run after npm install is called, usually

meaning someone cloning the project and installing all dependencies. Developers can

therefore for example start the application automatically when the installation is com-

plete. Furthermore, npm also supports hooking into custom tasks. Each time a task, even

a task created by the developer such as styles in figure 14, tasks with prefixes pre- and

post- are run automatically. [45, 47] This is a good way to separate tasks into smaller

pieces. Figure 15 introduces these hooks into the npm script configuration. In this exam-

ple the build task introduced in figure 14 has been simplified by moving lint task to

preuglify hook. Therefore, it is executed before uglify task, as whenever minifying the

JavaScript files into production-ready minified files with uglifyjs, the developer might want

to test that there are no errors in the files with jshint. In the prestyles task the tmp directory

is first removed with the shell command rm and after that, the existing CSS file is copied

into tmp directory. The preinstall and postinstall tasks are used for easier project initiali-

zation.

24

Figure 15. Extended npm configuration utilizing hooks.

4.3 Scaffolding

Client-side scaffolding is a term used for the process of setting up or creating the initial

template for a project. The scaffolding itself is a one-time-only process run as the very

first task in a new project, but scaffolding a project also installs several tools that help in

building the project, and suggests best practices and solutions for common problems.

The de-facto tool in client-side scaffolding is Yeoman. Yeoman is based on generators

that can be thought of as plugins. Yeoman itself is non-opinionated, which means it does

not make decisions on behalf of the users, it is merely a toolkit that provides the ecosys-

tem for the generators [48, 49]. Generators are built and maintained by either the devel-

opers of Yeoman or the wide open-source community around it. Currently there are 4

321 published generators [50]. Generators are basically plugins that provide developers

with the best practices that have been established throughout the community. They cre-

ate the initial skeleton of the application, meaning the directory structure, and a set of

tools that help in development and maintenance of the project. [48] As there are specific

generators for each framework, for example Angular, they are often opinionated, but are

also usually modular to provide flexibility for the developers.

25

Yeoman can be installed as a global npm package by running npm install yo --global.

Yeoman generators are also npm packages and they must also be installed globally. The

names of the generators always consist of the generator-prefix followed by the name of

the generator, for example generator-webapp. After installing the tools, a generator can

be run with a simple command yo <generator-name>, for example yo webapp. Genera-

tors usually allow the developer to interactively choose from a set of built-in tools and

libraries when running a generator, as demonstrated in figure 16.

Figure 16. Example of interactive options when running Yeoman generators.

After going through all the options, the generator creates the directory structure and

some boilerplate files to start with. This forms the skeleton of the application. The gen-

erator also automatically runs npm install to install all of its dependencies, and in the

case of generator-webapp, it also automatically runs bower install to install all front-end

dependencies. Because generator-webapp uses Bower without asking or providing al-

ternatives, it is therefore opinionated. The creators of the generator have also decided

to use Gulp as the task-running tool instead of Grunt. The final directory structure can be

seen in figure 17. As can be seen in the figure, the generator has created package.json

and bower.json configuration files, and installed all npm and Bower dependencies into

node_modules and bower_components directories. All of the application-specific front-

end files are separated into a directory called app.

26

Figure 17. Final directory structure for generator-webapp.

The generator enforces the usage of Gulp as the task-runner, and the created gulpfile.js

includes multiple pre-defined tasks ready to be used. For example, running gulp serve

from the project's root directory creates a Node-based web-server using Browser-sync.

Running the command opens up the application's index.html in a web browser with some

boilerplate content. The command will also tell Gulp to start watching for changes in the

project files and run the needed tasks and refresh the browser automatically. The appli-

cation is ready to be developed without the developer ever having to touch any of the

files.

Although the advantages of using Yeoman generators are most visible during the setup

of a project, many generators also provide help during the development phase in the

form of sub-generators. While the actual generator takes care of the initial scaffolding,

sub-generators are particularly useful when dealing with more complex frameworks like

Angular or React. Sub-generators provide means to create smaller parts of the applica-

tion fast, such as controllers in Angular. [48] Sub-generators are also prescribing best

practices so that the developer does not have to guess in which directory the new com-

ponent should be placed. For example, generator-angular, a generator for Angular

framework built by the Yeoman team, provides 11 different sub-generators, all creating

27

and configuring small components, that can be run whenever needed during develop-

ment [51].

5 Optimization setup for a custom web application

The web application in this project implements a headless, sometimes called decoupled,

content management system (CMS) architecture, in which a CMS handles storing the

data into a database and serving it through an application programming interface (API).

In this architecture viewing the data is not tied to the CMS itself as the front-end side of

the application is decoupled from the back-end side. [52] Content management systems

are utilizing themes to view the data, and all of them have their own structures for pre-

senting data, and they often have limitations. The headless architecture is utilizing the

advantages of both the administration interface of the CMS, in which it is easy to create,

edit and maintain content, and the flexibility of a completely independent front-end sys-

tem, in which the developers have more freedom to use whichever tools and front-end

frameworks to view the data. In many cases the front-end side of the application is built

using a JavaScript framework such as Angular or Backbone, but because the content is

being served through an accessible API, it is also possible to utilize the data for example

in a mobile application. [53]

In the beginning of the project Drupal 8 was selected as the back-end system storing all

content, but no front-end technology decisions were made at that point. In the project it

was important to come up with a minimum viable product fairly quickly to be able to

demonstrate the overall layout in a live environment. It was then decided that an HTML

mockup of the application should be created first according to the designed layouts. The

initial views of the application had many identical content blocks, and it was noticed that

the project would benefit from an HTML templating engine that would allow modifying

those blocks jointly to reduce copying the same adjustments to each view individually.

As it was clear from the beginning that the templating engine system would later be re-

placed by the actual front-end framework, it was crucial that the optimization tools that

would be selected for the project should be above all flexible. Flexibility in the setup

allows developers to make major changes rapidly.

Most Yeoman generators are framework-specific, and as there was no framework de-

cided yet, it was decided that no client-side scaffolding generator would be used in the

28

project. Using a ready-made project template created by a generator did not feel as flex-

ible or easily-customizable as the project needed. Yeoman generators create the whole

project skeleton, and switching from a generator to another during development is not

reasonable, because in most cases the project would need to be re-created from scratch

as the directory structures for different frameworks vary.

Instead of using a scaffolding tool, a decision was made that a task runner and a de-

pendency management tool were needed in the project. Node.js and npm were installed

for the project as they are requirements for most modern tools. We wanted to keep task

running and dependency management separated from npm to achieve a simpler setup.

Although individual tools for each process can be thought of as more difficult to maintain,

it felt easier to have an individual tool for each process rather than assigning all pro-

cesses to a single tool.

I had previously worked with Grunt as a task runner, but after comparing Grunt with Gulp,

the "code-over-configuration" approach that Gulp is utilizing convinced us to use it for

running tasks in the project. Other facts that advocated Gulp over Grunt were that the

Gulp plugin for compiling HTML from Nunjucks, an HTML templating language that was

used in the project, had more downloads, was more actively developed and was in a

more mature state according to the version of the module. Bower was installed as the

project's front-end dependency management tool.

The initial project structure can be seen in figure 18. In the beginning there were four

major tasks that Gulp was running. Serve task utilized Browser-sync to initiate a Node.js-

based server that not only keeps the application synchronized on all browsers on the

developer's computer, but also grants other devices in the same network access to view

the application through a specified IP address. This task was also responsible for watch-

ing for file changes. Changes in scss directory fired a task that compiled all SCSS files

into a combined CSS file, piping the stream through gulp-autoprefixer which automati-

cally adds browser-specific CSS prefixes, and gulp-sourcemaps which creates a CSS

source map to help in debugging the application. The directory pages includes layouts

for all views created with Nunjucks, while templates has smaller parts of the HTML in-

cluded in the actual views, such as header. File changes in either of these directories

fired nunjucks task, that compiled the Nunjucks files into HTML. The compiled HTML

files were placed in the root of the project, as can be seen in figure 18. The last task was

bower that utilized main-bower-files. This plugin traverses through the dependencies

property of the bower.json file, finds a matching dependency in bower_components, and

29

returns an array of all the files marked as the main entry points in each of the compo-

nents' own bower.json files. The output of this stream was filtered by file extensions,

JavaScript files were concatenated and minified into a single vendor.js file, and CSS files

into a vendor.css file.

Figure 18. Directory structure of the application in the start of the project.

Later on in the project when the actual server for the application was setup, two new

tasks were created, one handling the building process of a production-ready version of

the application and the other transferring the production version to the server. At the

same time several environment flags were introduced, for example running sass task

with flag --production would minify the compiled CSS file and not create a source map

for the CSS file. The flag would also tell Gulp to save the file into the production version

of the application rather than the directory used for development. By using flags there

was no need to make a copy of each task for production purposes, which would have

considerably lengthened the gulpfile.js, since the basic functionalities of each task are

similar with only minor differences. At this point Angular was selected as the front-end

framework for the project, and as Angular has its own way of including HTML templates,

Nunjucks was dropped and uninstalled from the project. The Gulp task that handled com-

piling Nunjucks into HTML was replaced with a task that concatenates all application

JavaScript files into one single app.js file and validates it before telling Browser-sync to

reload the page.

30

The build task utilizes a plugin called run-sequence which allows running defined tasks

in a specified order. In this case the task first removes the existing production directory

with gulp-clean plugin, then copies files not compiled through any task, such as images

and fonts, into the directory, and in the end runs the compiling tasks in parallel. When

the production directory is ready, Gulp automatically creates a new Browser-sync in-

stance that serves the production version of the application ready to be tested before

deploying the new version to the server. The build task has to therefore always be run

with the flag --production, so that other tasks know which version of the files is needed,

with which options and where to save the files.

The deploy task uses a plugin called gulp-rsync, which is a wrapper that enables using

the tool rsync in Gulp. Rsync does not transfer the complete production version to the

server, it synchronizes the destination with the source, so that only changes made after

last synchronizing are transferred to server. This reduces the time it takes to deploy the

changes significantly, especially with large applications. The deploy task can be modified

with several flags, --staging or --production to distinguish which server rsync should

transfer the files, and an optional --dry that only prints out the files that would be changed

without actually making the changes, which is useful and more secure if there are lots of

files that need synchronizing.

6 Results

The setup created for the application optimizes or automates five of the six parts of the

development workflow introduced by Zell Liew. Scaffolding was the only part this setup

did not touch, it was done manually due to possible changes in the structure of the ap-

plication, and also to learn more about the tools and techniques by doing, rather than

using a ready-made solution. Several Gulp tasks were created to automate parts of the

development phase, such as validating and concatenating files. The optimizations in the

development part reduce repetitiveness and let developers work on building the code

instead of running several compilers time and again.

The Node.js server created with Browsersync helped a great deal in testing the applica-

tion. It allows easy integration with multiple browsers and mobile devices simultaneously,

as well as quickly reviewing changes with other people working on the same project

without the need to first commit, push and pull changes to or from the git repository.

31

Integrating with other developers' changes is made easier with the usage of Bower and

npm especially. As all packages and libraries are listed in configuration files that can be

updated, there is no discrepancy between developers on which package versions to use.

By creating a .bowerrc file and adding a postinstall script property, the integration can be

made even easier, as that script is automatically run after each bower install command.

In this application gulp bower is run after bower install, so that all new front-end depend-

encies are instantly added into the application. Similar scripts could also be added to the

project as git hooks, for example automatically running npm install as a post-merge hook

whenever package.json file has been changed by another developer, but they need to

be added on each computer individually, as git files are not usually included in version

control systems.

Optimizing assets for production version was also achieved with Gulp tasks. Separate

task configurations for development and production environments keeps the production

version of the application as small and fast as possible by minifying all assets while still

keeping the development version easy to read and debug. Gulp also completely handles

deploying code to the production servers with a single command. The deployment pro-

cess is also secure, as usernames and other server configurations are kept in a separate

file that is not in the version control system, and SSH keys are required for a successful

deployment.

Re-installation process of the application is almost identical for different operating sys-

tems. It takes eight or nine steps to view the application in a browser, depending on the

operating system in use. The first part is installing Node.js and npm, which differs for all

operating systems. For Mac OS X and Linux-based operating systems it is suggested

that the path of npm is changed to a location that does not require superuser rights,

whereas this step is not needed for Windows computers. Other steps that differ are in-

stalling Git and cloning the application from the Git repository. All other tasks are identical

as they are based on Node.js which is a cross-platform environment. Gulp and Bower

must be installed as global dependencies to be able to compile and run the application.

After cloning the application, only three terminal commands are needed to run the appli-

cation in a browser. Npm install installs all local development dependencies and bower

install installs all front-end dependencies. Gulp bower is run automatically after bower

install has completed because of the postinstall script added into .bowerrc configuration

file. The last step is to run gulp which defaults to the gulp serve task, with which the

application can be viewed at http://localhost:3000 address. The process is even more

32

straight-forward if all global tools, such as Node.js and Git, are already installed on the

computer.

Future

As new tools are emerging each week, it takes some effort to try to keep up with the

constantly changing field of different dependency management and other tools. Once

you learn how to use one tool and are getting familiar on the best practices in using it,

there is a chance that someone has already created a new tool that solves some of the

problems the older tools have, such as being faster or more reliable. These modern de-

velopment tools are constantly going towards a more open-source future, as the tools

are developed, managed and enhanced by a large amount of people, but at the same

time the field is getting more and more fragmented, as completely new tools are created

instead of working together and trying to fix the possible problems a tool might have and

overcoming them.

In October 2016, four large companies, including Facebook and Google, announced a

new tool called Yarn, which is, in their own words, providing a faster, more reliable and

more secure way of managing dependencies. [54] It is basically an improved version of

the npm client, however, it is not intended to replace npm as a whole, as it uses the npm

registry for downloading the dependencies, combining it with Bower registry. The basics

of Yarn are very similar to npm, but there are differences, especially in the installation

process of new dependencies, and slight variations in the commands it offers. Yarn is

capable of running tasks parallel when installing dependencies, which makes Yarn faster

compared to the sequential installing process of npm [55]. In a comparison by Nikhil

John, Yarn proved to be on average 4.7 times quicker than npm when installing depend-

encies [56]. Unlike npm, Yarn uses a flat dependency tree and saves all packages in a

global cache, so that when a package is once installed, next time it can be installed from

cache, which enables installing packages also offline. Differences in commands include

for example dividing npm install into two different commands, where yarn install reads

and installs the dependencies from package.json, and yarn add installs new dependen-

cies from the registry. Each added dependency is also automatically saved into pack-

age.json, removing the need for an extra flag like npm's --save. As both tools have almost

identical commands and Yarn is using npm registry, there could have been a way to

make these improvements directly to npm instead of creating a new tool, as Tim Severien

states [55]. Yarn is therefore a good example of the fragmentation of development tools.

33

Another popular approach to optimizing web development is module bundling. Webpack

is currently the most popular JavaScript module bundler. Webpack is a powerful tool

capable of splitting all kinds of assets into bundles, that can be loaded into browser

whenever needed. This allows for smaller file sizes, and with the Hot Module Replace-

ment feature, bundles can be loaded without refreshing the webpage. Webpack is able

to bundle not just JavaScript, but also other kinds of assets such as CSS, images and

fonts with the help of its dependency graph concept. Webpack uses loaders to pre-pro-

cess assets, for example to compile Sass into CSS. With Webpack you could for exam-

ple create a bundle for the home page of the application, that only includes assets

needed in it thus making the file size smaller. Webpack is optimal when the application

is using a modular JavaScript design pattern, where the application JavaScript is divided

into small, reusable modules. Webpack does not have to completely replace task runners

like Gulp or Grunt, they can be used side by side, for example with gulp-webpack plugin.

[57, 58]

Learning to use and configure Webpack correctly, however, can be really tricky, espe-

cially for beginners. The configuration files and their syntax are complicated. The docu-

mentation of Webpack is also not very easy to understand according to Andrew Ray.

[58] A similar module bundler, but with less massive core features and gentler learning

curve, is Browserify, which may be easier to learn for beginners. Browserify can also be

a better suit for smaller projects with less assets to bundle and configure. With smaller

projects Webpack might be an over-complicated solution.

7 Summary

The goal of this thesis was to research different ways to automate and optimize the de-

velopment workflow with modern JavaScript-based tools and techniques, and to find a

functional setup for a customized web application.

New tools are being created each day, all of them trying to fix problems of preceding

tools. This makes keeping up with the pace hard, it is almost impossible to know which

tools are worth learning and which are not. The field of front-end development tooling is

also getting more and more fragmented; new tools are being introduced instead of work-

ing together to improve the existing tools despite the open-source philosophy that most

of the tools have.

34

The most important thing is not to learn the syntax of every single tool, but rather to

understand the concepts and solutions the different tools are trying to accomplish. After

learning why and how to use one tool, it is often not complicated to learn new ones and

switch to them in case the other tools seem more suitable. It is not as important to mem-

orize for example all of the differences in Gulp and Grunt commands, as it is to under-

stand the common concept of those tools, and what those tools are trying to accomplish

and what problems they are solving.

Most web application projects are different. There is no need to find a single setup that

works for all projects, but rather to learn about different options and to find a suitable set

of tools that work for you. These tools can then be extended according to the needs of

each project. For the web application in this project, the tools selected were npm, Bower

and Gulp, with many other tools working with Gulp through plugins. The setup covers all

of the most important parts of the workflow, excluding only the scaffolding part of the

workflow. Most importantly, the setup is relatively easy to install and use, with no com-

plicated commands to memorize. This setup can serve as the base for future projects,

as it is easy to enhance it by adding more automated tasks for specific needs or removing

obsolete ones. Yeoman could also be added to future projects for quicker initialization of

the project.

35

References

1 Smith, Robert. 2015. A modern front-end workflow [online].

<http://rbrtsmith.com/2015/08/a-modern-frontend-workflow>. 29.8.2015. Accessed

31.10.2016.

2 Young, Alex R. 2015. Small Modules: Tales from a Serial Module Author [online].

<http://dailyjs.com/2015/07/02/small-modules-complexity-over-size>. 2.7.2015. Ac-

cessed 31.10.2016.

3 Liew, Zell. 2015. An Overview of a Development Workflow [online].

<http://zellwk.com/blog/workflow-overview>. 3.6.2015. Accessed 29.7.2016.

4 Bracey, Kezz. 2015. The Command Line for Web Design: Taming 3rd Party Pack-

ages [online]. <https://webdesign.tutsplus.com/tutorials/the-command-line-for-web-

design-taming-3rd-party-packages--cms-23451>. 17.3.2015. Accessed 24.10.2016.

5 Bracey, Kezz. 2015. The Command Line for Web Design: Grasping The Basics

[online]. <https://webdesign.tutsplus.com/tutorials/the-command-line-for-web-de-

sign-grasping-the-basics--cms-23318>. 10.3.2015. Accessed 24.10.2016.

6 About Node.js [online]. Node.js. <https://nodejs.org/en/about>. Accessed 15.6.2016.

7 Nguyen, Don. 2012. Jump start Node.js. Collingwood: Sitepoint.

8 What is npm? [online]. npm. <https://docs.npmjs.com/getting-started/what-is-npm>.

Accessed 8.7.2016.

9 DeBill, Erik. Module Counts [online]. <http://www.modulecounts.com/>. Accessed

27.6.2016.

10 Package.json [online]. npm. <https://docs.npmjs.com/files/package.json>. Accessed

8.7.2016.

11 Lee, Edward A. 2006. The Problem with Threads [online]. <http://www.eecs.berke-

ley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf>. 1.10.2006. Accessed 22.6.2016.

36

12 Norris, Trevor. 2015. Understanding the Node.js Event Loop [online].

<https://nodesource.com/blog/understanding-the-nodejs-event-loop>. 20.1.2015.

Accessed 22.6.2016.

13 Hall, Adron. 2013. Understanding the Node.js Event Loop [online].

<https://strongloop.com/strongblog/node-js-event-loop>. 19.12.2013. Accessed

22.6.2016.

14 Node.js - Event Loop [online]. Tutorials Point. <http://www.tutori-

alspoint.com/nodejs/nodejs_event_loop.htm>. Accessed 22.6.2016.

15 Kasiuk, Aleksander. 2015. On problems with threads in node.js [online].

<https://www.future-processing.pl/blog/on-problems-with-threads-in-node-js>.

22.4.2015. Accessed 22.6.2016.

16 Node.js programs versus Ruby [online]. The Computer Language Benchmarks

Game. <http://benchmarksgame.alioth.debian.org/u64q/com-

pare.php?lang=node&lang2=yarv>. Accessed 19.6.2016.

17 Aissani, Camel. Node.js [online]. <http://slidedeck.io/camelaissani/nodejs-presenta-

tion>. Accessed 22.6.2016.

18 Schlueter, Isaac. 2011. npm 1.0: Global vs Local installation [online].

<https://nodejs.org/en/blog/npm/npm-1-0-global-vs-local-installation>. 24.3.2011.

Accessed 8.7.2016.

19 sudo - Unix, Linux Command [online]. Tutorials Point. <http://www.tutori-

alspoint.com/unix_commands/sudo.htm>. Accessed 8.7.2016.

20 Installing npm packages globally [online]. npm. <https://docs.npmjs.com/getting-

started/installing-npm-packages-globally>. Accessed 8.7.2016.

21 Fixing npm permissions [online]. npm. <https://docs.npmjs.com/getting-started/fix-

ing-npm-permissions>. Accessed 8.7.2016.

37

22 All Docs [online]. npm. <https://docs.npmjs.com/all>. Accessed 22.7.2016.

23 Ogden, Max. 2015. Nested Dependencies [online]. <http://maxogden.com/nested-

dependencies.html>. January 2015. Accessed 22.7.2016.

24 Osmani, Addy. 2013. Automating Front-end Workflow [online]. <https://speaker-

deck.com/addyosmani/automating-front-end-workflow>. 25.10.2013. Accessed

29.7.2016.

25 Bower [online]. Bower. <https://bower.io>. Accessed 29.7.2016.

26 Getting Started - Installing Git [online]. Git. <https://git-scm.com/book/en/v2/Getting-

Started-Installing-Git>. Accessed 29.7.2016.

27 Configuration [online]. Bower. <https://bower.io/docs/config>. Accessed 29.7.2016.

28 Lindley, Cody. 2014. The Mystical & Magical SemVer Ranges Used by npm & Bower

[online]. <http://developer.telerik.com/featured/mystical-magical-semver-ranges-

used-npm-bower>. 6.10.2014. Accessed 29.7.2016.

29 Osmani, Addy. 2013. Checking in front-end dependencies [online]. <https://ad-

dyosmani.com/blog/checking-in-front-end-dependencies>. 29.7.2013. Accessed

1.8.2016.

30 Salonen, Jaakko. 2015. Why We Should Stop Using Bower – And How to Do It

[online]. <https://gofore.com/stop-using-bower>. 25.5.2015. Accessed 1.8.2016.

31 Rachev, Preslav. 2015. Gulp vs Grunt. Why one? Why the Other? [online].

<https://medium.com/@preslavrachev/gulp-vs-grunt-why-one-why-the-other-

f5d3b398edc4>. 6.1.2015. Accessed 8.8 2016.

32 Pataki, Daniel. The Battle of Build Scripts: Gulp Vs Grunt [online].

<http://www.hongkiat.com/blog/gulp-vs-grunt>. Accessed 8.8.2016.

33 Hsu, Jack. 2014. 30 - Beyond the Numbers [online].

<http://jaysoo.ca/2014/01/27/gruntjs-vs-gulpjs>. 27.1.2014. Accessed 8.8.2016.

38

34 Martineau, Zander. 2014. Speedtesting gulp.js and Grunt [online].

<http://tech.tmw.co.uk/2014/01/speedtesting-gulp-and-grunt>. 15.1.2014. Accessed

8.8.2016.

35 Grunt releases [online]. GitHub. <https://github.com/gruntjs/grunt/releases>. Ac-

cessed 12.9.2016.

36 Gulp changelog [online]. GitHub. <https://github.com/gulpjs/gulp/blob/mas-

ter/CHANGELOG.md> Accessed 12.9.2016.

37 Plugins [online]. Grunt. <http://gruntjs.com/plugins> Accessed 12.9.2016.

38 Plugins [online]. Gulp. <http://gulpjs.com/plugins>. Accessed 12.9.2016.

39 Getting started [online]. Grunt. <http://gruntjs.com/getting-started>. Accessed

8.8.2016.

40 Stream [online]. Node.js. <https://nodejs.org/api/stream.html> Accessed 12.9.2016.

41 Kappert, Lars. 2014. Getting gulpy [online]. <https://medium.com/@webprolific/get-

ting-gulpy-a2010c13d3d5>. 6.5.2014. Accessed 12.9.2016.

42 Vinyl-fs [online]. GitHub. <https://github.com/gulpjs/vinyl-fs>. Accessed 12.9.2016.

43 Gulp API docs [online]. GitHub. <https://github.com/gulpjs/gulp/blob/mas-

ter/docs/API.md>. Accessed 12.9.2016.

44 Gulp Dissection [online]. Delapouite. <http://delapouite.com/ramblings/gulp-dissec-

tion.html>. Accessed 12.9.2016.

45 Cirkel, Keith. 2014. How to Use npm as a Build Tool [online]. <https://www.keithcir-

kel.co.uk/how-to-use-npm-as-a-build-tool>. 9.12.2014. Accessed 16.9.2016.

46 Cirkel, Keith. 2014. Why we should stop using Grunt & Gulp [online].

<https://www.keithcirkel.co.uk/why-we-should-stop-using-grunt>. 30.10.2014. Ac-

cessed 16.9.2016.

39

47 npm-scripts [online]. npm. <https://docs.npmjs.com/misc/scripts>. Accessed

23.9.2016.

48 Getting started with Yeoman [online]. Yeoman. <http://yeoman.io/learning/>. Ac-

cessed 26.9.2016.

49 Strumpflohner, Juri. 2014. Node, Grunt, Bower and Yeoman - A Modern web dev's

Toolkit [online]. <http://juristr.com/blog/2014/08/node-grunt-yeoman-bower/>.

15.8.2014. Accessed 26.9.2016.

50 Generators [online]. Yeoman. <http://yeoman.io/generators>. Accessed 26.9.2016.

51 AngularJS Generator [online]. GitHub. <https://github.com/yeoman/generator-angu-

lar>. Accessed 7.10.2016.

52 Headless and decoupled CMS: the essential guide [online]. Contentful.

<https://www.contentful.com/r/knowledgebase/headless-and-decoupled-cms/>. Ac-

cessed 7.10.2016.

53 Decoupled CMS: Why “Going Headless” Is Becoming So Popular [online]. Pantheon.

<https://pantheon.io/decoupled-cms>. Accessed 7.10.2016.

54 Getting started [online]. Yarn. <https://yarnpkg.com/en/docs/getting-started>. Ac-

cessed 28.10.2016.

55 Severien, Tim. 2016. Yarn vs npm: Everything You Need to Know [online].

<https://www.sitepoint.com/yarn-vs-npm/>. 19.10.2016. Accessed 28.10.2016.

56 John, Nikhil. 2016. Facebook’s Yarn vs npm — Is Yarn really better? [online].

<https://medium.com/@nikjohn/facebooks-yarn-vs-npm-is-yarn-really-better-

1890b3ea6515>. 12.10.2016. Accessed 28.10.2016.

57 Vepsäläinen, Juho. Webpack compared [online]. <http://sur-

vivejs.com/webpack/webpack-compared/>. Accessed 28.10.2016.

58 Ray, Andrew. 2016. Webpack: When to Use and Why [online]. <http://blog.an-

drewray.me/webpack-when-to-use-and-why/>. 9.4.2016. Accessed 28.10.2016.

Appendix 1

1 (2)

Package.json

{

 "name": "sananvapaus",

 "version": "0.8.0",

 "description": "Angular webapp",

 "private": true,

 "main": "src/app.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Hermanni Piirainen",

 "repository": {

 "type": "git",

 "url": "https://github.com/FloAppsLtd/Sananvapaus"

 },

 "devDependencies": {

 "browser-sync": "^2.11.1",

 "connect-history-api-fallback": "^1.3.0",

 "fs": "0.0.2",

 "gulp": "^3.9.1",

 "gulp-autoprefixer": "^3.1.0",

 "gulp-clean": "^0.3.2",

 "gulp-clean-css": "^2.0.6",

 "gulp-concat": "^2.6.0",

 "gulp-debug": "^2.1.2",

 "gulp-filter": "^4.0.0",

 "gulp-if": "^2.0.1",

 "gulp-imagemin": "^3.1.0",

 "gulp-jshint": "^2.0.1",

 "gulp-prompt": "^0.2.0",

 "gulp-rename": "^1.2.2",

 "gulp-rsync": "0.0.6",

Appendix 1

2 (2)

 "gulp-sass": "^2.2.0"

 "gulp-size": "^2.1.0",

 "gulp-sourcemaps": "^1.6.0",

 "gulp-uglify": "^1.5.3",

 "gulp-util": "^3.0.7",

 "main-bower-files": "^2.11.1",

 "run-sequence": "^1.2.0",

 "yargs": "^4.7.1"

 },

 "dependencies": {}

}

Appendix 2

1 (2)

Bower.json

{

 "name": "sananvapaus",

 "description": "Angular webapp",

 "main": "src/app.js",

 "authors": [

 "Hermanni Piirainen"

],

 "homepage": "https://github.com/FloAppsLtd/Sananvapaus",

 "moduleType": [],

 "private": true,

 "dependencies": {

 "jquery": "1.11.2",

 "angular": "^1.5.5",

 "clipboard": "^1.5.10",

 "ngclipboard": "^1.1.1",

 "angular-filter": "^0.5.8",

 "jquery-smooth-scroll": "^1.7.2",

 "fancybox": "^2.1.5",

 "angular-flash-alert": "^2.2.7",

 "jcf": "^1.2.3",

 "angular-bind-html-compile": "^1.2.1",

 "angular-route": "^1.5.6",

 "nsPopover": "^0.6.8",

 "angular-socialshare": "angularjs-socialshare#^2.3.1"

 },

 "overrides": {

 "fancybox": {

 "main": "./source/jquery.fancybox.js"

 },

 "jcf": {

 "main": [

Appendix 2

2 (2)

 "./js/jcf.js",

 "./js/jcf.select.js",

 "./js/jcf.angular.js"

]

 }

 }

}

Appendix 3

1 (5)

Gulpfile.js

// Utilities
var gulp = require('gulp');
var debug = require('gulp-debug');
var argv = require('yargs').argv;
var gutil = require('gulp-util');
var filter = require('gulp-filter');
var gulpif = require('gulp-if');
var runSequence = require('run-sequence');
var prompt = require('gulp-prompt');
var fs = require('fs');
var size = require('gulp-size');

// Server
var browserSync = require('browser-sync').create();
var historyFallback = require('connect-history-api-fallback');

// Files
var concat = require('gulp-concat');
var clean = require('gulp-clean');
var rename = require('gulp-rename');

// Styles
var sass = require('gulp-sass');
var sourcemaps = require('gulp-sourcemaps');
var autoprefixer = require('gulp-autoprefixer');
var cleanCSS = require('gulp-clean-css');

// Scripts
var uglify = require('gulp-uglify');
var jsHint = require('gulp-jshint');

// Images
var imagemin = require('gulp-imagemin');

// Deployment
var mainBowerFiles = require('main-bower-files');
var rsync = require('gulp-rsync');

try {
 // JSON file for environment-specific passwords etc.
 var envConf = require('./envConfig.json');
} catch(e) {
 console.log(e);
}

// Build environment variables

Appendix 3

2 (5)

var productionDir = './production/',
 developmentDir = './',
 isProduction = false,
 isDebug = argv.debug ? true : false,
 basePath = developmentDir;

// Change environment to production if --production flag used
if(argv.production) {
 isProduction = true;
 basePath = productionDir;
}

// Filters
var filterJS = filter('**/*.js');
var filterAppJS = filter('src/**/*.js', { restore: true });
var filterCSS = filter('**/*.css');
var filterSCSS = filter('**/*.scss');

gulp.task('default', ['serve']);

gulp.task('serve', (isProduction ? null : ['js', 'sass']), function() {
 browserSync.init({
 server: {
 baseDir: basePath,
 middleware: [historyFallback()]
 },
 port: (isProduction ? 3010 : 3000),
 open: (isProduction ? 'local' : false),
 browser: ['google chrome', 'firefox' , 'safari'],
 });

 gulp.watch(['./scss/**/*.scss'], ['sass']);
 gulp.watch(['./src/**/*.js'], ['js']);
 gulp.watch(['./src/**/*.html', './index.html']).on('change', browserSync.re-
load);
});

gulp.task('bower', ['bower:js', 'bower:css', 'bower:scss']);

gulp.task('bower:js', function() {
 return gulp.src(mainBowerFiles())
 .pipe(filterJS)
 .pipe(gulpif(isDebug, debug({title: 'js'}))) // List files if --debug flag
 .pipe(concat(basePath + 'js/vendor.js'))
 .pipe(size({
 title: gutil.colors.red('JS: unminified')
 })
 .pipe(uglify())
 .pipe(size({
 title: gutil.colors.underline.green('JS: minified')

Appendix 3

3 (5)

 }))
 .pipe(gulp.dest(basePath));
});

gulp.task('bower:css', function() {
 return gulp.src(mainBowerFiles())
 .pipe(filterCSS)
 .pipe(gulpif(isDebug, debug({title: 'css'})))
 .pipe(concat(basePath + 'css/vendor.css'))
 .pipe(size({
 title: gutil.colors.red('CSS: unminified')
 }))
 .pipe(cleanCSS())
 .pipe(size({
 title: gutil.colors.underline.green('CSS: minified')
 }))
 .pipe(gulp.dest(basePath));
});

gulp.task('bower:scss', function() {
 return gulp.src(mainBowerFiles())
 .pipe(filterSCSS)
 .pipe(gulpif(isDebug, debug({title: 'scss'})))
 .pipe(rename({
 prefix: '_'
 }))
 .pipe(gulp.dest(basePath + 'scss/vendors/'));
 // Insert file reference to scss/main.scss manually!
});

gulp.task('sass', function() {
 return gulp.src('./scss/**/*.scss')
 .pipe(gulpif(!isProduction, sourcemaps.init()))
 .pipe(gulpif(isProduction, sass({ outputStyle: 'compressed' }).on('er-
ror', sass.logError)))
 .pipe(gulpif(!isProduction, sass().on('error', sass.logError)))
 .pipe(autoprefixer({
 browsers: ['last 4 versions'],
 cascade: false
 }))
 .pipe(gulpif(!isProduction, sourcemaps.write(basePath)))
 .pipe(gulp.dest(basePath + 'css/'))
 .pipe(gulpif(!isProduction, browserSync.stream()));

Appendix 3

4 (5)

});

gulp.task('js', function() {
 return gulp.src([
 './src/**/*.js',
 (isProduction ? './js/*.js' : '')
])
 .pipe(gulpif(isProduction, filterAppJS))
 .pipe(jsHint())
 .pipe(jsHint.reporter('default'))
 .pipe(concat(developmentDir + 'app.js'))
 .pipe(gulpif(isProduction, filterAppJS.restore))
 .pipe(gulpif(isProduction, uglify({ mangle: false })))
 .pipe(gulp.dest(basePath + 'js/'))
 .pipe(gulpif(!isProduction, browserSync.stream()));
});

gulp.task('images', function() {
 return gulp.src('./images/*')
 .pipe(imagemin())
 .pipe(gulp.dest('./images'));
});

gulp.task('clean', function() {
 return gulp.src(productionDir)
 .pipe(clean());
});

gulp.task('copy', function() {
 // Copy uncompiled files to production directory
 return gulp.src(
 [
 developmentDir + 'fonts/**/*',
 developmentDir + 'images/**/*',
 developmentDir + 'css/vendor.css',
 developmentDir + 'src/**/*.html',
 developmentDir + 'index.html'
],
 { base: developmentDir}
)
 .pipe(gulp.dest(productionDir));
});

gulp.task('build', function(callback) {
 // Run build tasks in defined order
 runSequence(
 'clean',
 'copy',
 ['sass', 'js'],
 'serve'

Appendix 3

5 (5)

);
});

gulp.task('deploy', function() {
 // Default options
 var rsyncConf = {
 progress: true,
 incremental: true,
 relative: true,
 emptyDirectories: true,
 recursive: true,
 clean: true,
 exclude: [],
 dryrun: argv.dry ? true : false
 };

 // SSH keys are needed to use rsync to push code into servers!
 if(argv.staging) { // Test server, --staging flag
 rsyncConf.hostname = envConf.staging.hostname;
 rsyncConf.username = envConf.staging.username;
 rsyncConf.destination = envConf.staging.destination;
 } else if(argv.production) { // Production server, --production flag
 rsyncConf.hostname = envConf.production.hostname;
 rsyncConf.username = envConf.production.username;
 rsyncConf.destination = envConf.production.destination;
 } else {
 throwError('deploy', gutil.colors.red('Missing or invalid target!'));
 }

 rsyncConf.root = 'production'; // production directory should not be copied
to server web root

 return gulp.src('production/**/*')
 .pipe(prompt.confirm({
 message: 'You are about to push code to ' + (isProduction ?
'production' : 'staging') + ' server. Are you sure?',
 default: false
 })).pipe(rsync(rsyncConf));
});

function throwError(taskName, msg) {
 throw new gutil.PluginError({
 plugin: taskName,
 message: msg
 });
}

