

Karan Singh

Web Application Performance Requirements
Deriving Methodology

Helsinki Metropolia University of Applied Sciences

Master’s Degree in Information Technology

Master’s Thesis

17 June 2016

1

Author(s)

Title

Number of Pages

Date

Karan Singh

Web Application Performance Requirements Deriving Methodol-

ogy

57 Pages

01 May 2016
Degree Master´s Degree

Degree Programme Information Technology

Instructor(s)

Auvo Häkkinen, Principal Lecturer

This Master’s Study evaluates the possibilities of improving the existing service model within

a shared service of the case company. It proposes the new methodology and a series of

supporting documentation to improve the existing process of performance requirement gath-

ering.

The main goal of this study is to find the possible way(s) to improve the quality of the followed

requirement gathering process in the case department of the case company. Secondly, to

provide the supporting documentation for performance engineers of the department to help

them in deriving the effective performance requirements well as design effective workload

models.

As an outcome of the study, a new method to gather requirements and further derive the

test types is proposed. The new methodology implemented during study in a case project,

shows improvement in the quality of the gathered requirements and hence in quality of the

performance test results.

The proposed methodology helps management to understand the benefits of the new

method and a possible way to improve the area that was lagging earlier. The small im-

provement in the requirement gathering stage leads to major gains in the later stages of

the performance testing and better prediction of the production performance.

Keywords Performance Testing, Requirement Gathering, Performance

Requirement, Log Analysis, Non-Functional Requirement

Gathering

2

Contents

1 Introduction 1

1.1 Scope of Study 2

1.2 Structure of Study 2

2 Methods and Materials 4

2.1 Research Approach 4

2.2 Research Process 4

2.3 Data Collection 6

2.4 Outcome 7

3 Fundamentals of Performance Testing 7

3.1 Why Performance Testing is Essential to Business Success 7

3.2 Concepts of Performance Testing 8

3.3 Performance Testing Process 9

3.4 Types of Performance Testing 10

3.4.1 Shakedown Test 11

3.4.2 Smoke Test 11

3.4.3 Baseline Test 11

3.4.4 Load Test 11

3.4.5 Stress Test 12

3.4.6 Endurance or Soak or Stability Test 12

3.4.7 Benchmarking or Reference Test 12

3.4.8 Failover Test 12

3.4.9 Volume Test 12

3.5 Workload Modelling 13

4 Existing Process and Initial State Analysis of Case Project 14

4.1 Initial State Analysis of Performance Testing Shared Service 14

4.2 Initial State Analysis of Case Project 16

4.3 Requirements 18

5 Performance Requirements Deriving Methodology 18

5.1 Goal, Test Objectives and Targets Method 18

5.1.1 Performance Test Goal 19

5.1.2 Performance Test Objectives 20

5.1.3 Performance Test Targets 20

5.2 Identifying Testable Performance Requirements through Questionnaire 20

3

5.2.1 Business Transactions and Application Usage Related Questions 21

5.2.2 System Architecture and Test Types Related Questions 23

5.3 Simplified Guide for Performance Testing Process 24

5.4 Handbook to Use Web Analyzer Tool for Log Analysis 25

5.4.1 Workload Modelling Guide 27

5.4.2 Number of Concurrent Sessions 27

5.4.3 Session Length 28

5.4.4 Rate of Transactions 29

5.4.5 Other Factors and Best Practices: 29

5.4.6 Requirement Traceability Matrix Template 30

6 Case Study 31

6.1 Test Setup Description 31

6.1.1 Test Tool Setup 31

6.1.2 Application Test Setup 32

6.1.3 Resource Monitoring Setup Details 33

6.2 Performance Test Goals 33

6.3 Performance Test Cases 35

6.4 Load Model- Full Load Test 36

6.5 Test Results 38

7 Results Comparison 44

7.1 Brief Details of Old Test Results 44

7.2 Summary of New Test Results 44

7.3 Comparative Analysis of Results 46

7.3.1 Project Level Comparison 47

7.3.2 Test Level Comparison 48

8 Summary 49

References 52

Glossary 54

1

1 Introduction

Performance is one important attribute of a software system. Failing to provide the ex-

pected performance level might make the system unusable, which means a possible

rejection by all users over time. With the rapid growth in IT application usage, expected

to continue growing exponentially in near future, performance of any given software,

system or network would key factor in its success or failure.

To develop and test a web application of acceptable performance it is crucial to define

its precise performance requirements, which could lead to effective prediction of the fu-

ture performance of the software system, but unfortunately often these requirements are

not defined effectively.

Businesses are usually concerned about their ability to meet customers’ performance

requirements. Nevertheless, while it is widely recognized that it is necessary to have

functionality-testing program with clear functional requirements in place, it is not unusual

to find that a project has no explicit provision of performance testing or missing the ap-

plication’s non-functional requirements. At some stage, normally when they start facing

the performance issues in their production environments, these projects start to investi-

gate the possibilities to undergo performance testing and hence troubleshoot the bottle-

neck.

In the current scenario in IT organizations or IT department of various organizations,

performance testing is commonly offered as a shared service across the IT department,

it is run by a dedicated team of performance test engineers using market available or

open source tools for example HP Performance Center and Jmeter etc. It is the same

case in the IT department of the case company. The involvement of the performance test

expert is restricted to a small duration of time as compared to the complete project de-

velopment life cycle and in most cases, they possess minimal functional knowledge of

the application.

Presently, performance testing requirements are gathered using the service request doc-

ument and sometimes based on few generic checklists. There is no defined process and

supporting documentation to assist the performance test engineers to collect the perfor-

mance requirements and further develop an effective load model to effectively predict

2

the performance of the production system. The main challenges are with the projects

with no previously defined or ineffective defined performance requirements of the appli-

cation.

Due to other constraints such as restricted project timelines and budget, often the quality

of the performance requirements is not good enough to predict the performance behav-

iour of the application or to identify the performance bottleneck. In most of cases, these

defined requirements are not supported by sufficient data. To tackle this problem, a de-

fined process to assist such projects is a missing link in overall performance engineering

service offering by the concerned organization.

So clearly, there is a need of a process to be in place to define and collect precise per-

formance requirements. This area could be further investigated in order to define an or-

ganizational process to define and collect the effective performance requirements of a

software system.

Therefore, the objective of this research activity is to understand how effective perfor-

mance requirements could be derived and most relevant test cases could be identified

from the historical usage data and patterns to carry out effective performance testing to

accurately predict the future performance of the IT web applications.

1.1 Scope of Study

This study presents a practical approach to identify the performance requirements, iden-

tifying the suitable test workflows and designing the workload model for performance

testing for web applications and excludes any other type of IT application. An appropriate

load model creates the backbone of an efficient performance test. There are many pos-

sibilities to design a workload, but the main challenge is to find the most efficient work-

load model, which accurately predicts the performance of the application in production.

1.2 Structure of Study

This section presents the highlights of the chapters and discusses the relation between

their contents.

3

 Chapter 1 introduces the topic of the study by highlighting the problem statement. It

also includes the scope and structure of the study.

 Chapter 2 provides the detail of the project and expected outcome details. It includes

the overall research process for example steps involved in achieving the expected

outcome apart from the details of the materials used for example data used and de-

tails of its collection method.

 Chapter 3 includes details of relevant theory in the area of performance testing as

well as requirement gathering. It covers the most common used test types, their def-

inition and the theory around workload modelling.

 Chapter 4 includes the initial state analysis of the case department i.e. a shared per-

formance testing service as well as the initial state analysis of case project on which

the new method of requirement gathering is implemented and results are captured

in the later stages. This also include the requirements set for the study.

 Chapter 5 provides the details of the new methods proposed for requirement gather-

ing as well as details of the related documents developed and used in the case pro-

ject.

 Chapter 6 provides the details of the case project, which is a single sign on system.

It includes the test tool and test setup details apart from the details of the require-

ments gathered and the tests derived for the case project. It includes the test results

obtained during the case study.

 Chapter 7 provides the result summaries of the old and the new projects apart from

the comparative analysis of the results to understand the effectiveness of the new

methodology.

 Chapter 8 presents the summary of the study

4

2 Methods and Materials

This section includes the details of the methods being followed during the study as well

as includes the various details of the materials used during the study by providing the

reference to various stages of the overall research process.

2.1 Research Approach

This study presents a methodology to define a web application’s performance require-

ments and deriving the test workflows in order to carry out an effective performance

testing for the systems, which do not have their predefined non-functional requirements.

It involves a practical approach to identify study requirements and the test workflows

based applications on historical usage data by identifying and filtering the salient attrib-

utes from web application log.

The scope is restricted to IT web applications, which are predominantly used over any

other type of IT applications.

2.2 Research Process

This section describes the overall research process and includes the various details of

the activities performance during different stages of the process for example current state

analysis stages primarily includes the details of the activities performed to understand

the existing methods and processes being followed in the case company. Following is

the details of various stages:

(I) Current State Analysis

The present state is analyzed initially to measure the effectiveness and the drawbacks

of the existing system. In most of the cases, as mentioned in the introduction, the perfor-

mance requirements are gathered using the questions based on the experience of the

performance testing expert and in some cases generic checklists are also employed. In

most of the cases these checklists are common for all types of IT applications and do

5

not lead to very effective questions. It also means that the quality of the gathered re-

quirements is uncontrolled and also dependent on the experience level of the perfor-

mance tester.

Current state analysis includes the conclusions based on the interviews of various per-

formance testers, system designers/architects and system/business owners involved in

performance testing of web application at some stage.

The existing best practices are identified based on the aforementioned interviews and

also from the academic databases.

(II) New Methodology Development

This phase includes the identification of the Key Requirement Indicators for web appli-

cations in order to carry out its performance testing for example peak number of parallel

sessions, average session length etc. and their identification methods from historical

data It would include the implementation of various tools or possibly developing a new

tool to achieve the end goal.

Defining the key KPIs of web applications performance testing workflows and their iden-

tification methods from historical data for example most access objects, business criti-

cality etc.

(III) Implementation and Testing the Proposed Methodology

In this stage, the proposed approach to gather the requirement is implemented on the

suitable project, new application without predefined performance requirements. The ef-

fectiveness of the new method to derive the workloads for performance testing and the

quality of the results is compared with the old methodology. The comparison is based on

the overall time taken in requirement gathering and the percentage of the objectives met

in the previous project with similar complexity

6

2.3 Data Collection

The following data is used during the study. The details of the sources of the data are

also specified below:

 Existing Knowledge (from Academic Databases)

 Existing Performance Testing Documentation (Company Data)

 Existing Performance Test Data (Company Data)

 Log Analyzer Tool(s) (Open Source) = Develop a new process/ tool

 Performance Testing Tool(s)

 Web, Application and Database Server Logs

Table 1 illustrates the further specific details of the data collected and used during the

study.

Table 1: Details of data collection

S.No. Type of data Content Input Classification

1 Process Docu-

ments

- Service Documentation

- Project Documentation for example Test

Plans, Intermittent Test Reports and Test

End Reports

~80

pages

Internal

2 Internal Wikis

and intranet

pages

Service Area Wikis ~10

pages

Internal

3 Discussion(s) About Ways of Working and Challenges in

Service with Service Manager Clive W,

Testing practice head Tomasz Z, Test En-

gineer Bhakta V., Testing Unit Manager

Jutta J.

~1

hour

(per

each)

Field Notes Internal

4 Log Analyzer Tool Documentation for Implementation ~20

pages

Manuals Open

Source

5 Single Sign on

Project

Project Documentation for example Sys-

tem Requirements and Specifications, De-

sign Documentation etc.

~60

pages

Internal

6 Performance

Test Tool

Tool Manuals and Documentation ~20

pages

Manuals and Installa-

tion Guides

7 Review and

Status

Meetings

Meetings with Project Team and Service

Management

Contin-

uous

Field Notes, Project

Status Reports and

Presentations

7

The table above shows the specific details of the data used in various areas of the study

apart from the volumes of the data used and the data security classifications.

2.4 Outcome

The outcome is an organisational process to define and collect the precise performance

requirements and effective use cases in order to achieve effective outcomes of perfor-

mance testing and better prediction of the future performance of the software system

under testing.

The document includes the new method(s) to collect and analyze the historical web traffic

data for web application and accordingly provides the recommendations for example the

tool(s) used and how to technically filter the needed information.

It also includes the common key performance testing attributes of a web application and

the strategy to identify the same in order to carry out an effective performance testing to

meet the test objectives.

3 Fundamentals of Performance Testing

This section includes the theoretical background information on the performance testing

subject. It covers the importance of conducting performance test apart from the types of

performance tests and their definitions.

3.1 Why Performance Testing is Essential to Business Success

Performance failures are expensive [14] and website outage could cost a business be-

yond imagination, in 2012, Knight Capital’s computers started to fail in the worst possible

way. Instead of shutting down gracefully, they began issuing commands to buy and sell

securities. The orders were queued up to be executed over the coming weeks, but the

errant computers dumped them on the market all at once, causing a buying and selling

frenzy like a clerk who’d gone insane. It only took a half hour, but by the end, the losses

8

totaled an estimated $440 million. CNN asked whether it was the most expensive com-

puter glitch ever, but somehow “glitch” does not seem adequate to describe an event

that almost destroyed Knight Capital [14].

In a survey by YouGov [15], on behalf of HP Enterprise, which investigated the state of

performance engineering and its business impacts by surveying 400 development and

IT professionals from the organizations over 500-employee strength. Following are some

of the conclusions presented by the survey.

Seventy percent agreed that the importance of performance engineering is increasing.

The rise in importance of performance engineering is driven by the practical concerns.

At least 50 percent of respondents admitted that slowdowns and outages were discour-

aging customers and frustrating employees.

The consequences are serious. The average firm that responded to the survey said that

a major outage could cost between $100,000 and $500,000 in lost revenue per hour.

Some of the larger companies with more than 10,000 employees said they could lose $5

million an hour from website or core system outages.

3.2 Concepts of Performance Testing

“Let us face the fact ‐ performance testing is rocket science” ‐ Dawn Haynes

Dawn Haynes is a Senior Trainer and Consultant for PerfTestPlus.com, and Secretary

of the Association for Software Testing.

As a part of the project development cycle, performance testing is performed within the

testing phase before production goes live. Within testing, performance testing comes at

the end of after functional testing is completed. However, performance testing should

start in early development stages when application architecture and capacity is being

planned. During the design phase performance should be compared among the possible

design solutions.

9

3.3 Performance Testing Process

Performance testing of an application is basically a process of evaluating how the web

application would perform at various user loads levels. This is achieved using perfor-

mance testing tools available commercially as well as open source to mimic the user

behavior using minimum hardware resources.

Figure 1 below illustrates the various phases of a typical performance testing project.

Figure 1: Performance Testing Stages

As illustrated in Figure 1, there are six main phases of a typical performance testing

project. Each phase includes certain types of activities and typical activities are elabo-

rated below:

1. Requirement Gathering: In this phase, business needs are identified and docu-

mented. The requirements typically defined in terms of desired level of performance

in terms of response time, throughput, and resource utilization goals and constraints.

Performance test objective are defined in order to meet the business long-term goals.

Result Analysis and Deliverables

Test Execution

Test Development

Test Design

Test Planning

Requirement Gathering

10

In some cases, the application usage is studied to identify the key test scenarios and

test workflows apart from identification of Business critical transactions.

2. Test Planning: This activity includes identification of test environment, the tools to be

used in performance testing and the people who can conduct the exercise. Identifi-

cation and arranging test data. Test schedule is prepares apart from defining ‘Test

Entry’ and ‘Exit Criteria’.

3. Test Design: The test workload model is prepared during this phase based on the

gathered requirements or goals during requirement gathering phase. The counters

needed to understand the performance and monitor the resource utilization are iden-

tified during this period for each test in scope.

4. Test Development: Test environment is validated, test setup and monitoring is con-

figured during this phase. Test scripts are created and enhanced in order to use the

test data in accordance with the test design. Test scenarios are setup in the test tool

based on the workload load model of the respective test. Shakedown tests are exe-

cuted in order to validate the readiness of the scripts, test data, test tool and applica-

tion under test.

5. Test Execution: The tests are executed and test results are collated during this phase

using the test tool.

6. Analyze Results and Deliverables: Test results data is analyzed and evaluated

against the test targets. Result are cross-referenced and test report is created based

on the test(s) outcome to be delivered or discussed with the stakeholders.

3.4 Types of Performance Testing

The following are the some of the common types of performance testing used for IT

applications but not restricted to the below list. Please note that some organizations

might be using these terms differently than described below.

11

3.4.1 Shakedown Test

Shakedown is designed to be a fully independent and is used to confirm environment

readiness from a test tool perspective. This cycle provides an opportunity to test the

Performance Center scripts and Performance Center parameterized data files with lim-

ited volumes. During this cycle, basic sets of functional scripts are executed to ensure

the environment is stable prior actual performance testing. The main purpose of the

shakedown test is to validate the readiness to start the full load testing and it is not meant

to test any aspect of the target application.

3.4.2 Smoke Test

Smoke test is executed before main load test to verify that the designed load model

achieves the desired rate of key transactions as well as intended rate of HTTP request

to the server. This test does not meet any project specific target but actually is a supple-

mentary test to ensure that the next or main test could be carried out smoothly.

3.4.3 Baseline Test

Baseline test will be carried out with 20% of the anticipated user load. The test is de-

signed to be a fully independent cycle and is used to confirm environment is scalable for

minimal load. This cycle provides an opportunity to test the environment behaviour with

minimal usage of the work load. In case mixed baseline test found any bottlenecks, no

further tests are conducted until bottlenecks are fixed. Baseline test is helpful in analysing

the main load test results and to understand the system behaviour on minimal load.

3.4.4 Load Test

By default, load test actually refers to application full load or peak load. Load testing

validates if the system/application can meet the requirements for volume / throughput,

scalability and response times over a certain period. The actual load level being tested

may be varied so that projected future load levels can also be verified. This is needed if,

for example to, the application / system requirements include a statement that the sys-

tem/application must be able to meet future performance needs.

12

3.4.5 Stress Test

Stress testing allows the measurement of the maximum throughput that the system/ap-

plication can cope with. This test also indicates which component of the system/applica-

tion first gives way under increasing load and tests the system's ability to recover when

the load decreases again.

3.4.6 Endurance or Soak or Stability Test

The endurance test validates if the application is compliant to it availability requirements.

This test could identify the abnormal resource utilisation during the test, for example,

memory leaks. This test is performed over longer period and on the agreed load level.

3.4.7 Benchmarking or Reference Test

A reference test consists of a test with one (1) end user in an unloaded system. This

gives the best possible end user response times that can be achieved in the system.

3.4.8 Failover Test

The primary purpose of failover tests is to validate the redundancy mechanism of the

system. Typically once full load is applied to the system, the one component of the high

availability layer is brought down and again up after a short interval of time systematically

to understand the load balancing and recovery if such failover happens in real time.

3.4.9 Volume Test

Volume testing provides answers as to how the system handles a large amount of input

data. This need not be done under full system load.

13

3.5 Workload Modelling

User load distribution across all the identified workflow scenarios is referred as workload

modelling. Workload model defines how the application would be used during testing.

To collect the realistic test results and measurements the workload should be as realistic

as possible to the real production load. It emphasises that fact that historical production

data should be used in order to derive the workload model. Figure 2 shows the workload

model of a shopping website.

Figure 2: Workload Model of a Shopping Website – Example [13]

Figure 2 depicts the workload model of an example shopping web application. It repre-

sents the number of users with respect to user workflows. The production workloads are

studied by collecting various statistics in order to identify the relevant user patterns,

which could be used to create workload model for the test.

14

4 Existing Process and Initial State Analysis of Case Project

This section discusses the existing process involved in requirement gathering and further

deriving the workload models, which is being followed in the shared service, called per-

formance testing and monitoring service. The case company is a leading IT service pro-

vider based out in Finland. It is responsible for running the shared service for a world

leading telecommunication equipment manufacturer and service provider. The shared

service offers performance testing, performance monitoring and performance trouble-

shooting related services across the various active projects in its IT department. It allows

active project owners to submit their applications and have them run through a struc-

tured, professional, tried-and-tested testing process - based upon their Performance

Testing and/or Monitoring requirements.

4.1 Initial State Analysis of Performance Testing Shared Service

The objective of the Performance Testing Service is to simulate real-life processes and

transactions upon the supplied application similar to the typical day-to-day business us-

age and to mimic a normal workload, as well as creating worse case scenarios if required

also. Performance testing primarily uses Hewlett Packard’s ‘Performance Center’ and

‘LoadRunner’ for performance testing. The tools also include Hewlett Packard

‘SiteScope’ solution for resource monitoring while executing the performance tests. Per-

formance monitoring utilizes Hewlett Packard ‘Business Availability Center’ together with

‘SiteScope’ and the combinations of these tools are used for performance troubleshoot-

ing projects.

This section would also highlight the main drawbacks in the existing process of require-

ment gathering, which is a part of performance testing service in order to justify the re-

quirement of new process as stated in the problem statement. Figure 3 shows the exist-

ing process diagram at use at the case company.

15

Figure 3: Existing Process Diagram

The process diagram above shows the existing Performance Testing Process being fol-

lowed and its alignment with the overall project development process and project mile-

stones (PM). In the diagram below PM1 represents requirement phase project milestone,

PM2 marks the end of design phase, PM3 project is for software development phase,

testing, and PM4 marks production go live.

The performance test activities are aligned for each phase, under PT start-up phase,

Non-Functional requirements; use cases to be considered for performance testing are

requested apart from the architecture diagram and software and hardware specifications

of the servers. System usage statistics are also requested in this phase.

As a part of PT Definition, phase performance test engineer collect the non-functional

requirements by asking random questions and document the same in test plan document

which is a deliverable at the end of this phase. There are no supporting questionnaires

or guidelines available in the service to assist the performance test engineer to derive

the performance requirements in case those are not defined earlier.

The number and type of questions are dependent upon the competence level of the

engineer. Often requirement gathering exercise is mixed with other topics like work

scope definition, roles and responsibilities, project schedule and costing etc. which

16

leaves less room for the focused discussions and analysis around performance require-

ment gathering area.

In practice, projects do not raise the request to plan and implement performance testing

well in advance. The service request in most of the cases is raised during testing phase

only and the availability of limited time affects the quality and outcome of requirement

gathering process as well as overall performance testing activity.

In addition, the main bottleneck at present is unavailability of process and proper docu-

mentation to support the performance test engineers in the initial phase of the perfor-

mance test project that is how to collect and document the requirements.

In the service, there is high number of projects with either not defined NFRs (non-func-

tional requirements) or the unclear or vaguely defined NFRs. The number of such pro-

jects is on increase after the department has started following ITIL process and perfor-

mance testing has been made compulsory in order to evaluate and baseline the perfor-

mance of the applications including legacy ones.

4.2 Initial State Analysis of Case Project

The application under test is an organization wide single sign on system called ‘WEB

SSO’ for which the request is raised to access its performance through ‘Performance

Test Service Request Document’. The service request includes main objective details

apart from other commercial details not so relevant to the topic.

Apart from the service request document, Test plan and Test End Report are the main

documentation available about the performance testing activity carried out in past for the

particular release of the single sign on system. The test plan included scope of testing,

the test approach, the testing phases, test types, the test strategy to be used. The test

end report captures and summarises the results of the tests.

Based on the reference documentation, the following tests were planned be executed as

part of the web single sign on system performance testing to meet the objective stated

in the service request document. The test was aiming to access the performance of the

application after its latest release at that time to understand if the system could handle

17

the anticipated load and does not degrade the performance during latest release com-

pared to prior release. Following test types were executed:

1) Shakedown test- Supplementary test to ensure scripts and environment readiness.

2) Baseline Test – Supplementary test carried out with less than 20% of peak load to

baseline the performance of the application.

3) Load Test – The Load test with 400 virtual users for the duration of 2-3 hours. The

load was generated from Finland location only.

The load test was the main test planned to meet the target or customer request to eval-

uate the performance of the system at full load. There are no documentation available

about how conclusion of 400 virtual user was considered as peak system load. Also there

is no evidence about historical data analysis or how the load model was derived.

The single sign on system does not keep persistent sessions so actually the main defi-

nition of the load is being driven by the rate of authentication requests but no such cal-

culations were involved in defining the work load model of the full load test.

The goal of performance evaluation is quite broad and specific measurable objective(s)

was not agreed. In addition, no test was executed to baseline the performance of the old

release in order to compare with the performance of new release.

Though the service had a defined process which includes the collection of nonfunctional

requirements but the project do not have clearly defined requirements which lead to the

situation and test engineer decided to execute a single test to cover the bare minimum

of what was mentioned in the service request.

There is a clear requirement for further process development, which could ensure that

the measurable performance requirements are agreed, and if the requirements are not

available then those should be derived from the broad business goals.

18

4.3 Requirements

As mentioned in the initial state analysis, following are some pain areas, considered for

possible improvements:

1. Study and propose the improvements for performance requirement gathering

process being followed at service level

2. Study and propose the method to improve load modelling method being followed

in the service

3. Study and implement the proposal to some specific project to evaluate the effec-

tiveness

New methodology description detailed in section-5 could be mapped with requirement-1

and 2 whereas case study of a project, detailed in section-6 could be mapped with re-

quirement-3.

5 Performance Requirements Deriving Methodology

This section defines the series of proposed changes and the documentation introduced

in the shared service in order to identify the performance test requirements for the pro-

jects without or vaguely defined non-functional requirements.

5.1 Goal, Test Objectives and Targets Method

The proposed method is to assist the performance engineers to simplify the high level

business goals and also to derive the high level requirements to testable requirement

and further identifying the performance tests based on the test objectives apart from

setting up SMART, which expands to Specific, Measurable, Achievable, Relevant and

Time bounded, target. This method ensures that the performance requirements are iden-

tified and are testable.

Figure 3 shows the initial stages involved in performance testing process which includes

performance requirement gathering and load modelling mainly. Please note that the di-

agram below does not shows the other stages of performance testing e.g. test executions

etc.

19

Figure 4: Initial Stages in Performance Testing

As shown in the diagram above, requirement gathering is done during incubation phase

and there are three main sub-stages of incubation phase that is define performance test-

ing GOAL, breaking the GOAL into various medium length achievement plans called

Objectives and finally further breaking the Objectives into Targets, SMART short term

achievement plans. The targets would lead act as an input to derive the test types re-

quired during performance testing of the application.

5.1.1 Performance Test Goal

To understand what one wants to accomplish with a performance test, it is where any

discussion on performance test needs to start. Performance testing is expensive and

needs significant upfront investment in terms of efforts, hardware and software tools.

Performance Testing Goal understands the business drivers for the performance testing.

To assess the requirement to carry out performance testing, some of the example rea-

sons to conduct performance testing are as follows:

Incubation

• Goals- narrative of business need

• Objectives – Goal is divided into objectives

• Test Targets – Objectives must be SMART, which stands for: S = Specific; M = Measurable;
A = Achievable; R = Relevant; T = Time bounded.

Discovery

• System Architecture (Logical and physical)

• System/environment sizing

• User profiles

• Application usage volumes

• Application usage patterns / workflows

Modelling

• Based on the inputs collected and analyzed during incubation and discovery phases
formulate/design

• Test scenarios

• data

• Test Types

• Load model

20

 To evaluate existing performance

 For service level agreements assessment or to meet performance goals or non-

functional requirements

 To collect baseline for future testing

 To estimate capacity or hardware sizing or configuration assessment

 To identify performance bottlenecks

 To conduct performance tuning for performance hardening

Hence, the needs of performance testing are varied and understanding the exact need

is most important thing for all subsequent steps.

5.1.2 Performance Test Objectives

In this stage, a single goal is broken into various objectives with a medium term achieve-

ment plan. If all objectives are met, it should fully ensure the completeness of the perfor-

mance testing goal. Example objectives based on an example goal could be ‘Baseline

the performance of the application’, ‘identify the bottlenecks, bad performing workflows

and transactions’, ‘Improve the performance of the application’, ‘Performance should not

degrade over time’ etc.

5.1.3 Performance Test Targets

Once test objectives are derived, the next step is to deduce the tests needed to achieve

each objective and setup the targets for each tests. The targets would help to agree on

the success criterion of the individual test.

5.2 Identifying Testable Performance Requirements through Questionnaire

In the cases where clear nonfunctional requirements are not defined for the application,

an interview based approach using a questionnaire or checklist is effective in order to

understand the expectations from performance testing and more importantly identify the

objectives of the test. Once the objectives are defined and agreed on, the next step would

be to identify the tests to meet the objective and set the target for the test preferably

21

based on some historical data. Following are the main question areas and the sections

of the questionnaires.

5.2.1 Business Transactions and Application Usage Related Questions

This section of the checklist developed for the service of the organization in case, covers

all the questions focusing on the business importance as well as the project purpose. In

a way it is important to know the project high-level details before presenting the ques-

tions, depending on the project purpose, the checklist could be further modified to include

the specific questions if required.

Table 2 presents some Application Usage based example questions from the question-

naire:

Table 2: Performance Requirement Gathering Questionnaire - Application Usage Based

S. No. Requirement Definition

1.
What is the total number of registered users in the system?

2.

What are the different types of users of the system?

External Business to business, Customer self-serve, External - Third party call centres

Internal Front office, Back office, Front and back office, Combination of external and internal

How is the total number of users split by user type?

3.

What are the expected number of Concurrent, Sequential and Simultaneous users during Peak

Times?

Simultaneous Users - no of users in the system at a point in time i.e. Active users logged in

Concurrent users - no of users doing an activity in the system at a point in time i.e. no of re-

quests send by users at a point in time to the app. server

Sequential Users - no. of users doing an activity one after other

4.

What is the growth pattern of users?

All at once, front loaded, steady increase, back loaded , Others specify

5.

What is the growth volume of the users?

All at once, front loaded, steady increase, back loaded, Others specify What is the growth vol-

ume of the users?

All at once, front loaded, steady increase, back loaded , Others specify

The questions above primarily collect information about application usage in the produc-

tion including the future growth expectations.

22

Table 3 presents some example questions from the questionnaire targeting Transactions

information:

Table 3: Performance Requirement Gathering Questionnaire – Transactions

S. No. Requirement Definition

1.
What are the key Business Transaction of the system?

2.
What are the required average and peak volume of transaction?

3.

What are the Users, TPS and Response Time SLAs for above Key Business Transactions?

If possible, please provide additional information regarding the nature of these transac-

tions, for example activate, cancel, modify, enquiry, update, polling, reporting, customer

orders activation etc.

4.

What are the peak periods of usage for this system?

Identify any known peak hour, peak day, peak month periods.

5.
What is the expected Interface Volume of Interface, Databases or Reports? Number of

Records in Interfaces/Reports

6.
What is the expected Response Time of Interface, Databases or Reports? Response Time

of Interfaces or Reports

7. What transaction volume growth (volume, frequency) is expected in next 1 year?

8.

Any Downstream systems make use of this project? If yes can those systems manage the

transaction volumes?

The questions above focus on the business workflows and transactions in order to iden-

tify their business importance and the volumes to effectively develop the load model.

Table 4 presents some sample questions to collect information about background pro-

cesses e.g. batch jobs:

Table 4: Performance Requirement Gathering Questionnaire – Background Processes

S. No. Requirement Definition

1.

Frequency of batch programs for example daily, weekly, monthly and their execution time

and duration.

2.
Complexity of batch programs in terms of number of records fetched and processed

3.

The concurrency of batch processing with online transaction processing (overlapping peri-

ods of time)

4. Any other background jobs emulating load on the system or part of the system?

5. Schedule and duration of database backup(s)

23

The questions shown above collect information about the background process present

in the production system. The background jobs affect the system performance signifi-

cantly.

5.2.2 System Architecture and Test Types Related Questions

This section of the checklist includes the questions specific to identify the system’s per-

formance validation points from the architectural view point for example if the application

has multiple web server nodes being utilized using load balancer then it could lead to

identification of an objective to validate the failover and resiliency mechanism of the web

server nodes. Following are some of the common architectural based questions and

tests:

 What is the technology stack? (Programming Language, OS. Application Server,

Database Server, Middleware, Load Balancer and Deployment Topology)

 Describe the technical architecture of the application. Provide the link to the same

 Describe the Integration Architecture of this application? How many Interfaces are

in scope for this application testing? List them, if any.

 Does application use load balancer? Method of load balancing?

 Is the application high available at application server layer? How many applications

server nodes are present?

 Is database layer clustered? How many DBs application have?

 What are the various types of tests in scope?

 Is there any specific ramp-up/ramp-down pattern to be followed?

 Validation of memory leaks in the application?

 Finding limits of the application or breaking point or the error which application reg-

isters before crashing

The questions listed above mainly help performance engineer to collect information

about the application architecture. It would help to conclude the types of tests required

to meet the requirements.

24

5.3 Simplified Guide for Performance Testing Process

Performance Testing Process Handbook primarily consolidates all the templates, check-

lists and guides to a single document to which a test engineer could refer and utilize in

the project. Following are some common objectives it enlists as examples:

 Measure End-to-End transaction response time and demonstrate that the system

functions to specifications with acceptable response times while processing the re-

quired transaction volume

 Demonstrate that the system meets the requirements for transaction throughput and

response times simultaneously

 Measure server components performance under various loads

 Monitor system resources under various loads

 Measure the network delay between the server and clients

It also provides the basic guidelines to identify the workflows to be considered for perfor-

mance testing. Following is the excerpt from the corresponding section of the guide. The

transactions selected for the performance test are a small subset of the system or func-

tional test transactions.

The transactions are selected based on

1) Business criticality,

2) High volume, or

3) Resource intensive

Under project lifecycle, which is further divided into following performance testing project

phases:

1) Requirement Gathering and Analysis Phase

2) Test Planning and Designing

3) Test Development

4) Test Execution and Delivery

5) Project Closure

Each phase is detailed with the expected activities in the phase with the reference to the

corresponding supporting documentation i.e. templates, guides, checklists, example re-

ports etc.

25

5.4 Handbook to Use Web Analyzer Tool for Log Analysis

This handbook in intended to support the test engineer in the case where application

historical data is not available or need to be collected and analyzed.

The target of the workload model is to generate as real as possible a production load

during the performance testing. Designing an accurate workload model by using the his-

torical usage data from production helps the performance test engineer:

1. In reproducing same load (as production) with exact caching and think time behavior.

2. In distributing user load based on geographic locations and across different types of

browsers.

3. In understanding the exact business steps that end users perform - business flow.

Web server log analyzers and web analytics tools could be used to analyze the historical

data from production. Log analyzers parses web access log files obtained from web serv-

ers and derives indicators about who, when, and how a web server is visited. Analytics

tools on the other hand integrate with browser components (Java-script, cookies, etc.)

and make it possible for the tool to present the exact user behavior.

In organizations, some projects are actively utilizing the web analytics tools to under-

stand the system load and collect the usage statistics. While undergoing the performance

testing of such projects the availability of data for such projects is easy and the study

does not emphasize such projects. As described in the problem statement, the main

issue arises while organizing the performance testing of the projects with no defined

performance requirements or without application usage statistics. As a solution to collect

application usage statistics is to analyze web server access logs, various tools were

studied briefly and were compared for the suitability in the shared service.

AWSTATS, an open source log analyzer tool, was studied in detail to setup a common

solution in the performance testing shared service. As an outcome, a handbook for

AWSTATS log analyzer is created for internal use illustrating the step by step procedure

to install and setup the tool. It also provides the detailed instructions on how to analyze

the historical application usage data for WebLogic access logs.

26

Following (Figure 5) is an example report generated based on the web access logs of a

University website:

Figure 5: AWSTAT Summary Report

Figure 5 includes the statistics of a university website and its usage during a single

month. Other important application usage details which could also be collected using

AWSTAT tool are as follows:

 Hourly usage statistics to collect the peak usage data per hour as an input for

peak load test

 ‘Visits Duration’ section could help in calculating average and peak session

length for as an input for work load model

27

 'Browsers (Top 10)’ could reveal the main load generating browsers to further

refine the load scenario by simulating the browser behavior during test

 Domains/countries of hosts’ visitors (pages, hits etc.)

 Most viewed, entry and exit pages, to identify the most used workflows, Etc.

The information collected using AWSTAT could be used to design effective workload

model based on historical data analysis of the application in production. In the cases

where logs are not enabled, it is recommended to engineer to make a request to enable

logs for some time in production environment and utilize the collected logs for analysis

in the tool using the handbook.

5.4.1 Workload Modelling Guide

This section provides the insight in to the guide, which is created to support performance

engineer working in the shared service in order to design an effective workload modelling

for the application under performance testing.

The target of performance testing is to simulate the real world load but practically there

is always something, which is either too much costly or not possible to have in lab envi-

ronments. One the one hand it is impossible to achieve the 100% real production load in

the lab environments but on the other hand, the idea is to have the near production load

in order to identify the production performance issues.

There are numerous factors, which should be taken care of to define the load for the web

application under testing, but following are some salient factors, which should be derived

carefully as these are the main load defining factors for any applications.

5.4.2 Number of Concurrent Sessions

The number of concurrent factors is one of the most prominent factors, which define the

load as every user logged on to the server consumes server resources.

Some projects try to achieve a high rate of transactions by reducing the pacing and think

time (also called as user pause time between 2 user actions) for example to minimize

28

performance testing tool license cost. Usually the cost of commercial performance test-

ing tools license is based on the number of virtual users. It is not a good practice in case

application utilizes persistent sessions. It is not an issue for the web service based ap-

plications, which does not maintain persistent user session.

Every user logged into web server consumes some resources for example each session

reserves some memory from the memory pool of the application to execute its thread

originating from the corresponding user or client. The session state information is stored

on the web server in its memory pool and it remains in the memory till the time user is

logged in to the application which is usually represented by removal of session from the

session pool. If rate of requests is increased by reducing the think time between user

actions and pacing, which is pause duration before next iteration starts, it would result

into a lower number of user sessions on the web server which means less memory would

be consumed on the server. Using this workload, it is evident that the memory associ-

ateted issues would not surface out in testing whereas the issue might occur in produc-

tion.

Secondly, the number of concurrent users would seek parallel connections to the web

server as well as to the database server. In the event of running the load with lower

number of virtual users, the issue with lower parallel connection cannot be exposed

whereas it would lead to higher response time in production, as the thread would wait for

connection at web or application or database layer.

5.4.3 Session Length

Session length plays a significant role in defining the number of concurrent sessions,

which, in turn, plays an important role in defining the overall load on the server as each

session consumes some server resource. A longer session length would lead to large

number of concurrent sessions in the application as well as could lead to higher response

times due to queuing for the resources for example memory allocation or CPU thread

queue apart from the queue at connection pool.

Aggressive session length leads to better application performance with the given server

resources but it also leads to unpleasant user experience since users are logged out

29

frequently and asked to login again. In this case a due balance in the session length is

required considering both aspects.

Average session length should be derived by mining the historical data for example web

access logs by using web log analysers or by using web analytics tools to gather the

statistics.

5.4.4 Rate of Transactions

The rate of transactions is also commonly referred to as TPS (transactions per second).

This is the main contributor to the overall load for any application. Primarily, the key

transactions should be identified and their rate of occurrence should be derived from the

historical usage of the application. This could be achieved using application access logs

or using web analytics tool implemented to the application.

For the applications without usage history, the anticipated rate of key transactions should

be derived with business stakeholders based on expectation from the application.

5.4.5 Other Factors and Best Practices:

Some other aspects which should also be taken into consideration when designing a

workload model for the performance testing of an application are as follows:

 Hits per second, which describes the rate of requests received by the application for

processing and in turn define the arrival rate of the load.

 Understanding cache settings, the areas where application or database uses cache

to provide response to the requests. The cached response would of course be faster

than the actual data retrieval from the source or database.

 Understand the load distribution on each application components or transaction.

 A small duration smoke test should be executed before running the main load to

check if the designed load model achieves the target transactions per second.

The suggestive list of recommended points and best practices to design an effective
workload model is presented to the service and recommended to be kept updated.

30

5.4.6 Requirement Traceability Matrix Template

This document was created to target the projects which has their non-functional require-

ment are defined properly. This template suggests to create a traceability matrix in order

to find out the gap and any missing requirement which has not been covered in any test.

If the traced requirements are high level then the same should be refined further using

Goal, Objective and Target methods explained above.

The template primarily contains the ‘Performance Objective’ column which contains per-

formance requirements or test objectives mapped to column ‘Test Name’ which list out

the test which supposedly ensure the validation of the requirement or goals.

31

6 Case Study

The application under test is an organization wide single sign on system called ‘WEB

SSO’ for which the request is raised to access its performance after it was migrated to

different infrastructure as a part of datacentre migration project. At the time of raising the

request it is used by around 70 applications and approximately 2-3 applications were

getting integrated on monthly basis.

The following sections present the further details of the performance test project exe-

cuted by the performance testing and monitoring shared service.

6.1 Test Setup Description

The following sections present the further details of the test setup conducted on the case

project.

6.1.1 Test Tool Setup

The web single sign on system is tested using the Hewlett Packard’s Application Life

Cycle Management Performance Center version 11.50 tool (HP ALMPC v11.50). Perfor-

mance Test engineer used the standard organization workstation and Hewlett Packard

Virtual User Generator Tool from organization intranet or from Collaborator location to

create the protocol based performance test scripts. This is done by manually repeating

the designed performance test use cases while Hewlett Packard Virtual User Generator

Tool records the client-server traffic (usually http or https). Connection between work-

station and the target system is needed on End User point of view.

Virtual User Generator version 11.5 is used to create scripts for the identified use cases.

Scripts are used in Performance Center which simulates the desired number of users

accessing the script. A certain number of scripts together with timing settings make up a

scenario. A scenario, run according to timing settings, makes up a test. The load that a

test generates is created using the Load Generators. During the testing, information

about the run is gathered by Performance Center tool. Results are then analysed and

compared with Load Runner Analysis tool.

32

6.1.2 Application Test Setup

Following is the approach of geographical distribution in conjunction with the application-

distributed architecture; the resultant overall architecture post migration is as follows (cf.

Figure 6):

Figure 6: Network Diagram of Test Tool & Web SSO

In the diagram shown in Figure 6 above, each datacenter hosts two instances of policy

/ login server, federation server and reverse proxy using the local load balancers. The

load balancing across datacenters is based on IP load balancing using DNS load bal-

ancer.

33

SSO services rely on authentication against Enterprise Directory (ED) for internal user

and on NEDI-B/CE Siteminder directory for external user.

6.1.3 Resource Monitoring Setup Details

The system resource monitoring i.e. CPU utilization and memory consumption perfor-

mance counters are monitored using HP Site Scope agentless monitoring tool. The ar-

chitectural and integration with performance Center is detailed section ‘Performance

Test Tool Setup and architecture’ above. The polling interval for all monitors is set to 30

seconds.

6.2 Performance Test Goals

Based on the goal specified in the service request document and the corresponding dis-

cussion based on the proposed methodology following goals were identified:

1) User experience should not be affected due to migration

2) Redundancy must be improved so that outages have less impact

3) Analyse and improve the performance of the production system

The above mentioned goals are further elaborated in terms of objectives and targets of

each test as follows (cf. Table5):

34

Table 5: Case Project - Performance Test Goals

Priority

Goal /

Requirement Test objective

Target

Test(s) Test Target

1

User experience

should not be

affected due to

migration

To compare the perfor-

mance in terms of user re-

sponse time at full load be-

fore and after the migra-

tion

Load

test- Pre

Migration

To collect the average transaction re-

sponse time of the key transactions

when system is subjected to 2526

login requests/minute

To compare the perfor-

mance in terms of user re-

sponse time at full load be-

fore and after the migra-

tion

Load

test- Post

Migration

The performance should be either

equal or better after migration. The

performance is measured in terms of

average transaction response time of

the key transactions which should be

either low or equal when system is

subjected to 2526 login requests/mi-

nute

2

Redundancy

must be im-

proved so that

outages have

less impact

To validate the DNS load

balancing across two differ-

ent datacenters present in

different geographical loca-

tions in case one datacen-

ter is not reachable.

Site

failover

test

Web SSO service should be available if

one site in a datacenter is not availa-

ble without affecting the user login re-

sponse time when system is subjected

to 2526 login requests/minute

To validate the functioning

of local load balancer

Applicati

on

failover

test

Web SSO service should be available if

one node is not available without af-

fecting the user login response time

when system is subjected to 2526

login requests/minute

3

Analyze and im-

prove the per-

formance of the

production sys-

tem so that

consistent per-

formance is en-

sured

To analyze the perfor-

mance of the application to

determine if the system

can sustain the high load

for long duration.

Enduranc

e Test

Web SSO service should be available

without affecting the user login re-

sponse time when system is subjected

to 2526 login requests/minute for

48hours

To determines the robust-

ness of the application

Stress

Test

To determine the system breakdown

point i.e. the number of login requests

it could handle with the existing infra-

structure.

35

The objective of tuning the application configuration parameters for the hardening of the

system and gain the performance improvement is agreed to be treated as a separate

project if the results shows that tuning is required. This is considered not in scope of the

study at present. The main areas of performance tuning with their priorities would be

identified based as the results of load, failover, endurance, stress tests apart from the

recommendations from the product vendor.

6.3 Performance Test Cases

This section describes the test workflows included in scope based on the business ana-

lyst recommendation. Historical data and analysis was not required in this case as the

application had very limited workflows.

1. The following workflows were considered for Policy Server for performance testing:

i. User tries to access protected application, Site Minder agent checks if user has

valid cookie. If user has valid cookie, user can access the server, else user is

redirected to the login page.

ii. Browser loads the new page with the correct parameters (user fills in credentials

to new page and press submit).

iii. Login takes place and policy server authenticates user against ED.

iv. Authentication successful is returned to the agent and agent creates cookie for

the user’s browser and redirects user to the original URL.

v. User accesses protected application with the cookie – Agent authenticates the

cookie against policy server and lets the user access the protected resource.

2. The following workflows were considered for Proxy Server for performance testing:

i. User tries to access protected application, Site Minder agent checks if the user

has a valid cookie. If the user has a valid cookie, the user can access the server,

else the user is redirected to the Cookie provider.

36

ii. Cookie provider checks if the user has got a valid cookie for the master domain

and if the user has a valid cookie for company website the user is redirected back

to the server with the data that the agent uses to create a cookie to the new

domain. If the user does not have a valid cookie, he is redirected back to the

agent which in turn redirects the user to be authenticated.

iii. Browser loads the new page with the correct parameters – The user fills in cre-

dentials to a new page and presses submit.

iv. Login takes place and policy server authenticates the user against ED. Authenti-

cation successful is returned to the agent and the agent creates a cookie for the

user’s browser for the company domain and redirects the user to the original

URL.

v. User access protected application still without suitable cookie. Site Minder redi-

rects the user to the cookie provider. If the user has a valid cookie for the com-

pany domain -> he is redirected back to the server with the data that the agent

uses to create a cookie for the abcd.net domain where the proxy server is and

the cookie provider redirects the user back to the original resource.

vi. Agent authenticates the cookie against policy server and lets the user access the

protected resource.

3. The following workflows were considered for Federation Server performance testing:

i. Login process to the policy Server.

ii. The URL that is provided in the first request is one that points to the federation

server and that will initiate the actual login process and redirection would follow

after successful login.

6.4 Load Model- Full Load Test

This section describes the load model for the peak load test. There is a different load

model for each specific test in scope for the application but in this section only most

important test is covered which is designed to achieve the primary business goal. The

37

results of the test (i.e. peak load test) are discussed in detail in Section 6.5 as it is a

common test which was executed in the earlier release and is discussed in the initial

state analysis, Section 4.2.

Figure 7 below shows the load scenario settings i.e. user load distribution per script dur-

ing peak load.

Figure 7: Load Model – Peak Load Test

In the figure above, each script represents one user workflow and includes the details of

the number of users assigned to execute each script. It includes the load generator as-

signed to execute each script apart from the rate of user ramp.

38

6.5 Test Results

Following are the peak load test results obtained from test execution to meet the main

objective, objective priority 1 set during test planning phase, of the performance test:

Table 6 presents the statistics obtained during the tests executed in the old data center

as well as the new data center:

Table 6: Statistics Summary of Peak Load Test in Old Data Center

As shown in Table 6, there is a significant gain in the average throughput resulting into

overall throughput obtained during test. Faster response from the servers enabled

more requests by the virtual users which resulted into higher number of hits per sec-

onds and eventually higher total hits.

Figure 8 presents the pattern of running virtual users during both the tests:

Figure 8: Peak Load Test - Running Virtual Users

Statistics Old Data Center New Data Center

Maximum Running Virtual Users: 450 450

Total Throughput (bytes): 35,132,393,747 47,483,775,452

Average Throughput (bytes/second): 3,022,661 4,080,063

Total Hits: 5,382,918 6,619,259

Average Hits per Second: 463.126 568.763

39

As shown in Figure 8, the tests were exactly identical in terms of running virtual users.

The total test duration, user ramp-up & ramp-down was also identical in both the tests

which would lay the basis of fair comparison.

Figure 9 presents the pattern of throughput obtained during both the tests:

Figure 9: Peak Load Test – Throughput

CAs seen in Figure 9, it is evident that the web servers provided higher and consistent

throughput in the new data center throughout the test duration for the exactly identical

load model.

The next two figures (Figures 10 and 11) present the average response times obtained

from various locations during peak load tests executed in old data center before migra-

tion and in new data center post migration. Figures 10 and 11 primarily indicate the var-

iation in user experience from various locations due to the quality of network connectivity

since the response is delivered from the same servers.

40

Figure 10 presents the average response time obtained during a peak load test in the

old data center. The location of the servers in the old data center was in Espoo, Finland.

Figure 10: Peak Load - Average Transaction Response Time from Old Data Center

Figure 10 represents the average response times obtained for the transactions from var-

ious locations. The response times were captured, in order of their performance results

(Fastest Location First), from Espoo, Finland; Munich, Germany; Beijing, China; Singa-

pore; Chicago, USA and Sao-Paulo, Brazil. The highest time was taken from Brazil &

USA.

Similarly, Figure 11 presents the average response times obtained from the same loca-

tions. The location of the servers in the new data center is distributed in Espoo, Finland

and Munich, Germany.

TC01_01_Poli
cy_Server_Loa
d_Main_Page

TC01_02_Poli
cy_Server_Log

in

TC02_01_Prox
y_Server_Load

_Main_Page

TC02_02_Prox
y_Server_Logi

n

TC03_01_Fed
eration_Server
_Load_Main_P

age

TC03_02_Fed
eration_Server

_Login

Finland 0.124 0.047 8.738 13.961 17.013 31.346

Germany 0.697 0.107 10.957 15.848 20.727 36.796

USA 3.315 0.433 19.467 22.928 30.45 56.471

China 2.785 0.38 16.811 22.132 26.112 48.857

Singapore 3.846 0.487 19.821 22.765 28.554 54.283

Brazil 6.883 0.611 22.774 27.377 32.061 58.29

0.047

-20

-10

0

10

20

30

40

50

60

70

80

R
E

S
P

O
N

S
E

 T
IM

E
 (

S
E

C
O

N
D

S
)

TRANSACTION NAMES

Peak Load - Average Transaction Response Time (Old DC)

41

Figure 11: Peak Load - Average Response Times from New Data Center

Following is the performance of the locations (lowest last), as shown in the Figure 11:

1. Espoo, Finland
2. Munich, Germany
3. Beijing, China
4. Chicago, USA
5. Singapore
6. Sao-Paulo, Brazil

The location of the servers explains the fastest performing locations to be Finland &

Germany during both the tests. Table 7 provides further insight to the change in perfor-

mance from various locations:

TC01_01_Polic
y_Server_Load

_Main_Page

TC01_02_Polic
y_Server_Logi

n

TC02_01_Prox
y_Server_Load

_Main_Page

TC02_02_Prox
y_Server_Logi

n

TC03_01_Fede
ration_Server_
Load_Main_Pa

ge

TC03_02_Fede
ration_Server_

Login

Finland 0.373 0.141 0.408 0.127 0.43 0.76

Germany 0.972 0.235 1.322 0.347 1.322 1.644

USA 3.437 0.555 5.253 1.21 5.32 4.824

China 2.849 0.482 4.232 1.008 4.19 4.072

Singapore 3.886 0.616 5.838 1.41 5.733 5.504

Brazil 4.598 0.672 7.003 1.645 6.928 6.391

0.141

-1

0

1

2

3

4

5

6

7

8

9

R
E

S
P

O
N

S
E

 T
IM

E
 (

S
E

C
O

N
D

S
)

COUNTRIES

Peak Load - Average Transaction Response Time (New DC)

42

Table 7: Load Test Response Times Comparison – Old vs New Data Center

Transaction Name Old DC New DC
Response Time Dif-

ference

Change Per-

centage

Finland Location

TC01_01_Policy_Server_Load_Main_Page 0.124 0.373 0.249 200.806

TC01_02_Policy_Server_Login 0.047 0.141 0.094 200

TC02_01_Proxy_Server_Load_Main_Page 8.738 0.408 -8.33 -95.331

TC02_02_Proxy_Server_Login 13.961 0.127 -13.834 -99.09

TC03_01_Federation_Server_Load_Main_Page 17.013 0.43 -16.583 -97.473

TC03_02_Federation_Server_Login 31.346 0.76 -30.586 -97.575

Germany Location

TC01_01_Policy_Server_Load_Main_Page 0.697 0.972 0.275 39.455

TC01_02_Policy_Server_Login 0.107 0.235 0.128 119.626

TC02_01_Proxy_Server_Load_Main_Page 10.957 1.322 -9.635 -87.935

TC02_02_Proxy_Server_Login 15.848 0.347 -15.501 -97.81

TC03_01_Federation_Server_Load_Main_Page 20.727 1.322 -19.405 -93.622

TC03_02_Federation_Server_Login 36.976 1.644 -35.332 -95.554

USA Location

TC01_01_Policy_Server_Load_Main_Page 3.315 3.437 0.122 3.68

TC01_02_Policy_Server_Login 0.433 0.555 0.122 28.176

TC02_01_Proxy_Server_Load_Main_Page 19.467 5.253 -14.214 -73.016

TC02_02_Proxy_Server_Login 22.928 1.21 -21.718 -94.723

TC03_01_Federation_Server_Load_Main_Page 30.45 5.32 -25.13 -82.529

TC03_02_Federation_Server_Login 56.471 4.824 -51.647 -91.458

China Location

TC01_01_Policy_Server_Load_Main_Page 2.785 2.849 0.064 2.298

TC01_02_Policy_Server_Login 0.38 0.482 0.102 26.842

TC02_01_Proxy_Server_Load_Main_Page 16.811 4.232 -12.579 -74.826

TC02_02_Proxy_Server_Login 22.132 1.008 -21.124 -95.446

TC03_01_Federation_Server_Load_Main_Page 26.112 4.19 -21.922 -83.954

TC03_02_Federation_Server_Login 48.857 4.072 -44.785 -91.665

Singapore Location

TC01_01_Policy_Server_Load_Main_Page 3.846 3.886 0.04 1.04

TC01_02_Policy_Server_Login 0.487 0.616 0.129 26.489

TC02_01_Proxy_Server_Load_Main_Page 19.821 5.838 -13.983 -70.546

TC02_02_Proxy_Server_Login 22.765 1.41 -21.355 -93.806

TC03_01_Federation_Server_Load_Main_Page 28.554 5.733 -22.821 -79.922

TC03_02_Federation_Server_Login 54.283 5.504 -48.779 -89.861

Brazil Location

TC01_01_Policy_Server_Load_Main_Page 6.883 4.598 -2.285 -33.198

TC01_02_Policy_Server_Login 0.611 0.672 0.061 9.984

TC02_01_Proxy_Server_Load_Main_Page 22.774 7.003 -15.771 -69.25

TC02_02_Proxy_Server_Login 27.377 1.645 -25.732 -93.991

TC03_01_Federation_Server_Load_Main_Page 32.061 6.928 -25.133 -78.391

TC03_02_Federation_Server_Login 58.29 6.391 -51.899 -89.036

NOTE: Green color represents difference in response times whereas Red color represents response time increase.

43

As shown in Table 7, there are some locations which are impacted negatively as well but

the data center migration overall has brought more performance gains than loss. Ger-

many gained significantly as the network traffic was redirected locally to the servers

hosted in Munich data center. The user experience from USA also improved significantly

after the data center migration.

Figure 12 presents the comparison of transactions 90 percentile response time, which

represents the user experience of 90% users during test executions:

Figure 12: Transaction Response Time Comparison

As evident in the Figure 12 above, there is a significant performance improvement in

Web SSO after datacenter migration. Both proxy and federation servers gained perfor-

mance significantly. Though policy servers show performance degrade in fraction of sec-

onds which can be ignored as it does not impact the user experience.

0

10

20

30

40

50

60

70

3
.2

4
4

0
.4

2
3

2
1
.1

5
8

3
5
.8

1
9

5
1
.5

0
3

6
8
.3

5
4

3
.4

9
2

0
.5

6
5

5
.1

6
1

1
.2 4

.8
5

7

4
.7

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
o
n
d
s
)

Transaction Names

Transaction Response Time Comparison

Response Time - 90 Percentile (Old DC) Response Time - 90 Percentile (New DC)

44

7 Results Comparison

This section provides the brief details of the results available from the old performance

test(s) conducted on the Web SSO application and the detailed results of the recent test

executions performed as a part of the case study apart from their comparative analysis.

7.1 Brief Details of Old Test Results

As specified in the initial state analysis of the case project, the following test types were

executed to meet the single goal mentioned in the service document i.e. to analyse the

performance of the application after the new release:

1) Shakedown test- Supplementary test to ensure scripts and environment readiness.

2) Baseline Test – Supplementary test carried out with less than 20% of peak load to

baseline the performance of the application.

3) Load Test – The Load test with 400 virtual users for the duration of 2-3 hours. The

load was generated from Finland location only.

The load test was the main test planned to meet the target or customer request to eval-

uate the performance of the system at full load. There is no documentation available

about how the conclusion of 400 virtual users was drawn. Also there is no evidence or

documentation about historical data analysis or how the load model was derived. One

of the aspects to test after the new release to compare the performance with old re-

lease in order to establish whether performance is degraded with the new release and

to measure how much was not included in the scope.

7.2 Summary of New Test Results

This section presents the recent test execution results on the single sign on system after

implementing the methodology proposed in the solution section which consists of a se-

ries of process trainings and documentation within the case department of the organiza-

tion.

45

For the goals identified and listed in Section 4.1.5 the tests below were executed with

their brief result summary details:

1) Shakedown test: This test is executed to verify that the test scripts and environment

is working properly. The test is executed successfully with 2 virtual users per script

i.e. 18 scripts in total for 30 mins and without any script errors.

2) Smoke test: This test is executed before main load test to verify that the designed

load model achieves the desired rate of key transactions as well as intended rate of

HTTP request to the server. After couple of executions and tuning the values of think

time and pacing within different scripts the rate of login request was attained to

around the target value of 2526 logins per minutes excluding ramp and down period

i.e. during steady state test duration of 1 hour.

3) Load Test- Pre Migration: In order to collect the baseline response times for the key

transactions before migration for the comparison purposes. The test was success-

fully conducted using 450 users for 18 scripts and by attaining peak load on 2526

requests/minute. The test duration is 2 hours excluding ramp up and down periods.

4) Peak Load Test- Post Migration: This test is exactly identical to load test before mi-

gration. The details and comparison is captured in Section 6.5.

5) Site Failover Testing: The primarily target of the test was to validate the functioning

of DNS load balancing between data centers for the SSO application. One of the

application load balancer was shut down for 10 minutes, which was acting as one

node to receive traffic from DNS load balancer. This test was successful as the serv-

ers underneath the restarted application load balancer started receiving login re-

quests through DNS load balancer.

6) Application Failover Testing: The primarily target of the test was to validate the func-

tioning of application load balancer. During this test one node of proxy, policy and

federation services were brought down for 10 minutes and started again. The test

was successful for federation and proxy servers and as the servers underneath the

restarted application load balancer started receiving login requests from correspond-

ing load balancer on restarting.

46

Core finding of application failover test: This test failed and it was found out that only

single node was handling all the login requests from the load balancer and the failo-

ver server was not sharing the load on successful restart. The load balancer miscon-

figuration was identified and resolved before further test was planned.

7) Endurance Testing: The test was executed for 48 hours, over the weekend so that

the test does not affect other applications. Approximately, 2600 login requests/minute

were maintained throughout the test duration and no major issues were reported.

The system was able to handle the peak load consistently for 48 hours.

8) Stress Testing: The test is planned in steps by increasing 100 virtual users in each

step on top of 450 peak load to find out the system limits in terms of number of re-

quests it could handle. Also, the test could reveal the symptoms of the system before

crashing. The test has not been completed till completion of the study.

The detailed test results of peak load test have been captured in Section 6.5 whereas all

the remaining tests have been summarized above. Application failover test identified an

issue with load balancer configuration.

7.3 Comparative Analysis of Results

There are the two main following comparison levels in the case study project of single

sign on system performance tested before and after implementing the new methodology

and the documentation produced as a part of the study:

47

7.3.1 Project Level Comparison

The project level comparison primarily includes the comparison of the method of deriving

performance testing requirements or goals in order to conclude the number of tests with

their objectives and targets. Following is the summary (Table 8):

Table 8: Project Level Comparison

Comparison

Aspect Description Previous Test New Test Comparison Remarks

Requirements

Identified

Number of re-

quirements or

goals identified

during require-

ment gathering

phase of the pro-

ject One Three

Apart from the primary goal men-

tioned in the service request, the

questionnaire and checklist helped to

identify secondary and tertiary goals

also identified. It lead to major dif-

ference in the project execution and

affected the shape of project totally

i.e. the number of tests and their

benefits which would have easily

missed otherwise as in the case of

previous release.

Quality of

load model

Usage of histori-

cal data in de-

signing the load

model

The load model

was not based

on historical

data analysis

Historical data

analyzed to de-

sign workload

The load model affects performance

prediction of the production system

and the test executed previously was

not based on the historical data anal-

ysis

Test types in-

cluded in

scope

Incl. only main

tests (Excl. sup-

porting tests like

shakedown,

baseline and

smoke tests

One [Load

Test- Post Re-

lease]

Six [Pre, Post

Migration Load

tests; Site, Ap-

plication failo-

vers; Endurance

and Stress Test]

Identification of detailed require-

ments lead to higher number and

types of tests which helps in analyz-

ing the performance of the produc-

tion system

As evident from the comparison table above, the requirements were gathered properly

in the similar project by using the methods defined in the new methodology section which

resulted in to higher number of requirements and more test executions.

48

7.3.2 Test Level Comparison

Test level comparison includes the differences observed in the quality of a single test i.e.

load test which is common in both the projects. Following is the summary (Table 9):

Table 9: Test Level Comparison

Test Type Previous test New Test Comparison Remarks

Load

generating

locations

One

[Finland]

Six

[Finland, Germany, Singa-

pore,

Brazil, USA and China]

This helped in understanding the re-

sponse times of the key transactions

from global locations when application

is under peak load

Quality of load

model

The basis of load is

not documented

and was not based

on historical data

analysis

Load model is based on

the historical data from the

production systems

The new methodology emphasize on

the usage of historical data for load

modeling which results into a load

model close to production load means

realistic results and better prediction of

production performance

Number of test

cases One Three

Due to some scripting/technical chal-

lenges only single script was executed

in the previous test as compared to

three scripts for each type of authenti-

cation was used in the new test

Performance

comparison

method

The comparison

was based on

baseline test exe-

cuted at 20% of

the peak load

The comparison was based

on the baselines collected

from the old data center at

the same/peak load using

the exact same scenario

The method used in the new test pro-

vide clear comparison of the perfor-

mance and clear isolation of the fact if

the performance is improved or de-

graded

It is evident from the table above that the new methodology brought the quality change

in the project in terms of results obtained from individual test executions. During the case

study a very clear comparison was made whereas in the previous test execution baseline

was not executed in the prior release for comparison with new release performance.

Also, many new tests were introduced in scope using new methodology which would

have otherwise not executed.

49

8 Summary

This section contains the summary of the study, practical implications for the proposed

method and the next possible steps for its future operational implementation. It also

contains the evaluation of the study by comparing the outcome with the initial research

objective. Finally, validity and reliability of the study are discussed.

The main goals of the study was to explore and propose the possible ways to improve

the quality of the requirement gathering process being followed in the performance

testing service of the case company. The other goals of the study were to provide the

supporting documentation to improve the initial steps involved in any performance test-

ing projects to support the performance engineers in deriving the effective performance

requirements as well as utilize those requirement to further identify the test types and

their load models.

The study produced a series of documentation ranging from the new methodology

presentations, various checklists and questionnaires to be used during the requirement

gathering process, a handbook to use the tool in order to analyze the application histor-

ical data to design the effective load model and a guide including reference to all avail-

able documentation for an overall performance test process.

As per the feedback from peers and the management, there is no requirement to mod-

ify the overall service level process as it starts quite early in the development life cycle

being followed in the case company which gives enough time to performance engi-

neers to implement the new methods and documentation.

The implementations show very promising results (as summarized in Section 7.3). The

identification of two new goals based on the usage of new methodology and documen-

tation lead to major change in the course of project. It affected all the following stages

of the projects until its completion and major improvements in the results of the test ex-

ecutions. It resulted in the derivation of 7 more tests, the inputs from each test execu-

tion helped in better predicting the performance of the application in its production envi-

ronment. The application failover test which might not have been in the scope of the

study if only the primary goal mentioned in the service request would have been con-

sidered. It means that the test would have been failed in identifying the policy server

load balancing misconfiguration issue.

50

The proposed methodology would require some basic changes in the way of working

within the shared service, the new methodology introduces many new documents to be

followed and also emphasizes reviews after each milestone. It would take some time

for the management to decide as well as people to adapt to it before it could be fully

implemented.

This study helps the service management to understand for example how the methods

and documentation could help in improving the quality of the performance testing ser-

vice being offered. As per the initial discussion about its implementation, it could be di-

vided into two parts i.e. further trainings on how to use the new methods and in later

stage again implement it for another project before including it fully in to the process.

This study could be further expanded outside the existing scope for web applications

only to cover the other systems. Also, from the case project perspective the study does

not include the details of the second part of the project about performance tuning of the

single sign on system. This exercise in general is expected to maximize the gain one

could see from performance tests.

This section evaluates the outcome of the project compared against the research ob-

jective defined at the beginning. Additionally, validity and reliability of the study are

evaluated and compared to the requirements defined in Section 4.3.

Following is the summary of the targeted requirements and their mapping with the out-

come of the study (Table 10):

51

Table 10: Requirement Fulfillment Status

S. No. Requirement Status Remarks

1. Study and propose the improvements for

performance requirement gathering pro-

cess being followed at service level

Fulfilled As an outcome service level pro-

cess remains unchanged but

method of requirement gather-

ing is proposed to change as de-

tailed in section-5

2. Study and propose the method to im-

prove load modelling method being fol-

lowed in the service

Fulfilled Section 5.5 to guide how to de-

rive effective workload model

and section 5.4 about newly cre-

ated tool handbook to analyze

web logs would help in fetching

the data based input for effec-

tive load modelling

3. Study and implement the proposal to

some specific project to evaluate the ef-

fectiveness

Fulfilled Section 6 and 7 covers the de-

tails of the case study and the

corresponding results

To increase the reliability and validity of the outcome, more interviews and feedback

would definitely benefit the evaluation and might lead to more concrete recommenda-

tions for the shared service. It was not, however, possible due to time constraints and

other business factors to include such statistics in the present study.

Overall, the performance is truly a big question in the constantly evolving IT world and

doing the performance testing right is a crucial topic. Hopefully the present study added

a step up in this direction.

52

References

1 [1] Avritzer, A., J. Kondek, D. Liu, and E. J. Weyuker, "Software Performance

Testing Based on Workload Characterization," in Proceedings of the 3rd Interna-

tional Workshop on Software and Performance, pp. 17-24, Rome, Italy, Jul 2002.

2 [2] Chih-Wei Ho, North Carolina State University and Laurie Williams, North Car-

olina State University “Deriving Performance Requirements and Test Cases with

the Performance refinement and Evaluation Model” dissertation August 2008

3 [3] Avritzer, A., ATandT Labs and E.J. Weyuker, ATandT Labs “Deriving Work-

loads for Performance Testing”, Software -- Practice and Experience, Vol. 26, No.

6. June 1996, pp. 613-633.

4 [4] Avritzer, A. and E. J. Weyuker, "Generating Test Suites for Software Load

Testing," in Proceedings of International Symposium on Software Testing and

Analysis, pp. 44-57, Seatle, WA, Aug 1994.

5 [5] Balsamo, S., A. D. Marco, and P. Inverardi, "Model-Based Performance Pre-

diction in Software Development: A Survey," IEEE Transactions on Software En-

gineering, vol. 30, no. 5, pp. 295-310, May 2004.

6 [6] Daniel A. Menasce and Virgilio A.F. Almeida; “Capaciry Planning for Web Per-

fomance Metrics, Models, and Methods”, Prentice Hall, PTR, New Jersey 07458,

1998.

7 [7] Menasce D.A. and Dowdy L.W., “Capaciry Planning and Performance Model-

ing: From Mainframes or Clienr-Server Systems’’, Prentice Hall, NJ, 1994.

8 [8] Bill Jaegcr, “Minimizing Risk with Proactive Performance Testing”, E-Business

Advisor Article, April 1999.

9 [9] “Microsoft Site Server 3.0 Commerce Server,” Capacity and Performance

Analysis manual.

10 [10] Z. Alzamil. Application of the operational profile in software performance

analysis. In Proceedings of the 4th international workshop on Software and per-

formance, pages 64–68, Redwood Shores, California, 2004. ACM. ISBN 1-

58113-673-0.

53

11 [11] S. Barber. Creating Effective Load Models for Performance Testing with In-

complete Empirical Data. In Web Site Evolution, 2004. WSE 2004. Proceedings.

Sixth IEEE International Workshop, pages 51–59. IEEE Computer Society, 2004.

ISBN 0-7695-2224-6.

12 [12] Berry, D. M. and E. Kamsties, "Ambiguity in Requirements Specification," in

Perspectives on Requirements Engineering, J. C. S. P. Leite and J. Doorn, Eds.:

Kluwer, 2004, pp. 7- 44.

13 [13] J.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis Rea,

Microsoft Corporation, “Performance Testing Guidance for Web Applications”

September 2007

14 [14] Todd DeCapua, Chief Technology Evangelist, Hewlett Packard Enterprise

and Technology Leader, TechBeacon “State of Performance Engineering” 2015-

2016 Edition

15 [15] D. G. Feitelson, Workload Modeling for Computer Systems Performance

Evaluation. Cambridge University Press, 2015

http://www.cs.huji.ac.il/~feit/wlmod/
http://www.cs.huji.ac.il/~feit/wlmod/

54

Glossary

The following definitions are used throughout this guide. Every effort has been made to

ensure that these terms and definitions are consistent with formal use and industry stand-

ards; however, some of these terms are known to have certain valid alternate definitions

and implications in specific industries and organizations.

Table 11: Glossary

Term/Concept Description

Latency Latency is a measure of responsiveness that represents the time it takes to complete the

execution of a request. Latency may also represent the sum of several latencies or sub-

tasks.

Metrics Metrics are measurements obtained by running performance tests as expressed on a

commonly understood scale. Some metrics commonly obtained through performance

tests include processor utilization over time and memory usage by load.

Pacing The duration of pause at the end of any iteration before starting the new iteration

Response time Response time is a measure of how responsive an application or subsystem is to a client

request.

Scenarios In the context of performance testing, a scenario is a sequence of steps in your applica-

tion. A scenario can represent a use case or a business function such as searching a

product catalogue, adding an item to a shopping cart, or placing an order.

Think Time The user pause between two user actions on the web page. The referred in this case

results into a request to the server.

Throughput Throughput is the number of units of work that can be handled per unit of time; for

instance, requests per second, calls per day, hits per second, reports per year, etc.

Transaction The transaction means a user action, which resulted into a web/http request to the

server.

Resource utiliza-

tion

Resource utilization is the cost of the project in terms of system resources. The primary

resources are processor, memory, disk Input/Output, and network Input/Output.

Virtual User A software process or thread which simulate the user actions (in terms of web requests)

to the web server

Workload Workload is the stimulus applied to a system, application, or component to simulate a

usage pattern, about concurrency and/or data inputs. The workload includes the total

number of users, concurrent active users, data volumes, and transaction volumes, along

with the transaction mix. For performance modelling, you associate a workload with an

individual scenario.

