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1 Introduction 

 

The purpose of this thesis is to explore embedded systems and the sensors used in 

embedded systems. The aim is to describe  how a sensor tag was implemented on an 

embedded Linux platform for the open source community. The objective was to create 

a stand-alone application that uploads sensor data on the cloud. 

 

In recent years, embedded Linux devices have gained economic advantage competing 

with the traditional embedded devices in the market. This includes some 

telecommunication technologies with the Linux platform. In addition, health service 

devices, transport technologies and household items such as TVs, microwaves and 

many more are often operating under embedded Linux. 

 

Linux technology has become popular due to its high performance, stability and 

deterministic nature. Most Linux technologies are open source which attracts many 

software developers to contribute to various Linux projects. The vastness of ideas from 

different users makes the embedded Linux and Linux technologies to grow fast. This is 

due to Open Source and General Public License (GPL) which give the developers 

freedom to share the source codes to the public. The users or developers have the 

freedom of modifying the source code and reusing the code for advanced features or 

as a stepping stone for another project. [1.] 

 

Thus, the research question for the final year project discussed in this thesis was 

 

The main objective of the project was to  implement an application which can display 

time series data in real time on the cloud using an embedded  Linux platform as the 

gateway. 

 

This thesis is in six sections. The first section is the Introduction to the topic. Section 2 

describes the theoretical background of the embedded Linux platform Raspberry Pi 2, 

Texas Instrument Sensor Tag CC2541, Bluetooth dongle and Wi-Fi dongle. Section 3 

How to connect Texas Instrument wireless sensors to embedded Linux plat-

form and send the data into the cloud in real time. 
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describes application design and project implementation. Section 4 describes applica-

tion testing. Section 5 describes results and discussion. Lastly, section 6 presents the 

conclusions and recommendations. 
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2 Theoretical Background of the Project Devices 

 

The final year project used Raspberry Pi 2 embedded Linux platform and Texas Instru-

ment Sensor Tag TI CC2541. The following subsections describe these two devices, Wi-

Fi Dongle, Bluetooth Dongle and their features in detail. 

 

2.1 TI CC2541 Sensor Tag 

 

The  TI CC 2541 sensor tag is focused on wireless sensor applications, and the tag is 

often used by the mobile phone application developers. Texas Instrument used BLE 

technology is developing a sensor tag hardware platform, whereby all available sen-

sors are on a single board for quick evaluation and demonstration. The sensor drivers 

are on a GATT server. The server contains all the main services for every sensor avail-

able on the BLE stack. [2.]   Figure 1 below shows the TI CC2541 sensor tag used in 

the final year project. 

  

 

Figure 1. TI CC2541 Sensor Tag. Reprinted from Texas Instrument  [2]. 
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2.1.1 Types of Sensors on the Sensor Tag 

 

The TI CC2541 Sensor Tag has five sensors which can be viewed on the development 

board. Figure 2 shows the sensors which were used in the project.  

 

 

 

Figure 2. Sensors in the final year project. Reprinted from Texas Instrument [2]. 

 

 The sensors used for this final year project include 

 IR temperature Sensor (ambient and objective) 

 Humidity Sensor (relative and humidity temperature) 

 Barometer Sensor (pressure and temperature) 

 Accelerometer, 3 axis 

 Magnetometer, 3 axis 

 Gyroscope, axis 
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2.1.2 Operations 

 

The TI CC 2541 sensor tag advertises its frequency of 100 m/s[2]. Connection is estab-

lished on the receiving device (Raspberry Pi 2 in this project) and the sensors are con-

figured to provide the measurement data. The operation can be listed as follows 

 Scan and find the sensor tag 

 Establish connection 

 Make service discovery 

 Write and read the data 

  

2.1.3 GAP 

 

GAP, Generic Access Profile, is the Bluetooth low energy (BLE) protocol which defines 

the client and server actions and performance of two BLE devices. These actions and 

performance include the discovery of the device, establishing and termination of the 

connection link between the sensor tag and Raspberry Pi, initiating security features 

and device configuration. Figure 3 shows the possible device states. [1.] 
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Figure 3 GAP State diagram. Reprinted from Texas Instrument [2]. 

 

2.1.4 GATT 

 

Texas Instrument designed the GATT (Generic Attribute Profile) layer for the low en-

ergy Bluetooth protocol stack. This protocol enables the client and the server to con-

nect. When connected, they exchange data using services and characteristics. The 

server stores data from the sensors written by GATT. The client requests the data so 

that it can be viewed and converted to human readable form by the client [2.]. Figure 4 

shows the request and response between the client and the server [2.] 

 

 

Figure 4. GATT Client and Server. Reprinted from Texas Instrument [2]. 

 

2.1.5 Services and Characteristics  

 

GATT services in BLE are based on objects called profiles, services and characteris-

tics. A profile is the simple collection of ready defined services by the Bluetooth ven-

dors. The services include ScPP (Scan Parameters Profile) which defines how the cli-

ent can write its data to a server and how the server can request the data from the cli-

ent [3.]. Figure 5 shows the service and characteristics. 
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Figure 5. Service and characteristics. Reprinted from Texas Instrument [2]. 

 

2.2 BLE Technology on TI CC2541 Sensor Tag 

 

BLE is a low power solution for controlling and monitoring application technology which 

was released by Bluetooth Interest Group. It provides attractive energy performance 

that makes it particularly suitable for portable, battery-driven electronic devices. [3] 

 

Sensor tag initiating mode is known as a scanner or initiator, which scans periodically 

advertising channels to get information of other devices. On the other device which is 

Raspberry Pi 2 in this final year project, where the BLE device is operating in advertis-

ing mode which is known as advertiser, it periodically transmits advertising information 

in three channels. When there is connection with the initiator they will establish a con-

nection.  [3.] 

 

2.3 Raspberry Pi 2 

 

The project required an embedded Linux board for the development of the application. 

The embedded Linux board which was chosen was Raspberry Pi 2 model-B. The rea-

son for choosing this Raspberry Pi 2 model B was due to its performance power. The 

Pi has four processors which draw high power resulting to high performance. The type 

of processor is ARMv7 which is multicore processor. The Raspberry Pi 2 also has 1 GB 

of ram which makes it even more powerful. [4.] Figure 6 shows the Raspberry Pi 2-

Model B which was used in the project. 
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Figure 6. Raspberry Pi 2-model B. Reprinted from Adafruit [4]. 

 

2.4 Wireless Dongle for Internet Connection 

 

To have connection between the development board and the cloud and  to install nec-

essary drivers, there is supposed to be network connection. A wireless dongle was the 

choice for this project because it helps in moving the development board from one 

place to another during the testing. The dongle which was chosen was TP-Link which 

has capability of transmitting 300Mbps. [5]. Figure 7 shows the wireless dongle used in 

the project.  

 

 

Figure 7. TP-Link wireless dongle. Reprinted from TP-Link [5]. 
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2.5 Bluetooth Dongle for Device Connections  

 

The connection between Raspberry Pi 2 and TI CC2541 requires a USB Bluetooth 

which has the capability to connect to low energy devices. Ubiquitous computing de-

vices are often small in size and they are power constrained, which makes it impossible 

to be connected directly to the internet. In the project, two Bluetooth dongles were cho-

sen.  The first one, USB Mini Bluetooth v2.1dongle failed because it did not have the 

low energy connection capability. [6.] Figure 8 shows USB Mini Bluetooth v2.1 dongle. 

 

 

Figure 8. USB Mini Bluetooth v2.1 dongle. Reprinted from Konig [6]. 

 

Asus USB Bluetooth was the second Bluetooth dongle trialled to connect to the sensor 

tag. It was a trial because not all Bluetooth version 4 have the capability of connecting 

to BLE devices. This Bluetooth dongle was successfully able to connect to the sensor 

tag [8.]. Figure 9 shows ASUS USB-BT400 which was used. 

 

 

Figure 9. USB-BT400 dongle. Reprinted from ASUS [7]. 
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3 Application Design and Project Implementation 

 

The final year project application was designed using the following devices and soft-

wares: 

 Raspberry Pi 2 as the development board and as the gateway to the cloud 

 Wireless dongle for connection between the development board and the cloud 

services 

 Bluetooth dongle for connection between the development board and the Sen-

sor Tag 

 TI CC2541 sensor tag as a source of sensor data 

 Cloud service for data visualization and computing 

 MQTT for machine to machine connection 

 Node.JS for application building 

 IBM Bluemix IoT Sensor Tag repository 

 

Fgure 10 below shows the project application prototype and all the technologies involved.  

 

 

Figure 10. Project prototype. Modified from IBM [9]. 

 

Figure 11 shows the components which were used in the  final year project, which are 

Raspberry Pi 2, TI CC2541, a wireless dongle, BLE dongle and a power bank. 
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Figure 11. Components used in this project. 

 

3.1 Raspberry Pi 2 Setup 

 

Debian Jessie was installed using the SD card in order to setup the project environ-

ment on the Raspberry Pi 2. After that, BLE drivers were installed to enable the BLE 

dongle to work. The next step was to test the BLE drivers. BLE USB was inserted to 

the development board and configured up for listening to advertising channels. Figure 

12 shows the command used to power up the BLE USB, also the command for scan-

ning the BLE devices in the nearby areas. 
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Figure 12. Command for BLE USB powering up and scanning for advertised channels. 

 

Figure 13 shows the connection testing between TI CC2541 sensor tag and Raspberry 

Pi 2.  

 

Figure 13. Command for testing connection between Raspberry Pi and TI CC2541. 

 

3.2 Cloud Vendor Selection 

 

There are different types of cloud service providers ranging from open source to private 

ones. The cloud providers which were considered during the project were Microsoft Az-

ure, AWS and Rack Space among others. The cloud provider used in the final year pro-

ject was IBM Bluemix. 

 

IBM Bluemix was chosen because it supports open source projects for the Internet of 

Things. For example a project called NodRed, which is used for the Internet of Things, 

is an open source project. [9.] 
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3.3 IBM Bluemix 

 

IBM Bluemix is IBM’s solution for the cloud. Bluemix is a platform as a service solution, 

as well as Infrastructure as a Service. In PaaS (Platform as a Service) Bluemix it is pos-

sible to develop, build, test, deploy, run and manage the application in the cloud. In IaaS 

(Infrastucture as a Service) the hardware, storage and network can be managed on the 

cloud. 

 

Bluemix supports building of the application using private infrastructure. This is possible 

only when the virtualization layer used is Bluemix. There are various types of virtualiza-

tion layers which stay on top of Bluemix infrastructure. Bluemix supports those and make 

the applications deployable. These include openstack virtual machines and Docker con-

tainers which are machines and Cloud Foundry. [10.] 

 

Cloud Foundry was used in this project. Cloud Foundry is a platform as a service. Cloud 

foundry is open source software which allows developers to code in multiple languages 

such as Java, Node.js Go, PHP and Ruby. [11.] 

 

The procedures in the final year project for using the IBM Bluemix were creating an ac-

count, choosing the IoT starter platform, filling in the necessary credentials such as name 

of the application, organisation name, choosing the region where the services are avail-

able, creating an application, registering the gateway device, adding the registered de-

vice to the application and finally testing the device. 

 

3.3.1 Creating the Account in Bluemix 

 

The Bluemix account can be crated on the Bluemix website www.ibm.com/Bluemix. [10.] 

After creating the account in Bluemix,  the next step was to create the application via 

Bluemix boilerplate. In general a boilerplate is a template that includes an application, its 

associated runtime environment and predefined services for a domain. [10.]  Figure 14 

below shows the boilerplate with Bluemix services. 

 

http://www.ibm.com/Bluemix
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Figure 14 Boilerplate. Reprinted from IBM Bluemix [10]. 

 

3.3.2  Internet of Things 

 

In the catalogue, the Internet of Things starter was chosen because the application is 

based on the Internet of Things. One of the services in the boilerplate was called 

Cloudant NoSQL database which is suitable for the application in storing the real-time 

data from the sensors. 

 

The Internet of Things platform which is the hub of all things in IBM IoT was one of the 

services which were included in the boilerplate. It is where all the setup and management 

of all connected devices can be done. In the Internet of Things is the application can 

access the live and historical data.  

 

Another service which was available in the boilerplate was SDK for Node.js which is used 

for building the server side JavaScript application. [10.]. Figure 15 below shows the boiler 

plate and the services which were available 
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Figure 15. Services available in the boilerplate. Reprinted from IBM Bluemix [10]. 

 

3.3.3 Creating an Application 

 

The name of the created application was ThesisIoT. The hostname was chosen auto-

matically by Bluemix after filling in the application name (which can  later be changed). 

Organization ID also is set automatically when the application is created. The organisa-

tion ID for this project was aa7asp. The organization type was Bluemix-free and it was 

chosen because it offers various services compared to others. The geographic location 

chosen was US-SOUTH, due to the number of services which are available in the region 

compared to other regions. 

 

The application is built using Node-RED.  Node-RED is a powerful visual editor from IBM 

used for building IoT applications. [11]. Node-RED is built on top of Node.JS. Figure 16 

below shows the application ready for Node-RED editing. 
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Figure 16. ThesisIoT application.  

 

3.4 Device Registration 

 

The device is added to IBM Watson IoT after the application has been created. In creat-

ing the device type there are two options: device type and gateway type. This application 

uses device type. The next step is to provide the name of the device (for this application 

it was Raspberry) and provide description of the device. 

 

When the device has been created, the next step is to add the device by providing the 

device ID which is the Mac address of the Raspberry Pi 2. The device ID is written in a 

way that all colons are deleted and without space. The next step is to provide a password 

which is a token between the device and Bluemix for security reasons and for secure 

connection. After providing the device information, the next step is to copy the device 

information to the Raspberry Pi 2 in the folder where the application is located. The de-

vice information is copied into a  file called configure.properties. Figure 17 below 

shows the device information after it has been created and added to IBM Watson IoT. 
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Figure 17. Device information.  

 

3.4.1 Performance Monitoring 

 

When the application is running, Bluemix auto-create performance monitoring messages 

are in Json format.  The messages help to monitor the application life and help to trou-

bleshoot when problems occur. Listing 1 below shows application performance and avail-

ability of the application. 

 

{ 

  "iotf-service": [ 

    { 

      "credentials": { 

        "iotCredentialsIdentifier": "xxxxxxxx", 

        "mqtt_host":"aa7asp.messaging.inter-

netofthings.ibmcloud.com", 

        "mqtt_u_port": 1883, 

        "mqtt_s_port": 8883, 

        "http_host":"aa7asp.inter-

netofthings.ibmcloud.com", 

        "org": "aa7asp", 

        "apiKey": "xxxxxxxx", 

        "apiToken": "xxxxxxxx" 

      }, 
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      "syslog_drain_url": null, 

      "label": "iotf-service", 

      "provider": null, 

      "plan": "iotf-service-free", 

      "name": "ThesisIoT-iotf-service", 

      "tags": [ 

        "internet_of_things", 

        "Internet of Things", 

        "ibm_created", 

        "ibm_dedicated_public" 

      ] 

    } 

  ] 

} 

 

Listing 1. Performance monitoring. 

 

3.4.2 Performance Credentials 

 

Bluemix IoT Watson auto-creates the performance monitoring application using Json. 

The messages help to monitor the life of the application.  Listing 2 below shows the 

performance credentials of the application in Bluemix IoT Watson. 

 

{ 

  "AvailabilityMonitoring": [ 

    { 

      "credentials": { 

        "pass": "xxxxxxxxxxxx", 

        "id": "71972e89-cfa5-4ee2-a71b-9cbfc651a101", 

        "url": "https://perfbroker.ng.bluemix.net/1.0/cre-

dentials/71972e89-cfa5-4ee2-a71b-9cbfc651a101" 

      }, 

      "syslog_drain_url": null, 

      "label": "AvailabilityMonitoring", 

      "provider": null, 

      "plan": "Base", 
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      "name": "performance-monitoring-auto", 

      "tags": [ 

        "ibm_created", 

        "ibm_beta", 

        "bluemix_extensions", 

        "dev_ops" 

      ] 

    } 

  ] 

} 

 

Listing 2. Performance credentials. 

 

3.4.3 Database Credentials 

 

When the application is created in Bluemix, the database auto-creates the credentials 

for the application ready for storing data in real time. Listing 3 below shows the database 

credentials. 

 

{ 

  "cloudantNoSQLDB": [ 

    { 

      "credentials": { 

        "username":"14a1383f-10c3-4881-8aa3-2d5911d67306-blue-

mix", 

        "password": “xxxxxxxx", 

        "host": "14a1383f-10c3-4881-8aa3-2d5911d67306-blue-

mix.cloudant.com", 

        "port": 443, 

        "url":"https://14a1383f-10c3-4881-8aa3-2d5911d67306-

blue-

mix:3a4288e4ec6855f7dd818964591284b3b238aa88960377d16fd68

974429aab3a@14a1383f-10c3-4881-8aa3-2d5911d67306-blue-

mix.cloudant.com" 

      }, 

      "syslog_drain_url": null, 
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      "label": "cloudantNoSQLDB", 

      "provider": null, 

      "plan": "Lite", 

      "name": "ThesisIoT-cloudantNoSQLDB", 

      "tags": [ 

        "data_management", 

        "ibm_created", 

        "ibm_dedicated_public" 

      ] 

    } 

  ] 

} 

 

Listing 3. Database credentials. 

 

3.5 Node JavaScript Installation on Raspberry Pi 2 

 

For an application to be built,  Node JavaScript is supposed to be installed on the devel-

opment board. In the final year project Node JavaScript was installed to the Raspberry 

Pi 2. 

 

3.6 MQTT 

 

To have connection between Raspberry Pi 2 and Bluemix Watson IoT, a  MQTT protocol 

was needed.  MQTT is a Client Server publish/subscribe messaging transport protocol. 

It is a light weight application protocol which is used for communication machine to ma-

chine (M2M) communication and IoT. To make communication possible a network or the 

internet is required. In this application wireless dongle was used to ensure the availability 

of the network. [12.]. 

 

3.6.1 MQTT Installation 
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MQTT was installed on the client which is Raspberry Pi 2. The following command in-

stalls the MQTT on the client: npm install mqtt -g. NPM is used because the 

application is built on top of Node.JS. [12.] 

 

3.6.2 MQTT Client 

 

The client is a publisher or a subscriber of the messages. The same device can publish 

and subscribe at the same time. In this project the MQTT client is Raspberry Pi 2 which 

has a MQTT library installed  and running. The client is connected to an MQTT broker 

which is Bluemix Watson IoT. The connection is done through TCP/IP through Wi-Fi 

dongle. Figure 18 below shows the MQTT broker and clients sending and receiving mes-

sages. 

 

 

Figure 18. MQTT broker and clients. Reprinted from Texas Instrument [12]. 
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3.6.3 MQTT Broker  

 

The MQTT broker receives messages from the clients. In this project the broker is Blue-

mix Watson IoT. Bluemix Watson IoT receives all messages from the client which is 

Raspberry Pi 2. 

 

Bluemix Watson IoT as the broker is responsible for the authentication and authorization 

of the client. The broker is the central hub, through which all the messages pass.  Figure 

19 below shows the MQTT broker receiving messages from the clients. 

 

 

Figure 19. MQTT broker getting messages from the clients. Reprinted from Janakiram 

MSV [12]. 

 

3.7 IBM Bluemix IoT Sensor Tag Open Source Repository 

 

Bluemix has the git repository in GitHub which has the source code for creating a con-

nection between the Sensor Tag, Raspberry Pi 2 and the cloud. To get the source code 

from GitHub to Raspberry Pi 2, the following command was issued on the terminal 
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$ git clone git@github.com:IBM-Bluemix/iot-sensor-tag.git 

 

The next step was to install Node.JS modules. After the installation of the node modules 

the next step was to create a config.properties file in the publish directory. The con-

fig.properties file contains the organization ID and other credentials which were created 

in the Blue-mix Watson IoT when registering the device. These credentials are for the 

connection between the client and the broker. Figure 20 show the files and the applica-

tion in the publish directory. 

 

 

Figure 20. The files and the application. 

 

The application which was sensortag.js was changed to ThesisIoT since some of the 

sensors were only supported in the previous version of Bluemix Watson IoT and are not 

supported now. The original application had a lot of errors once executing. After the 

changes, the application started working. Figure 21 shows the client connected to the 

broker. 

 

  

Figure 21. Client connected to the broker. 

 

3.8 Application Deployment for Visualization 

 

To deploy the IBM IoT Watson application as a standalone application for visualization, 

the installation of a cloud foundry command line in the client is required. After installing 

mailto:git@github.com:IBM-Bluemix/iot-sensor-tag.git
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cloud foundry command line, the next step is to install Bluemix command line in the 

client. Bluemix command line works on top of cloud foundry command line. 

 

After several attempts to install cloud foundry in to Raspberry Pi 2 which runs an ARM 

processor, the installation failed. The failure was due to the lack of support for ARM 

architecture from cloud foundry organisation. 

 

The goal of deploying the application as a standalone application for visualization was 

declined. The next solution was to use the graphs which are available in Watson IoT to 

visualize the sensor data.  
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4 Application Testing 

 

The application which was created in the final year project was tested and the sensor 

data was visualized on the cloud. The first aim was to build two applications, one with 

NodeRed where messages will be sent from the sensor tag to be seen through the 

NodeRed[11] application, and the second one to make standalone application which 

will use cloudfoundry to send sensor data to the cloud for visualisation. The second aim 

failed because there is lack of support for arm architecture processors for Raspberry Pi 

2. 

 

The visualization of the application was built using the graphical cards of Watson IoT to 

view data in real time. After the application was built, the next step was to test it in dif-

ferent areas of a house such as living room, kitchen, bathroom and bed room. Figure 

22 shows an example of visualized data from IBM Watson IoT Platform, giving infor-

mation about the humidity (%), ambient temperature (°C) and air pressure (mbar) 

measured.  Figure 23 shows how the object temperature is presented in the applica-

tion.  

 

 

Figure 22. Humidity, ambient temperature and pressure.  
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Figure 23. Object temperature. 

 

The results of the measurements are presented in table 1. 

Table 1 The results of application testing 

  

Temperature 

(°C) 

Humidity 

(%) 

Pressure 

(mbar) 

Living room 21.9 41.7 1013.2 

Kitchen 22.7 45.3 1013.2 

Bathroom 18.5 55.8 1014.0 

Bedroom 22.1 41.1 1013.1 
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5 Results and Discussion 

 

This chapter describes the results, benefits and drawbacks of the final year project. The 

aim of the project was to make a standalone application which shows visualized sensor 

data on the cloud in real time. The standalon application was built, but it did not meet all 

the expectations. 

 

 

 

 

5.1 Success 

 

The final year project was successful because sensor datas were visualized in real time 

and in graphics. The sensor data that could not able to be visualized came from Gyro 

and Magnetometer. They could not able to be visualized because cloud foundry was not 

installed on Raspberry Pi 2 also on Watson IoT there are no graphic for  the Gyro and 

Magnetometer sensors. 

 

5.2 Drawbacks 

 

The drawbacks in this project were Bluetooth Dongle, cloud foundry installation, cus-

tomer support from IBM and MongoDB.  

 

The first chosen Bluetooth Dongle needed for connection lacked the low energy technol-

ogy for connection between the sensor tag and Raspberry Pi 2. Instead, another dongle 

was chosen that has the low energy device support.  

 

To be able to make a standalone application for visualization, the cloud foundry virtual-

ization layer was required in the client which is Raspberry Pi 2. The installation of the 

cloud foundry was not successful since Raspberry Pi 2 uses ARM processor architecture 

which has less support from the cloud foundry organisation. This was a huge drawback 

because some of the sensors could not be visualized in graphic. Such sensors were the 

Gyro and the Magnetometer. 
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During the project, there was a connection problem with the MQTT protocol in the IBM 

Bluemix Watson IoT and the client which is Raspberry Pi 2. The connection problem was 

sent to IBM in July 10, 2016 but the reply came in October 16 2016. 

 

During the project various ways of implementing the final year project were used, Mon-

goDB being one of the methods. Mongo DB was selected because of its ability to store 

real time data and the scalability of the database itself. After several attempts to install 

MongoDB, due to its insufficiency of support for ARM processor architecture, the data-

base was dropped because Bluemix has its own database which is given for storing time-

series data.  

 

5.3 Suggestions 

 

The project drawbacks met in the final year project have taught that through research or 

study of the components or technologies going to be used in a project before the project 

is started. Research will help to save time and will enable doing the project in an efficient 

way. 

The drawbacks related to finding the right kind of devices, like the BLE USB Dongle. For 

example, that problem could be avoided by checking the data sheet of the USB Dongle 

if it supports LE (low energy) devices. The cloud foundry drawback could be avoided by 

making research on the development board architectures which cloud foundry supports. 
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6 Conclusion 

 

The goal of the final year project was to connect sensor tag TI CC2541 to the cloud and 

make a standalone application where sensor data can be visualized in real time. A work-

ing application which shows visualized sensor data in real time over a network on the 

cloud was created.  

 

The IoT application created in the final year project can be used for further development 

of similar open source projects. It can be achieved through solving the drawbacks or 

avoiding the drawbacks. The suggested solution is to use a different development board 

than Raspberry Pi 2, with different architecture supported by cloud foundry. However, 

because the ARM architecture has low support from cloud foundry, the chances of de-

veloping such as a final year project are limited.  
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Source code for connecting sensor client and the broker 

/* 

*Original author: IBM 

*Modified:     Masinde Mtesigwa Masinde 

*/ 

 

 

var SensorTag = require('sensortag'); 

var mqtt = require('mqtt'); 

var url = require('url'); 

var macUtil = require('getmac'); 

var properties = require('properties'); 

var connected = false; 

 

properties.parse('./config.properties', {path: true}, func-

tion(err, cfg) { 

  if (err) { 

    console.error('A file named config.properties containing the 

device registration from the IBM IoT Cloud is missing.'); 

    console.error('The file must contain the following proper-

ties: org, type, id, auth-token.'); 

    throw e; 

  } 

  macUtil.getMac(function(err, macAddress) { 

    if (err) throw err; 

    var deviceId = macAddress.replace(/:/gi, ''); 

    console.log('Device MAC Address: ' + deviceId); 

 

    if(cfg.id != deviceId) { 

        console.warn('The device MAC address does not match the 

ID in the configuration file.'); 

    } 

 

    var clientId = ['d', cfg.org, cfg.type, cfg.id].join(':'); 
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    var client = mqtt.connect("mqtts://" + cfg.org + '.messag-

ing.internetofthings.ibmcloud.com:8883', 

      { 

        "clientId" : clientId, 

        "keepalive" : 30, 

        "username" : "use-token-auth", 

        "password" : cfg['auth-token'] 

      }); 

    client.on('connect', function() { 

          console.log('MQTT client connected to IBM IoT 

Cloud.'); 

    }); 

    client.on('error', function(err) { 

          console.log('client error' + err); 

          process.exit(1); 

    }); 

    client.on('close', function() { 

          console.log('client closed'); 

          process.exit(1); 

    }); 

    monitorSensorTag(client); 

  }); 

   monitorSensorTag(client); 

  }); 

}); 

 

function monitorSensorTag(client) { 

  console.log('Make sure the Sensor Tag is on!'); 

 

n monitorSensorTag(client) { 

  console.log('Make sure the Sensor Tag is on!'); 

 

  SensorTag.discover(function(device){ 

        console.log('Discovered device with UUID: ' + de-

vice['uuid']); 
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        device.connect(function(){ 

          connected = true; 

          console.log('Connected To Sensor Tag'); 

          device.discoverServicesAndCharacteristics(func-

tion(callback){ 

            //getDeviceInfo(); 

                initAirSensors(); 

                initAccelAndGyro(); 

                initKeys(); 

          }); 

        }); 

 

        device.on('disconnect', function(onDisconnect) { 

          connected = false; 

          client.end(); 

          console.log('Device disconnected.'); 

        }); 

 

        function getDeviceInfo() { 

          device.readDeviceName(function(callback) { 

            console.log('readDeviceName: '+callback); 

          }); 

          device.readSystemId(function(callback) { 

            console.log('readSystemId: '+callback); 

          }); 

          device.readSerialNumber(function(callback) { 

                console.log('readSerialNumber: '+callback); 

          }); 

          device.readFirmwareRevision(function(callback) { 

            console.log('readFirmwareRevision: '+callback); 

          }); 

          device.readHardwareRevision(function(callback) { 

            console.log('readHardwareRevision: '+callback); 

          }); 

          device.readSoftwareRevision(function(callback) { 

                console.log('readSoftwareRevision: '+callback); 



Appendix 1 

4 (8) 

 

 

          }); 

          device.readManufacturerName(function(callback) { 

                console.log('readManufacturerName: '+callback); 

          }); 

        } 

 

        function initKeys() { 

          device.notifySimpleKey(function(left, right) { 

          }); 

        }; 

 SensorTag.discover(function(device){ 

console.log('Discovered device with UUID: ' + de     

vice['uuid']); 

        device.connect(function(){ 

          connected = true; 

          console.log('Connected To Sensor Tag'); 

          device.discoverServicesAndCharacteristics(func-

tion(callback){ 

       //getDeviceInfo(); 

         initAirSensors(); 

          initAccelAndGyro(); 

          initKeys(); 

          }); 

        }); 

 

        device.on('disconnect', function(onDisconnect) { 

          connected = false; 

          client.end(); 

          console.log('Device disconnected.'); 

        }); 

 

        function getDeviceInfo() { 

          device.readDeviceName(function(callback) { 

            console.log('readDeviceName: '+callback); 

          }); 

          device.readSystemId(function(callback) { 
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            console.log('readSystemId: '+callback); 

          }); 

          device.readSerialNumber(function(callback) { 

                console.log('readSerialNumber: '+callback); 

          }); 

          device.readFirmwareRevision(function(callback) { 

            console.log('readFirmwareRevision: '+callback); 

          }); 

          device.readHardwareRevision(function(callback) { 

            console.log('readHardwareRevision: '+callback); 

          }); 

          device.readSoftwareRevision(function(callback) { 

                console.log('readSoftwareRevision: '+callback); 

          }); 

          device.readManufacturerName(function(callback) { 

                console.log('readManufacturerName: '+callback); 

          }); 

        } 

        function initKeys() { 

          device.notifySimpleKey(function(left, right) { 

          }); 

        }; 

 

        function initAccelAndGyro() { 

          device.enableAccelerometer(); 

          device.notifyAccelerometer(function(){}); 

          device.enableGyroscope(); 

          device.notifyGyroscope(function(){}); 

          device.enableMagnetometer(); 

          device.notifyMagnetometer(function(){}); 

        };  

        device.on('gyroscopeChange', function(x, y, z) { 

          var data = { 

                   "d": { 

                     "Tag": "TI Sensor Tag", 

                     "gyroX" : x, 
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                     "gyroY" : y, 

                     "gyroZ" : z 

                    } 

                  }; 

          client.publish('iot-2/evt/gyro/fmt/json', 

JSON.stringify(data), function() { 

      }); 

        }); 

 

        device.on('accelerometerChange', function(x, y, z) { 

          var data = { 

                   "d": { 

                     "Tag": "TI Sensor Tag", 

                     "accelX" : x, 

                     "accelY" : y, 

                     "accelZ" : z 

                    } 

                  }; 

          client.publish('iot-2/evt/accel/fmt/json', 

JSON.stringify(data), function() { 

      }); 

        }); 

 

        device.on('magnetometerChange', function(x, y, z) { 

          var data = { 

                   "d": { 

                     "Tag": "TI Sensor Tag", 

                     "magX" : x, 

                     "magY" : y, 

                     "magZ" : z 

                    } 

                  }; 

client.publish('iot-2/evt/mag/fmt/json', JSON.stringify(data), 

function() {}); 

 }); 

var previousClick = {"left" : false, "right" : false}; 
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     device.on('simpleKeyChange', function(left, right) { 

        var data = { 

                   "d": { 

                     "Tag": "TI SensorTag", 

                     "left" : false, 

                     "right" : false 

                    } 

                  }; 

      if(!previousClick.left && !previousClick.right) { 

        previousClick.left = left; 

        previousClick.right = right; 

        return; 

      } 

      if(previousClick.right && previousClick.left && !left && 

!right) { 

        data.d.right = true; 

        data.d.left = true; 

      } 

      if(previousClick.left && !left) { 

        data.d.left = true; 

      } 

      if(previousClick.right && !right) { 

  data.d.right = true; 

      } 

      previousClick.left = false; 

      previousClick.right = false; 

 

client.publish('iot-2/evt/click/fmt/json', JSON.stringify(data), 

function() {}); 

 }); 

 function initAirSensors() {  

device.enableIrTemperature(function(err)  

{ 

if (err) throw err;});  

 device.enableHumidity(function(err)  

{ 
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if (err) throw err;}); 

 device.enableBarometricPressure(function(err) 

 { 

 if(err) throw err;} 

     var intervalId = setInterval(function() { 

    if(!connected) { 

       clearInterval(intervalId); 

           return; 

             } 

   device.readBarometricPressure(function(error, pressure) {   

device.readHumidity(function(error, temperature, humidity) {  

device.readIrTemperature(function(error, objectTemperature, 

 ambientTemperature) 

 { 

 var data = {"d": {"Tag": "TI CC 2541 Sensor Tag", "pressure" : 

pressure,"humidity" : humidity, 

"objtemp" : objectTemperature,"ambientTemp" : ambientTempera-

ture, "temp" : temperature,} 

}; 

client.publish('iot-2/evt/air/fmt/json', JSON.stringify(data), 

function() {                                            }); 

 }); 

 }); 

  }); 

 }, 5000); 

} 

 }); 

}; 


