

Dropout-based Support Vector Regularization

Bachelor’s thesis

Degree Programme in Automation Engineering

Valkeakoski, Autumn 2016

Dat Tran Thanh

ABSTRACT

Degree Programme in Automation Engineering
Valkeakoski

Author Dat Tran Thanh Year 2016

Subject Dropout-based Support Vector Regularization

ABSTRACT

In this thesis we consider a new regularization technique that exploits the
probabilistic Dropout scheme at the sample level. The new regularization
approach is incorporated into the Maximum Margin Classification (MMC)
framework resulting in a new variant of the Support Vector Machine
classifier. We show here that the added regularizer comes with a
geometrical interpretation related to the selection of support vectors. In
addition, we illustrate that the new formulation is consistent with the
guarantee provided in the Statistical Learning Theory. Experimental results
from several classification problems show better generalization
performance achieved by adding the new regularization as compared to
the standard approach.

Keywords Support Vector Machine, Regularization, Dropout, Kernel Methods.

Pages 28 pages

CONTENTS

1 INTRODUCTION ... 1

2 BASIC CONCEPTS ... 3

2.1 Learning from Examples .. 3

2.2 Linear models .. 6

2.3 Kernel trick .. 12

3 RELATED WORK ... 14

3.1 Dropout-SVM .. 15

4 PROPOSED METHOD ... 16

4.1 The proposed DropSVM classifier ... 17

4.2 Discussion .. 19

5 EXPERIMENTS .. 22

5.1 Experiment settings... 22

5.2 Experimental Result .. 24

6 CONCLUSION ... 25

REFERENCES .. 27

ACKNOWLEDGEMENT

I would like to express my utmost gratitude towards Dr. Alexandros Iosifidis who is

currently working at Signal Processing Department in Tampere University Of

Technology. Under his supervision, I was brought closer to the research-related

activities and more thorough understanding of many state-of-the-art results in machine

learning. In addition, I am also thankful for Mr. Raine Lehto and Mrs. Niina Valtaranta

for their fruitful feedback.

Finally, I am forever grateful to my parents, who have constantly supported me not only

in this thesis work but also throughout the whole academic pursuit in Finland.

Tampere, January 2017

Dat Tran Thanh

1

1 INTRODUCTION

This thesis discusses machine learning, particularly, the regularization
techniques in linear models. Machine learning is a subcategory of Artificial
Intelligence (AI) where the objective is to solve complex problems by
learning from examples. Machine learning aims at modelling the
relationships between objects through observations rather by
constructing an algorithm for each specific problem. Many successful
products in the industry were created through the contribution of a
machine learning solution, e.g. object recognition, autonomous
navigation, recommender system, stock prediction.

Regularization is an important aspect in many machine learning models.
Since regularization has direct bearings in the generalization performance
of a model, this field of research has continuously attracted several work.
The Dropout technique was originally proposed by Hinton (2012) for
training neural networks as a mean of regularization. Due to the large
number of parameters in neural networks, such learning models have a
strong capability to fit the data well, which in turn leads to the problem of
overfitting on the training data. The main idea of Dropout is to randomly
drop a subset of hidden units during updating the parameters of the
network on each back-propagation iteration. Such process has been shown
to prevent the parameters of the network from over co-adaptation. The
same idea has found its resemblance in linear models as part of the so-
called feature noising methods. By augmenting the finite training data with
its artificially corrupted versions, according to a specific distribution, the
linear models are expected to be less susceptible to noise and hence,
increase performance over an unseen test sample.

The feature noising framework in linear models consists of two steps:
complementing the original data by its infinite noisy versions and
minimizing the average or the expectation of the corresponding loss
function of the model under the given corrupting distribution. One way to
create corrupted data is to randomly omit some of the dimensions of the
original data, hence the Dropout procedure is considered as part of the
feature noising framework. There are several works existing in the
literature regarding different types of loss functions, e.g. van der Maaten
(2013), Wager (2013), Wang (2013). While expectation of quadratic loss
and exponential loss under corrupting distribution can be computed
analytically (van der Maaten, 2013), in case of logistic loss or log-loss in
generalized linear model, the expectation is only approximated through
Taylor series expansion (van der Maaten, 2013; Wager, 2013).

For the Support Vector Machine (SVM) model, the non-differentiability of
hinge loss hinders the calculation of the loss function as well. Under the
data augmentation framework, previous attempts to regularize the SVM

2

predictor includes explicit corruption of training data as a mean of creating
new data such as the work of Burges and Schölkopf (1997) or analysing the
worst-case scenarios of feature deletion in the test set (Dekel, 2008;
Globerson and Roweis, 2006; Smola, 2008). In these proposals, high
computational cost is induced for explicit corruption or the setting is
unlikely to take place in a practical situation in the analysis of worst-case
scenarios. The direct implementation of Dropout training technique in
SVM predictor was proposed by Chen (2014) in which a variational upper
bound of the expected hinge loss was derived.

In general, previous work employing Dropout either in a neural network or
under feature noising framework aim at limiting the co-operation between
data dimensions, which can be understood as feature regularization. That
is, all the above-described statistical methods exploit the Dropout
approach in terms of regularizing the training data dimensions. Inspired by
the Dropout idea, in this paper, we propose a novel approach that can be
used in regularizing non-linear models (and in particular kernel-based
models) by exploiting Dropout at the sample level. We use as a special case
the widely used Maximum Margin Classification framework and in
particular the SVM classifier. We will show that the motivation to
regularizing its model by randomly dropping some of the training samples
is highly intuitive. In addition, the intuition is justified by experimental
results on standard classification problems. The contributions of this thesis
are as follows:

- A novel formulation exploiting the sample Dropout procedure for MMC

that is able to regularize the maximum margin decision boundary. The

formulation results in an elegant solution which in turn allows the

utilization of existing efficient SVM solvers without any modification.

- Qualitative discussion on the effect of the proposed regularization

framework in the case of SVM training.

The thesis is organized as follows. Chapter 2 presents some preliminaries

in machine learning. The related work of Chen (2014) with the implicit

Dropout training for SVM is presented in Chapter 3. In Chapter 4, we

describe the new formulation of SVM that constrains the decision

boundary through Dropout, additionally we present the interpretation of

the proposed method geometrically as well as under the regularization

theory. The performance of our formulation is compared against that of

the standard SVM classifier in publicly available classification problems in

Chapter 5. In Chapter 6, conclusions are drawn from previous chapters.

3

2 BASIC CONCEPTS

This chapter introduces the basic tools and notations in machine learning
as well as an important result from the Statistical Learning Theory. The
existing literature in the field that relates to the proposed method in the
later chapters is reviewed.

2.1 Learning from Examples

The paradigm in machine learning that we discuss here is called Learning
from Examples. The main idea is that given some observations of the
relations between objects, can we build the learner that could infer the
general relationship between the objects by examining the observations?
The learning problem is hence an inductive inference, in which incomplete
information of a phenomenon is used to model the generating rule behind
the phenomenon. Mathematically, these rules are described by functions
which represent a mapping from input observations to output
observations. Based on the type of the output observations, the learning
task can be categorized as classification or regression. As the name
suggests, classification is the task of classifying input objects into one of
the finitely many classes, while regression refers to the task of assigning a
continuous value to each of the inputs. In either case, the learning example
has the form of an input-output pair. The aim of the learning process is to
use the learned function to make inference of the output from an unseen
input, i.e. the input which is not used during the learning process.
Therefore, the effectiveness of the learning task is measured based on the
inference made from unseen observations, the closer the inferred output
to the true output, the more effective the learned function.

From the above presented mathematical point of view, machine learning
is deemed largely as function fitting. It is interesting to note that not all
functions that describe perfectly the mapping of the finite learning
examples truly model the underlying rules that regulate the phenomenon.
However, mathematical formulation allows the utilization of existing tools
and methods to analyse the conditions under which the learning task is
effective. The field of statistical learning theory investigates and gives
insights into the learning problems that can be used to derive a successful
learning algorithms. Moreover, from these insights, guarantees of the
effectiveness of certain learning algorithms can be made.

To be concrete, we introduce some notions and concepts. Denote the
known observations or the training data as the set 𝒵 = {(𝑥𝑖, 𝑦𝑖) ∈ 𝒳 ×
𝒴|𝑖 = 1, … , 𝑁}. As mentioned previously, if 𝒴 = ℝ we call the learning
problem regression while if 𝒴 is the finite set, e.g. 𝒴 = {−1,1}, we call the
learning problem classification, specifically in case of two-class
classification problem, it is also called binary classification problem.

4

The problem of learning hence aims at finding the function 𝑓: 𝒳 → 𝒴 given
only the set 𝒵 with the requirement that given any 𝑥𝑡𝑒𝑠𝑡 ∈ 𝒳, 𝑓 is able to
predict 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑓(𝑥𝑡𝑒𝑠𝑡) that is as close as possible to 𝑦𝑡𝑒𝑠𝑡 which is the

true value of the pair (𝑥𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡). In order to find 𝑓, certain assumptions
must be made. Under the statistical learning theory, it is assumed that
there exists an unknown probability distribution 𝑃(𝑋, 𝑌) defined over 𝒳 ×
𝒴 that truly describes the generating process of the observations. In
addition, a loss function is needed in order to measure the amount of loss
or penalty associated with the choice of 𝑓:

ℓ(𝑓(𝒙), 𝑦) (1)

ℓ(𝑓(𝒙), 𝑦) is the quantity that expresses how much risk we incur when
choosing 𝑓. A straight forward choice of 𝑓 could be to assign ℓ(𝑓(𝒙), 𝑦) =
1 if the prediction is wrong and ℓ(𝑓(𝒙), 𝑦) = 0 if the prediction is correct.

The learning strategy is then to select 𝑓∗ that results in the lowest overall
risk, i.e. the expected risk:

𝑓∗ = arg min
𝑓

𝐸𝑃(ℓ(𝑓(𝒙), 𝑦)) = arg min
𝑓

ℛ(𝑓) (2)

Where in (2), 𝐸𝑃 denotes the expectation with respect to the joint
distribution 𝑃(𝑋, 𝑌). The function 𝑓∗ is our ideal function and often called
the target function. In practice, the joint probability distribution 𝑃(𝑋, 𝑌) is
unknown and only a part of it, the set 𝒵 is available. In order to build a
learner from the limited amount of known data, an induction principle is
needed to approximate the expected risk. The so-called Empirical Risk
Minimization (ERM) induction principle was developed by Vapnik (1998) to
exactly do this. The data set 𝒵 is used to build a stochastic approximation
of the expected risk in (2), which is called empirical risk:

ℛ(𝑓; 𝒵) =
1

𝑁
∑ ℓ(𝑓(𝑥𝑖), 𝑦𝑖)

𝑁
𝑖=1 (3)

Consequently, the learning strategy is to learn the function that minimizes
the empirical risk in (3):

𝑓 = arg min
𝑓

ℛ(𝑓; 𝒵) (4)

Up until now, we have not discussed any assumption on the function space

ℱ in which we are searching 𝑓 and how effective 𝑓 is in estimating 𝑦𝑡𝑒𝑠𝑡
given 𝑥𝑡𝑒𝑠𝑡. Pure minimization of (4) can be problematic since we could

simply build 𝑓 that “remembers” all pair values in 𝒵 which results in near
zero empirical risk although not being able to make any prediction on 𝑥𝑡𝑒𝑠𝑡.
The situation is referred to as overfitting in which the minimum of
empirical risk is very small or but the expected risk is large. The quantity

5

that we are truly interested in, however, is the expected risk. In order to
have a control or guarantee over the effectiveness of choosing 𝑓, Statistical
Learning Theory studies the probabilistic bounds on the gap between the
empirical and expected risk. The number of training examples 𝑁 and the
complexity of ℱ measured by the so-called capacity ℎ are involved in the
bounds. Since there exists several methods to measure the capacity of the
function space ℱ such as covering numbers, annealed entropy, VC
dimension (Vapnik and Chervonenkis, 1971) or the scale sensitive versions
of it (Kearns and Shapire, 1994; Alon et al., 1993), the specific versions of
the bounds depend on ℎ. However, it could be generally described with
the following form (Evgeniou, 2002): with probability of at least 𝜂:

ℛ(𝑓) < ℛ(𝑓; 𝒵) + 𝜑 (√
ℎ

𝑁
, 𝜂) (5)

with 𝜑 is an increasing function of
ℎ

𝑁
 and 𝜂.

The result in (5) provides us a guarantee and a guiding principle in choosing
the function space ℱ in which we perform the empirical risk minimizer. We
can see that if the capacity ℎ is too large, the distance between ℛ(𝑓; 𝒵)
and ℛ(𝑓) can be very large, hence overfitting occurs. In order to prevent
overfitting, one could consider reducing the complexity when the
hypothesis space ℱ is large. This can be done by incorporating the
complexity of the hypothesis space ℱ into the minimization problem in (4),

finding 𝑓 with the best trade-off between empirical risk and complexity.
With this insight, the learning problem is now modified again and
becomes:

min
𝑓∈ℱ

ℛ(𝑓; 𝒵) + 𝜆Ω(𝑓) (6)

Where Ω(𝑓) is the term that controls the complexity of the hypothesis
space ℱ and 𝜆 is a non-negative parameter that controls the trade-off
between minimizing ℛ(𝑓; 𝒵) and Ω(𝑓).

The minimization problem in (6) can also be interpreted under the
Regularization Theory in which Ω(𝑓) is called the regularizer that imposes
a certain constraint on the class of hypothesis function. The introduction
of a regularizer into the empirical risk minimization can be explained by
the fact that solely minimizing ℛ(𝑓; 𝒵) in (4) can lead to an ill-posed
problem. The inclusion of a regularizer in many cases ensures a well-posed
problem.

Lately, we have presented the problem of learning from examples in the
general form of the optimization problem in (6). In fact, optimization
problem (6) is central in the supervised-learning setting. Based on different
assumptions incorporated into the learning process, we have different
classes of learning models built from (6). Specifically (6) presents us with

6

the choice of hypothesis space ℱ, the choice of loss function ℓ(𝑓(𝑥), 𝑦)
and the choice of Ω(𝑓) incorporated. The next section discusses some of
these selections.

2.2 Linear models

The class of linear models assumes that there exists a linear relationship
between the label 𝑦 and the dimensions of input data 𝑥. Specifically,
denote 𝐷 the dimension of 𝑥, i.e. 𝑥 ∈ 𝑅𝐷, the function that models the
phenomenon between 𝑥 and 𝑦 is assumed to have the form:

𝑦 = 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (7)

with 𝑤 ∈ 𝑅𝐷 also known as the weight vector and 𝑏 ∈ 𝑅 is the offset from
the origin to the hyperplane 𝑓. There are many reasons one might select
linear estimator to model the relationship between known data pairs. The
selection is highly problem dependent. From the arguments of previous
section, a direct suggestion of using linear model might come from the
situation where the amount of data 𝑁 is not so large. From the bound in
(5), choosing a class of functions that has high capacity ℎ will likely lead to
overfitting. In that case, a linear model probably works well.

For regression problem, 𝑦𝑡𝑒𝑠𝑡 is simply calculated by 𝑓(𝑥𝑡𝑒𝑠𝑡). On the other
hand, classification task needs more treatment to build the learned model.
Since we assume the mapping is linear, i.e. the function 𝑓 is a hyperplane
in the input space 𝑅𝐷, 𝑓 devides 𝑅𝐷 into two halves. Thus 𝑓 inherently
bears the characteristic of a binary classifier. The separating hyperplane
between the two class is 𝑓(𝑥) = 0, therefore classification decision is
made by taking the sign of 𝑓(𝑥𝑡𝑒𝑠𝑡), i.e. 𝑥𝑡𝑒𝑠𝑡 belongs to positive class if
𝑓(𝑥𝑡𝑒𝑠𝑡) > 0 and vice versa. Figure 1 illustrates a binary classifier.

In order to treat classification problem with 𝑘 classes (𝑘 > 2), one might
employ one-vs.-rest or one-vs.one strategy to break down the multiple-
class classification problem into many binary classification problems. One-
vs.-rest involves training 𝑘 binary classifiers for 𝑘 classes: for the 𝑖-th binary
classifier 𝑓𝑘, the samples that belong to the 𝑖-th class are considered
positive samples while the rest are considered negative samples. The
classification decision is made by selecting the class that maximizes
𝑓𝑘(𝑥𝑡𝑒𝑠𝑡). In one-vs.-one strategy, 𝑘(𝑘 − 1)/2 binary classifiers are trained
with each classifier trained by the samples from a pair of classes. The
classification decision is made by evaluating all 𝑘(𝑘 − 1)/2 classifiers, the
class that receives maximum number of votes from all classifiers is selected
as the label of the unseen example.

7

 Figure 1. An example of a binary classifier in 2 dimensions.

After defining the hypothesis space ℱ, there are two decisions left in order
to construct the learning problem: the selection of the loss function and
the selection of the regularizer. We will discuss two types of loss function
that are prevalent choices which lead to popular linear models: the least
square estimator and the Support Vector Machine (SVM) estimator. In
addition, for a moment, we will not consider adding a regularizer in our
learning problem to illustrate its necessity. The learning problem is
therefore considered as the optimization problem in (4).

 Least Square Estimator

With the square loss, ℛ(𝑓; 𝒵) is defined as

ℛ(𝑓; 𝒵) =
1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑁
𝑖=1 (8)

The constructed estimator is then called least square estimator and (4)
becomes

min
𝑤,𝑏

1

𝑁
∑ (𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏)2𝑁

𝑖=1 (9)

To simplify the notion, we denote 𝜃 = [
𝑤
𝑏

] ∈ 𝑅𝐷+1 and 𝑥𝑖
′ = [

𝑥𝑖

1
] ∈

𝑅𝐷+1, 𝑖 = 1, … , 𝑁. In addition, denote the appended training data by 𝑋′ =
[𝑥1

′ , … , 𝑥𝑁
′] ∈ 𝑅𝐷×𝑁 and the label vector by 𝒚 = [𝑦1, … , 𝑦𝑁]𝑇 ∈ 𝑅𝑁.

Consequently, (9) becomes:

min
𝜃

𝐽 = min
𝜃

1

𝑁
∑ (𝑦𝑖 − 𝜃𝑇𝑥𝑖

′)2𝑁
𝑖=1 (10)

8

The closed-form solution of (10) can be easily found by solving for the
stationary point of 𝐽:

𝜕𝐽

𝜕𝜃
= −

2

𝑁
∑ 𝑥𝑖

′(𝑦𝑖 − 𝜃𝑇𝑥𝑖
′)𝑁

𝑖=1 (11)

Setting 𝜕𝐽/𝜕𝜃 = 0 results in:

∑ 𝑥𝑖
′𝑁

𝑖=1 𝑥𝑖
′𝑇

𝜃 = ∑ 𝑥𝑖
′𝑦𝑖

𝑁
𝑖=1

Or

𝑋′𝑋′𝑇
𝜃 = 𝑋′𝒚 (12)

The system of linear equations in (12) is problematic if 𝑋′𝑋′𝑇
 is singular

which either leads to no solution of 𝜃 or infinitely many solutions of 𝜃. (12)
is thus ill-posed. Following the regularization framework, the least square
problem can be transformed to a well-posed problem by adding the square
norm constraint on the weight, i.e. Ω(𝑓) = ‖𝜃‖2

2 and we have the
regularized least square version as:

min
𝜃

𝐽 = min
𝜃

1

2𝑁
∑ (𝑦𝑖 − 𝜃𝑇𝑥𝑖

′)2𝑁
𝑖=1 +

𝜆

2
𝜃𝑇𝜃 (13)

Where 𝜆 > 0 is the parameter that controls the trade-off between

minimizing the empirical loss and the norm penalty. Here the coefficient
1

2

is added to both terms in (13) to simplify the calculation.

Solving for the stationary point of (13) results in:

(𝑋′𝑋′𝑇
+ 𝜆𝐼)𝜃 = 𝑋′𝒚 (14)

With 𝐼 is the identity matrix of appropriate size. Since 𝜆 > 0, the matrix

𝑋′𝑋′𝑇
+ 𝜆𝐼 is guaranteed to be non-singular, hence unique solution of 𝜃

exists in (14). In the following part, the contribution of the norm regularizer
‖𝜃‖2

2 is further justified with another type of loss function, the hinge loss.

 Support Vector Machine (SVM)

The SVM was originally proposed by Cortes and Vapnik (1995) for binary
classification problem, i.e. 𝑦 ∈ {−1,1}. SVM classifier conforms to the
above presented learning framework in which the same square norm
regularizer ‖𝑤‖2

2 is used in conjunction with the hinge loss to tighten the
probabilistic bound (5):

ℛ(𝑓; 𝒵) = ∑ max(0,1 − 𝑦𝑖𝑓(𝑥𝑖))𝑁
𝑖=1 (15)

The SVM learning problem therefore has the form:

9

min
𝑤,𝑏

𝑐 ∑ max(0,1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏))𝑁
𝑖=1 +

1

2
‖𝑤‖2

2 (16)

In (16), the parameter 𝑐 is added to the loss term for simpler manipulation

of the problem. It should be noted that 𝑐 ∝
1

𝜆
 , with 𝜆 defined in (6). Both

parameters are used to control the trade-off between minimizing loss and
penalty.

As can be seen from Figure 2, the “kink” in the max function leads to the
non-differentiability of the objective in (16).

 Figure 2. Hinge loss plot

In order to utilize calculus tools, the hinge loss is re-written using slack
variables 𝜉𝑖:

min
𝑤,𝑏

𝑐 ∑ 𝜉𝑖
𝑁
𝑖=1 +

1

2
‖𝑤‖2

2 (17)

Subject to 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, ∀𝑖 = 1, … , 𝑁

𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁

The slack variables can be interpreted as the deviation of the predicted
value 𝑓(𝑥𝑖) from the ideal or target value 𝑦𝑖. Particularly, the learned
function 𝑓(𝑥𝑖) is expected to have similar sign as 𝑦𝑖, i.e. 𝑦𝑖𝑓(𝑥𝑖) should be
non-negative. By minimizing 𝜉𝑖, the lower bound of 𝑦𝑖𝑓(𝑥𝑖) is maximized,
forcing 𝑦𝑖 and 𝑓(𝑥𝑖) to have the same sign. The ideal value of 𝑓(𝑥𝑖) is 1 or
−1 when 𝑥𝑖 belongs to positive or negative class respectively,
corresponding to 𝜉𝑖 = 0, which is the constrained minimum value.

Based on the Karush-Kuhn-Tucker (KKT) theorem (Fletcher, 1981), solving
the optimization problem of (17) is equivalent to solving the following dual
problem:

10

max
𝜶

∑ 𝛼𝑖
𝑁
𝑖 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗
𝑁
𝑗=1

𝑁
𝑖=1 (18)

Subject to ∑ 𝑦𝑖𝛼𝑖 = 0𝑁
𝑖=1 ;

 0 ≤ 𝛼𝑖 ≤ 𝑐, 𝑖 = 1, … , 𝑁

Where 𝜶 = [𝛼1, … , 𝛼𝑁]𝑇 is the Lagrange multipliers. Having determined
the optimal 𝜶∗ in (18), the optimal weight vector 𝑤∗ and the intercept term
𝑏∗ can be computed as:

 𝑤∗ = ∑ 𝑎𝑖
∗𝑦𝑖𝑥𝑖

𝑁
𝑖=1 (19)

 b∗ = 1 − 𝑤∗𝑇𝑥𝑖 for 𝑦𝑖 = 1 (20)

Alternatively, the decision function 𝑓 can be expressed in terms of the
Lagrange multipliers 𝜶 as:

 𝑓(𝑥) = ∑ 𝛼𝑖
∗𝑥𝑖

𝑇𝑥 + 𝑏∗𝑁
𝑖=1 (21)

Comparing the primal and the dual problem, both optimization problems
are in quadratic convex form, hence global solutions exist. However, the
dual problem is simpler since the slack variables together with its Lagrange
multipliers do not appear in the dual form, resulting in quadratic
optimization problem with single variable 𝜶 and linear constraints. More
importantly, the dual problem and its resulting decision boundary are cast

entirely in terms of the dot product of the training data, i.e. 𝑥𝑖
𝑇𝑥𝑖, which

allows the utilization of the so-called “kernel trick” presented in the
following section.

We have seen so far how ‖𝑤‖2 is incorporated into the learning objective
to transform an ill-posed problem to a well-posed one as well as to tighten
the probabilistic bound between the expected loss and empirical loss in
(5). For the class of linear models, ‖𝑤‖2 has an interesting geometric
interpretation for the SVM classifier. We can see that the quantity 𝑓(𝑥)
represents the algebraic distance between 𝑥 and the decision boundary.
Denote 𝑥𝑝 the projection of 𝑥 onto the hyperplane 𝑓(𝑥) = 0, we have

𝑥 = 𝑥𝑝 + 𝑟
𝑤

‖𝑤‖2
 (22)

We can see that 𝑟 is positive when 𝑥 belongs to the positive side of 𝑓(𝑥) =

0 and vice versa. Because 𝑓(𝑥𝑝) = 0:

𝑓(𝑥) = 𝑟‖𝑤‖2

Or

𝑟 =
𝑓(𝑥)

‖𝑤‖2
 (23)

11

Now suppose the training data is linearly separable, i.e. there exists a
hyperplane that perfectly separates the two classes, the optimal function
𝑓 should produce the value 𝑓(𝑥𝑖) having the same sign as the target label
𝑦𝑖, i.e.

𝑦𝑖𝑓(𝑥𝑖) > 0, ∀ 𝑦𝑖 = 1 (24)
𝑦𝑖𝑓(𝑥𝑖) < 0, ∀𝑦𝑖 = −1

Since 𝑓(𝑥) and 𝑐𝑓(𝑥) define the same decision boundary, we can fix the
constraint in (24) as

 𝑦𝑖𝑓(𝑥𝑖) ≥ 1, ∀ 𝑦𝑖 = 1 (25)
𝑦𝑖𝑓(𝑥𝑖) ≤ −1, ∀ 𝑦𝑖 = −1

Denote 𝑥+

∗ and 𝑥−
∗ the closest samples from the positive class and negative

class to the optimal hyperplane satisfying (25), i.e.

𝑓(𝑥+
∗) = 1 (26)

𝑓(𝑥−
∗) = −1

Combining (23) and (26), it is clear that the margin or the sum of geometric
distance between 𝑥+

∗ and 𝑥−
∗ to the decision boundary is:

𝑑 =
2

‖𝑤‖2
 (27)

This results shows that the inclusion of ‖𝑤‖2 into hinge loss minimization
problem of SVM classifier aims at maximizing the margin 𝑑. The linear
separability assumption of the data might not be true, hence the constraint
in (25) can be loosened by adding the slack variables as in (17). Figure 3
shows an example in which a large margin solution is better although the
constraints in (25) are violated. The samples that satisfy (26) are called
support vectors since they have direct effect in the selection of optimal
hyperplane.

Figure 3. On the left: the hyperplane perfectly separates training samples.
On the right: SVM optimal hyperplane with one Red sample misclassified.
Although having one training sample misclassified, SVM solution separates
the clusters better.

12

2.3 Kernel trick

The linear model is simple to interpret and it is assumed that the data in
the input space can be separated by a hyperplane in case of the
classification problems. In fact, this assumption is naïve in practice. For
example, the simple XOR problem cannot be solved by a hyperplane in the
input space as illustrated in Figure 4.

Figure 4. XOR problem: two class Red and Green cannot be separated by
any line.

The success of SVM can be attributed to the application of Mercer’s
Theorem (Boser, 1992) and Reproducing Kernel Hilbert Spaces (RKHS)
which allows the computation of linear decision functions in a feature
space which is nonlinearly connected to the input space without explicit
mapping. The idea of the kernel trick is to first map the input data into a
feature space ℱ via the nonlinear function 𝜙 chosen a priori:

𝜙: 𝑅𝐷 → ℱ (28)
𝑥 ↦ 𝜙(𝑥)

The learned function is then formulated in ℱ, i.e. 𝜙(𝑥1), … , 𝜙(𝑥𝑁) is the
set of the training data. Instead of explicitly mapping the input 𝑥𝑖 through
𝜙(𝑥𝑖), the kernel trick aims at formulating the learning problem only in
terms of the dot products which could be efficiently evaluated by a dot-
product kernel function 𝑘(. , .). Specifically, the kernel trick utilizes 𝑘(. , .)
which has the following property:

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇 𝜙(𝑥𝑗) (29)

That is: 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗) is evaluated by 𝑘(𝑥𝑖, 𝑥𝑗). The question is, given a

kernel function 𝑘(. , .), how can one know the existence of the feature map

13

𝜙 that satisfies (29). The answer lies in the positive-definiteness of the
kernel function.

Denote 𝑲 the kernel matrix of the training data whose element 𝑲𝑖𝑗 =

𝑘(𝑥𝑖 , 𝑥𝑗); 𝑖, 𝑗 = 1, … , 𝑁. 𝑲 is said to be positive-definite if:

𝑢𝑇𝑲𝑢 > 0, ∀𝑢 ∈ 𝑅𝑁 (30)

For a kernel function 𝑘(. , .) and its kernel matrix 𝑲 to be positive-definite,

it is necessary that 𝑘(. , .) is symmetric, i.e. 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑘(𝑥𝑗 , 𝑥𝑖), and

𝑘(𝑥, 𝑥) ≥ 0.

It is proofed that for any positive definite kernel 𝑘(. , .), there exists a
mapping 𝜙 into ℱ such that (29) is satisfied. Interested readers could refer
to e.g. (Schölkopf and Smola, 2002) for more details.

It is now obvious to see how the kernel trick is applied to SVM classifier. In
the feature space ℱ, the dual problem in (18) becomes:

max
𝜶

∑ 𝛼𝑖
𝑁
𝑖 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜙(𝑥𝑖)

𝑇𝜙(𝑥𝑗)𝑁
𝑗=1

𝑁
𝑖=1 (31)

Subject to ∑ 𝑦𝑖𝛼𝑖 = 0𝑁
𝑖=1

 0 ≤ 𝛼𝑖 ≤ 𝑐, 𝑖 = 1, … , 𝑁

The dot product 𝜙(𝑥𝑖)𝑇 𝜙(𝑥𝑗) is then evaluated by 𝑘(𝑥𝑖 , 𝑥𝑗), (31)

becomes:

 max
𝜶

∑ 𝛼𝑖
𝑁
𝑖 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖 , 𝑥𝑗)𝑁

𝑗=1
𝑁
𝑖=1 (32)

Or

 max
𝜶

𝟏𝑇𝜶 −
1

2
(𝜶 ∗ 𝒚)𝑇𝑲(𝜶 ∗ 𝒚) (33)

Subject to 𝜶𝑇𝒚 = 0, 𝟎 ≤ 𝜶 ≤ 𝒄, 𝑖 = 1, … , 𝑁.

Where 𝟏 denotes the vector of ones of appropriate size and ∗ denotes the
element-wise product operator.

Consequently, the decision function is:

 𝑓(𝑥) = ∑ 𝛼𝑖
∗𝑘(𝑥𝑖, 𝑥) + 𝑏∗𝑁

𝑖=1 (34)

It is however, less obvious to see how the kernel trick can be applied to the
least square classifier. Denote 𝚽′ = [𝜙(𝑥1′), … , 𝜙(𝑥𝑁′)] and hence 𝑲′ =
𝚽′𝑇𝚽′, the regularized least square solution in ℱ becomes:

𝜃 = (𝚽′𝚽′𝑇 + 𝜆𝐼)−1𝚽′𝒚 (35)

In order express 𝜃 in terms of the kernel matrix 𝑲′ = 𝚽′𝑇𝚽′, we have to
resort to the identity:

14

(𝑃−1 + 𝐵𝑇𝑅−1𝐵)−1𝐵𝑇𝑅−1 = 𝑃𝐵𝑇(𝐵𝑃𝐵𝑇 + 𝑅)−1 (36)

And (35) can be rewritten as:

𝜃 = 𝚽′(𝚽′𝑇𝚽′ + 𝜆𝐼)−1𝒚 = 𝚽′(𝑲′ + 𝜆𝐼)−1𝒚 (37)

Consequently, the decision function becomes:

𝑓(𝑥) = 𝜃𝑇𝜙(𝑥) = 𝑦(𝑲′ + 𝜆𝐼)−1𝑘(𝑥) (38)

Where in (38) the kernel vector 𝑘(𝑥) is defined as 𝑘(𝑥) =
[𝑘(𝑥1, 𝑥), … , 𝑘(𝑥𝑁 , 𝑥)]𝑇.

It can be seen from (33) and (38) that the application of the kernel trick to
the least square model and SVM model avoids the explicit computation of
the mapping 𝜙. This is beneficial since the explicit transformation of 𝑥𝑖 to
𝜙(𝑥𝑖) incurs high computational cost, in some cases even prohibitive. In
addition, the dimension of ℱ is expected to be much larger than the
original input space so that the training data 𝜙(𝑥𝑖) is linearly separable
with higher probability (Cover, 1987). Therefore, the explicit calculation of
the dot product in ℱ requires more computations compared to the original
input space.

3 RELATED WORK

Previous work on learning linear models exploiting feature noising as a
regularizer can be divided into two strategies: explicit data corruption and
implicit data corruption. The former line of research includes virtual SVM
(Burges and Schölkopf, 1997), adversarial worst case training (Globerson
and Roweis, 2006; Dekel and Shamir, 2008; Teo, 2008). Under explicit
corruption, the training data is corrupted multiple times 𝑀 with respect to
a corrupting distribution 𝑝(�̃�𝑛|𝒙𝑛). This approach results in an enriched
training set {�̃�𝑛𝑚, 𝑦𝑛}, 𝑛 = 1, … , 𝑁, 𝑚 = 1, … , 𝑀. The standard classifier
is then trained by minimizing the average loss over the augmented set. In
addition to the inelegance of the method, it clearly incurs high
computational cost in many practical problems when 𝑀 → ∞.

The latter approach is more elegant by considering the expectation of the
corrupted data. Specifically, the empirical loss in the standard models is
replaced by its expectation with respect to the corrupting distribution. This
approach includes the work of (Wager, Wang and Liang, 2013), (van der
Maaten, 2013), (Wang and Manning, 2013). While the expectation of
quadratic loss and exponential loss have a close-form expression, the
expected logistic loss or the loss in Generalized Linear Model (GLM) does
not have a close-form expression, leading to the approximation strategy

15

by using second-order Taylor expansion (Wager, Wang and Liang, 2013).
Similarly, the non-differentiability of the hinge loss in SVM model prohibits
a close-form expression. Chen (2014) derived a variational upper-bound
on the expected hinge loss of the SVM classifier and proposed an
Iteratively Re-weighted Least Square (IRLS) algorithms to minimize the
upper-bound called Dropout-SVM. This section, we present the work of
Chen as a basis to compare with our proposed method since both methods
incorporate Dropout training into SVM.

3.1 Dropout-SVM

Under implicit corruption, there are two assumptions related to the
corrupting model. It is assumed that the corrupting distributions are
independent and unbiased. Particularly, denote �̃� the corrupted version of
input feature 𝑥, we have:

𝑝(�̃�|𝑥) = ∏ 𝑝(𝐷
𝑑=1 �̃�𝑑|𝑥𝑑; 𝑛𝑑) (39)

𝐸𝑝[�̃�|𝑥] = 𝑥 (40)

Where in (39) 𝑛𝑑 denotes the natural parameter of the exponential
distribution family and 𝐸𝑝[.] denotes the expectation taken over 𝑝.

The objective of SVM classifier under implicit corruption is defined:

min
𝜃

2𝑐ℒℎ(𝜃, 𝒵) + ‖𝑤‖2
2 (41)

Where ℒℎ(𝜃, 𝒵) = ∑ Ε𝑝[max (0,1 − 𝑦𝑖(𝑤𝑇�̃�𝑖 + 𝑏)]𝑁
𝑖=1 is the expected

hinge loss with respect to 𝑝(�̃�|𝑥). A multiplication factor of 2 is added to
ℒℎ(𝜃, 𝒵) to simplify the calculation.

Directly tackle (41) is intractable since there exists no close-form of
ℒℎ(𝜃, 𝒵). In Dropout-SVM, ℒℎ(𝜃, 𝒵) is replaced by its upper-bound and
the objective of Dropout-SVM is to minimize the upper-bound with respect
to 𝑝(�̃�|𝑥). Exploiting the pseudo-likelihood expression of the response
variable and Jensen’s inequality, a variational upper-bound of ℒℎ(𝜃, 𝒵)
was derived:

ℒℎ(𝜃, 𝑞(𝝊)) = ∑ {
1

2
Εq[log(𝜐𝑛)] + Ε𝑞 [

1

2𝜐𝑛
Ε𝑝(𝜐𝑛 + 𝑐𝑙𝑛)2]} 𝑁

1 − 𝐻(𝝊)

 +𝑐′ (42)

Where 𝐻(𝒗) is the entropy of the variational distribution 𝑞(𝝊) =
∏ 𝑞(𝑣𝑛)𝑛 , 𝝊 ≜ {𝜐𝑛}𝑛=1

𝑁 , 𝑐′ is a constant and 𝑙𝑛 = 1 − 𝑦𝑛(𝑤𝑇𝑥𝑛 + 𝑏).

The objective of Dropout-SVM is hence reformulated as:

min
𝜽,𝑞(𝝊)∈𝒫

‖𝑤‖2
2 + ℒℎ(𝜃, 𝑞(𝝊)) (43)

16

With 𝒫 denotes the simplex space of normalized distributions.

The upper-bound in (42) includes the term Ε𝑝(𝜐𝑛 + 𝑐𝑙𝑛)2 which is the

expectation of a quadratic loss and can be analytically computed given
𝑞(𝒗). Dropout-SVM exploits an iterative two-step approach which
resembles the procedure of an EM algorithm:

For 𝑞(𝑣): this steps minimize (43) with respect to the variational

distribution 𝑞(𝝊). Denote 𝒢ℐ𝒢(𝑥; 𝑝, 𝑎, 𝑏) ∝ 𝑥𝑝−1 exp (−
1

2
(

𝑏

𝑥
+ 𝑎𝑥)) a

generalized inverse Gaussian distribution, the optimal 𝑞(𝝊) is given as:

𝑞(𝝊) ∝ ∏ 𝒢ℐ𝒢 (𝜐𝑛;
1

2
; 1, 𝑐2Ε𝑝[𝑙𝑛

2])𝑛 (44)

With the second order expectation of the sample loss calculated by

Ε𝑝[𝑙𝑛
2] = 𝑤𝑇(Ε𝑝[�̃�𝑛]Ε𝑝[�̃�𝑛]𝑇 + 𝑉𝑝[�̃�𝑛])𝑤 − 2𝑦𝑛𝑤𝑇Ε𝑝[�̃�𝑛] + 1. Vp[�̃�𝑛] is a

𝐷 × 𝐷 diagonal matrix with variance of �̃�𝑛𝑑 in the 𝑑-th diagonal element.
With the unbiased assumption of the corrupting distribution, Ε𝑝[�̃�𝑛] = 𝑥𝑛

as mentioned in (40). The remaining question is how the variance Vp[�̃�𝑛]

is calculated. This question was addressed by the work of van der Maater
(2013) for the class of exponential functions.

For 𝜃: this step minimizes (43) with respect to 𝑤 when fixing 𝑞(𝝊). The
objective (43), after discarding irrelevant terms, has the form of a re-

weighted quadratic loss. Denote 𝑘𝑛 =
1

𝑐√Ε𝑝[𝑙𝑛
2]

 the modified weights and

𝑦𝑛
ℎ = (1 +

1

𝑐𝑘𝑛
) 𝑦𝑛 is the re-weighted label. The closed-form solution of 𝑤

is then given by:

𝑤 = (
2

𝑐2 𝐼 + ∑ 𝑘𝑛Ε𝑝[�̃�𝑛�̃�𝑛
𝑇]𝑁

𝑛=1)
 −1

(∑ 𝑘𝑛𝑦𝑛
ℎΕ𝑝[�̃�𝑛]𝑁

𝑛=1) (45)

Dropout-SVM alternates between the above two steps to calculate 𝑞(𝑣)
and 𝜃 until a stopping criterion is met. It should be noted that Dropout-
SVM presented above is a linear model in the input space. A nonlinear
extension using the idea from representation learning was also proposed
in the work of Chen. The variational upper-bound of the expected hinge
loss has a similar form as in (42) in the representation space with additional
transform coefficient variables. For more details of the extension,
interested readers should refer to (Chen, 2014).

4 PROPOSED METHOD

17

This chapter starts by the formulation of the new regularization scheme
which exploits Dropout technique on the sample level during training,
called DropSVM. The proposed method is then interpreted under the
statistical learning framework and regularization theory with the
motivation behind the new formulation. In addition, comparison are made
between DropSVM and Dropout-SVM and the novelty in the proposed
method is pointed out.

4.1 The proposed DropSVM classifier

We consider the general case of SVM classifier under the kernel
formulation in which linear SVM is a special case using the linear kernel
function:

 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (46)

The training data is assumed to be mapped to an arbitrary-dimensional
Hilbert space ℱ through the nonlinear mapping:

𝜙(∙): 𝑥𝑖 ∈ 𝑅𝐷 ↦ 𝜙(𝑥𝑖) ∈ ℱ (47)

The dimension of ℱ could be finite or infinite. For example, dimension of
the space induced by the class of polynomial kernel is finite while for RBF
kernel is infinite. Based on the Representer Theorem (Schölkopf and
Smola, 2002), we can represent the weight 𝑤 of the decision boundary in
ℱ in terms of the linear combination of the training data in ℱ. Denotes
𝚽 = [𝜙(𝒙1), … , 𝜙(𝒙𝑁)] and 𝑲 = 𝚽T𝚽 then:

𝑤 = ∑ 𝛾𝑖𝜙(𝑥𝑖)
𝑁
𝑖=1 = 𝚽𝛄 (48)

Where 𝜸 = [𝛾1, … , 𝛾𝑁] ∈ 𝑅𝑁 is the vector of the combination coefficients
to reconstruct 𝑤 in terms of 𝜙(𝑥𝑖), 𝑖 = 1, … , 𝑁.

We introduce the Dropout version of 𝑤 denoted as �̃�𝑗𝑖:

�̃�𝑗𝑖 = (𝚽(𝟏 𝒎𝑗𝑖
𝑇)) 𝜸 , 𝑖 = 1, … , 𝑁; 𝑗 = 1, … , 𝐸 (49)

With 𝑚𝑗𝑖 ∈ 𝑅𝑁 is a binary mask vector in epoch 𝑗 used to classify sample 𝑖.

Each element of 𝑚𝑗𝑖 is equal to 1 with a probability of 𝑝 and equal to 0

with a probability (1 − 𝑝). 𝟏 is a vector of ones. We can interpret �̃�𝑗𝑖 as

follows: while 𝑤 is constructed by the linear combination of 𝜙(𝑥𝑖) with
coefficient 𝜸, �̃�𝑗𝑖 is constructed by using the same combination

coefficients 𝜸 but with some basis 𝜙(𝑥𝑖) omitted or dropped out by the
probability 𝑝. In other words, the original 𝑤 is learned by the contribution
of every training sample 𝜙(𝑥𝑖) in the kernel subspace and the Dropout
version �̃�𝑗𝑖 is created with some training samples not taken into account.

The modified SVM optimization problem is the following:

18

min
𝑤,𝑏

1

2
𝑤𝑇𝑤 + 𝑐 ∑ 𝜉𝑖

𝑁
𝑖=1 + 𝑞

1

𝐸
∑ ∑ (𝑤𝑇𝜙(𝑥𝑖) − �̃�𝑗𝑖

𝑇𝜙(𝑥𝑖))
2

𝑁
𝑖=1

𝐸
𝑗=1 (50)

subject to 𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝑖 = 1, … , 𝑁
 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁

In (50), the last term is added to the standard SVM minimization problem
with 𝑞 is the parameter to control the amount of regularization this new
term contributes to the learned decision function and 𝐸 denotes the
number of epochs used in training. The learned weight 𝑤 is expected to
behave in a similar manner as in standard SVM with another constraint:
the output produced by 𝑤 should be as close as possible to the output
produced by �̃�𝑗𝑖. The motivation behind this constraint will be discussed

later in this section. We now proceed to derive the dual problem of (50) by

substituting 𝑤 = 𝚽𝛄 and �̃�𝑗𝑖 = (𝚽(𝟏 𝒎𝑗𝑖
𝑇)) 𝜸 :

min
𝑤,𝑏

1

2
𝜸𝑇𝑲𝜸 + 𝑐 ∑ 𝜉𝑖

𝑁
𝑖=1 +

 𝑞
1

𝐸
∑ ∑ (𝜸𝑇𝚽T𝜙(𝑥𝑖) − 𝜸𝑇(𝚽(𝟏 𝒎𝑗𝑖

𝑇))
𝑇

𝜙(𝑥𝑖))
2

𝑁
𝑖=1

𝐸
𝑗=1 (51)

 Subject to 𝑦𝑖(𝛾𝑇𝚽T𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝑖 = 1, … , 𝑁
 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁

To simplify the expression, we further denote the kernel vector of the 𝑖-th
sample by 𝒌𝑖 = 𝚽𝑻𝜙(𝒙𝑖) and the Dropout version of 𝒌𝑖 in epoch 𝑗 by

�̃�𝑖
(𝑗)

= (𝚽(𝟏 𝒎𝑗𝑖
𝑇))

𝑇
𝜙(𝒙𝑖), (51) becomes:

min
𝑤,𝑏

1

2
𝜸𝑇𝑲𝜸 + 𝑐 ∑ 𝜉𝑖

𝑁
𝑖=1 + 𝑞

1

𝐸
∑ ∑ ‖𝜸𝑇�̂�𝑖

(𝑗)
‖

2

2
𝑁
𝑖=1

𝐸
𝑗=1

Or

min
𝑤,𝑏

1

2
𝜸𝑇𝑲𝜸 + 𝑐 ∑ 𝜉𝑖

𝑁
𝑖=1 + 𝑞

1

𝐸
∑ 𝜸𝑇�̂�(𝑗)�̂�(𝑗)𝑇

𝜸𝐸
𝑗=1 (52)

Subject to 𝑦𝑖(𝛾𝑇𝒌𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, 𝑖 = 1, … , 𝑁
 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁

Where �̂�(𝑗) = [�̂�1
(𝑗)

, … , �̂�𝑁
(𝑗)

] and �̂�𝑖
(𝑗)

= 𝒌𝑖 − �̃�𝑖
(𝑗)

. We can simply

consider �̂�𝑖 as equal to 𝒌𝑖 with some of its elements set to zero with
probability (1 − 𝑝).

Let 𝛼𝑖, 𝛽𝑖, 𝑖 = 1, … , 𝑁 be the Lagrange multipliers, the Lagrangian function
of (52) is:

𝐽(𝛾, 𝑏, 𝜉, 𝜶, 𝜷) =
1

2
𝜸𝑇𝑲𝜸 + 𝑐 ∑ 𝜉𝑖

𝑁
𝑖=1 + 𝑞

1

𝐸
∑ 𝜸𝑇�̂�(𝑗)�̂�(𝑗)𝑇

𝜸𝐸
𝑗=1 −

∑ 𝛼𝑖[𝑦𝑖(𝛾𝑇𝑘𝑖 + 𝑏) − 1 + 𝜉𝑖] − ∑ 𝛽𝑖𝜉𝑖
𝑁
𝑖=1

𝑁
𝑖=1 (53)

19

 Solving for the stationary condition we have the following results:

𝜕𝐽

𝜕𝛾
= 0 ⇒ 𝛾 = [𝑲 +

2𝑞

𝐸
∑ �̂�(𝑗)�̂�(𝑗)𝑇𝐸

𝑗=1]
−1

∑ 𝛼𝑖𝑦𝑖𝑘𝑖
𝑁
𝑖=1 (54)

𝜕𝐽

𝜕𝑏
= 0 ⇒ ∑ 𝛼𝑖𝑦𝑖

𝑁
𝑖=1 = 0 (55)

𝜕𝐽

𝜕𝜉𝑖
= 0 ⇒ 𝛼𝑖 + 𝛽𝑖 = 𝑐, ∀𝑖 = 1, … , 𝑁 (56)

 Substitute (4.9), (4.10) and (4.11) into (4.8) we get the dual problem:

 max
𝜶

𝟏𝑇𝜶 −
1

2
(𝜶 ∗ 𝒚)𝑇�̅�(𝜶 ∗ 𝒚) (57)

Subject to 𝜶𝑇𝒚 = 0

 𝟎 ≤ 𝜶 ≤ 𝒄, 𝑖 = 1, … , 𝑁

 With �̅� defined as �̅� = 𝑲 [𝑲 +
2𝑞

𝐸
∑ �̂�(𝑗)�̂�(𝑗)𝑇𝐸

𝑗=1]
−1

𝑲.

Comparing (57) and (33), it is clear that the two dual problems are exactly
the same, except for the different kernel matrices used. We can consider
that the adoption of the proposed regularization presented above is
equivalent to solving the original SVM in a transformed kernel space. That
is the solution to the proposed optimization problem not only possesses
an elegant expression but also enables an efficient implementation
through the existing libraries without any modification due to its
resemblance to the standard SVM. For example, LIBSVM (Chang and Lin,
2011) has the option to train SVM with any given kernel matrix.

4.2 Discussion

In the previous section, we posed a new optimization problem for the SVM
classifier without discussing its implication and motivation. This section
presents the intuition and meaning of Dropout technique on the sample
level as a new regularizer to the classic SVM. In addition, the novelty of the
proposed method is pointed out through its fundamental difference from
the previously proposed ones.

 Intuition and motivation

As mentioned earlier, nonlinear SVM through the kernel trick provides the
classifier an ability to fit training data well, however it might lead to the
situation of overfitting. The solution boundary of the standard SVM is
governed completely by the support vectors that lie at the margin. Given
the hypothesis that some of the support vectors contaminated by noise
during measuring process, the decision boundary learned through

20

maximum margin classifier can be consequently affected, resulting in high
classification error during test phase. This motivates us to train SVM by
randomly dropping out some of the samples. However, in case the
dropped out support vectors are indeed close to their expected values, i.e.
close to noise-free states, they contain important separating information,
hence should be kept.

To address this motivation, one might propose to train 𝑀 SVM classifiers
with 𝑀 training data versions from which some samples are dropped out
and the decision is constructed by averaging out decision of 𝑀 classifiers.
This approach resembles the explicit feature corruption mentioned
previously, hence incurs high computational cost and might be prohibitive
in some applications. Our proposed method in fact addresses this
motivation. We could view �̃�𝑗𝑖 as the SVM weight learned when dropping

out some samples in epoch 𝑗 and we would like our model to learn 𝑤 that
produces the output as close as possible to the output produced by �̃�𝑗𝑖 for

any epoch 𝑗 = 1, … , 𝐸. This objective is done by incorporating the total

square output difference, ∑ ∑ (𝑤𝑇𝜙(𝑥𝑖) − �̃�𝑗𝑖
𝑇𝜙(𝑥𝑖))

2
𝑁
𝑖=1

𝐸
𝑗=1 , into the

minimization process. In epoch 𝑗, if the dropped out samples do not
contain any support vectors, the decision boundary does not change,
otherwise, we minimize the differences. Since we still keep minimizing
‖𝑤‖2

2 together with the hinge loss, the maximum margin characteristic of
the classifier is still retained. That is, in any case of the above hypothesis,
our proposed model still retains the separating information while
discarding noisy critical samples.

 Implication under statistical learning theory

In addition to the geometric interpretation based on the support vectors,
DropSVM conforms to the statistical learning theory. In order to see this,
it should be emphasized that the target of the learning problem is to
construct a learned function that can generalize well on the test set. In
other words, the learned function should minimize the expectation of the
loss functional. The bound presented in (5) gives a formal probabilistic
guarantee of the generalization performance in terms of the empirical loss,
the number of training samples and the complexity of the hypothesis
space.

Since the hypothesis space is the space of linear functions, standard SVM
tightens the bound in (5) by penalizing on the deviation of 𝑓 through 𝑙2-
norm of the weight vector. In addition to the penalty put on the weight
vector 𝑤, our proposed method also penalizes on the deviation of the
output produced by 𝑤 from its Dropout versions. In other words,
additional restriction is put on the complexity of the class of linear
functions, i.e. 𝑤. This is expected to further reduce the gap between
expected loss and empirical loss in (5), which is empirically proved through
the set of experiments.

21

 Versatility

The reasoning above shows that the proposed regularization term
1

𝐸
∑ ∑ (𝑤𝑇𝜙(𝑥𝑖) − �̃�𝑗𝑖

𝑇𝜙(𝑥𝑖))
2

𝑁
𝑖=1

𝐸
𝑗=1 is suitable to control the complexity

of the class of linear functions. This leads to the question: can we formulate
the learning problem using this proposed regularizer with other type of
loss function? The answer is yes!

For example, the new regularizer can be incorporated into the square loss
using the representation 𝑤 = 𝚽𝛄 as follows:

min
𝜸

1

2
∑ (𝑦𝑖 − 𝜸𝑇𝑘𝑖)

2 +𝑁
𝑖=1 𝑞

1

𝐸
∑ 𝜸𝑇�̂�(𝑗)�̂�(𝑗)𝑇

𝜸𝐸
𝑗=1 (58)

Solving for the stationary condition, the solution of (58) can be derived:

𝜸 = (𝑲𝑲𝑇 +
2𝑞

𝐸
∑ �̂�(𝑗)�̂�(𝑗)𝑇𝐸

𝑗=1)
−1

𝑲𝒚 (59)

 DropSVM vs DropoutSVM

The similar characteristic between our proposed DropSVM and
DropoutSVM is that the probabilistic Dropout technique is employed.
However, the fundamental difference is that DropSVM employs a Dropout
scheme on the training sample level while in Dropout-SVM a random
subset of features are dropped during training. The significance of our
method can be justified under both geometrical interpretation and
statistical learning framework. While feature noising applied to other
linear models whose expected empirical risk has an explicit form of penalty
term that regularizes the complexity of the estimator, the upper-bound in
(42) is difficult to interpret under the statistical learning framework. For
example, in (Wager, Wang and Liang, 2013) the generalized linear model

has the expected empirical loss of the form ∑ 𝑙𝑥𝑖,𝑦𝑖
(𝑤) + 𝑅(𝑤)𝑁

𝑖=1 with

∑ 𝑙𝑥𝑖,𝑦𝑖
(𝑤)𝑁

𝑖=1 is the empirical loss under uncorrupted data, 𝑅(𝑤) is thus

seen as the regularizer of model’s complexity incorporated into the
learning problem.

Regarding the solution of the two methods, DropSVM is a quadratic
optimization problem with linear constraint, hence global solution exists.
Moreover, our additional regularizing term leads to exactly the same dual
form as standard SVM with only different kernel matrix. This has the
benefit of existing efficient SVM implementation such as the SMO
algorithm implemented in LIBSVM. Contrarily, the solution of Dropout-
SVM provides no guarantee of a global solution.

22

Finally, DropSVM is formulated under Representer Theorem, hence readily
possesses the nonlinearity extension without explicit nonlinear
transformation. On the contrary, nonlinear extension of Dropout-SVM
requires approximation step and the modified upper bound is optimized
with an additional variable, i.e. the transformation coefficients. That adds
up computations cost to achieve the nonlinearity.

5 EXPERIMENTS

5.1 Experiment settings

In order to evaluate the proposed method, two set of experiments are
conducted with the candidate classifiers: our proposed DropSVM and
standard SVM classifier. The first set of experiments consists of twelve
standard classification problems extracted from machine learning
repository of University of California Irvine (UCI) (Lichman, 2013). The data
set size ranges from as small as 182 samples up to 1000 samples. A
summary of each data set is presented in Table 1.

In order to make maximal use of the available data, we employ the cross-
validation procedure by randomly dividing the data into five sets in a
stratified manner. In each cross-validation round, four out of five sets are
used to train the candidate classifiers while the left-over set is used as a
test set. Due to the random nature of the method, the experiments are
conducted five times for each dataset and the average classification rate is
measured over all five experiments and presented as the final result.
Regarding the kernel used, both DropSVM and SVM are trained using the
RBF kernel function, whose parameter 𝜎 is set equal to the mean Euclidean
distance between training vectors, which is a popular scaling factor. The
regularization parameters, i.e. 𝑐 for the standard SVM and 𝑐, 𝑞, 𝑝 for
DropSVM are selected following a grid search strategy using the ranges

𝑐 = 10{−3,…,3}, 𝑞 = 10{−3,…,3} and 𝑝 = {0.1, 0.2, … , 0.9}. For the proposed
regularizer, a variety of number of epochs are tested 𝐸 =
{10, 25, 50, 100}.

23

 Table 1. UCI dataset information

The second set of experiments are conducted to test human action
recognition performance. Three active datasets including Hollywood2, the
Olympic sports and Hollywood3D are introduced to gauge the
performance.

In Hollywood2 (Marszalek, Laptev and Schmid, 2009), there are 1707
videos illustrating 12 human actions which had been collected from 69
different Hollywood movies. The standard training-testing split provided
by the database are used (823 videos for training and 884 videos for
testing). It should be noted that the training set and the test set come from
different movies. Since a video potentially contains more than one action,
we evaluate the classifiers by calculating the mean average precision over
all the classes (mAP).

Similar settings are applied to the Olympic sports dataset (Niebles, Chen
and Fei Fei, 2010) and the Hollywood3D dataset (Hadfield and Bowden,
2013). That is, the standard training-testing split provided by the database
is used and mAP is calculated. The Olympic sports dataset consists of 649
training videos and 134 testing videos depicting 16 sports activities. The
Hollywood3D consists of 951 video pairs of left and right channel)
extracted from a set of Hollywood movies. This dataset has 13 action labels
and a “no action” label.

In order to extract meaningful training input from video data, we use the
video representation proposed in (Wang and Schmid, 2013) including
HOG, HOF, MBHx, MBHy and trajectory descriptors. Bag-of-Words (BoW)
representation is exploited for each descriptor. The descriptors extracted
from each video is consequently encoded using 4000 codewords, the
encoding scheme is similar to those presented in (Wang and Schmid,
2013). Regarding the kernel type used in human action recognition task,

Data set # Samples # Dimensions # Classes

Australian 690 14 2

Column2c 310 6 2

Column3c 310 6 3

German 1000 24 2

Glass 214 9 6

Heart 270 13 2

Indians 768 8 2

Ionosphere 351 34 2

Relax 182 12 2

Spect 267 22 2

Spectf 267 44 2

Syn. Con. 600 60 6

24

we use the RBF-𝜒2 kernel which outperforms other types when BoW
representation is employed (Rozenfeld, 2008). The regularization settings

are similar to the ones applied to UCI datasets, i.e. 𝑐 = 10{−3,…,3}, 𝑞 =

10{−3,…,3} and 𝑝 = {0.1, 0.2, … , 0.9}.

As mentioned earlier, both DropSVM and standard SVM are trained using
LIBSVM implementation (Chang and Lin, 2011).

5.2 Experimental Result

Table 2 illustrates the performance of each algorithm in the standard UCI
datasets and human action recognition experiments. In addition, we
include the average percentage of the training samples used as support
vectors (SVs) for each algorithm and the Dropout percentage 𝑝 for each
dataset.

It is clear that the exploitation of the proposed regularization form
improves the classification results in all data sets. One interesting
observation is that the percentage of Dropout value varies for each data
set to gain the best regularizing performance. While some datasets need
to drop a small number of training samples, some datasets gain the best
performance with 70% to 90% Dropout such as Australian, Column2c,
Indians, Ionosphere, Spectf. In addition, in most cases, the number of
support vectors used in DropSVM increases significantly. This further
illustrates that the decision boundary governed by more training samples
yields better results when being appropriately controlled.

Table 2. Experiment results for UCI datasets

Data set SVM DropSVM

Australian 86.64 (SVs 34%) 86.99 (p=0.8, SVs 80%)

Column2c 85.68 (SVs 16%) 86.39 (p=0.7, SVs 60%)

Column3c 85.74 (SVs 12%) 86.39 (p=0.6, SVs 10%)

German 76.48 (SVs 25%) 76.78 (p=0.6, SVs 80%)

Glass 69.07 (SVs 12%) 70.28 (p=0.2, SVs 30%)

Heart 84.67 (SVs 21%) 85.19 (p=0.5, SVs 60%)

Indians 77.58 (SVs 28%) 77.60 (p=0.9, SVs 50%)

Ionosphere 94.53 (SVs 9%) 94.87 (p=0.9, SVs 60%)

Relax 71.43 (SVs 36%) 71.76 (p=0.3, SVs 10%)

Spect 82.32 (SVs 19%) 84.12 (p=0.5, SVs 40%)

Spectf 79.93 (SVs 21%) 81.12 (p=0.8, SVs 70%)

Syn. Con. 98.30 (SVs 4%) 98.77 (p=0.9, SVs 90%)

Hollywood2 61.41 (SVs 53%) 62.31 (p=0.4, SVs 82%)

Hollywood3D 29.45 (SVs 17%) 30.52 (p=0.8, SVs 32%)

Olympics 82.77 (SVs 30%) 83.99 (p=0.7, SVs 54%)

25

Moreover, we speculate that the variation in the Dropout percentage can
be explained based on the percentage of the training data used as support
vectors in the standard SVM model as follows: for the standard SVM
classifier with high percentage of support vectors, the amount of Dropout
percentage and epochs needed in order to have some support vectors
dropped is small and vice versa. To illustrate this reasoning, we train
standard SVM classifier with the regularization parameter 𝑐 = 𝑐𝑏𝑒𝑠𝑡 which
achieves the best result for DropSVM model on each data set. The percent
of support vectors (SVs) in standard SVM model, the dropout percentage
(𝑝) and the number of epoch (𝐸) that achieves the best result with 𝑐 =
𝑐𝑏𝑒𝑠𝑡 for DropSVM classifier are presented in Table 3. To verify the
reasoning, the correlation coefficient between SVs, the percent of support
vector in standard SVM model, and the product 𝑝𝐸, which represents the
chance that a support vector is dropped in DropSVM, is calculated. This
correlation value is equal to −0.613, which verifies the speculation to
some extent.

Table 3. Support vectors (SVs) in SVM and Dropout settings in DropSVM

6 CONCLUSION

In this thesis, we have proposed a new regularization formulation for the
support vector classifier. Based on the insight given by Representer
Theorem that the weight vector 𝑤 lies in the subspace spanned by the
training samples, the new formulation incorporates probabilistic Dropout

Data set SVs (%) 𝑝 (%) 𝐸

Australian 34 80 10

Column2c 16 60 10

Column3c 12 10 25

German 25 80 25

Glass 12 30 50

Heart 21 60 25

Indians 28 50 50

Ionosphere 09 60 100

Relax 36 10 10

Spect 19 40 100

Spectf 21 70 10

Syn. Con. 04 90 100

26

scheme at the sample level. As pointed out in the discussion chapter, the
new method is supported by a clear motivation and geometric
interpretation of the SVM classifier and conforms to the importance result
derived in statistical learning theory. In addition to an elegant solution and
guarantee on global optimality, the new regularizer can be incorporated
into other linear models as suggested in this thesis.

The experiments conducted on a variety of classification problems showed
consistent improvement of the new regularizer over the classic SVM.
Based on the support vector information and the Dropout settings that
gained the best accuracy, we pointed out a relationship between these
information: the more support vectors used in SVM, the lower amount of
Dropout needed to have some support vectors dropped in order to
improve accuracy.

Further work utilizing the new regularizer can be conducted to other linear
models such as spectral regression and linear discriminant analysis. We
believe it is an interesting path to be pursued in the future.

27

REFERENCES

Hinton, G., Srivastava, N., Krizhevsky, A., Sutsekever, I., Salakhutdinov, R.
(2011). Improving neural networks by preventing co-adaptation of feature
detectors. Retrieved from https://arxiv.org/abs/1207.0580

van der Maaten, L., Chen M., Tyree S., and Weinberger K. (2013). Learning
with marginalized corrupted features. International Conference in
Machine Learning

Wager S., Wang S., and Liang P. (2013). Dropout training as adaptive
regularization. Neural Information Processing Systems.

Wang S., Wang M., Wager S., Liang P., and Manning C. (2013). Feature
noising for log-linear structured prediction. Empirical Methods on Natural
Language Processing.

Burges C., Scholkopf ,B. (1997). Improving the accuracy and speed of
support vector machines. Neural Information Processing Systems.

Dekel O., Shamir O., (2008). Learning to classify with missing and corrupted
features. International Conference in Machine Learning.

Globerson A., Roweis S., (2006). Nightmare at test time: Robust learning
by feature deletion. International Conference in Machine Learning.

Teo C., Globerson A., Roweis S., Smola A. (2008) Convex learning with
invariances. Neural Information Processing Systems.

Chen N., Zhu J., Chen J., Zhang B., (2014). Dropout training for support
vector machines. Twenty-Eighth AAAI Conference on Artificial Intelligence.

Vapnik V. (1995). The nature of statistical learning theory. Springer-Verlag.

Muller K., Mika S., Ratsch G., Tsuda K., Scholkopf B., (2001). An introduction
to kernel-based learning algorithms. IEEE Transactions on Neural Networks
12, 181–201.

Scholkpf B., Smola A., (2001). Learning with Kernels. MIT Press.

Chang C., Lin C., (2011) LIBSVM: A library for support vector machines.
ACM Transaction Intelligent Systems Technology.

Hastie T., Tibshirani R., Friedman J., (2001) The Elements of Statistical
Learning; Data Mining, Inference and Prediction. Springer Verlag, New
York.

28

Evgeniou T, (2002). Computational Statistics & Data Analysis (38).

Lichman M., (2013). UCI Machine Learning Repository Irvine, CA: University
of California, School of Information and Computer Science. Retrieved from:
http://archive.ics.uci.edu/ml

Vapnik, V., Chervonenkis, A., (1971). On the Uniform Convergence of
Relative Frequencies of events to their probabilities. Theory Probability
Application 17 (2), 264 – 280.

Kearns, M., Shapire, R., (1994). Efficient distribution-free learning of
probabilisitic concepts. Journal of Computer and System Sciece 48 (3), 464
– 497.

Marszalek, M., Laptev, I., Schmid, C., (2009). Actions in context. Computer
Vision and Pattern Recognition , 2929–2936.

Niebles, J., Chend, C., Fei-Fei, L., (2010). Modeling temporal structure of
decomposable mition segemnts for activity classification. European
Conference on Computer Vision , 392–405.

Hadfield, S., Bowden, R., (2013). Hollywood 3D: Recognizing actions in 3D
natural scenes. Computer Vision and Pattern Recognition , 3398–3405.

Wang, H., Schmid, (2013). Action recognition with improved trajectories.
International Conference on Computer Vision , 3551–3558.

Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B., (2008). Learning
realistic human actions from movies. Computer Vision and Pattern
Recognition, 18.

Fletcher R., (1981). Practical Methods of Optimization: Volume 2
Constrained Optimization. New York: Wiley.

Evgeniou, T., Pontil, M., Poggio, T., (1999). A unified framework for
Regularization Networks and Support Vector Machines. A.I. Memo No.
1654, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology.

