

Designing a payment system to the

RGCE network

Timothy Sikorski

Bachelor’s thesis
March 2017
Information and communications technology
Degree programme in Information Technology

Description

Author(s)

Sikorski, Timothy
Type of publication

Bachelor’s thesis
Date
16.03.2017

Language of

publication: English
 Number of pages

78
Permission for web

publication: x

Title of publication

Designing a payment system to the RGCE network.

Degree programme

Bachelor's Degree in Information technology

Supervisor(s)

Häkkinen Antti, Kotikoski Sampo

Assigned by

Vatanen Marko
Jyväskylä Security Technology
Abstract

The thesis was implemented in the JYVSECTEC facilities inside the JAMK Universi-
ty of Applied Sciences. The purpose for the thesis was to design and implement a
working payments system to the private RGCE network and verify that it works
as intended. The original BTC protocol source code was used as a basis and was
modified to a version fit for the environment.

The chosen Bitcoin version was 0.10 but was later changed to 0.9 due to a few
features not available in 0.10. As for the operation system, Debian Jessie was
chosen.

The network was created with four computers, from which two were acting as
servers and the other two as normal participants of the network. The functionali-
ty of the network was verified in the RGCE network.

As the end result, a working network for payments was achieved with a com-
mand line operated software which is able to generate digital currency and pro-
cess transactions from one wallet to another.

Keywords/tags (subjects)

Bitcoin, Linux, Debian, Blockchain, Network

Miscellaneous

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb
https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb

Kuvailulehti

Tekijä(t)

Sikorski, Timothy
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

16.03.2017

Sivumäärä

78
Julkaisun kieli

Englanti
 Verkkojulkaisulup

a myönnetty: x
Työn nimi

Maksuliikennejärjestelmän suunnittelu RGCE-verkkoon

Tutkinto-ohjelma

Tietotekniikan koulutusohjelma

Työn ohjaaja(t)

Häkkinen Antti, Kotikoski Sampo

Toimeksiantaja(t)

Vatanen Marko
Jyväskylä Security Technology

Tiivistelmä

Opinnäytteen toteutuspaikkana toimi Jyväskylän ammattikorkeakoululla toimivan
JYVSECTEC: in toimipiste Lutakossa. Työn tavoitteena oli suunnitella
lohkoketjuteknologiaa käyttäen maksuliikennejärjestelmä yksityiseen RGCE-
verkkoon sekä todeta sen toimivuus. Pohjana käytettiin Bitcoin protokollan
koodipohjaa josta muokattiin ympäristöön sopiva versio.

Bitcoin versioksi valittiin aluksi versio 0.10 mutta lopulta vaihdettiin versioon 0.9
muutaman ominaisuuden vuoksi, jotka oli poistettu versiosta 0.10.

Käyttöliittymäksi valittiin Debian Jessie. Verkko toteutettiin käyttäen neljää eri
konetta joista kaksi toimi palvelimina ja toiset kaksi normaaleina verkkoon
liittyvinä asiakaslaitteina. Maksuverkon toimivuus todennettiin RGCE-verkossa.

Työn lopputuloksena saatiin toimiva verkko maksuliikennettä varten sekä
komentolinjalla pyöritettävä ohjelma, jolla voidaan generoida digitaalista
valuuttaa sekä suorittaa siirtoja lompakosta toiseen.

Avainsanat (asiasanat)

Bitcoin, Linux, Debian, Blockchain, Network
 Muut tiedot

http://www.finto.fi/

Abbreviations

BTC Bitcoin

DNS Domain Name System

GBT Get Block Template

GPU Graphical Processing Unit

GUI Graphical User Interface

IP Internet Protocol

ISP Internet Service Provider

JYVSECTEC Jyväskylä Security Technology

MD Message Digest

NTP Network Time Protocol

OS Operating System

POW Proof of Work

RGCE Realistic Global Cyber Environment

RIPE RACE Integrity Primitives Evaluation

RPC Remote Procedure Call

SHA Secure Hashing Algorithm

1

Contents

Abbreviations .. 4

1 Baseline of the thesis .. 6

1.1 The client ... 6

1.2 The objective ... 6

1.3 The production environment .. 7

2 Data encryption and key exchange ... 8

2.1 Public key cryptography .. 8

2.2 Digital signatures ... 9

2.3 Cryptographic hashing ... 10

3 Bitcoin and the blockchain .. 12

3.1 Introduction to Bitcoin .. 12

3.2 Transactions .. 12

3.3 Blockchain .. 13

3.4 SHA-256 and RIPEMD-160 ... 14

3.5 Proof of work ... 15

3.6 Network ... 17

3.6.1 The block size issue ... 18

3.6.2 The lightning network ... 20

3.7 The Incentive for mining ... 23

3.8 Anonymity ... 24

3.9 Node types and roles ... 25

4 Implementation .. 26

4.1 Choosing the OS .. 27

4.2 Planning the network .. 27

4.3 Prerequisites .. 27

2

4.3.1 Updating the operating system .. 28

4.3.2 Dependencies ... 29

4.3.3 Berkley database .. 30

4.3.4 Installing Bitcoin ... 30

4.3.5 Name and port change ... 32

4.4 Genesis block creation .. 33

4.4.1 Genesis block generator ... 33

4.4.2 The creation of the genesis block ... 34

4.5 The creation of the alertkeys .. 36

4.6 Editing the source code part one .. 37

4.6.1 Removing the seed nodes .. 37

4.6.2 Alertkeys ... 38

4.6.3 Timestamp .. 38

4.6.4 Public key .. 38

4.6.5 The Epoch time and nonce ... 39

4.6.6 The Genesis hash .. 40

4.6.7 The Merkle root .. 40

4.7 Editing the source code part two .. 40

4.8 Starting up the network .. 42

4.9 Resetting the network ... 44

4.10 Troubleshooting .. 44

5 Verification ... 46

5.1 Network topology .. 46

5.2 Connected peers ... 47

5.3 Network info .. 48

5.4 POW in action .. 49

5.5 GetBlockTemplate ... 50

3

5.6 Using the wallet ... 51

5.7 Wallet encryption .. 52

5.8 Wallet backup .. 53

6 Conclusion .. 54

Sources .. 56

Appendices .. 59

Appendix 1. BTC dependencies .. 59

Appendix 2. BTC network ... 60

Appendix 3. Repository address ... 61

Appendix 4. Chainparams.cpp .. 62

Appendix 5. Checkpoints.cpp ... 72

Figures

Figure 1. Public key process ... 9

Figure 2. Transactions. (Nakamoto 2008) .. 13

Figure 3. Timestamp server. (Nakamoto 2008) ... 13

Figure 4. Block chaining. (Nakamoto 2008) ... 14

Figure 5. Longer chain wins .. 18

Figure 6. Blockchain size. (Kieren 2015) ... 20

Figure 7. Lightning network ... 22

Figure 8. Mining pools. (Pollnow 2016) ... 24

Figure 9. Updating the sources .. 28

Figure 10. Editing the list .. 28

Figure 11. The update command ... 29

Figure 12. The upgrade command ... 29

4

Figure 13. Dependencies commands ... 29

Figure 14. Squeeze repository .. 30

Figure 15. Downloaded files ... 31

Figure 16. Installing pip .. 33

Figure 17. Installing python-dev ... 34

Figure 18. Scrypt construct .. 34

Figure 19. Genesis block parameters ... 35

Figure 20. Blockhash found .. 35

Figure 21. Removed seeds ... 37

Figure 22. Mainnet alertkey ... 38

Figure 23. Timestamp ... 38

Figure 24. Pubkey ... 39

Figure 25. Checkpoints ... 41

Figure 26. Mapcheckpoints .. 41

Figure 27. Checkpoint data .. 41

Figure 28. Regtest checkpoint .. 42

Figure 29. Bitcoin.conf ... 43

Figure 30. Conf error. ... 45

Figure 31. Network topology.. 46

Figure 32. Connection count .. 46

Figure 33. Peer info .. 47

Figure 34. Connected peers ... 48

Figure 35. Getinfo ... 48

Figure 36. Network hashrate .. 49

Figure 37. POW ... 50

Figure 38. New block .. 50

Figure 39. GBT .. 51

Figure 40. Address creation ... 51

Figure 41. Transaction .. 51

Figure 42. Transaction value .. 52

Figure 43. Transaction received ... 52

Figure 44. Received by address .. 52

Figure 45. Wallet encryption. ... 53

5

Figure 46. Wallet backup .. 53

6

1 Baseline of the thesis

1.1 The client

JYVSECTEC is a project started in 2011 with the co-operation of JAMK University of

Applied Sciences to address the challenges of today. The agenda of the project has

been to create an environment for research and development in Central Finland to

develop a national and international network of co-operation between companies

and independent actors. The RGCE network has been able to provide an environment

in which research and development are separate from the public network and offer a

space where different cybersecurity scenarios and different pre-implemented sys-

tems can be tested safely. Piippukatu 2 is the address of the JAMK Lutakko campus,

where JYVSECTEC resides as well. (JYVSECTEC 2016)

1.2 The objective

The objective is to create a working payment system to the private RGCE network by

utilizing blockchain technology. BTC protocol will be used as the basis for the code

but will be altered when necessary. One of the requirements of the network is to

have a small number of computers part of it to make the network more secure, in

this assignment four to six computers will be adequate enough.

What is also needed, is to be able to shut down the network and reset it, if neces-

sary. Adding a new node to the network should be made relatively easy and quick.

The implementation of the project will be written in the form of a guide to make it

easier to replicate the process.

7

1.3 The production environment

The production environment will be in the RGCE network. The RGCE network is a part

of JYVSECTEC and was made to simulate the real internet, to function as it would in

the public network while being a private one. The BTC protocol will be implemented

in this private network, which remains separate from the public network. This as-

sures that the implementation will remain free of external threats and the focus can

remain in testing the network instead of securing it. The machines on the network

will be created virtually and operated on a VMware based platform.

The RGCE environment is made to be very similar to the public network with multiple

ISP: s, DNS servers, NTPS: s and different services such as news sites and social media

sites etc. The service providers have automatically generated traffic from customer

networks to simulate the operations of the public network. (JYVSECTEC 2016)

8

2 Data encryption and key exchange

To understand what the BTC protocol and the blockchain is; breaking the idea down

to smaller subcategories is needed to make the understanding of the concept easier.

It is also required to have a basic idea of what public key cryptography, digital signa-

tures and cryptographic hashing is. A short introduction of the three previously men-

tioned subjects will be made in the next few chapters to make it convenient for the

reader.

2.1 Public key cryptography

In symmetric-key cryptography, both parties involved in the transaction of data agree

upon a common key that is used to encrypt and decrypt data. The problem in this

form of cryptography is that the key has to be shared between both parties in an

insecure manner. Public key cryptography has solved this problem by creating two

separate keys for encryption and decryption. Data is signed with the receiver’s public

key so that only the receiver’s private key can decrypt it.

The disguise for the sent information is done with Encryption and decryption. The

sender does the encryption, which transforms the information into a form in which it

is not understandable without decrypting it. The receiver of the information has to

decrypt it before it can be read. While the data is being transported to the receiver, if

a third party is listening to the connection, the message cannot be understood with-

out the appropriate tools to decrypt the message. (Lackey 2012)

This is also where the term “digital signatures” come in to play, more on the subject

in chapter 2.2. Figure 1 exhibits the basic principal of the exchange of data using the

public key cryptography process.

9

Figure 1. Public key process

2.2 Digital signatures

A digital signature ensures that any digital document signed with a signature can be

verified to be from a trusted source and not altered by a third party. This is also done

with websites to assure users that the site is verified by a trusted source and safe to

use. (HowStuffWorks 2016)

To ensure authentication of the digital signatures, different encryption methods are

used. When encrypting, the data sent is changed to a form in which it is not readable

unless the receiving party decrypts it. When authenticating, the source of the infor-

mation is verified. These two processes form the basis for digital signatures.

(HowStuffWorks 2016)

When ensuring that the digital signature is valid, the public key of the signature pro-

vider is used to test if the site is valid. Since the signature was built with the private

key, the public key, which is a pair to the private key is the only key which can verify

that the signature is valid.

Hash values are the basis of the keys. The keys value is calculated using a hashing

algorithm, computed from a base input number. The original number to create the

hash is impossible to figure out from the hash without knowing the data for the hash

creation. (HowStuffWorks 2016)

10

2.3 Cryptographic hashing

The hash algorithm completes mathematical calculations that include the insertion of

random data as input and produces an output with a pre-determined data size.

When given the same data for input, the output also remains the same.

Data given as an input is usually called a message, the output of these messages are

message digests. Virtually any kind of data can be defined as a message, for example

text in an e-mail, files in binary mode or network packets. An example of a hash func-

tion:

According to Silva, when a hash function accepts a message, it outputs a digest with

a fixed data size of one bit. The hash function then returns one of two numbers de-

pending on the output of the message digest. If the digest has an even number of

characters, the return is zero. When the digest has an uneven number of characters,

the return is one. (Silva 2003)

Hash functions have the same feature, the fact that it is impossible to try to figure

out the original input of the hash function from the output of the message digest. For

example in the previous example, knowing that the output was one, only tells that

the digits in the input are uneven. It would be impossible to figure out the original

input before the digest because the number could be numbers, a string of text or

anything between. The only known thing about the data is that the length of the data

was uneven in numbers. It is impossible to try to determine what the message was

from the output "1". Because hash functions are designed to work this way, in one

direction, it makes the deduction from the output impossible. (Silva 2003)

Cryptographic hash functions are much stronger than plain hash functions. The dif-

ference between the two is the fact that collisions are much more difficult to pro-

duce. Collisions happen when two different inputs before the digest produce the

same output after digesting. The example given earlier is not a cryptographic func-

tion because the output would be the same regardless of what data were inserted,

as long as the number of characters was uneven. (Silva 2003)

Cryptographic hash functions can be used to determine if a file has been altered, for

example when sending data, a message digest of a binary file is usually given to the

11

receiver. The digest can be re-calculated from the binary files baseline digest and

compared to the original message digest to see if it has changed. If changes has oc-

curred, the data sent has been either corrupted or changed during the transfer.

(Sptizner 2016)

To get a collision from an altered file is extremely rare in cryptographically digested

hash functions, it is so unlikely that if the digest matches the file is most probably

unchanged. With the knowledge of how the function works, it can be said that cryp-

tographic hash functions can be used with a fair amount of certainty to validate the

integrity of files. (Silva 2003)

The Bitcoin protocol uses sha-256 as its base hashing function. When a shorter hash

is required, for example when a Bitcoin address is created, a hash function called

RIPEMD-160 is used.

12

3 Bitcoin and the blockchain

3.1 Introduction to Bitcoin

Bitcoin was designed to be a version of digital cash which would allow payments to

be sent over a network directly between two points without a trusted third party

(Banks, Paypal etc.). It is essentially a trustless network where user’s payments and

wallet balances are recorded on a public ledger verified by everyone on the network

who are hosting nodes.

A total of 21 million BTC: s will be generated with BTC protocol over a period of a 100

years. For every found block, 50 coins are rewarded to the node which found the

block. Every four years the algorithm halves this reward, bringing the reward of 50

coins to 25. The difficulty of the network (how hard it is to find an acceptable hash of

a block) readjusts itself approximately every two weeks and starts from difficulty

one. It changes to a higher number the more hash power the network has.

This is one of the reasons why in the public network, small time miners find it hard to

receive any rewards due to the fact that their single machine is overpowered by the

superior hashing power of the mining pools and similarly powerful mining rigs. The

chance to find a block with an average hash rate GPU is not likely nor cheap when

the cost of electricity is taken into account.

3.2 Transactions

Digital currency is defined as a chain of digital signatures, according to Nakamoto. In

every transaction, a signature from the previous owner and the public key of the next

owner are added to the end of the coin. When the signatures are added, the owner-

ship can be verified when the signatures are compared. (Nakamoto 2008)

Figure 2 exhibits how the previous examples come together in the Bitcoin protocol,

owner 1 signs the data with a private key while hashing the data. Owner 2 can check

the validity of the data by decrypting the data with the owner 1's public key. If the

data is intact and checks out, it is included in the next block of transactions.

13

Figure 2. Transactions. (Nakamoto 2008)

This type of handling payments is efficient and reliable but needs something to pro-

hibit users from double spending; the network has to be aware of the previous

transactions to confirm account balances.

3.3 Blockchain

In a timestamp server, hash function is performed to a block of items and advertised

to the participants of the network to be validated. When the hash has been

timestamped, it proves that data has existed at a certain time since it had to be for it

to be able to change in to a hash. When the previous timestamp of a block is includ-

ed to the next, it creates a chain of timestamps and thus reinforces the position of

the blocks in the chain. An example of how the timestamp includes itself to the next

block can be viewed in figure 3. (Nakamoto 2008)

Figure 3. Timestamp server. (Nakamoto 2008)

14

Blockchain is basically a timestamp server, each computer on the network is

informed on changes on the blockchain and collectively verify the transac-

tions on the network. It is very difficult to try to remove a block from a

blockchain ledger once it has been recorded there. When an addition has

been made, the participants of the network run an algorithm to try to verify

that the transaction is valid, if it is accepted it is added to the history of the

blockchain and broadcasted to everyone. The removal of a block would re-

quire the whole network (or at least the majority) to agree to the change.

Figure 4 shows an example of a block hash linking to the next. (Norton 2015)

Figure 4. Block chaining. (Nakamoto 2008)

3.4 SHA-256 and RIPEMD-160

SHA-256

SHA-256 was created by NSA back in 2001, "SHA" is a cryptographic hash function

designed to hash data to a form of numbers and digits, which can be compared to an

original hash of the same file to validate the integrity of the file, for example before

and after sending it to someone. SHA-256 is a member of the SHA-2 group, an im-

proved version compared to the SHA-1 group. The number 256 is an identity number

for the function and it is defined by the number of bits used in each word in the hash,

in this case 32 is used. (Poiroux 2015)

SHA-256 is a popular version of the SHA-2 group and is used mainly to verify software

packages, for example for LINUX, or to verify transactions in cryptocurrency chains.

Besides BTC, many alternative coins use SHA-256 to calculate POW transactions

which tells that it is still secure and powerful enough to prevent collisions. (Poiroux

2015)

15

The SHA-256 algorithm works by padding a message into 512-bit blocks, the same

way as SHA-1. The padding consists of multiple 512-bit long data chunks which are

then parsed in to 512-bit blocks. ; ;:::; . The process of modifying the mes-

sage blocks is done one at a time, a fixed hash value
 is inserted and computed

sequentially. (IWR)

 =

 + C (

)

In the function above, C is the function for the compression of SHA-256 and + means

the addition of the word-wise mod
 addition.

 represents the hash of M. The

message block size in SHA-256 consists of 512-bit blocks and has a 256-bit hash val-

ue. It can be considered as a 256-bit cipher algorithm, which uses the message block

as a key to encrypt the hash value. (IWR)

RIPEMD-160

RIPEMD-160, designed by Hans Dobberto, is a cryptographic hash function used as a

replacement for a 128-bit functions such as; MD4, MD5 and RIPEMD. Ron Rivest de-

veloped MD4 and MD5 for RSA Data Security, the RIPEMD was created as a frame-

work for an Eu project called RIPE. (Bosselaers 2012)

Compared to RIPEMD, RIPEMD-160 is a stronger version with a longer 160-bit hash

and is projected to be secure for the next decade or more. The algorithm is tuned for

32-bit processors since it is estimated that the processor type will still remain im-

portant in the future. Experience gained from the previous versions of hash functions

are taken in to consideration when designing these new hashing algorithms.

(Bosselaers 2012)

3.5 Proof of work

In cryptographic hash functions, the randomness of the hashing output is a sought

quality. POW takes an advantage of this during the verification process of transac-

tions. The randomness of the hashing output makes it very unlikely that the hash

16

creates collisions, it is almost impossible to create the same outcome from different

data before hashing. (Bitcoin Project)

To create a block and to prove that work has been done, a hash of a block header has

to not exceed a certain length. For example, if a requirement for a valid hash is 2256 −

1, the calculations are accepted if it is less than 2255. (Bitcoin Project)

With the previous example, an acceptable hash is found on estimate every second

try. The success rate of finding a hash is possible to estimate and in the BTC protocol

this requirement increases in a linear fashion. The lower the threshold is set, the

more hashing attempts have to be made for an acceptable one. (Bitcoin Project)

Only when the hash meets the requirements of the consensus protocol, will the

block be added to the public ledger. The difficulty for these requirements is calculat-

ed approximately every two weeks. (Bitcoin Project)

 If the time to generate 2016 blocks is less than two weeks, the difficulty in-

creases to match the generation rate requirements of the blocks so that it

remains at two weeks at the current speed.

 If more than two weeks were needed to create 2016 blocks, the difficulty is

decreased proportionally in the same manner as when increasing.

To succeed in modifying the blockchain, it is needed to have the hashing power of at

least 51% hashing power of the entire network. This is because of the fact that each

hash of a header of a block has to be under the target threshold and because each

block is linked to the previous block. To make a modified block acceptable, the ma-

jority hashing power of the network must be on the accepting side of the block to

consider it a valid addition to the chain. This is why 51% is needed to make this kind

of a situation possible. (Bitcoin Project)

A wait for new transactions is not required for the obtainment of new hashes, this is

because the header of the block has easily modifiable fields, like the nonce field. Only

the block header of 80-bytes is POW hashed, so the inclusion of transaction data with

a higher volume does not slow the hashing down. The addition of more transaction

17

data only has a requirement of calculating the ancestor hashes of the merkle tree

again. (Bitcoin Project)

3.6 Network

The Requirements for running a successful BTC network:

1) New transactions should be broadcasted to other nodes.

2) Each node includes transactions in a new block.

3) Each mining node does POW to find a block.

4) Found blocks are broadcasted to the entire network.

5) A block is accepted if the reward is not already spent.

6) The accepted hash of a previous block is included to the next found block.

Participant nodes in the network consider that the longest chain is the one where

work should be done to extend it. If for example two chains are broadcasted to a

node, it will continue to work on the chain which was received first. The other chain

will be saved to memory for the chance that it becomes the longer chain. If this hap-

pens and the saved chain becomes the longer one, the node switches to that chain.

(Nakamoto 2008)

Occasionally a transaction might not reach every node on the network at the same

time, but if it reaches enough nodes, it will be included in to a block eventually.

Nodes can also miss block updates but the mistake is corrected when the node re-

ceives the next block update and finds out that a block is missing from the database.

(Nakamoto 2008)

To make a secure and trustworthy network, it is important to note that the more

participants on the network, the better. Decentralization requires that nobody has

the control of the network (holds 51% of the networks hashing power). If this re-

18

quirement is not met, it is possible to plan an attack where the holders of the majori-

ty hash power decides which chain is the dominate one.

In an example scenario person A sends person B a BTC over the network. Everybody

on the network confirms the transaction valid and broadcasts this to others on the

chain. Person A holds majority of the hash power and decides that a time in the

blockchain where the transaction did not occur is what should be supported and

starts pouring hashing power in to it. With person A having the majority power of the

separate chain, the chain will surpass the original main chain in length, thus replacing

it. Now person A is able to spend the same BTC all over again.

The bigger the network, the more this scenario costs. With hundreds of thousands

participants, the network is big enough that the cost of trying to achieve being the

majority hash power on the network negates the benefits. Figure 5 shows an exam-

ple of the scenario:

Figure 5. Longer chain wins

3.6.1 The block size issue

There has been a lot of debate on whether the block size of 1 Mb is too small for the

amount of transactions happening on the network. More than one group argues that

19

the block size should be increased so that more transactions would fit per block in-

stead of being transferred to the next available block.

At the moment if one wants to make a transaction, a moderately higher transaction

fee is required to make the payment a priority for the miners to validate it quicker.

This is arguably a big scaling problem as the BTC user base grows and more and more

transactions have to be validated each second. Increasing the block size indefinitely

would solve the short-term problem but would prove to be a burden on the network

long-term.

It is argued, that increasing the block size only creates more stress and centralization

to the network. When the block size is increased, miners might not get enough

transaction fees as rewards through doing POW and choose not to continue. This

leaves the big pools and the ones with more hashing power in charge of the network,

decreasing the decentralization of the network. (Deschapell 2016)

A peak transaction speed of 47000 per second was achieved by the payment network

Visa in the holiday season of 2013. Currently the average amount of transactions

made per day is in the hundreds of millions. The issue with the block size in BTC is

that the network supports currently only about 7 transactions per second with the 1-

megabyte limit. It is said that the equivalent of the Visa transaction speeds would

require the BTC blocks to be at the size of 8 gigabytes. This would add more than 400

terabytes of data to the blockchain per year, bloating it completely. (Poon, Dryja

2016)

This is not possible to achieve with the current technology since an average user

would have to have so many hard drives that it would become quite impractical. Not

many could afford it thus resulting in a centralization of the network. The security of

the network would be compromised as a result and the fundamental idea of what

BTC is would be ruined. (Poon, Dryja 2016)

To make a tradeoff between decentralization and the performance of the network

would be a major blow to the whole concept, decentralization is a key component of

what the BTC protocol represents, the ability of the people to be free of manipula-

20

tion of their currency and a chance to not have to put trust in a third party. The light-

ning network is a new solution which will be implemented on the BTC protocol soon,

it solves most of the problems presented earlier, more can be read about it in the

chapter 3.6.2. Figure 6 exhibits graphically the constantly rising blockchain size.

Figure 6. Blockchain size. (Kieren 2015)

3.6.2 The lightning network

The BTC network has always been a process of learning and progressing through con-

tinuous public testing by its users, both for good and bad. During the 8 years of oper-

ating, BTC has had only one major security issue which was patched fairly quickly by

rolling back the network, which the participants of the network accepted without

scrutiny. In august 2010, a flaw was found in a block header where somehow an ad-

ditional of 92 billion BTC existed, while supposedly the protocol should have limited

the amount of coins mined to 21 million during a prolonged time period. The error

type was known as an “integer overflow error”. In short, an unknown network partic-

ipant had found a way to flood the code while creating massive amounts of BTC in

the process. (National Vulnerability Database 2012)

The best way to create one of the most secure networks is to stress test it publicly.

There are more great minds available through the internet than can be brought to-

21

gether privately, it is the ultimate test to have anonymous users try to find any ex-

ploit possible. It does not matter if it is done for one’s own nefarious reasons or to

make the network more secure, the end result is the same.

So now the time has come to address the problems with the block size. The lightning

network was a solution explained in a whitepaper, written by two individuals called

Joseph Poon and Thaddeus Dryja in early 2016.

The lightning network is a network of micro transactions built upon the BTC protocol.

When doing a transaction between two parties, a micropayment channel is opened

in which the transactions take place. Not every transaction is immediately made pub-

lic but instead, only the final wallet balances of the payment channel participants are

announced to the blockchain to be verified, reducing the majority of unnecessary

data sent. (Poon, Dryja 2016)

Bitcoin could be capable of billions of transactions per day with a network of micro-

payment channels and just an average computer would be enough to process them.

Transactions sent in a micropayment channel would enable to send large amount of

funds while keeping the decentralization aspect of the network. (Poon, Dryja 2016)

The micropayment channels would enable two parties to send multiple transactions

in the channel and to only inform the final balance of the wallets to the rest of the

network when the transactions have been completed. The channels are not a sepa-

rate network on bitcoin, the transactions consists of actual currency inside the

blockchain, the update of the transaction is deterred to a later date trustlessly.

(Poon, Dryja 2016)

Referring to the example in figure 7, a bidirectional payment channel has been

opened between Janice and Chandler. Janice wants to send a transaction worth one

BTC to a third party, in this case to Monica. A direct channel between Janice and

Monica could be opened but is not necessary with the lightning network since Janice

22

can pay Monica through Chandler with the already opened channel between Chan-

dler and Monica. (Wirdum 2016)

Figure 7. Lightning network

In this scenario, Janice would pay Chandler a BTC and then Chandler would do the

same for Monica, this is done trustlessly, since the protocol ensures that Chandler

will only receive the one BTC if one BTC is paid to Monica. This is done by Janice in-

structing Monica to give Janice a random hash number. Monica is also informed to

exchange the original value for a BTC. (Wirdum 2016)

Janice receives the hash from Monica and instructs Chandler that he will receive a

BTC if he provides the value only Monica has. Chandler pays Monica for the value

and sends the value to Janice. Since Janice is informed of the exchange and that the

value could only have come from Monica, it can be proven that Monica has received

a BTC from Chandler. Janice can then safely pay Chandler one BTC. (Wirdum 2016)

It is not yet clear when this update will come in to effect, the development for the

update has been going for more than a year. The network consensus is also a matter

23

to be taken seriously; some major mining pools have implied their unwillingness to

contribute to the change. The update will be a welcome fix to the long-standing

problem, provided that a network consensus is reached on accepting the change.

3.7 The Incentive for mining

A minimum of one transaction can be found in each created block, this is the reward

for finding the block for the creator of the block. The reward for finding the block

gives an incentive to the node to support the network by mining. It also brings more

coins to the network since the distribution is not issued as in a traditional banking

system. The operation is comparable to any real life scenario where precious metals

are mined from the earth to be added to circulation. The cost for the mining is in the

electricity and the hardware; machines wear out and use up energy. When no new

coins can be brought in to circulation, due to protocol restrictions, the incentive will

be provided through transaction fees. When there are enough found coins in circula-

tion, the network will pay miners entirely in transaction fees making the currency

noninflationary. (Nakamoto 2008)

In a case where an attacker had more than half of the networks hashing rate, a few

things could be done. Transactions could be reversed or the network could be desta-

bilized, this however would be less profitable than just using the hashing power to

secure the network to acquire more coins. There would be no point in destabilizing

the network if it would also hurt the perpetrators funds in the process. (Nakamoto

2008)

The incentive to mine new coins stays as long as the cost of electricity does not be-

come more expensive than the coins mined while using said electricity. This is why

most of the hashing power (60% of all new bitcoins mined) comes from a low cost

country like China where mining farms are considerably cheaper to run.

Most hashing power comes from mining pools where people lend their computa-

tional power to a group pool which pays each contributor a share of the coins mined,

based on the amount of hashing power each one has given to the service of the pool.

In figure 8, the biggest mining pools hash contribution on the network.

24

Figure 8. Mining pools. (Pollnow 2016)

3.8 Anonymity

BTC is not an anonymous currency as transactions are stored in a public ledger,

which is known as the blockchain. Any Bitcoin address or transaction can be checked

on the blockchain which makes the flow of the currency highly trackable. Bitcoin us-

ers’ identities however, cannot be connected to a specific address unless it is used in

conjunction with a payment with a third party.

For example, on a website a customer decides to pay for an ordered item with BTC.

Personal details has to be filled in order for the package to be sent. In this instance,

the seller has personal information about the buyer and can now connect the ad-

dress from which the payment is sent to the buyer. The same scenario would happen

if one wanted to sell a BTC on an exchange and send the acquired currencies to one’s

bank account. The third party participants in both of these exchanges will always

have something to tie the BTC user to an address.

Multiple Wallets

Anonymity can be increased by using several wallets, as wallet addresses are harder

to tie to an identity if multiple addresses are used. A recommended software for this

25

is MultiBit, it works on most operating systems and does not require to download the

whole blockchains blockdata to be usable. (Cornwell, Atkinson 2013)

Mixing Services

Since the transactions in the blockchain are public, mixing services are used to blur

the trail of payments. In short, a different transaction history for ones Bitcoin can be

acquired when sent bitcoins is mixed with other Bitcoins and sent back in a random

order. This however requires trust to the service; there are no guarantee that the

service will honor the promise to return the coins sent. The service might also keep a

transaction record, which would nullify the effort of trying to mix the payment trail.

(Cornwell, Atkinson 2013)

eWallets or Online Wallets

Sending coins to a web hosted wallet can increase anonymity if the coins are mixed

in to a big pool of coins from other users (for example in an exchange). The service

must be an active one and the amount of coins must not be over 10% of the services

own BTC balance. The anonymity however is completely dependent on the policies

the web wallet host has set. Records of all the users could be possibly kept on a pri-

vate ledger so there are no certain guarantees when using these services. (Cornwell,

Atkinson 2013)

There are other cryptocurrencies which have a greater emphasis on user anonymity

and privacy, such as Monero, Zcash and Dash. The difference between BTC and these

alternative currencies is that different parts of the chain have been made anony-

mous, for example, the senders address for the receiver or the ledger itself. There

are many frontrunners in the race towards complete anonymity in blockchain based

transaction systems, the future will tell how each succeeds.

3.9 Node types and roles

Network nodes are the backbone of the BTC network; they validate the transactions

and keep the history of all the changes made on the network. There are however,

26

differences between the node types and other participants throughout network

(O’reilly Media, inc 2013);

 Bitcoin core client - The Bitcoin core client is the most basic and well-known client of
them all. It has the wallet, complete blockchain database and a routing node on the
BTC network.

 Full blockchain node - Has the full blockchain database and does network routing on
the BTC network. It has no wallet.

 Solo miner - Can mine on the network, contains the full copy of the blockchain and is
capable of routing on the network.

 Lightweight SPV wallet - Has a wallet and is capable of routing on the BTC network,
it does not have the copy of the blockchain. Multibit is a wallet like this.

 Pool protocol servers - These are routers acting as a gateway to the BTC network for
other nodes which use different protocols like stratum or pools.

 Mining nodes - Does not contain a copy of the blockchain, mines using the stratum
protocol or some other pool mining protocol.

 Lightweight stratum wallet - Has a wallet and runs a network node with the stratum
protocol. It does not contain a copy of the blockchain.

All of the participants of the network form a spider web of connections, running dif-

ferent types of nodes, gateway servers, edge routers, wallet clients and different

protocols, which binds them together. Check appendix 2 for a detailed figure of the

networks participants.

4 Implementation

Instructions will be given on how to modify the parameters in the source code, mine

the genesis block, reset and start the network. Some advice on how to troubleshoot

can be found in chapter 4.4.

27

4.1 Choosing the OS

At the beginning of the project, it was a clear choice that the network would be set

up in a Linux environment. Linux is a great OS for control, security and its ability to

easily transform in to a server. Debian Jessie was chosen out of the different Linux

distributions, because of the familiarity of the OS and the quantity of different repos-

itories available. Different versions of Debian such as Wheezy might offer packages

Jessie does not have, but the source of the repository is relatively simple to change

to retrieve packets from another distribution of Linux. The GUI coming with the dis-

tribution is not necessary but a welcome addition. It will not be featured in this guide

however.

4.2 Planning the network

 When forking an alternative coin out of the base BTC source code, a few minutes of

thought should be given on how to name the coin and what use will the coin have. If

the coin will run in a private network, the name and port change will not be neces-

sary. In a public network, the name and port change is needed because if the soft-

ware uses the same port as the original BTC software, the clients can be tricked in to

connecting to a different network.

Some thought should also be given on how many transactions the network will pro-

cess per day as this is a parameter which should be changed from the original in the

BTC source code. If the network is designed to reside in the public internet, some

designated nodes should be implemented in the source code so that the clients con-

necting to the network for the first time will always have a peer to connect to if no

other peers have not for some reason connected to the client. The original BTC

source code had multiple such seed nodes but have been removed in the process of

editing the source code.

4.3 Prerequisites

Before starting to work on the BTC source code, the operating system must be up-

dated, dependencies and the necessary Berkley database must be installed for the

28

wallet to be able to operate. The node will be a fully operational node, which down-

loads the full current height of the blockchain from connected peers and has a func-

tional wallet.

The following instructions will be given on how to configure BTC on Debian 8 (Jessie).

When using another operating system, especially if it is not a Linux based OS, some

independent research might be necessary to replicate the process.

4.3.1 Updating the operating system

First of all, the operating system must be updated to have the latest packets so that

the dependencies can be retrieved. To do that, a connection to internet is a require-

ment and the list of packet sources has to be set correctly. The sources.list file can be

found as shown in figure 9.

Figure 9. Updating the sources

When the sources.list has been opened with any text editor software (in this exam-

ple, Nano is used), the file must be edited to include servers from which to retrieve

the data from. The closest server to the current location of the computers location is

recommended. The full list of available Debian servers can be found from the operat-

ing systems website (Debian.org 2016). In figure 10 is given an example of how to

configure the sources.list when the computer resides in Finland.

Figure 10. Editing the list

29

Once the list has been edited, the update command must be given as in figure 11.

This updates the location of the repositories and tells the computer where to look for

new updates.

Figure 11. The update command

When the update of the repository is completed, the upgrade command must be

given to actually start upgrading the machine. This is done as shown in figure 12:

Figure 12. The upgrade command

4.3.2 Dependencies

Next in the installation process is the retrieval and installation of the required de-

pendencies for the BTC software. This can be done with a single string of commands.

This will be pasted as text in the appendices to make it easy for the user to copy the

necessary commands (Chk. appendix 1). An example of inserting the commands pre-

sented in figure 13.

Figure 13. Dependencies commands

30

4.3.3 Berkley database

Berkley database is what the BTC software uses for database purposes, it contains

the necessary functions to make the wallet of the node to work correctly. The node

can be installed without the database, however wallet functions will not be support-

ed. Since Debian Jessie does not have repositories which has the Berkley database,

another repository has to be used. This can be done by once again editing the

sources.list file and inserting the text shown in the appendices (Chk. appendix 3). An

example of this is presented in figure 14.

Figure 14. Squeeze repository

After the text is added, the process which is shown in figures 10 and 11 must be re-

peated for the system to be able to retrieve the packets. Next in line is the download

and installment of the Berkley database. In the example, Berkley database version

4.8 is used but different database versions can be an option. After editing the

sources list, updating and upgrading the computer, type the following to the console:

apt-get install libdb4.8++-dev libdb4.8-dev

This will retrieve and install the Berkley database and the pre-requisites for compiling

BTC source code should be complete.

4.3.4 Installing Bitcoin

Now that all the dependencies necessary for successful installation have been set up,

it is time to actually download the BTC software and get it ready for the editing pro-

cess, which can be read in chapter 4.6 and 4.7. To download the source code, first

make a directory (for example “src”) somewhere, root directory is recommended.

Then enter the directory and input the following command:

git clone -b 0.9 https://github.com/bitcoin/bitcoin.git

31

This will clone files from the Github bitcoin directory to the current directory on the

computer. After all the files have been cloned, enter the bitcoin folder. The contents

of the folder should look like in figure 15.

Figure 15. Downloaded files

To make sure that all the dependencies etc. have been installed correctly, a test

compilation should be achieved successfully. To do this, the necessary files have to

be generated with the following command:

./autogen.sh

After the command has run its course, run the following configuration command:

./configure --without-gui --with-incompatible-bdb

This command configures the software to be used on the command line and makes

sure that the Berkley database does not cause incompatibility issues. When the con-

figuration passes without errors, the actual compilation should be done with the fol-

lowing command:

Make install

This will generate the necessary files, which will be used to control the BTC node.

After these commands, when it is time to edit the source code and compile again, it

is only needed to repeat the “Make” command since all of the configuration and

generation have been completed.

32

4.3.5 Name and port change

If the coin will be used in a private network, this step can be skipped. For the public

network, a name change and port change is recommended. The name should be a

single word; attention should be given that the name matches how the string bitcoin

is in the command. The three-letter combination should be in a similar form as

bitcoin is.

The name change

These few next commands will change the string “Bitcoin” to the name one has cho-

sen to replace it, in this example, the name for the coin is “yourcoin”. These com-

mands will change the strings in every file in the bitcoin folder:

cd ~/src/yourcoin

find . -type f -print0 | xargs -0 sed -i 's/bitcoin/yourcoin /g'

find . -type f -print0 | xargs -0 sed -i 's/Bitcoin/Yourcoin /g'

find . -type f -print0 | xargs -0 sed -i 's/BitCoin/YourCoin /g'

find . -type f -print0 | xargs -0 sed -i 's/BITCOIN/YOURCOIN/g'

find . -type f -print0 | xargs -0 sed -i 's/BTC/YCN/g'

find . -type f -print0 | xargs -0 sed -i 's/btc/ycn/g'

find . -type f -print0 | xargs -0 sed -i 's/Btc/Ycn/g'

These commands will change the folder names associated with bitcoin:

find . -exec rename 's/bitcoin/yourcoin/' {} ";"

find . -exec rename 's/btc/YCN/' {} ";"

33

The port change

Normally, bitcoin uses ports 8333 and 18333 for the mainnet and ports 8332 and

18332 for the testnet. These have to be changed to different numbers so that the

clients do not have a chance to connect to the wrong client software. Insert the fol-

lowing commands:

find . -type f -print0 | xargs -0 sed -i 's/8332/9443/' {} ";"

find . -type f -print0 | xargs -0 sed -i 's/8333/9444/' {} ";"

4.4 Genesis block creation

Even though BTC source code is used as the basis for the guide, the original data for

the network itself will not be used, the genesis block and the following block data

must be original for the network to be a separate unique chain from the original. For

this to happen, a new first block hash has to be created (a genesis block). Since the

original code for doing this directly in the source code is not included there anymore,

an external program for this part of the guide was used. There are other software but

for this; a free program called GenesisH0 was used (Hartikka 2016).

4.4.1 Genesis block generator

The generator is coded in python, so python must be installed on the computer. By

default, if the OS is up to date, version 2.7 should be already installed (check version

with python –V). The next step is to install pip if it is not already on the OS. Pip is a

system used for the installation and management of Python written software pack-

ages. This can be done with the following command in figure 16.

Figure 16. Installing pip

34

Before dependencies for the program can be installed, python-dev must be installed

on the OS as in figure 17.

Figure 17. Installing python-dev

Now that the base requirements for installment of the dependencies are met, the

following command in figure 18 must be inserted in the console.

Figure 18. Scrypt construct

When the dependencies have been successfully installed, the actual program should

be cloned next from Github to any chosen directory on the OS with the following

command:

git clone https://github.com/lhartikk/GenesisH0.git

This will create a directory where the files for this program will be copied. Once clon-

ing is complete, enter the folder. The program is now usable by entering genesis.py

in front of the rest of the commands, for example the next command will bring out a

guidebook on how to use the program.

python genesis.py –help

4.4.2 The creation of the genesis block

Next is the actual creation of the genesis block using the python program genesis.py.

To make it more likely for the program to find a valid hash, some of the parameters

will be close to what is used in the original BTC. It will take a long while for the pro-

gram to calculate a valid hash for the genesis block. The calculation took 7.5 hours

with a virtual machine. An example of the command given for the creation of the

genesis block is as in figure 19.

35

Figure 19. Genesis block parameters

Explanation for the parameters:

 -z is the timestamp, usually a headline of a news article, or anything desired.
 -n is the nonce which is a variable for finding the acceptable hash.
 -t is the epoch time which can be generated in a Linux environment.

For the timestamp, anything can be chosen but historically a news article dated for

the day of the block creation is usually chosen. This is so that it can be verified that

the block was created at least past the day the article was created.

The nonce used is the same nonce as in the original BTC source code, the changed

timestamp and epoch time ensures it will not produce the same hash as in the origi-

nal. The epoch time is a way of describing time since 1970, it’s a series of numbers

which changes upwards as time passes. For example in January 1st 1980, the epoch

time was 315532800 and in January 1st 1995 the epoch time was already 788918400.

The epoch time can be found with the command: “date +%s” in a Linux environment.

After all the parameters has been predetermined, it is time to insert the variables in

to the command as in figure x. The calculation of the hash might take a long while

depending on the machine one is running. The output however is as presented in the

figure 20.

Figure 20. Blockhash found

From the output as described in figure 20, the following variables must be written

down for later use when the actual editing of the source code begins:

36

 Genesis hash
 Merkle hash
 Nonce
 pszTimestamp
 Pubkey
 Time

The same genesis blockhash is used in both mainnet and testnet but for regtest, a

new blockhash must be created with an easier difficulty (for example nonce 2). The

steps to produce a genesis blockhash for the regtest mode are the same with the

exception of a different nonce.

4.5 The creation of the alertkeys

The alertkey system was designed to alert the node users of occurred urgent prob-

lems in the network, this feature was removed in BTC version 0.13.0 but since the

version used in this guide is still version 0.9, the following part has to be done. The

private and public keys must be created for both the mainnet and the testnet. This

can be done quickly for the mainnet with the first two following commands:

openssl ecparam -genkey -name secp256k1 -out mainnetkey.pem

openssl ec -in mainnetkey.pem -text > mainnetkey.hex

And for the testnet:

openssl ecparam -genkey -name secp256k1 -out testnetkey.pem

openssl ec -in testnetkey.pem -text > testnetkey.hex

These two commands create a pair of private and public keys and binds them to-

gether in hex format. The keys can be read by utilizing the “cat” command:

cat mainnetkey.hex

cat testnetkey.hex

37

What is desired from these files, are the series of numbers between the lines “pub”

and “ASN1 OID: secp256k1”. The copied data must be cleared of colons and

linefeeds. When it has been done, save the result for later use.

4.6 Editing the source code part one

After acquiring the necessary data in previous chapters (genesis block, alertkeys etc.),

the time has come to start the actual editing of the source code. In the BTC version

0.9, there are two major files which will be the focus for the editing

(chainparams.cpp and checkpoints.cpp). In the following subchapters, the instruc-

tions for editing the file chainparams.cpp will be given in detail. These instructions

are specifically for version 0.9 but the core file structure between versions remain

relatively similar. Both of the files mentioned in this chapter can be found in the BTC

directory: /bitcoin/src. Check appendix 4 for the example of a completed edit of the

file chainparams.cpp.

4.6.1 Removing the seed nodes

Open the file Chainparams.cpp located at /bitcoin/src in any text editing software

(Nano recommended). As the first thing in editing this file, remove the hard coded

seed nodes starting from line 23 and ending at line 97. The seed nodes are coded in

hex format, and will be used to try to connect to BTC public nodes if they are not

removed from the code. After removing the seed nodes, the outcome should look

like in figure 21.

Figure 21. Removed seeds

Next, the vSeeds must be removed, look for the line which says:

vSeeds.push_back

38

And replace it with the following text:

vFixedSeeds.clear();

 vSeeds.clear();

This should be done for mainnet and testnet, regtest does not have any fixed seeds.

4.6.2 Alertkeys

Next, the previously created alert keys (chapter 4.5) will be inserted in the code, both

for mainnet and testnet. Look in “CMainParams(){}” for the part where it says

vAlertPubKey = ParseHex(“….”); and insert the key for the mainnet. The same should

be done for the testnet (CTestNetParams())with the equivalent key. An example of

the outlook of this step in figure 22.

Figure 22. Mainnet alertkey

4.6.3 Timestamp

Next, the timestamp acquired in chapter 4.4.2 will be inserted in the code. Look for a

string of text which says:

const char* pszTimestamp =

Insert the timestamp defined in the mentioned chapter. An example of this is pre-

sented in figure 23.

Figure 23. Timestamp

4.6.4 Public key

Next, search for the following text:

39

txNew.vout[0].scriptPubKey =

and insert the pubkey acquired in chapter 4.4.2. An example of this is presented in

figure 24, the same pubkey should be used for the testnet. It is not needed for the

regtest mode.

Figure 24. Pubkey

4.6.5 The Epoch time and nonce

Epoch time

The epoch time is the current unix time on a Linux machine. The same time should be

used when the genesis block was created. Look for text which says:

genesis.nTime =

And insert the epoch time. This should be done for mainnet, testnet and the regtest.

Nonce

The nonce used will be the same as in the output when creating a genesis block. Look

for the following text in the code:

genesis.nNonce =

And insert the previously acquired nonce there. The nonce is the same for both

mainnet and testnet. Regtest will use a different nonce (Chk. chapter 4.4.2).

40

4.6.6 The Genesis hash

Next, the genesis hash for mainnet, testnet and regtest will be inserted. The hash for

mainnet and testnet is the same while regtest has its own unique one. Look for text

which says:

assert(hashGenesisBlock == uint256

And insert the previously generated genesis hash in the bracket. This should be done

for both mainnet and testnet. Do the same for regtest with the regtest block hash

(Chk. chapter 4.4.2).

4.6.7 The Merkle root

The Merkle root is only needed for the mainnet. Look for the following line:

assert(genesis.hashMerkleRoot == uint256

and insert the merkle hash in to the bracket. After this is done, the editing of the file

chainparams.cpp is concluded. Chapter 4.7 explains what to do with the other file.

4.7 Editing the source code part two

The first part for editing the source code was for the file chainparams.cpp, this chap-

ter is for the other file checkpoints.cpp. This file is what contains the checkpoints for

important blocks so that syncing with the network is easier. It contains blocks from

the original bitcoin source code but these will be removed and replaced with the

genesis block created in the guide. Check appendix 5 for an example of a completed

edit of the file checkpoints.cpp.

The file has pre-set checkpoints from the original version of BTC, which have to be

removed and replaced with the genesis blockhash created before. In figure 25 can be

found an example of the part which should be edited.

41

Figure 25. Checkpoints

The first number 1111 is the block height of the hash. The series of characters after

uint256 form the hash which serves as the checkpoint. What is needed in this part, is

to remove every checkpoint and insert the genesis block hash as a replacement. The

outcome should look similar to figure 26.

Figure 26. Mapcheckpoints

The next thing is to change some variables as described in figure 27.

Figure 27. Checkpoint data

The first series of numbers 1397080064 should be changed to the timestamp used in

the creation of the genesis block (Chk. chapter 4.4.2.). the number 36544669 should

be changed to 0 because there are no transactions before the genesis block. The last

42

set of numbers 60000 Should be changed to whatever number the creator of the

network feels comfortable with. 500 was used in this guide. These changes should be

made for the mainnet, testnet and regtest with the exception that regtest has its

own separate genesis hash. The checkpoint data is 0 for all three parameters. An

example of the regtest part in figure 28.

Figure 28. Regtest checkpoint

4.8 Starting up the network

To start up the network, at least two nodes are required for the POW to successfully

validate found blocks. The program used to start the network are located in the

following directory path (may vary depending where bitcoin file directory has been

cloned to):

/src/bitcoin/src/bitcoind

This program can be started in 3 different modes; mainnet, testnet and regtest. To

start the net in the chosen mode, one of the next commands should be inserted:

./bitcoind –printtoconsole

./bitcoind –testnet –printtoconsole

./bitcoind –regtest –printtoconsole

When attempting to start the mainnet, the command line prints the debug.log data,

creates files to the root directory (~/.bitcoin) and complains that the bitcoin.conf file

has not been generated. This file is what contains the basic configurations for the

node, whether it is used for just the wallet functions or a node which gives access to

external miners. To create this file, simply go to the bitcoin root directory at

43

~/.bitcoin and create the file with any available text editor. An example of the file, if

it is used as a server node as illustrated in figure 29.

Figure 29. Bitcoin.conf

The configuration options have the following meaning:

 Gen= Starts the miner when the wallet software is started.

 Listen= Accepts external connections.

 Server= Makes the node accept RPC commands.

 Rpcuser= Username for the RPC interface.

 Rpcpassword= Password for the RPC interface.

 Addnode= Command for the software to find a peer from that address.

 Rpcallowip= Gives access to the RPC interface for a specific IP-address.

 Rpcport= Defines the port used for the RPC connections.

For a normal wallet client, only the username and password for the RPC interface,

connection to a peer and the rpcport and rpcallowip to the localhost are needed. If it

is necessary to allow other nodes to connect to the RPC interface, the addresses

must be added separately with the rpcallowip option.

The network nodes are controlled by two main components on the console, the

server part is called bitcoind and the second part is called bitcoin-cli. Bitcoin-cli is the

one that sends commands to the server and tells it what to do. For example, to find

connected peers, check wallet balance, create a new address or to send a

transaction, the following commands can be inserted:

./bitcoin-cli getpeerinfo

./bitcoin-cli getbalance

./bitcoin-cli getnewaddress

./bitcoin-cli sendtoaddress 1AkCxBdjCKQGF956B5Hc6ZjJLbh19FKdQq 1000

44

4.9 Resetting the network

To reset the blockchain back to the genesis block in a large public network is

impossible without the agreement between the majority of the network participants.

If the majority of the network would refuse this change, the ones who reset the

blockchain would only create an insecure side chain with less hashing power than the

original.

However, if the blockchain was created in a private network with full control of all of

the nodes connected, the consensus is automatically reached when the change is

done with every participant node on the network. This can be done by just simply

removing the directory ~/.bitcoin and repeating the process described in chapter 4.8

for every node on the network. The network will start mining the next block after the

genesis block and every transaction or wallet balance have been reset to how it was

in the beginning.

4.10 Troubleshooting

In the course of writing the guide some mistakes and errors have been made, this

chapter is to inform on how to avoid a few of them. It is advised to first check the

debug.log located at ~/.bitcoin/ to further troubleshoot for problems.

Configuration error with Berkley DB

After inserting the ./configure command, this error might appear if the Berkley data-

base is different from version 4.8. In this case, the command

./configure –with-incompatible-bdb

installs the database in spite of the version difference. To use the client without the

GUI, the command should be like the following:

./configure –without-gui –with-incompatible-bdb

45

Connection refused

When the debug.log tells that a certain node connection defined in the bitcoin.conf

file is refused, the node the client is trying to connect to is either offline or only al-

lows connections from predefined addresses.

Bitcoind closes after first try

It will comment on a few things, as described in figure 30, this is normal as it creates

the ~/.bitcoin directory. When the RPC username and password are added with the

“listen” and “server” option, external miners are able to connect to the node server.

Figure 30. Conf error.

Genesis block creation error

When the nonce is chosen for the algorithm to find an acceptable hash, it is recom-

mended to use a nonce close to the one used in the original BTC code since that is

most likely to work. If other values are used, it might take a few tries to succeed in

finding the hash. This can take a while, since it took over 7 hours to find the hash in

chapter 4.4.2.

46

5 Verification

This section is for the verification of the networks ability to operate correctly and the

validation of core functions of the wallet software. Some examples on how to oper-

ate the wallet will also be illustrated.

5.1 Network topology

The network was created in an isolated production environment, separate from the

public internet. The emulation of the public BTC network was done with just a few

computers since no more was necessary. The network consists of two server nodes

that accept incoming connections and listens to RPC commands coming towards the

RPC interface. Both of these server nodes have a client node connected to them with

only the basic functions enabled (including coin generation).

In the configuration options on the server nodes, server 1 added server 2 as a peer

and the same was done vice versa. The client nodes only added one of the servers as

peers. The addnode option in the configuration file lets other nodes to learn connec-

tions through the directly defined node in the configuration file. For example when

looking at figure 31, Client 1 has added Server 1 as a peer. Client 1 learns of other

connections through Server 1 and adds Server 2 and client 2 as a peer, which tells

where to find Client 2. Figure 32 illustrates the connection count from Client 1.

Figure 31. Network topology

Figure 32. Connection count

47

5.2 Connected peers

Peers are needed for the network to have a chance of operating, at least 2 nodes

must be a part of the network for it to be able to function as a mediate for the vali-

dation of blocks. Peers are easy to add through the bitcoin.conf configuration file.

The original BTC source code however has hardcoded seed nodes in its source code

to ensure connectivity; this is not the case in this version since only a few nodes are

needed to add to the network for testing purposes. The peers connected to a node

can be verified by typing the getpeerinfo command as in the following figure 33.

Figure 33. Peer info

The connected peers can also be verified by checking the debug.log when the BTC

node is started. There should appear a "received version message", which informs of

a connected peer with the same protocol in use. An example of this is presented in

figure 34.

48

Figure 34. Connected peers

5.3 Network info

The command getinfo gives the basic information about the network difficulty. It

can be seen in figure 35 that the network difficulty has risen from the basic 1.0000 to

over 1.05 during the 3 weeks the protocol has been running.

Figure 35. Getinfo

It is also possible to find information on the status of the network hashrate (the

amount of calculation power in the network) with the command getmininginfo as

illustrated in figure 36.

49

Figure 36. Network hashrate

5.4 POW in action

For the network to function, mining has to be enabled on at least two machines so

that the verification of transactions can begin. The following figure 37 is of the found

block number 194 on the Bitcoin mining server. This extra information is shown

when the block found is the result of that computers calculation power. Normally if

the block is only verified by a peer the information provided by the feed will be much

less. The figure shows the following;

 Calculated Block hash (CBlock(hash=”00000000d372…”)).

 The nonce nNonce=(3867..), which is the variable used to calculate the block hash.

 The previous block hash, which shows that the current block is linked to the previ-
ously found block number 193.

 Merkle root hash (hashMerkleRoot=(e4ee..), which makes sure that the hash re-
ceived is not an altered or fake when received by peers on the network.

 The generated amount of coins (generated 50.00) and the wallet in which the coins
were sent to (AddToWallet e4ee..)

50

Figure 37. POW

Figure 38 is from a peer connected to the mining server and illustrates the same

found block hash.

Figure 38. New block

This snippet of information only shows the new best, or highest found block

(height=194), the hash of it (new best=00000000d37..), the date and that the block

was accepted as valid.

5.5 GetBlockTemplate

For external miners to be able to get work from the BTC node server, the server must

be able to provide the miner with the GBT which tells the miner how to search for

the next block. If this is not provided, the miner software has no clue on how to pro-

ceed.

To verify that the GBT is working, the command depicted in figure 39 should be in-

serted.

51

Figure 39. GBT

5.6 Using the wallet

The next series of figures depict how the wallet is used in basic operations such as

creating a new address for the wallet, sending coins to another wallets address and

verifying the transaction. In figure 40 the first node creates a new address for receiv-

ing payments.

Figure 40. Address creation

As illustrated In figure 41, this address is then used on the second node when 1000

BTC is sent to the wallet of the first node, including the transaction fee used to main-

tain the network (0.0001 btc).

Figure 41. Transaction

52

The network shows the transactions made in the block on the second node, usually

there is only a single transaction in a block, which is the 50 default coins generated

from finding a block.

This time two transactions are found, one of which is the 1000.0001 BTC sent to the

first node. The following figure 42 is from the second nodes feed where the transac-

tion was first initiated.

Figure 42. Transaction value

The next figure 43 is from the first node where the transaction was received, which

shows that an additional transaction has been added to the block mined.

Figure 43. Transaction received

The transaction amount received by the first node can be checked as in the next fig-

ure 44.

Figure 44. Received by address

5.7 Wallet encryption

The wallet can and should be encrypted if operated in a public network. The ”wal-

let.dat” is the file which needs to be secured with encryption because anyone with

access to the file can spend the coins if no passphrase is implemented. For example,

if the computer was compromised and the wallet.dat was imported to another wal-

53

let, the coins would be spendable. This can be done by inserting the command in

figure 45.

Figure 45. Wallet encryption.

5.8 Wallet backup

When encryption of the wallet has been done, it is advised to create a backup of the

wallet to a secure location, preferably without an internet connection. An example of

how this is done is presented in figure 46.

Figure 46. Wallet backup

54

6 Conclusion

The aim of the thesis was to create a working payments system utilizing the

blockchain technology of the BTC protocol. The nodes and wallets were ment to be

operated with the command line. This is a technology developed very recently

(released in 2009) so the information on the internet about how to actually go and

alter the source code is very scarce. The end result was successful, specially

considering the inexperience as a developer in blockchain technologies. The nodes

are all up and running and mining to find blocks. The wallets are able to send

transactions and receive them. All changes in the blockchain are verified by

broadcasting the change to other nodes.

An additional aim for the thesis was to make the resetting and adding to the network

easy. It was found, because of the nature of the technology, that the resetting

process can be quite vexing if the network built is large. The data from the blockchain

must be removed completely from each node on the network to successfully reset

the transaction history because every node has a copy of the blockchain.

This is achievable only because the network was implemented in a private, protected

environment with no access to the internet. On a public network, the process for

resetting the network would require the approval of most of the participants on the

network, which would be unlikely if the aim was to wipe all of the balances and

transactions on the network clean.

A major problem, which occurred at the end of the project, was that the software

had no internal miners implemented. This meant that external miners should be

used to be able to find blocks on the blockchain. Since only the first genesis block

was created, the software had no way of generating info for the external miners to

connect to and was stuck in downloading the blockchain. In the end there was no

other way except to change the BTC software version to 0.9 instead of the original

0.10.

The version 0.9 of BTC had a different file structure so it took a while to figure out

the core structure. The main file, which is in version 0.10, was split into two separate

files. The version 0.9 had an internal miner in the software and was able to mine the

55

first blocks which solved the problem. Changing back to version 0.10 was possible

but not convenient for the client, since if a reset of the network was needed, the

process of reverting to 0.9 would be required.

Since the software was aimed to be run on the command line, the next step would

be to implement a working GUI wallet. A GUI version would make it easier for the

average user to operate the node and wallet, but not necessary to be able to build a

functional network. Because the BTC protocol is designed to be very public, a

blockchain explorer would be a good addition for the network. A blockchain explorer

would essentially be a website which can be used to search for transactions on the

network or wallet address balances, similar to what is available in the public

network.

To make it easy for the client to add to the network, a template of a machine with a

ready to be compiled node software was created. Copying the machine using this

template takes only a couple minutes. Since the thesis was written in the form of a

guide, additional instructions on how to change the name and ports of the currency

were added as a chapter even though it was not necessary for the client.

56

Sources

Bitcoin Project. N.d. Proof Of Work. Referenced 4.10.2016.

https://bitcoin.org/en/developer-guide#proof-of-work

Bosselaers, A. 2012. The hash function RIPEMD-160. Referenced 4.10.2016.

http://homes.esat.kuleuven.be/~bosselae/ripemd160.html

Cornwell, S & Atkinson, J. 2013. Bitcoin simplified. Referenced 31.10.2016.

http://bitcoinsimplified.org/learn-more/anonymity/

Debian.org. 2016. Debian worldwide mirror sites. Referenced 24.1.2017.

https://www.debian.org/mirror/list

Deschapell, A. 2016. Why a 1MB Block Size May Be Right for Bitcoin Today.
Referenced 26.10.2016.

http://www.coindesk.com/1mb-block-size-today-bitcoin/

Hartikka, L. 2016. SHA256/scrypt/X11/X13/X15 genesis blocks for virtual currencies.

Referenced 25.1.2017

https://github.com/lhartikk/GenesisH0

HowStuffWorks. N.d. What is a digital signature? Referenced 28.9.2016.

http://computer.howstuffworks.com/digital-signature.htm

IWS. N.d. Descriptions of SHA-256, SHA-384, and SHA-512. Referenced 4.10.2016.

http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf

JYVSECTEC. N.d. Cyber Operation Environment – RGCE. Referenced 21.9.2016.

http://jyvsectec.fi/en/cyber-environment/

JYVSECTEC. N.d. Who we are. Where we come from. Referenced 21.9.2016.

http://jyvsectec.fi/en/about-us/

https://bitcoin.org/en/developer-guide%23proof-of-work
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
http://bitcoinsimplified.org/learn-more/anonymity/
https://www.debian.org/mirror/list
http://www.coindesk.com/1mb-block-size-today-bitcoin/
https://github.com/lhartikk/GenesisH0
http://computer.howstuffworks.com/digital-signature.htm
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf
http://jyvsectec.fi/en/cyber-environment/
http://jyvsectec.fi/en/about-us/

57

Kieren, J. 2015. Blockchain scalability. Referenced 31.10.2016.

https://www.oreilly.com/ideas/blockchain-scalability

Lackey, E. 2012. Red Hat Certificate System Common Criteria Certification 8.1
Deployment, Planning, and Installation. Referenced 28.9.2016.

https://access.redhat.com/documentation/en-
US/Red_Hat_Certificate_System_Common_Criteria_Certification/8.1/html/Deploy_a
nd_Install_Guide/index.html

Nakamoto, S. 2008. Bitcoin: A Peer-to-Peer Electronic Cash system. Referenced
4.10.2016.

https://bitcoin.org/bitcoin.pdf

National Vulnerability Database. 2012. Vulnerability Summary for CVE-2010-5139.
Referenced 12.10.2016

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-5139

Norton, S. 2016. CIO Explainer: What Is Blockchain?. Referenced 4.10.2016.

http://blogs.wsj.com/cio/2016/02/02/cio-explainer-what-is-blockchain/

O’reilly Media, inc. 2013. Chapter 6. The Bitcoin Network. Referenced 24.2.2016

http://chimera.labs.oreilly.com/books/1234000001802/ch06.html#_the_extended_b
itcoin_network

Poiroux, J. .2015. SHA256 vs Scrypt vs x11 Algorithms. Referenced 4.10.2016.

http://blockgen.net/sha256-vs-scrypt-vs-x11-algorithms/

Pollnow, V. 2016. Why Investors Should Care About Bitcoin Mining Pools. Referenced
31.10.2016.

https://bitcoinira.com/news/2016-09-12/investors-care-bitcoin-mining-pools-1441

Poon, J & Dryja, T. 2016. The Bitcoin Lightning Network: Scalable On-chain Instant
Payments. Referenced 31.10.2016.

https://www.oreilly.com/ideas/blockchain-scalability
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System_Common_Criteria_Certification/8.1/html/Deploy_and_Install_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System_Common_Criteria_Certification/8.1/html/Deploy_and_Install_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System_Common_Criteria_Certification/8.1/html/Deploy_and_Install_Guide/index.html
https://bitcoin.org/bitcoin.pdf
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-5139
http://blogs.wsj.com/cio/2016/02/02/cio-explainer-what-is-blockchain/
http://chimera.labs.oreilly.com/books/1234000001802/ch06.html%23_the_extended_bitcoin_network
http://chimera.labs.oreilly.com/books/1234000001802/ch06.html%23_the_extended_bitcoin_network
http://blockgen.net/sha256-vs-scrypt-vs-x11-algorithms/
https://bitcoinira.com/news/2016-09-12/investors-care-bitcoin-mining-pools-1441

58

https://lightning.network/lightning-network-paper.pdf

Silva, J. 2003. An overview of cryptographic hash functions and their uses.
Referenced 28.9.2016.

https://www.sans.org/reading-room/whitepapers/vpns/overview-cryptographic-
hash-functions-879

Sptizner, L. N.d. What is MD5, and why do I care? Referenced 28.9.2016.

http://www.spitzner.net/md5.html

Wirdum, A. 2016. Understanding the Lightning Network, Part 2: Creating the
Network. Referenced 31.10.2016.

https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-
creating-the-network-1465326903

https://lightning.network/lightning-network-paper.pdf
https://www.sans.org/reading-room/whitepapers/vpns/overview-cryptographic-hash-functions-879
https://www.sans.org/reading-room/whitepapers/vpns/overview-cryptographic-hash-functions-879
http://www.spitzner.net/md5.html
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-creating-the-network-1465326903
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-creating-the-network-1465326903

59

Appendices

Appendix 1. BTC dependencies

apt-get install build-essential autoconf libssl-dev libboost-dev libboost-chrono-dev

libboost-filesystem-dev libboost-program-options-dev libboost-system-dev libboost-

test-dev libboost-thread-dev

60

Appendix 2. BTC network

61

Appendix 3. Repository address

 deb http://archive.debian.org/debian-archive/debian/ squeeze main contrib non-

free

deb http://archive.debian.org/debian-archive/debian/ squeeze-lts main contrib non-

free

62

Appendix 4. Chainparams.cpp

// Copyright (c) 2010 Satoshi Nakamoto

// Copyright (c) 2009-2014 The Bitcoin developers

// Distributed under the MIT/X11 software license, see the accompanying

// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "chainparams.h"

#include "assert.h"

#include "core.h"

#include "protocol.h"

#include "util.h"

#include <boost/assign/list_of.hpp>

using namespace boost::assign;

//

// Main network

//

unsigned int pnSeed[] =

{

63

};

class CMainParams : public CChainParams {

public:

 CMainParams() {

 // The message start string is designed to be unlikely to occur in normal data.

 // The characters are rarely used upper ASCII, not valid as UTF-8, and produce

 // a large 4-byte int at any alignment.

 pchMessageStart[0] = 0xf9;

 pchMessageStart[1] = 0xbe;

 pchMessageStart[2] = 0xb4;

 pchMessageStart[3] = 0xd9;

 vAlertPubKey =

ParseHex("04f47beaaa243f2c864baf3aab2b980ba96b67497a5cc2a888c3dd6788202

41c4df0dece8436cf3a824500b632ebe8eb41377a7c0ab6e7924adc7b1f9832199479")

;

 nDefaultPort = 8333;

 nRPCPort = 8332;

 bnProofOfWorkLimit = CBigNum(~uint256(0) >> 32);

 nSubsidyHalvingInterval = 210000;

 // Build the genesis block. Note that the output of the genesis coinbase cannot

 // be spent as it did not originally exist in the database.

 //

64

 // CBlock(hash=000000000019d6, ver=1, hashPrevBlock=00000000000000,

hashMerkleRoot=4a5e1e, nTime=1231006505, nBits=1d00ffff$

 // CTransaction(hash=4a5e1e, ver=1, vin.size=1, vout.size=1, nLockTime=0)

 // CTxIn(COutPoint(000000, -1), coinbase

04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63

656c6c6f$

 // CTxOut(nValue=50.00000000, scriptPubKey=0x5F1DF16B2B704C8A578D0B)

 // vMerkleTree: 4a5e1e

 const char* pszTimestamp = "Tama on testiviesti 23/12/2016";

 CTransaction txNew;

 txNew.vin.resize(1);

 txNew.vout.resize(1);

 txNew.vin[0].scriptSig = CScript() << 486604799 << CScriptNum(4) << vec-

tor<unsigned char>((const unsigned char*)pszTimestamp, (const unsigned

char*)pszTimestamp + strlen(pszTimestamp));

 txNew.vout[0].nValue = 50 * COIN;

 txNew.vout[0].scriptPubKey = CScript() <<

ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f6

1deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f")

<< OP_CHECKSIG;

 genesis.vtx.push_back(txNew);

 genesis.hashPrevBlock = 0;

 genesis.hashMerkleRoot = genesis.BuildMerkleTree();

 genesis.nVersion = 1;

 genesis.nTime = 1482502754;

 genesis.nBits = 0x1d00ffff;

65

 genesis.nNonce = 3492649622;

 hashGenesisBlock = genesis.GetHash();

 assert(hashGenesisBlock ==

uint256("0x0000000085411c2a7073223a3cfc1730276f832ee1ab8445a2fe5da77b7da

4c4"));

 assert(genesis.hashMerkleRoot ==

uint256("0x22e338dd8dc369c10e12a353cc7a161ac8cbf1274dda744cdc95e5e8275e

9603"));

 vFixedSeeds.clear();

 vSeeds.clear();

 base58Prefixes[PUBKEY_ADDRESS] = list_of(0);

 base58Prefixes[SCRIPT_ADDRESS] = list_of(5);

 base58Prefixes[SECRET_KEY] = list_of(128);

 base58Prefixes[EXT_PUBLIC_KEY] = list_of(0x04)(0x88)(0xB2)(0x1E);

 base58Prefixes[EXT_SECRET_KEY] = list_of(0x04)(0x88)(0xAD)(0xE4);

 // Convert the pnSeeds array into usable address objects.

 for (unsigned int i = 0; i < ARRAYLEN(pnSeed); i++)

 {

 // It'll only connect to one or two seed nodes because once it connects,

 // it'll get a pile of addresses with newer timestamps.

 // Seed nodes are given a random 'last seen time' of between one and two

 // weeks ago.

66

 const int64_t nOneWeek = 7*24*60*60;

 struct in_addr ip;

 memcpy(&ip, &pnSeed[i], sizeof(ip));

 CAddress addr(CService(ip, GetDefaultPort()));

 addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek;

 vFixedSeeds.push_back(addr);

 }

 }

 virtual const CBlock& GenesisBlock() const { return genesis; }

 virtual Network NetworkID() const { return CChainParams::MAIN; }

virtual const vector<CAddress>& FixedSeeds() const {

 return vFixedSeeds;

 }

protected:

 CBlock genesis;

 vector<CAddress> vFixedSeeds;

};

static CMainParams mainParams;

//

// Testnet (v3)

//

67

class CTestNetParams : public CMainParams {

public:

 CTestNetParams() {

 // The message start string is designed to be unlikely to occur in normal data.

 // The characters are rarely used upper ASCII, not valid as UTF-8, and produce

 // a large 4-byte int at any alignment.

pchMessageStart[0] = 0x0b;

 pchMessageStart[1] = 0x11;

 pchMessageStart[2] = 0x09;

 pchMessageStart[3] = 0x07;

 vAlertPubKey =

ParseHex("04cf98c62aafe52e15bf897df5a8cd18b12a1cbfc073fd232db696c7548a11c

4f124acd195072a335ef9163ac9930d176e69443cea0d02d47f5f4ba07b43f84daf");

 nDefaultPort = 18333;

 nRPCPort = 18332;

 strDataDir = "testnet3";

 // Modify the testnet genesis block so the timestamp is valid for a later start.

 genesis.nTime = 1482502754;

 genesis.nNonce = 3492649622;

 hashGenesisBlock = genesis.GetHash();

 assert(hashGenesisBlock ==

uint256("0x0000000085411c2a7073223a3cfc1730276f832ee1ab8445a2fe5da77b7da

4c4"));

68

 vFixedSeeds.clear();

 vSeeds.clear();

 base58Prefixes[PUBKEY_ADDRESS] = list_of(111);

 base58Prefixes[SCRIPT_ADDRESS] = list_of(196);

 base58Prefixes[SECRET_KEY] = list_of(239);

 base58Prefixes[EXT_PUBLIC_KEY] = list_of(0x04)(0x35)(0x87)(0xCF);

 base58Prefixes[EXT_SECRET_KEY] = list_of(0x04)(0x35)(0x83)(0x94);

 }

 virtual Network NetworkID() const { return CChainParams::TESTNET; }

};

static CTestNetParams testNetParams;

//

// Regression test

//

class CRegTestParams : public CTestNetParams {

public:

 CRegTestParams() {

 pchMessageStart[0] = 0xfa;

 pchMessageStart[1] = 0xbf;

 pchMessageStart[2] = 0xb5;

 pchMessageStart[3] = 0xda;

 nSubsidyHalvingInterval = 150;

69

 bnProofOfWorkLimit = CBigNum(~uint256(0) >> 1);

 genesis.nTime = 1482502754;

 genesis.nBits = 0x207fffff;

 genesis.nNonce = 4;

 hashGenesisBlock = genesis.GetHash();

 nDefaultPort = 18444;

 strDataDir = "regtest";

 assert(hashGenesisBlock ==

uint256("1625cbffa183e8037f7c2255d5f5f2c19cc89a4881738e85b67dd48b96f23176

"));

 vSeeds.clear(); // Regtest mode doesn't have any DNS seeds.

 }

 virtual bool RequireRPCPassword() const { return false; }

 virtual Network NetworkID() const { return CChainParams::REGTEST; }

};

static CRegTestParams regTestParams;

static CChainParams *pCurrentParams = &mainParams;

const CChainParams &Params() {

 return *pCurrentParams;

}

70

void SelectParams(CChainParams::Network network) {

 switch (network) {

 case CChainParams::MAIN:

 pCurrentParams = &mainParams;

 break;

 case CChainParams::TESTNET:

 pCurrentParams = &testNetParams;

 break;

 case CChainParams::REGTEST:

 pCurrentParams = ®TestParams;

 break;

 default:

 assert(false && "Unimplemented network");

 return;

 }

}

bool SelectParamsFromCommandLine() {

 bool fRegTest = GetBoolArg("-regtest", false);

 bool fTestNet = GetBoolArg("-testnet", false);

 if (fTestNet && fRegTest) {

 return false;

 }

71

 if (fRegTest) {

 SelectParams(CChainParams::REGTEST);

 } else if (fTestNet) {

 SelectParams(CChainParams::TESTNET);

 } else {

 SelectParams(CChainParams::MAIN);

 }

 return true;

}

72

Appendix 5. Checkpoints.cpp

// Copyright (c) 2009-2014 The Bitcoin developers

// Distributed under the MIT/X11 software license, see the accompanying

// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "checkpoints.h"

#include "main.h"

#include "uint256.h"

#include <stdint.h>

#include <boost/assign/list_of.hpp> // for 'map_list_of()'

#include <boost/foreach.hpp>

namespace Checkpoints

{

 typedef std::map<int, uint256> MapCheckpoints;

 // How many times we expect transactions after the last checkpoint to

 // be slower. This number is a compromise, as it can't be accurate for

 // every system. When reindexing from a fast disk with a slow CPU, it

 // can be up to 20, while when downloading from a slow network with a

 // fast multicore CPU, it won't be much higher than 1.

73

 static const double SIGCHECK_VERIFICATION_FACTOR = 5.0;

 struct CCheckpointData {

 const MapCheckpoints *mapCheckpoints;

 int64_t nTimeLastCheckpoint;

 int64_t nTransactionsLastCheckpoint;

 double fTransactionsPerDay;

 };

 bool fEnabled = true;

 // What makes a good checkpoint block?

 // + Is surrounded by blocks with reasonable timestamps

 // (no blocks before with a timestamp after, none after with

 // timestamp before)

 // + Contains no strange transactions

 static MapCheckpoints mapCheckpoints =

 boost::assign::map_list_of

 (0,

uint256("0x0000000085411c2a7073223a3cfc1730276f832ee1ab8445a2fe5da77b7da

4c4"))

 ;

 static const CCheckpointData data = {

 &mapCheckpoints,

 1482502754, // * UNIX timestamp of last checkpoint block

74

 0, // * total number of transactions between genesis and last checkpoint

 // (the tx=... number in the SetBestChain debug.log lines)

 500.0 // * estimated number of transactions per day after checkpoint

 };

 static MapCheckpoints mapCheckpointsTestnet =

 boost::assign::map_list_of

 (0,

uint256("0x0000000085411c2a7073223a3cfc1730276f832ee1ab8445a2fe5da77b7da

4c4"))

 ;

 static const CCheckpointData dataTestnet = {

 &mapCheckpointsTestnet,

 1482502754,

 0,

 300

 };

 static MapCheckpoints mapCheckpointsRegtest =

 boost::assign::map_list_of

 (0,

uint256("1625cbffa183e8037f7c2255d5f5f2c19cc89a4881738e85b67dd48b96f23176

"))

 ;

 static const CCheckpointData dataRegtest = {

75

 &mapCheckpointsRegtest,

 0,

 0,

 0

 };

 const CCheckpointData &Checkpoints() {

 if (Params().NetworkID() == CChainParams::TESTNET)

 return dataTestnet;

 else if (Params().NetworkID() == CChainParams::MAIN)

 return data;

 else

 return dataRegtest;

 }

 bool CheckBlock(int nHeight, const uint256& hash)

 {

 if (!fEnabled)

 return true;

 const MapCheckpoints& checkpoints = *Checkpoints().mapCheckpoints;

 MapCheckpoints::const_iterator i = checkpoints.find(nHeight);

 if (i == checkpoints.end()) return true;

76

 return hash == i->second;

 }

 // Guess how far we are in the verification process at the given block index

 double GuessVerificationProgress(CBlockIndex *pindex, bool fSigchecks) {

 if (pindex==NULL)

 return 0.0;

 int64_t nNow = time(NULL);

 double fSigcheckVerificationFactor = fSigchecks ?

SIGCHECK_VERIFICATION_FACTOR : 1.0;

 double fWorkBefore = 0.0; // Amount of work done before pindex

 double fWorkAfter = 0.0; // Amount of work left after pindex (estimated)

 // Work is defined as: 1.0 per transaction before the last checkpoint, and

 // fSigcheckVerificationFactor per transaction after.

 const CCheckpointData &data = Checkpoints();

 if (pindex->nChainTx <= data.nTransactionsLastCheckpoint) {

 double nCheapBefore = pindex->nChainTx;

 double nCheapAfter = data.nTransactionsLastCheckpoint - pindex->nChainTx;

 double nExpensiveAfter = (nNow - da-

ta.nTimeLastCheckpoint)/86400.0*data.fTransactionsPerDay;

 fWorkBefore = nCheapBefore;

77

 fWorkAfter = nCheapAfter + nExpensiveAfter*fSigcheckVerificationFactor;

 } else {

 double nCheapBefore = data.nTransactionsLastCheckpoint;

 double nExpensiveBefore = pindex->nChainTx - da-

ta.nTransactionsLastCheckpoint;

 double nExpensiveAfter = (nNow - pindex-

>nTime)/86400.0*data.fTransactionsPerDay;

 fWorkBefore = nCheapBefore +

nExpensiveBefore*fSigcheckVerificationFactor;

 fWorkAfter = nExpensiveAfter*fSigcheckVerificationFactor;

 }

 return fWorkBefore / (fWorkBefore + fWorkAfter);

 }

 int GetTotalBlocksEstimate()

 {

 if (!fEnabled)

 return 0;

 const MapCheckpoints& checkpoints = *Checkpoints().mapCheckpoints;

 return checkpoints.rbegin()->first;

 }

78

 CBlockIndex* GetLastCheckpoint(const std::map<uint256, CBlockIndex*>&

mapBlockIndex)

 {

 if (!fEnabled)

 return NULL;

 const MapCheckpoints& checkpoints = *Checkpoints().mapCheckpoints;

 BOOST_REVERSE_FOREACH(const MapCheckpoints::value_type& i, checkpoints)

 {

 const uint256& hash = i.second;

 std::map<uint256, CBlockIndex*>::const_iterator t =

mapBlockIndex.find(hash);

 if (t != mapBlockIndex.end())

 return t->second;

 }

 return NULL;

 }

}

