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The purpose of this study was to find a solution and develop a working mobile phone appli-
cation that allows user scanning of specific objects with usage of standard phone configura-
tion without involvement of any additional external devices. This thesis demonstrates the 
implementation of the 3D scanning application including problems found during develop-
ment and results of the application workflow. 
 
An appropriate solution was found in the form of silhouette scanning technique. The solution 
allows reconstructing the model with moderate inaccuracies using a combination of data 
gathered from multiple embedded sensors and processing of the data.  
 
A semi-successful mobile phone application was built in the project by using an open-course 
code library OpenCV for the Google Android mobile platform. The application produces a 
3D model billet of the scanned object on the basis of taken images and rotation angles, yet 
an accurate version of the object cannot be recreated and further work is needed before the 
application will reach a sustainable and competitive state. 
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1 Introduction 

Throughout human history people have endeavoured to cease the time, seize the mo-

ment and embody it in any available form of fine arts. Humans have devised and nurtured 

a multitude of arts, starting from the most ancient cave drawings and Venus figurines, 

statues of Ancient Greece and the Renaissance period, and including the relatively re-

cent epoch with the involvement of the latest chemical, mechanical and electrical accom-

plishments. Artists, sculptors and artisans have spent years of their lives in the recreation 

of only one moment or idea. Over time, progress has brought and still brings new abilities 

and opportunities for realization of ideas to creative people.  

 

Since the middle of the twentieth century, computer technologies started development 

with a quick pace. Breakthroughs in chemistry have permitted minimizing significantly 

electronic components needed for production of computer hardware. The consequence 

of this was the appearance of first mobile phones and the rapid development of their 

capabilities and rising amount of embedded technologies. In twenty years, phones have 

transformed from simple transportable communication devices to miniature computers 

with a single camera or several cameras and various sensors, including accelerometer, 

magnetometer and gyroscope.  

 

The invention of the computer presented an opportunity to humanity to develop a new 

art - computer graphics. The development of computer graphics advanced similarly to 

the development of human arts: from the simplest textual and pixel graphics to photore-

alistic three-dimensional models, from necessity to calculate every value and draw every 

pixel manually to a dynamic generation of world models and drawings with the help of 

machine learning and artificial intelligence.  

 

Collaboratively with three-dimensional modelling, three-dimensional scanning is evolv-

ing, drastically behind the modelling by means of time and broadness of used technolo-

gies. The scanning allows recreating a billet of a meaningful model for subsequent re-

finement. However, present realizations of the scanning process do not allow recon-

structing top-quality models without a participation of a specialist and require considera-

ble financial and time expenditures for procurement and maintenance of applied high 

technology equipment. In addition, the mobile application market does not have a free, 

open source and commonly available solution on a turnkey basis without the involvement 

of supplementary devices or protracted configuration and calibration.  
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The objective of the study described in this thesis was a creation of a fully functioning 

three-dimensional scanning application. The application was developed for Android-

based mobile devices of a standard configuration and used the open source library 

OpenCV, which is mainly aimed at image processing and real-time computer vision. The 

scanning application covers all working processes, starting from taking a camera shot to 

recreation of a model in the form of an OBJ file, which is a widely-used standard in the 

3D modelling industry and suitable for the subsequent import and modification.   
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2 Brief history of computer graphics 

 

2.1 Origins 

 

The “computer graphics” term was used for the first time publicly in the year 1960 by the 

art director of The Boeing Company, William Fetter, who worked with research of graphic 

technologies for a future application in the development of jet planes drafts [1]. Multiple 

sources also state him saying that his work colleague Verne Hudson suggested it to him 

originally [2]. At first, the term computer graphics was used inside the company for de-

scription of works and drafts made by a mechanical plotter controlled by a computer [1].  

 

Fetter was convinced that the appearance and wide distribution of computers will change 

and broaden up the creative potential of humanity and that the computer in its complete 

form will be serving as a tool for an explicit projection of thoughts and emotions. Together 

with his colleagues, programmers and engineers of Boeing Company, Fetter developed 

first in the world a computer model of the human and its motion simulations, shown in 

figure 1, thereby demonstrating a revolutionary new face of computer facilities applica-

tion. His following artistic work and participation in the Arts and Technology movement 

inspired him to support a growing collaborative society of artists and engineers. His ef-

forts to build a bridge of communication between artists and engineers led to the creation 

of “Circles I”, an early computer-generated film made in cooperation between Boeing 

engineers, Doris Chase, local filmmakers and artists. Fetter’s dedication and endeavours 

showed to artists a computer as an instrument to work with and gave a first impetus to a 

wide distribution of computer graphics. [1.]  

 

 

Figure 1. William Fetters Boeing man model. Reprinted from cgsociety.com [3]. 

 



5 

 

 

2.2 3D modelling and animation 

 

In 1972, two graduate students, Ed Catmull and Fred Parke, of Utah University intro-

duced their thesis project – a one-minute movie with a three-dimensional polygonal rep-

resentation of a human hand, which became one of the first prototypes of 3D computer 

animation. The movie contains a process of the creation and several short computer 

animations – a hand rotation, a fingers’ flexure, pointing by a finger to a watcher and a 

hand’s wireframe model at the end. [4.] Selected movie frames are shown in figure 2. 

 

 

Figure 2. Frames from ‘A Computer Animated Hand’. Copied from Steemit [5]. 

 

Later, Catmull became one of the cofounders of a company called Pixar, specializing in 

the production of feature-length movies fully made with the computer graphics [4].  

 

In 1977, the first movie of the George Lucas’ Star Wars trilogy was released in wide 

screen theaters and it had a three-dimensional wireframe imagery that represented the 

Death Star inner plans and structure, shown in figure 3. It was made by a computer artist 

Larry Cuba on the basis of a photo of a matte painting by using a minicomputer with a 

monochrome display and a vector-graphics system that allowed drawing only lines. [6.]  
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Figure 3. Frame from ‘Star Wars’ movie. Reprinted from Price [6]. 

 

The computer-generated imagery started to appear in high-budget movies during the 

1980’s and the 1990’s, the most remarkable and well-known being Tron, Terminator 2, 

Start Trek IV and James Cameron’s The Abyss. In 1995, Ed Catmull and his company 

Pixar released the feature length movie Toy Story made in full of the 3D computer-gen-

erated imagery, which was nominated and won multiple awards for the animation, tech-

nical and special achievements and innovations [7]. Pixar and a number of other com-

panies, including Disney and DreamWorks, has developed the idea of a computer-gen-

erated imagery feature length cinematography and gave to the world such marvelous 

movies as WALL-E, Zootopia, Finding Nemo, Shrek. [8.]  

 

Creation of CGI-based movies is no longer a prerogative for a dedicated business. Mo-

tion picture companies and directors are able to recruit independent graphic studios for 

implementation of particular aspects or parts of the movie. In 2009, James Cameron 

concluded a contract with Weta Digital and Industrial Light and Magic companies to ac-

complish work on visual effects, modelling and a motion capture of actors for the creation 

of the movie Avatar. Production also involved such companies as Microsoft, which de-

veloped and provided a cloud computing technology and the Digital Asset Management 

system specifically for the movie, a server render farm of Hewlett-Packard servers and 

Pixar’s technologies of Renderman and Alfred queue management system. [9.] A signif-

icant speedup of the work process and the release of the incredibly high-quality CGI in 

the Avatar movie were the result of this extraordinary union. The movie won all possible 

nominations related to computer graphics including one of the most popular – the Oscars 

[10].  

 

Nowadays the computer animation can be seen anywhere, as special effects on televi-

sion, in cinemas and games, and in different multimedia applications. It keeps evolving, 

trying to reach the most photorealistic level of the computer graphics. The achievement 

of the photorealism will heavily affect the production processes in the film industry and 

the life of ordinary people.   

 

2.3 3D modelling software 

 

The first commercial software for creation and working with the 3D graphics were 

launched in the 1980’s. A well-known company called Autodesk entered the market in 
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1982 with its first and primary product AutoCAD, a commercial drafting software appli-

cation for computer-aided design, which allowed and simplified the process of the draft 

production on personal computers. Possibility to create three-dimensional models in the 

manner of either transformation of two-dimensional drafts or a model creation from a 

scratch was added in subsequent versions of the application. The company cultivated 

the idea of working with the 3D graphics and in 1990 released a fully dedicated modelling 

software called 3D Studio, known as 3DS Max nowadays, for the DOS operational sys-

tem. [11.] 

 

Alongside with Autodesk, competitive companies were developing and fighting for the 

market of computer graphics. Wavefront, Softimage and Side Effects Software were the 

most notable of them.  

 

The main products of Softimage, Softimage 3D and its successor XSI, were aimed to 

work with CGI for feature length movies. They were used for the creation of visual effects 

of Titanic, Fifth Element, 300 and Jurassic Park. During its lifespan, Softimage heavily 

influenced the animation industry. Softimage was the first to bring animation tools to per-

sonal computers under the Windows system and as a result increased affordability and 

accessibility of tools to end customers. Softimage developed the first integrated anima-

tion, effects and post-production systems. In 1994, Microsoft bought the company to 

strengthen its own role in the multimedia and interactive television production, yet six 

years later sold Softimage to Avid Technologies, which wanted to expand its own busi-

ness to the CGI market. [12.]  

 

Wavefront products were oriented to cover a wide range of computer graphics applica-

tions and were used on television, in movies, and in academic and engineering visuali-

zations. Wavefront started its way with release of Advanced Visualizer, a suite of inde-

pendent applications for an image and graphic animation processing that was used for 

the production of CGI in Jurassic Park, Terminator 2 and Abyss. Wavefront was the first 

in the world to release one of the earliest commercial tools for scientific visualizations, 

named Data Visualizer. In 1995, the Wavefront company was bought by Silicon Graphics 

Inc. and was merged with Alias Systems Corporation into the super company called 

Alias|Wavefront as a response to Microsoft’s attempt of taking over the 3D market by 

purchasing the Softimage company. Alias|Wavefront released their most well-known 

product, a 3D modelling and animation application called Maya, based on the code of 

Advanced Visualizer. [13.] 



8 

 

 

 

Autodesk company was more prosperous than other companies in the industry. It 

avoided being purchased by big IT corporations and in the years of 2006 and 2008 it was 

able to buy its previous competitor Softimage from Avid [14] and Alias|Wavefront from 

Silicon Graphics Inc. [15], becoming one of the largest companies in the industry. Its 

major role in the market permits the Autodesk company to increase the prices of its own 

products [16] and implement a subscription-only based purchase model as a result [17], 

neglecting extremely negative responses from customers. 

 

The modelling software market was relatively closed until the end of the 1990’s. Small 

companies with their own products stand almost no chance in competition with industry 

leaders. Nonetheless, an inaccessible affordability for private customers, a high barrier 

to entry and an absence of a wide selection on the market stimulated the appearance of 

a number of free alternatives, the most notable being Blender, Anim8or and Open CAS-

CADE. Blender started as an in-home toolset, made by Ton Roosendaal, and later was 

transformed into a commercial product under Ton’s company named Not a Number. The 

company used to provide services and commercial products for the Blender and was 

financed by several investment companies. Low sales and economic problems made 

investors to discontinue financing in early 2002, which led to open sourcing Blender un-

der the GNU license and the community support and development. [18.] 

 

Blender was considered as the most popular modelling software for 3D printing in 2015. 

Nevertheless, as it is shown in figure 4, the number of Autodesk products (AutoCAD, 

Maya, 3DS Max, 123D Design, Inventor, Fusion 360, and Meshmixer) allows naming 

Autodesk company as the largest player in the industry with the widest audience cover-

age. [19.] 
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Figure 4. Popular modelling software used for 3D printing. Copied from Top 25: Most 
Popular 3D Modeling & Design Software for 3D Printing [19]. 

 

2.4 3D scanners 

 

The first attempt to create a functional 3D scanner was taken in 1980’s. It was a contact 

probe scanner, which could provide precise results but the complete scanning process 

took a very long time, and the scanner could not scan objects with a soft surface well. In 

search of speeding up the scanning process and avoiding the prodding problems of ob-

jects, researchers decided to look into other possibilities and started developing scan-

ning based on optical technologies. [20.] 

 

At the time, only three types of the optical sensors were available, shown in figure 5: 

• Point sensor, which scanned only one point of the object at once and due to this 

did a lot of physical movement across the scanning object [20]; 

• Area sensor, which made an area scanning at once, but was technically difficult 

to realize [20]; 

• Stripe sensor, which captured a band of multiple points of object at once [20]. 
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Figure 5. Point, Area and Stripe scanning optical technologies. Reprinted from 
Hoffmann [20]. 

 

Stripe technology was the golden mean between the capturing speed, accuracy and the 

complexity of technical realization and was chosen for further development. The optical 

sensor needed to accomplish the scanning multiple times from different positions for 

capturing objects in three-dimensional space. Data, collected from scans, could be rep-

resented by millions and millions points and had duplications, which raised difficulties to 

software for processing this kind of data amount. [20.]  

 

In the 1980’s, Cyberware Laboratories developed the Head Scanner, the first scanner to 

capture human shapes and proportions for the animation industry. It used a low intensity 

laser to create a highlighted profile of an object after which a reading sensor captured 

the profile. In an extended version of the scanner, a second sensor would capture a color 

of the object at the time of scanning. The output of the scanner was represented in a 

cloud of points, in which each point had coordinates of the X-, Y- and Z-axes and a 24-

bit RGB value for color. The Head Scanner and its example results are shown in figure 

6. [21.] 
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Figure 6. Cyberware Head Scanner and its results. Copied from cyberware.com [21]. 

 

In the 1990’s, the company made a step further and developed a successor to the Head 

Scanner – the Whole Body Scanner. It allowed capturing the full human body shape and 

its color in only 20 seconds, starting moving down from the head. The Whole Body Scan-

ner and its example results are shown in figure 7. [21.] 

 

 

Figure 7. Cyberware Whole Body Scanner and its results. Reprinted from 
cyberware.com [21]. 

 

The scanning solutions of Cyberware Laboratories were very expensive and affordable 

only to big companies, with the Head Scanner starting from $63,000 and the Whole Body 

Scanner starting from $200,000 in domestic American sales [22]. Both the Head and the 

Whole Body Scanners were full-scale working stations due to their sizes and weights. In 

packed condition, the Head Scanner took 1.9 x 2.0 meters and weighed 127 kg; the 

Whole Body Scanner was 2.0 x 1.2 meters and 450 kg [23]. They were not easily trans-

portable and demanded setup and calibration after the haulage. 
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In late the 1990’s, many companies, including the earlier mentioned Cyberware, made 

efforts to expand and develop scanning technologies. Digibotics launched a laser point 

based scanner that worked in four axes with six degrees of freedom but was slow and 

unable to trace a color. 3D Scanners introduced REPLICA, a laser stripe based scanner, 

which made a serious progress in the industry. The Faro Technologies and Immersion 

companies tried to reduce production expenses of scanners and released low-cost prod-

ucts that were able to create a complete model but were slow and had accuracy that was 

lower than usual. Another 3D Scanners product, named ModelMaker, was a combined 

laser stripe scanner with a manually operated arm. ModelMaker was able to create com-

plex and accurate models and color them, while being a flexible and fast device. Its com-

plete scanning process could take just mere minutes. [20.]  

 

Since the middle of the first decade of the 2000’s, transportable 3D scanners – such as 

first generation models of REVscan [24] - started to appear and penetrate into profes-

sions not tied to the one specific workplace. They found their own application in different 

offsite work, e.g. in work of U.S. federal investigators and anthropologists [25]. The 3D 

scanning became widespread in medicine, in computer tomography [26], in museums 

and in archeologic work. It was used for saving the cultural heritage in digital form, like a 

scanning of Kasubi Tombs in 2009 [27] and a scanning of Thomas Jefferson’s Monticello 

in 2002 [28].  

 

Currently, the 3D scanner market is diverse and extensive. Scanners has undergone the 

process of minimization and became easily transportable by hands in comparison with 

early scanning stations. A variety of stationary desktop and handheld scanners is avail-

able with affordable cost with different scanning techniques involved [29]. 

 

Affordability and accessibility of specific electronic components and the widespread dis-

tribution of computer hardware allow many hobbyists to develop their own scanning so-

lutions at home. Ordinarily, they publish their designs and drafts on the Internet free of 

charge with the full description on what components are needed, where to buy the com-

ponents and how to assemble the working station. Some of them even put low-cost do-

it-yourself kits of their scanners on the market for sale.  

 



13 

 

 

FabScan is one of the most notable homemade scanners. Francis Engelmann started 

the FabScan project as his bachelor’s thesis with the production cost of 150 euros. Orig-

inally, it was based on a laser, a rotary object plate with a stepper motor and a simple 

web camera. Engelmann released FabScan as an open-source project so that everyone 

could use and apply any changes to it. [30.] Mario Lucas used the FabScan project as a 

basis for his own thesis work and extended it into a Raspberry PI platform, shown in 

figure 8. By doing so, he minimized the scanner with usage of a native Raspberry camera 

and separating FabScan with computer hardware. [31.] 

 

  

Figure 8. FabScan PI and its result. Copied from Thar [32]. 

 

The creation of FabScan has shown that with the certain diligence and determination, a 

person is able to achieve significant results without access to serious manufacturing ca-

pacities and obtain in the result a high-quality product. Due to efforts and ingenuity of 

Francis Engelmann, FabScan became a great alternative to commercial products on the 

market. Most importantly, his developments are open to public access and modifying, 

which will allow this project to live and progress through society contributions.  

 

Homemade scanners are able to compete with featured commercial products even by 

now and affect the industry by striking to the overall price, thereby forcing companies to 

release more low-cost products.  

 

Fairly recently smartphone-based scanners were introduced to the market. A rapid evo-

lution of mobile devices and their operational systems allowed them gradually to adopt 

the functionality of computer systems in some aspects of data processing. Smartphone-

based 3D scanners are represented in the majority as a combination of two devices: an 

independent attachment that does actual scanning and a smartphone, which is used 

merely as a computing unit. EORA 3D Scanner is an example of combined devices [29]. 

However, a number of 3D scanners that work only with a standard configuration of 
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smartphone is drastically small in comparison with the number of combined 3D scanners. 

3D scanners aimed for the standard configuration of smartphone are represented as 

standalone applications, which use principles of photogrammetry. The most notable 

ones are Autodesk 123D Catch (http://www.123dapp.com/catch), Trnio 

(http://www.trnio.com/) and Scann3D (http://scann3d.smartmobilevision.com/).  

 

In spite of being of the same type, the way they work differs sharply. All computations for 

model reconstruction in 123D Catch and Trnio are performed on the cloud [33]. This 

structure of the application demands a network connection and the ownership of a user 

account in the service of providing company. In addition, the structure restricts the role 

of the application only to the image capture and a preview of a completed model. On the 

contrary, Scann3D executes all computation exclusively on the device, albeit it still allows 

publishing the model on the Internet [33]. Undoubtedly, the cloud computing benefits in 

the speed of work, but the 3D scanner becomes divided into client and server parts, 

which hampers the application support.  

 

The smartphone-based segment of the 3D scanning market is developing slowly. At the 

time of writing this thesis only three given applications displaying reasonable results were 

available. Furthermore, only Autodesk 123D Catch was available on all popular mobile 

operational systems, when Scann3D was limited to Android and Trnio to iOS only [33]. 

 

3D scanners have been defined as a convenient tool in various areas of human activity. 

The American Federal Bureau of Investigation (FBI) uses them for cast creation of crime 

or accident scenes [34]. Museums and historians use scanners for saving ancient arti-

facts, relics and remains as digital models [35]. In medicine, they are used for creation 

of prostheses, dental implants and orthoses. Plenty of professions are able to find a 

practical application for 3D scanning. 
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3 Theory of 3D modelling 

 

3.1 3D modelling 

 

A three-dimensional model is a recreation of an abstract or physical object, made in form 

of a point cloud or a polygonal mesh with connection by diverse geometric entities.  

 

Visualizations of point cloud and mesh are shown in figure 9. 

 

  

Figure 9. Point cloud (a) and corresponding polygonal mesh (b). Reprinted from Hosoi 
et al [36]. 

 

Point cloud is the simplest representation made of multitude of separate points in 3D 

space. Typically, point clouds are not used in the modelling but are products of a 3D 

scanner work which will be converted into a mesh later via different processing algo-

rithms. 

 

Mesh, or polygonal mesh, is a set of vertices, edges and faces that represents the object 

surface, where a vertex is simply a point in space, where an edge is a line connection 

between two vertices and a face is a set of closed edges, which can be a triangle face 

consisting of three edges or a quad face made of four edges. Visualization of the given 

elements is shown in figure 10. [37.]  
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Figure 10. Visualization of vertices (1), edges (2) and quad faces (3). Copied from 
What is a Mesh? [37]. 

 

Usually, models are classified into two categories –  solid models and surface models. A 

solid model represents an object and its physical characteristics, used for engineering 

and scientific simulations such as load analysis. A surface model is a representation of 

an object shell without any physical characteristics, and it is used for visualization only, 

such as in movies and games. [38.]  

 

A 3D modelling is a process of a model creation. A model is visualized as a two-dimen-

sional image via the 3D rendering process or other visualization technologies. There are 

several commonly used methods for modelling [39]:  

• Polygonal modelling, represented by vertices connected with edges for forming 

of a polygonal mesh. Due to the planar nature of polygons, curved surfaces are 

approximately simulated by using a multitude of polygons. The polygonal model-

ling is a popular modelling process because of flexibility, overall lightness and 

possibility of a polygonal mesh to render in easy and quick way. [39.] 

• Curve modelling, where curves are used for the generation of a surface geometry 

with mathematical equations and are influenced by weight control points. For de-

scription of surface forms, the curve modelling may rely on non-uniform rational 

B-splines (NURBS), geometric primitives and common splines. [39.] 

• Digital sculpting, where a model is used as clay during usual sculpting to form an 

object surface with application of different displacements [39].  

• Code-driven modelling, where the code or a procedure generates a model in con-

ditions set by user [39]. 
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• 3D scanning, where a model is generated based on provided data. Different tech-

niques are described in the following chapter. 

 

3.2 3D scanning 

 

A 3D scanning is a process of a capturing object shape with usage of specific equipment 

and producing a 3D model as a result. The produced model may be in a different form, 

such as a point cloud, a polygonal mesh, either texturized or colorized.  

 

3D scanners can be categorized by: 

• Range of use – short, mid and long ranges, which depends on the manufacturer 

choice. In general, all stationary desktop scanners with a rotating stand may be 

considered as short range, because their range of scanning are limited to their 

physical size. 

• Type of an object region scanning – a point, a line or an area scanning, shown in 

figure 5 on page 10. 

• Type of an applied scanning technology. 

 

Scanning technologies are usually divided into two general categories: 

1. Contact, where a scanning device is using a mechanical touch probe to deter-

mine physical geometrical characteristics of a specific object. Contact technolo-

gies were first applied technologies in the 3D scanning and are still used today 

in modern coordinate-measuring machines in combination with other scanning 

methods. [40.]  

2. Noncontact, which involves a variety of other proximity scanning methods, such 

as a laser triangulation and pulse, a structured and modulated light, and photo-

grammetry. The presented noncontact methods include active methods, which 

emit any kind of a light or a laser signal onto an object, and passive, which do not 

emit anything and rely on reflected ambient radiance. [40.] 

 

Laser triangulation 

 

A laser triangulation scanner uses two general devices, a laser-generating module and 

a reading sensor or a camera, for obtaining the distance to the scanning point of refer-

ence. Distance to the object point (Z mark in figure 11) is calculated by applying the 

triangulation principle with known baseline b and angle α between the laser module and 



18 

 

 

the camera. The angle and baseline parameters determine the aggregate performance 

of the scanner in aspects of sensing range, occlusion of either laser light or camera’s 

reading due to obstacles or other object surfaces and depth resolution. The laser trian-

gulation technology is one of the most used technologies in handheld and portable de-

vices. [41; 42.] 

 

 

Figure 11. Laser triangulation scanner apparatus. Reprinted from Munaro et al [41]. 

 

Laser pulse scanners are based on the time-of-flight principle and are almost similar to 

the laser triangulation scanners on module level, with application of a laser source and 

a reading sensor. The accuracy of a scanner depends on the precision of a time meas-

urement between the emitting and receiving laser, reflected from an object surface. Dis-

tance to a scanned point is determined by half of the measured time, due to a laser taken 

a round-trip and a well-known speed of light. [42.] 

 

Structured light 

 

The structured light technology is based on the same triangulation principle but instead 

of a laser-emitting module, a light source is used. It projects a multiple linear pattern 

patch to the object and examines a line edge deformation to calculate the distance and 

form. Projected patterns provide a highly precise depth perception and accurate meas-

urements as a result. The structured light technology is considered as highly accurate 

and low noise but habitually not very portable. The technology is also sensitive to ambi-

ent lighting and limited to an area scanning only. An example of the scanning process of 

the structured light is shown in figure 12. [42.]  

 



19 

 

 

 

Figure 12. Structured light scanner usage. Copied from McDonald [43]. 

 

Modulated light 

 

Modulated light scanning systems use a time-of-flight principle, by analogy to laser pulse 

systems. The source radiates a light signal with a continually varying amplitude in form 

of a sine wave. The camera receives the reflected light and determines the distance by 

analyzing how much the light phase was shifting. In contrary to the structured light, mod-

ulated systems are not interfered by the light of other than scanners sources. The tech-

nology has the same pros and cons as the structured light. [40.] 

 

A reflectance and transparency of an object surface significantly affect the accuracy of 

the aforementioned light and laser scanning technologies. The laser signal will not return 

to the reading sensor after being absorbed with a low reflectance level surface or a per-

meating translucent surface. [41.] There is no simple and viable solution to this problem 

but mere workarounds, such as heating the object and acquiring its geometrical shape 

via a thermal imaging device [44] or coating a surface with a temporary non-transparent 

spray [45]. An example of a dark-colored object with low reflectance problem is shown 

in figure 13. 
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Figure 13. Reflectance problem example. Reprinted from Wohl [46]. 

 

Photogrammetry 

 

The photogrammetry is a science of making accurate measurements on the basis of 

taken photos. It is not dedicated to the three-dimensional scanning only, but involves it 

as one of the parts of application. A photogrammetry-based scanning relies only on a 

reflected ambient luminesce and is considered as a passive method. [47.] Due to a vast 

development of the image processing, it includes a multitude of methods that are used 

in the scanning [40]. 

 

Stereoscopy 

 

the stereoscopy involves usage of two cameras, pointing at the same object and taking 

pictures at the same moment of time. Slight differences between pictures and a known 

angle between cameras allow computing a disparity map and a depth map, which are 

used for determining the distance to an object surface vertices, with a one vertex per 

map pixel. [40.] 

 

Photometry 

 

The photometric scanning implies taking multiple photos of an object under different spe-

cific light conditions, such as with a light source above, below, in front of and behind the 

object. During the process the object should stay stationary. [40.] Typically, the technol-

ogy demands setting up a special photometry booth with a great number of cameras 

pointing under a purposely-calculated angle and a plenty of light sources for obtaining 
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the best results, which is quite an expensive technology to be built up from scratch, an 

example of which is shown in figure 14 [48]. Notwithstanding this, low-cost versions also 

exist with appropriately reduced quality, using only one DSLR camera and four light 

sources attached to it [49]. 

 

 

Figure 14. Photometric scanning process photoset. Copid from Next Generation 
Photometric Scanning [48]. 

 

Silhouette techniques 

 

The silhouette technique scanning derives object shape in form of an outline from photos, 

usually taken on high contrast background or chromakey. A surface recreation is 

achieved by extruding the outlines and finding the intersections between them. Due to 

this algorithm, cavities and small details, hidden in between convexities, are not de-

tected. [40.] 
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4 Smartphone 3D scanner prototyping 

 

4.1 Usage of mobile device and sensors  

 

According to statistics of the year 2015, almost one third of the world’s population owns 

at least one smartphone, making it one of the widest spread technologies and the percent 

of penetration keeps growing, following the increasing affordability of smartphones [50].  

 

Performance of smartphones is rising annually, ensuing the same Moore’s law, as the 

computer system performance [51]. Even now, it is possible to face a plethora of 3D 

games with a qualitative graphics and a various CAD software, needing considerable 

capacities during the work that was released specifically for the mobile phones. 

 

The Google Android is a mobile operation system, currently dominating the market with 

the coverage of 86% of all smartphones in the world. Another popular smartphone oper-

ational system is the Apple iOS with coverage only in 12% of the market. [52.] In general, 

both operation systems are equal in terms of convenience and functionality to an end 

user. In this situation, it will be better to aim on the Google Android platform during the 

development of the prototyping application, because the Android platform is more ac-

cessible in concepts of cost and it is more widespread, giving an opportunity to test the 

application on a larger number of devices.  

 

The latest version of the Google Android, 7.1 Nougat, was released on 4th October 2016. 

In obedience to official statistics of 9th January 2017, it is used only on 0.2% of all Android 

devices, and the most popular versions are still 6.0 Marshmallow with 29.6%, 5.0 Lollipop 

with 33.4% and 4.4 KitKat with 22.6% of all Android devices [53]. For achieving the max-

imum coverage of Android users, the aim should be set to the lowest given version, since 

all consequent versions have backward compatibility with previous ones. In total, with 

development aimed to the 4.4 version, prototyped application will be accessible to 86% 

of all Android users. 

 

A standard configuration of modern smartphones includes front and read cameras with 

flash, an accelerometer, a gyroscope, a magnetometer and, in some cases, more ex-

traordinary sensors such as a barometer, a thermometer and a dosimeter [54]. The 

Google Android does not have explicit requirements to specifications of accuracy and 
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precision of supplied device sensors; thus, hardware implementation varies between 

models and manufacturers. It is logical to expect that high-priced devices have installed 

more expensive and accurate sensors while low-cost models have cheap ones with big-

ger fallibilities. Furthermore, a sensor is a measuring instrument that must be calibrated 

over the time. Some of the supplied sensors were calibrated during a factory manufac-

turing and some were not. Regrettably, there are no statistics on this subject. This leads 

to the fact that the result of the prototyped application work will vary as well between the 

smartphones. Nonetheless, sensors can be calibrated manually [55] with the use of a 

third-party application and they can provide quite good results of gathered data.  

 

In spite of marketing specialists determining the camera quality by the amount of ac-

quired megapixels, the amount of megapixels is not related to the camera quality. The 

megapixel is one million of pixels that forms the image [56]. A photo quality relies on 

camera optics, a camera sensor and a subsequent processing. Smartphone camera op-

tics are not comparable with professional optics by virtue of their own dimensions and 

architecture for the sake of mobility and minimization, yet it is enough to produce images 

of acceptable quality. Indeed, there are certain types of phones with advanced cameras, 

so called camera phones, but they are very rare on the smartphone market. Optics im-

provement is an expensive and a sophisticated objective; thus, manufacturers empha-

size increasing the number of megapixels [57], not only amongst smartphone cameras 

but also amongst any other ones. An important factor heavily affecting a photo quality on 

a mobile device is an autofocus, which is realized by a contrast detection on the majority 

of smartphones [58]. 

 

4.2 Initial composition 

 

In consequence of the fact that the prototyped application was limited by basic specifi-

cations and a standard configuration of smartphones, preference to the silhouette scan-

ning technique was given, needing not any additional devices.  

 

The choice of this technique applied further restrictions to the application during the 

photo shooting:  

• object has to be on focus to avoid an unclear silhouette’s contour  

• object has to be centered in the photo for a truthful juxtaposition of silhouette and 

a device rotational angle 

• object has to fully fit in the photo  
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• object has to be distinguished on the background, superfluous details must not 

be recognized as a part of an object 

• object and its relief should not cast deep black shadows to avoid their influence 

on silhouette detection  

• photo shooting has to be accomplished in a short time, because a device will not 

be in totally static condition 

 

In the development of an application roadmap, the first appearing question was to how 

to take a photo in the best way. How to achieve the best focus of the object and its 

contrast? The best decision is to delegate this function to an external application, set as 

default in the user’s smartphone, because creation of a meaningful professional photo 

application is not an objective of this study and deserves a separate and detailed discus-

sion.   

 

During the time of a photo shooting, device rotational angles have to be acquired and 

stored. Acquisition has to be done on the basis on a smartphone’s magnetometer, ac-

celerometer and gyroscope data. Rotational angles may be stored in for example INI-

format for a future reference in a model reconstruction. Notwithstanding that the INI-

format is considered as deprecated by Microsoft, it is easily readable and modifiable by 

user in its raw form. Regrettably, Android does not support the INI file format natively 

and an additional external code library ini4j has to be used for it [59].  

 

Presumably, a taken photo has to be scaled down to speed up a processing calculation 

on the small powers of a mobile device. 

 

The object of scanning has to be extracted from a background, which means relying on 

automatic segmentation is risky due to capturing superfluous details or discarding the 

meaningful ones. The user should be able to mark manually all necessary areas to be 

discarded or added. 

 

Considering the fact that the camera will move around the object, size of the object will 

be fluctuating between photos depending on camera approaching and drifting apart. Ex-

tracted objects from different photos have to be aligned to the same size for a successful 

juxtaposition of silhouettes. Due to the unknown distance to the object, a question ap-

peared on how to determine a scaling coefficient of images. 
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The contours of silhouettes have to be retrieved from objects of the same size. Contour 

must be a precise and distinct line of one color with the width of one pixel. This format 

allows transfiguring the contour easily to a point array in three-dimensional space.  

 

Contours, transfigured to point array, should be revolted around axes in 3D space. It is 

important that contour points were centered regarding the starting points of all axes in 

space for a successful detection of intersections in the future.  

 

The most logical solution for a search of intersections will be an extrusion of contours. 

Extrusion has to be accomplished by casting a line through each point of array, which is 

parallel to the camera view vector with line’s center situated directly in the point. The 

length of the casted line should be more than a maximum distance between the most 

remote points of the contour. It is a good idea to use the width or the height of a taken 

photo, depending on what the biggest value is. 

 

Model reconstruction has to be done by a search of intersections between lines of ex-

truded contours. During the intersection of two lines, closest points of lines have to be 

translated to an intersection point, thereby forming the surface of an object eventually. 

 

The Google Android platform has multiple open source libraries for image processing, 

but only BoofCV (http://boofcv.org/) and OpenCV (http://opencv.org/) are applicable for 

all requirements of prototyped application. The OpenCV library was selected because of 

two factors: it is better in comparison with calculation speed of BoofCV [60] and many 

large IT corporations, including Intel, Google and Microsoft [61], use the OpenCV. The 

latest version of OpenCV for the Android platform is 3.1.0 and it limited the lowest usable 

version of Android to 5.0 [53], decreasing by this coverage to 64% of all Android users.  

 

4.3 Device rotation determination 

 

The Android operation system does not provide direct access over sensors but maintains 

access through the specific framework. The operation system offers multiple ways of 

obtaining and handling the sensors’ data. Device rotation determination methods typi-

cally use a combination of accelerometer, magnetometer and gyroscope sensors. In par-

ticular, the Rotation Vector Sensor interface uses all of the mentioned hardware sensors, 

whereas the Game Rotation Vector Sensor uses only the gyroscope and accelerometer. 

Thus, the Game Rotation Vector Sensor points to another reference point instead of 
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binding to the North Pole, and the Geomagnetic Rotation Vector Sensor avoids gyro-

scope usage, superseding it with the magnetometer. Apart from the given options, the 

framework allows creating a custom implementation for rotation angles obtainment with 

utilization of only the gyroscope or any other sensor combinations. The aforementioned 

realizations provide raw data from sensors that can be processed into a rotation matrix 

and Euler angles by supplementary framework functions. [62.] 

 

   

Figure 15. Android device coordinate system (left) and the world’s frame reference 
(right). Reprinted from Android Developers [63]. 

 

Android distinguishes two types of coordinate systems. On the one hand, devices use a 

standard 3-axes coordinate system relative to their display. It is based on a natural ori-

entation of the device, typically portrait for smartphones and landscape for tablets. The 

coordinate system for the device, which put into its natural orientation, has a horizontal 

X-axis pointing to the right side, a vertical Y-axis pointing upwards and a Z-axis points 

towards the outside of the screen, as shown on the left in figure 15. On the other hand, 

all rotation determination methods that have a magnetometer involved use a coordinate 

system relative to the world’s frame as a reference, shown on the right in figure 15. Its 

Z-axis points to the sky, the Y-axis points to magnetic north of the Earth and the X-axis 

points roughly to the East. Withal, sensor system axes are not rearranged when device 

is revolted and this should be done manually if a certain need appears. Rotation angles 

are calculated based on mentioned axes: pitch as rotation around the X-axis, roll around 

Y-axis and azimuth instead of yaw around negative Z-axis in Euler form. [62; 63; 64.]  

 

The diversity of sensors also presents several problems coming with them. The gyro-

scope has a drift around the Z-axis, yet the accuracy of the relative rotation is higher than 

with the magnetic field sensor. The magnetometer has a magnetic north as a constant 

point of reference and reduced battery usage in comparison to other sensors but it is 

influenced by changes in the magnetic field around the device. A heavy usage of multiple 
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sensors will consume battery’s charge at a fast rate, depending on how fast the applica-

tion queries the data from them [62]. Most angle retrieval methods may have a gimbal 

lock, loss of one dimension in space, in certain positions [65]. In some cases, it is possi-

ble to avoid gimbal lock by rotating the retrieved rotation matrix into a different coordinate 

system with a designated framework function. 

 

The prototyped application was aimed to use the Rotation Vector Sensor interface for 

retrieving the device rotation with both good precision and reference to the world’s frame 

that will allow transferring project files between devices and populating one project by 

images taken from multiple devices while having the rotation angles presented in the 

same coordinate system. The framework suggests using the device’s Z-axis as a sensor 

system’s Y-axis for augmented reality and other camera based applications [66]. By re-

lying on these settings, the smartphone will provide stable and usable rotation angles 

around the world’s frame Z-axis with the starting point on the magnetic north, around the 

horizontal plane and around the camera view vector or the yaw in any orientation.  

 

 

Figure 16. Camera rotation in reference to object, made with free graphic editor GIMP 
2 [67]. 

 

Even though the retrieved Euler angles may be directly assigned to an object and repre-

sent its rotation, they have to be inverted by sign at first. The camera view vector rotates 

around its own axes during the photo shooting and assigning angles to other objects is 

not possible in an ordinary case. However, by assuming that a static object will always 

be at the other end of the camera view vector, angles may be assigned and reverted. 

Reversion of angles has to be done due to a change of a rotation direction, as if it was 

not the camera revolting around an immobile object but the object revolted and the cam-

era stand still as shown in figure 16. Thus, the prototyped application will be in a way 

similar to desktop scanners that have a rotational stand.  

 

4.4 Man-to-machine interface 
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The graphical user interface of the prototyped application was developed in accordance 

to a rule of minimal interaction between the user and application. The user must have 

access only to the most necessary operating levers of the application and everything 

else must be hidden under the hood, prepared beforehand or computed automatically. 

The interface of the prototyped application is limited by the dimensions and resolution of 

the smartphone display. It is extremely impractical to force the user to adapt and orien-

tate in a complex architecture and intently look into a multitude of small elements. There-

fore, an Occam’s razor has to be used for cutting out, simplifying and unifying all unnec-

essary and protruding elements. Elements that remain have to be brought to the intui-

tively understandable and as standard as possible pictograms wherever feasible. 

 

Since 2014 and the Android version L, the Google has promoted the usage of material 

design on all devices including the versions where the design has not been implemented 

originally [68]. The main idea of the design is that application pages open, switch and 

minimize as “cards”, almost invisibly and smoothly with application of shadow effects. 

Pages avoid sharp edges and angles while being more intelligent and responsive [69]. 

In the design development, a standard Android material design guidelines were followed.  

 

Basing on the given roadmap of the application, a page with a list of created projects, an 

interactive page to work with object segmentation and a page to show the result of scan-

ning process were needed as minimum.  

 

The list of projects is shown on the starting page of the application. The list was realized 

as a standard scrollable list of containers, sorted by modification date, where latest date 

is always on the top. The container itself consists of the project name, optionally of the 

date of a creation or a modification and a controlling button that shows the menu with 

actions. The menu has standard options like a renaming or a deletion of the project, 

viewing the result and re-doing the segmentation and calculations of the result. Besides 

the list of projects, the page has a floating action button, responsible for the creation of 

a new project. A mockup of the project page is shown on the left in figure 17. All following 

mockups were made in the free graphical editor GIMP 2 [67]. 
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Figure 17. Project page (left) and model page (right) mockups, made with free graphic 
editor GIMP 2 [67]. 

 

The 3D reconstructed model page is fairly simple. A 3D model in form of a point cloud is 

placed in the center of the page with a possibility to rotate it in all axes by standard 

swiping gestures. The page does not have any control elements and thus its work and 

interaction may appear as unobvious for a new user. The new user is introduced with a 

short description of actions shown in the popup message, with “Swipe to rotate” and 

“Pinch to zoom”. The page mockup is shown on the right in figure 17.  

 

The segmentation page architecture is composed of several elements – an original photo 

of the object, a result of segmentation, a result of contour detection, a drawing area for 

marking parts of the object and a button panel.  

 

Initially, the photo and resulting images were planned to be shown in the form of a se-

quential list, but in this case the user had to determine in a very inconvenient way how 

well contour was detected and if there were any missing or superfluous elements by 

continually scrolling up and down. For avoidance of a hustle, all elements were placed 

superimposed on top of each other. The original photo was put on the lowest level, the 

segmentation result is placed on top of it with opacity of 70%. On the following layer, a 

result of contour detection was put with the same level of opacity. The subsequent layer 

is intended for marking elements of the image that should be removed or added. For 
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easy perception of the user, the green color was chosen for adding and red for deletion. 

Controlling elements, i.e. buttons, are situated on the highest level.  

 

By means of this approach, an extracted object and its contours will be brightly high-

lighted and readily discernible, while other parts of the image are partially darkened. This 

allows easily evaluating the quality of detected contours, existence of noise and parasite 

details.  

 

Android smartphones have a bottom button bar with ‘Back’, ‘Home’ and ‘Recent’ buttons, 

also known as soft keys, either in physical form or in emulated form in the bottom part of 

the screen that will take a vital space of the segmentation screen. It is necessary to hide 

the emulated button bar, maximize the page to full screen mode and put control elements 

there with an alternative ‘Back’ button. Material design guidelines suggest realizing con-

trol elements in the lower part of the screen as a solid and monolithic bottom navigation 

bar that also consumes vital screen space and covers everything beneath it. In this par-

ticular case, design guidelines were disregarded and control elements were realized as 

independent and separately standing buttons of circular form for retrieving larger observ-

able space.  

 

Tentatively, the following control elements were needed: 

• a “Back” button for returning to project list page 

• a “Drawing tool” button to switch between color filling and pencil 

• a “Color” button to change a currently selected color of the drawing tool between 

green and red 

• an “Undo” button to cancel the latest action 

• a “Next” button to proceed to the next photo 

• a “Compute” button for applying the image segmentation on the basis of user 

input data and contour detection.  

 

Although the material design suggests the menu curtain should be used on the left side 

of the display, its exploitation seems to be exceedingly unpleasant because the user has 

to perennially open and close it for accessing each control element. Hence, control ele-

ments were realized in the form of buttons in the bottom of the screen for instant access 

and have intuitively understandable pictograms for space saving.  
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Search and selection of intuitively understandable pictograms for a common user have 

turned into a small study, in the course of which a realization has came that one image 

can be perceived in completely different ways between people. Due to this fact, only 

popular pictograms were used, perceiving of which does not cause numerous interpre-

tations and discrepancies. All the chosen pictograms are shown in figure 18, given on 

page 32.  

 

Pictogram ‘Menu’, shown in figure 18 (a), is a variation on the theme of famous and 

ubiquitous ‘hamburger’ icon [70]. A clear indication of the menu, in particular navigation 

menu, gained a foothold on the icon. The ‘hamburger’ icon was used on the project page 

for management of a selected project. 

 

Check mark, shown in figure 18 (b), is a conventional concept of consent and acceptance 

and always used for affirmative or approval buttons [71]. 

 

The ‘Undo last action’ pictogram, shown in figure 18 (c), is a classic and longstanding 

icon in the field of information technology that appeared with the meaning of cancelling 

the last action since the first versions of Microsoft Word in the 1990’s [72]. 

 

The first difficulties appeared in selecting the pictogram for ‘Back’ button. The most pop-

ular icon is an arrow pointing to the left and it would be logical to choose exactly it, but 

by its composition and movement direction it reminds of the ‘Undo’ pictogram. Besides, 

the ‘Back’ and ‘Undo’ buttons were placed next to each other and the user may become 

confused and make wrong actions. Hence, for greater differences, an ‘Exit’ icon that 

represents the door was chosen, which has no discrepancies. It is in use by Google and 

reminds of a standardized sign of fire exits [73]. It is shown in figure 18 (d). 

 

The ‘Drawing tool’ button had to be represented by two pictograms at once: a pen, for a 

small detail selection, and a filling for an area selection. Action that has to be performed 

for direct filling must be enclosed in the filling area pictogram for its clarity to the user. In 

majority of graphic editing software, the filling area action is realized by one click inside 

some enclosed form that has to be filled in. The creation of the closed form for the filling 

execution is excessive in context of the project and it may be done by going from an 

opposite side and making an inverted filling – to select the object into a rectangular frame 

with a swipe gesture and fill everything except that. A squared frame icon [74] was taken 

as the starting point and two points were added, located diagonally and symbolizing a 
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necessary action to make the filling – to touch the screen and stretch the frame for se-

lection. The produced icon is shown in figure 18 (f).  

 

The ‘Color’ button also demanded two pictograms that fortunately did not present any 

difficulties during creation. Each of them is an icon of a squared frame [74] filled with 

either green or red color. The icon is shown in figure 18 (g). 

 

The pictogram for the ‘Compute’ button was the hardest to determine. There is no single 

established or longstanding pictogram for terms like ‘computation’, ‘process’ or ‘pro-

cessing’ at this moment. A search engine helpfully suggested the following options: 

• a multitude of gears, which are usually associated with ‘Settings’ 

• a microchip and server stack, unknown to common users 

• two, three or four arrows inscribed in a circle that looks similar to the ‘Undo’ button 

or recycling symbol 

• a timer that probably suggests to click the button and simply wait for something. 

 

Uncertainty during the search and a huge amount of options brought an idea of associ-

ating computations with a measuring device, shown in figure 18 (h). The scale with an 

arrow is an essential attribute of every science apparatus and, as analogy, a computa-

tion.  

 

    

(a) Menu [75] (b) Check mark [76] (c) Undo, repeat [77] (d) Exit [78] 

    

(e) Edit, pen [79] (f) Square, fill  (g) Color [74] (h) Gauge, meter [80] 

Figure 18. Pictograms for application buttons. 

 

Button placement was built in accordance to material design guidelines suggestions 

about non-standard forms and pages with comparably simple content. It was recom-

mended in the guidelines that control elements should be placed on the right side of the 

dialog, with an affirmative element situated on the right side of a dismissive element. 

Other buttons, placed in between of the affirmative and dismissive buttons were subject 
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to the same logic: the ‘Compute’ and ‘Drawing tool’ buttons were set on right, ‘Undo’ and 

‘Color’ were set on the left.  

 

   

Figure 19. Segmentation page mockup during the process. Original photo (left), user 
markings (middle), extracted object with edges (right). All images made with free 

graphic editor GIMP 2 [67]. 

 

Interaction with the segmentation page and computed results were visualized with a 3D 

scene made in the free 3D modelling software Blender 2.78 [81] and the rendered im-

ages were processed with the free graphical editor GIMP 2 [67]. The user interface work-

flow is shown in figure 19.  
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5 Image processing with OpenCV 

 

5.1 Object segmentation 

 

Reviewing and selecting the segmentation algorithm was based on understanding that 

images taken with a smartphone camera could be of mediocre and low quality. Further-

more, there was an expectation that the provided images were done on a complex back-

ground and had potential color similarity between them and the object. The segmentation 

result determines the overall quality of the reconstructed model. 

 

OpenCV provides multiple realized and ready to use algorithms for object segmentation, 

namely marker-based Watershed and GrabCut, based on Graph Cuts. Both of them 

have a possibility for accepting markers from the user for achieving a better outcome. 

Both of them showed good results with nicely cut regions on working with a complex 

background [82].  

 

Watershed is a segmentation algorithm that treats an image as a topographical map in 

terms of geography, where brightness of a pixel defines its height and constructs the 

ridges from them. Resulting basins determine the segmentation of the image. [83.] 

 

The GrabCut segmentation algorithm is based on iterated Graph Cuts. It uses edge and 

region information encapsulated in a provided picture for the creation of energy functions 

to retrieve segmentation. [84.] 

 

Watershed separates segmented objects into multiple independent layers, while 

GrabCut uses two main layers of background and foreground plus one supplementary 

layer for each. The Watershed ability may lead to heavy over segmentation of the com-

plex picture in automatic mode [83], and the usage of separate layers for each user 

marking in manual mode. The user has to mark the object with an uninterruptable line to 

retrieve a single object contour that may lead to problems if the object has a through 

hollow where the background may be seen, i.e. a toroid figure. Handling multiple layers 

of the foreground and background demands additional code logic in application.  

 

GrabCut showed better results than the Watershed algorithm during segmentation of 

object that had color similar to the color of background. Watershed may consider and 

include into foreground layer parts of the background if color does not have a drastic 
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difference [82]. The solution to this problem may be using fairly definitive markers. How-

ever, even with them the object edge may vary randomly unless markers stand close to 

each other. 

 

On the other hand, GrabCut segmentation is much slower than Watershed [82], inheriting 

this issue from the Graph Cut ancestor. 

 

In the end, GrabCut scored in all positions against Watershed, except the speed of cal-

culations. Comparing quality and rapidity, quality won and GrabCut was chosen. It 

seemed to be more promising and provide better results than the Watershed algorithm. 

 

After implementation of essential code for GrabCut utilization, algorithm performance 

was inspected on a real device by launching segmentation calculations for a 20-mega-

pixel image without any markers. A Sony Xperia Z1 phone was used for the testing. The 

total duration of segmentation was approximately 45 minutes, which is unacceptable for 

application flow. The processing time decreased to 15 seconds when image size was 

reduced to 1.1 megapixel (1280 per 920 pixels) with user markers and selection of the 

object. At first, this issue induced to do auto-scaling of all images to 1 megapixel size, 

but this solution would restrict the usability of the application and ignore constantly grow-

ing performances of new smartphones. Therefore, the application lets user the set the 

image size in his/her photo application and display a warning that suggests that it will 

take longer to process large size images before shooting. 

 

The OpenCV GrabCut function returns an 8-bit image matrix as a result [85]. It has a 

filled contour of the object that looks completely black to the human eye. The GrabCut 

function marks the background with a value of zero, black, and the foreground object 

with a value of four, also black. The foreground values should be set to true white color, 

value 255, for simplifying the following processing and human control over it.  

 

5.2 Referenced scaling 

 

Translation of extracted object shapes to the same size appeared to be the most complex 

task to solve during development of the 3D scanning application. Nevertheless, a work-

ing solution to the problem was found. 
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The size of the object on the first image is taken as a standard one and it is used in all 

subsequent images. The scaling coefficient for each image is calculated based on the 

ratio between the heights of the object on the current and previous images. Before the 

calculation of the scaling coefficient, the difference between rotation angles of camera 

view vector of the current and the previous images must be computed. The current image 

must be rotated on the difference to neutralize the smartphone rotation around the cam-

era view vector. 

 

The process of angle calculation is visualized in figure 20, where the object of shooting 

is shown symbolically as a star [86]. The camera that took image B is shown with a 

camera symbol [87] and the camera’s view vector is shown in form of vector AO. The 

calculated rotation angle is shown as angle φ. 

 

 

Figure 20. Rotation angle visualization, made with matplotlib [88]. 

 

For a better perception of the algorithm a test case with a standard image A and a scal-

able image B will be described. At first, the distance between the top and bottom extreme 

points of the object has to be found on image B. In this case, pixels are treated as dis-

tance units due to the lack of original physical units. 
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Image A should be rotated on a specific angle that represents the camera view vector 

for image B from the point of view of image A. Inasmuch as a smartphone roams in 3D 

space and operations are done with 2D images, two 3D space angles of the X- and Z-

axes have to be brought into one 2D space angle. Rotation around 3D Z-axis is consid-

ered as a common horizontal X-axis and a rotation around 3D X-axis as a common ver-

tical Y-axis. This leads to a condition in which each point of the axis has a value of two 

angles at once, and the starting point is shown as 0°, 180° and 360° accordingly. As a 

solution, the sinus of an angle is used that has one value for the previously mentioned 

examples to avoid cluttering.  

 

After bringing the rotational axes into 2D space, a new point, i.e. A, is created, where the 

sinus of the 3D X-axis angle determines its position on the 2D Y-axis and the sinus of 

the 3D Z-axis angle – position on the 2D X-axis correspondingly. Two new points are 

needed for greater convenience, point O in the center of axis and the second point B on 

the X-axis. At this moment, there are two ways – to convert points into vectors AO and 

BO and to find the angle between them or apply the law of cosines to three points with 

the same result. Image A will be rotated on the retrieved angle and extreme points will 

be obtained. 

 

The ratio between objects’ heights is a scaling coefficient of image B. It is also necessary 

to take into account a perspective influence on the image object, which adds more prob-

lems during coefficient calculation. Yet, no solution on how to get rid of that influence has 

been found. 

 

Thus, this algorithm is applicable to all images in the project, starting from the second 

one, since the first one is used as a reference of standard size. 

 

   

(a) (b) (c) 

Figure 21. Referenced scaling visualization, made with Blender [81] and GIMP 2 [67]. 
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Another 3D scene was created in Blender [81] for better understanding of algorithm work 

with two cameras and one free of charge 3D model [89], shown in figure 21. Cameras 

were located at various distances from the model and rotated under different angles im-

itating accidental smartphone placement during shooting. Standard image A with the 

visualized camera vector of image B and the found rotation angle φ are shown in figure 

21 (a) and scalable image B with marked extreme points and distance d between them 

are shown in figure 21 (b). In addition, small perspective influence on the object is no-

ticeable. Figure 21 (c) shows image A, which has already been rotated, with retrieved 

extreme points and distance d between them. 

 

5.3 Contour recognition 

 

The Canny edge detector is the most suitable for contour recognition on the black and 

white mask of the segmented object that was retrieved from GrabCut.  

 

The Canny operator, also known as the Canny edge detector, considered as an optimal 

edge detector due to the low level of inaccuracy, precisely determines the center of the 

edge and every edge marked only once. It was developed by John Canny in 1986 and 

still is considered as the best algorithm of its kind. [90.] 

 

  

(a) (b) 

Figure 22. Canny edge detector with both thresholds set at 250. 

 

OpenCV realization of the Canny edge detector allows specifying the value of upper and 

lower thresholds which are used directly for edge determination. A pixel is defined as 

edge if its gradient is above the upper threshold and it is discarded if gradient is below 

than lower one. [90.] Due to the fact that the object mask is 8-bit and that the color value 
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varies between 0 as true black and 255 as true white, it makes sense to set both thresh-

olds as close as possible to the white color value that represents the object shape such 

as 250. The usage of the designated threshold shown in figure 22, where (a) is a source 

object mask and (b) is a Canny edge detector result. 

 

5.4 Transfiguration to point cloud 

 

Due to the fact that computer images are n-dimensional digit arrays, necessary elements 

may be found through simple iteration. A Mat element of the OpenCV library represents 

an n-dimensional dense array that is used for storing and modifying loaded images, 

which operates with convenient table concepts, known as rows and columns [91]. 

 

It is important to know which of the X-, Y- or Z-axes are considered as a vertical axis 

during the conversion of image into points of 3D space. A uniform standard accepted 

between the formats of 3D models and modelling software simply does not exist. Blender  

[81], Autodesk 3D Studio Max and Unreal Engine see the Z-axis as the vertical axis, 

when Unity Engine uses the Y-axis. As it was told previously in chapter 4.3 Device rota-

tion determination, Google Android API uses world’s frame Z-axis as the vertical axis, 

pointing to the sky. 

 

For avoidance of confusion strengthening, the application will keep utilizing the men-

tioned Android definition of the Z-axis as the vertical axis in the 3D space of the recon-

structed model that also will lead to direct usage of the obtained rotation angles without 

any swapping of axes during transfiguration.  

 

Spatial coordinates of an element can be identified via matrix iteration and via using 

element’s position in the row as the X-axis value and its position in the column as the Z-

axis value. The starting point is located in the top left corner of the matrix and the direct 

usage of the column position will lead to vertical mirroring of the object. A solution to this 

problem will be a utilization of difference between the total number of rows and the cur-

rent column position as s coordinate.  
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6 Point cloud processing 

 

6.1 Adjustment and extrusion 

 

A reconstruction process is erected on searching for intersections between extruded 

contours. Coordinates that were obtained during the transfiguration process may vary in 

space in dependence to size and location of the object on the image. Due to this, ex-

truded contours have to be centered by height and width to the origin of coordinates. 

Otherwise, they will intersect only partly or not at all.  

 

The quest for the method of giving volume to the 2D planes in the 3D space was the 

second problem to solved in this project. In the light of very limited sources available for 

model recreation, it was very hard to find a way or technology that may be applied. From 

non-contact passive technologies listed in 3.2 3D scanning chapter at page 17 only the 

silhouette technique was suitable to be used in the project. In this way, the scanning 

application will be somewhat similar to the realization of the 3D scanner of same 

technique done at the University of Linköping by Karin Olsson and Therese Persson in 

2001 [92]. Olsson and Persson used a desktop computer and a rotating stand [92].  

 

 

Figure 23. Star contour after extrusion process, made with matplotlib [88]. 

 



41 

 

 

The extrusion process is represented by the creation of a line segment that passes 

through one of the detected contour points by determining its location on the Y-axis, 

inasmuch as the locations of the X- and Z-axes were defined by the point itself. Ascer-

tainment of negative and positive points at the Y-axis is done through utilization of a 

maximal value of taken photo dimensions, either height or width. Since pixels are acting 

role of measure units for distance and the object is located in the center of photo, it will 

allow avoiding the appearance of line segments not reaching each other and as result it 

will not lead to loss of the intersection point. On the other hand, any six-digit number 

could be used here. An example of the extrusion process is shown in figure 23. 

 

6.2 Revolution and recreation 

 

The revolution of the line segment points made during the extrusion process was done 

with basic mathematics. Undoubtedly, rotation in three-dimensional space is more diffi-

cult than in 2D where everything is rotated only around the Z-axis. The rotation axis has 

to be chosen and rotation is applied to one point twice by the X- and Z-axes with formu-

lae, shown in formulae 1 [93]. Rotation around the Y-axis is not relevant here, as it was 

already described in chapter 5.2 Referenced scaling. 

 

𝑦′ = 𝑦 × cos 𝑞 − 𝑧 × sin 𝑞 

𝑧′ = 𝑦 × sin 𝑞 + 𝑧 × cos 𝑞 

𝑥′ = 𝑥 

𝑥′ = 𝑥 × 𝑐𝑜𝑠 𝑞 − 𝑦 × 𝑠𝑖𝑛 𝑞  

𝑦′ = 𝑥 × 𝑠𝑖𝑛 𝑞 + 𝑦 × 𝑐𝑜𝑠 𝑞 

𝑧′ = 𝑧 

Formulae 1. Rotation formulae: around X-axis (left) and Z-axis (right). Data gathered 
from Owen [93]. 

 

Model recreation is based on the search of intersections between lines of different ex-

truded contours. In 2D space this search is not difficult to accomplish because all entities 

are operating on the same level of the Z-axis, but in 3D space everything becomes more 

complicated than usual.  

 

Ordinarily, lines in 3D space do not intersect at all or have an intersection somewhere in 

the infinite point of space. In the case when two lines do not intersect at one specific 

point, they may be interconnected by as short an additional line segment as possible. 

The set distance threshold of the segment will determine whether the lines intersect or 

not. At this point, not one but actually two points of intersection will be found located on 

two provided line segments. [94.] 
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Figure 24. Shortest distance between two lines. Reprinted from Bourke [94]. 

 

Figure 24 shows  two lines P1P2 and P3P4 with defined points Pa and Pb that are closest 

to the intersection. Pa is determined by formula 𝑃𝑎 = 𝑃1 + 𝑚𝑢𝑎(𝑃2 − 𝑃1) and Pb with a 

similar one 𝑃𝑏 = 𝑃3 + 𝑚𝑢𝑏(𝑃4 − 𝑃3). The mua and mub values are varying in an infinity 

range, and the mu values of line segments amid P1P2 and P3P4 range from 0 to 1. At this 

point, there are two alternative options on determining the shortest possible line segment 

amid Pa and Pb points – either to acquire the Pa Pb line segment length and get its 

minimum or find a line segment that is perpendicular to given lines. [94.] The options 

allow to write dot products equations as  

(𝑃𝑎 − 𝑃𝑏) 𝑑𝑜𝑡(𝑃2 − 𝑃1) = 0 [94], 

(𝑃𝑎 − 𝑃𝑏) 𝑑𝑜𝑡(𝑃4 − 𝑃3) = 0 [94]. 

 

Extension of dot product equations with equation of lines will look as 

(P1 − P3 + 𝑚𝑢𝑎(P2 − 𝑃1) − mu𝑏(P4 − P3)) 𝑑𝑜𝑡(𝑃2 − 𝑃1) = 0 [94], 

(P1 − P3 + 𝑚𝑢𝑎(P2 − 𝑃1) − mu𝑏(P4 − P3)) 𝑑𝑜𝑡(𝑃4 − 𝑃3) = 0 [94]. 

 

Extended dot product equations may be unfolded in terms of coordinates to the following 

form 

𝑑1321 + 𝑚𝑢𝑎𝑑2121 − 𝑚𝑢𝑏𝑑4321 = 0 [94], 

𝑑1343 + 𝑚𝑢𝑎𝑑4321 − 𝑚𝑢𝑏𝑑4343 = 0 [94]. 

 

Where 

𝑑𝑚𝑛𝑜𝑝 = (𝑥𝑚 − 𝑥𝑛)(𝑥𝑜 − 𝑥𝑝) + (𝑦𝑚 − 𝑦𝑛)(𝑦𝑜 − 𝑦𝑝) + (𝑧𝑚 − 𝑧𝑛)(𝑧𝑜 − 𝑧𝑝) [94]. 
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The mu formulas may be finally produced on the basis of extended dot product equations 

as 

𝑚𝑢𝑎 = (𝑑1343𝑑4321 − 𝑑1321𝑑4343) ÷ (𝑑2121𝑑4343 − 𝑑4321𝑑4321) [94], 

𝑚𝑢𝑏 = (𝑑1343 − 𝑚𝑢𝑎𝑑4321) ÷ 𝑑4343 [94]. 

 

The length of the shortest line segment can be calculated on the basis of mua and mub 

and compared with set distance threshold for intersection determination. [94.] 

 

The given method is tailored for working with infinite lines and not limited line segments. 

Direct application of the method will cause appearance of intersection points in places, 

which line segments should not reach. In order to make sure that an intersection point 

was determined somewhere close to the intersected line segment, two triangles have to 

be created and their perimeters compared. The first triangle determines the maximal 

allowed distance to any future intersection point and is built upon two intersected line 

segment points and the distance threshold. The second one is built on the determined 

intersection point and the same line points. The intersection point is considered to be 

related to the intersected line segment if the intersection triangle perimeter is less or 

equal to other one. 

 

Lines of extruded contours should belong to independent arrays for avoidance of the 

intersection search between parallel lines of the same contour. A model billet is made by 

determining the intersections between the first and second contour arrays and saving 

the determined ones into an independent array. The model billet has to be formed with 

the first two images that have an angle difference in the X- or Z-axis of at least 90° to 

allow the application to cut away as much as possible before starting a further process. 

Line iteration should start from the third contour array, search for intersections with all 

previous intersections and later adjust previous contour lines to intersection points. 

Hence, it should form the model in the same way a sculptor carves a statue from marble. 

Figure 25 shows a simplified version of reconstruction process casted to 2D space. On 

the left chart, the second contour array (green lines) searches for intersections with the 

first contour array (red lines) and finds them, marked as four black points. On the right 

chart, the contours are mapped to the new coordinates of the intersection points. The 

third contour array (blue lines) is applied to the first two modified contours and it suc-

cessfully searches for its own intersections, marked once again as four black points. The 

process continues until the last of contour arrays.  
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Figure 25. Simplified reconstruction process, made with matplotlib [88]. 

 

When the object has complex forms, the line segment will have multiple intersection 

points. Thus, a bringing of its end points to intersection ones becomes impossible. Since 

nobody can guarantee that the intersection points will appear in order, the obtained 

points have to be sorted by increasing the distance from the line segment starting point 

and later they have to be used for creating sub line segments. In addition, a case must 

be taken into account, when the contour edge will have multiple consequent points in-

stead of only one point, which may be considered as starting ones. It will ruin the order 

of the intersection points and the surface created with sub line segments will not be cor-

responding to real one. Hereupon, intersection points that have a distance of one unit or 

fewer units between points must be adduced to one point, closest to the starting point of 

the line segment. 

 

Each point of intersection stores the reference to the line it intersected. After being sorted 

by the increasing distance from the starting point and forming the actual line segments, 

old intersected lines have to be adjusted to a new point location. Two intersected lines 

connected with a new intersecting line may not be connected at a point anywhere else 

and may be even parallel in one of the spatial planes, however, they are expected to 

converge at one of the object edges. A problem appears on how to determine which of 

the intersected lines points has to be adjusted. As it is assumed that two ends of line 

segments are converged to the object edge, the sum of angles between the points and 

the intersecting line will be smaller than the sum of others. 
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The line segments will not reflect the real surface of object after conversion into point 

cloud because only two points are available and hence a long line segment will be shown 

as two independent and non-related points in space. The conversion process has to 

comprise creation of additional points between the starting and ending point of the line 

segment with the pre-set step. The step value should be selected carefully due to a 

drastic increase of points and workload on the application and the device. 

 

The amount of taken images influences the smoothness of the reconstructed model. As 

an example, if the user takes only two images of a round ball, one image in front of the 

ball and second image from the side of the ball, the application will reconstruct the ball 

only into the shape of rounded cube due to lack of shape information. 

 

6.3 Adduction to OBJ format 

 

The final goal of the smartphone scanner application was point cloud formation and stor-

ing it as OBJ industrial standard. The point cloud retrieved during the recreation process 

may be adduced to the OBJ format quite easily. 

 

 

Figure 26. OBJ file example, text version (left) and rendered object (right). Data 
gathered from Bourke [95]. 

 

Initially, the OBJ file standard was developed by the Wavefront company for its own 

products but later the standard became widespread in the industry. The standard defines 

the OBJ file format as a plain ASCII text file. The file name must not have spaces which 

should be changed to other printed characters. It uses all common three dimensional 

elements, like vertices, line, edges, surfaces and curves and supports both free-form and 
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polygonal objects. Vertex is determined by the “v x y z” line of text, where x, y and z are 

its coordinates in space respectively. Figure 26 demonstrates the example box in its text 

and rendered forms. [95.] Point cloud may be stored in this rather simple form for future 

use in any of 3D modelling software. 
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7 Implementation results and discussion 

 

The final application turned out to be a complex product with multiple components and, 

in consequence, all these components have to be tested independently before the first 

full system check. Testing might be done through unit or integration tests. Hardware data 

retrieval may be tested only as a real-life measurement. In particular, the following com-

ponents demand more scrupulous examination: 

• Rotation angle retrieval, 

• Object segmentation and image processing, 

• Referenced scaling, 

• Point cloud processing, 

• Intersection search algorithm, 

• User interface workflow convenience. 

 

Due to severe time constraints, several important modules including the referenced scal-

ing and intersection algorithm have not passed comprehensive testing, leaving a possi-

bility for an exceptional workflow case of any kind to appear at any moment of module 

work. Moreover, the application has not been tested on as many devices as it was 

planned initially.   

 

The rotation angle retrieval implementation showed very good results on the Sony Xperia 

Z1 device with Android version 5.1.1. In a fully static condition, the angle varied within 

the boundaries of ±0.3°. When the device was held by a human hand in an approximately 

static position, error rate increased up to ±1° due to jittering of the hand. It is possible to 

increase the reading rate of the sensor and filter obtained data for compensating the 

human factor. After changing the position of the device, the rotation angles took some 

time to stabilize. The angles of the X-axis, horizontal, and the Y-axis, along the camera 

view vector, stabilized almost momentarily, but the Z-axis took up to 10-15 seconds to 

get the first stable values. It may become a problem to an end-user, if images are taken 

in short intervals with assignment of un-stabilized angles and as a result reconstruction 

of a highly distorted model. The application should notify the user with a signal or popup 

message that angles are stabilized and an image may be taken. 

 

Furthermore, the used rotation vector interface includes utilization of a magnetometer 

and its data may be affected by external magnetic fields. Particularly, the data error rate 
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increases when the device has WI-FI, mobile internet connection or GPS turned on de-

pending on its power. However, even with listed influences from the inside, the present 

method gave high accuracy of acquired data. Testing was carried out in house conditions 

and thus it may not be guaranteed that the device was not under the impact of powerful 

external magnetic fields due to an absence of any equipment that is able to record power 

of the present magnetic field. The solution to the external influence problem may be 

measuring of the surrounding magnetic field by means of an embedded magnetometer 

for its power and variability and switching to magnetometer-free rotation interface in case 

of high results on any of given parameters. This solution will also lead to inability to ex-

tend the project by adding more images or using the project as an extension to other 

ones. 

 

In addition, testing revealed a gimbal lock position and disorientation in space when ro-

tation angles start fluctuating erratically in a device position close to a flat or reverse flat, 

precisely after 87° and -87° around the horizontal axis. As it was stated in chapter 4.3 

Device rotation determination, this problem may be solved partially by swapping the sen-

sors axes. After swapping the sensor axes, the rotation values stop fluctuating. However, 

swapping of axes increases rotation values by unknown value, thus producing a gap in 

comparison to previous rotation values and require more rigorous tuning. 

 

Rotation angle retrieval is done right after returning to the scanning application from the 

user defined photo application. This implementation creates a certain time gap between 

image creation in device memory and recording of rotation angles and rather is a proto-

typing shortcoming than a real problem. Nonetheless, the time gap may be reduced by 

recording the angles in a background thread into an array sorted by a timestamp and 

picking the timestamp of the files and appropriate array data upon returning from the 

photo application. 

 

Object segmentation of the 1.1 megapixel images takes up to 15 seconds and may be 

considered as an acceptable result. Yet, testing demonstrated that sometimes it misfires 

and produces small maculae with the size of several pixels, created on the edge of user 

markers, an example which is shown in figure 27. Maculae appear in a random place 

and their amount is random too. This is a serious problem that affects referenced scaling 

and the following reconstruction process steps. The maculae may be removed manually 
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by creating additional covering markers but this implies multiple repeats of the segmen-

tation process need to be made. Another possible solution could be searching for small 

objects by means of OpenCV and following removal of them.  

 

 

Figure 27. Maculae example. 

 

Object segmentation does not always give the best results by including superfluous de-

tails into the object that also leads to the creation of additional user markers and process 

repeats. On average, each image has two to five segmentation runs, which increases 

the average processing time of one image to a bit more than one minute. 

 

Referenced scaling was tested in real life conditions with several objects and under dif-

ferent rotation angles. It showed very good results with an error rate of resized image up 

to ±1 pixel. The referenced scaling process heavily relied on the truthfulness of rotation 

angles and image masks cleared of any maculae.  

 

Point cloud zero adjustment, extrusion, rotation and intersection search testing did not 

show any particular problems in unit testing conditions. Simple mathematics always 

works flawlessly. However, the intersection search algorithm may have a lot of excep-

tional cases that could appear only in full project testing. 

 

User interface workflow proceeds well for the end-use, yet it has several small structural 

imperfections. The Floating action button on the Project page hides the control button of 

the lowest project in the list from the view with impossibility for accessing it if the project 

list fits the page. Another issue arose from the long time to process object segmentation 

and model reconstruction, when the page simply freezes and not respond to any com-

mands. A popup message blocking the screen with the current status of the process 

should be shown to make the user aware of the situation. The segmentation page should 
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also include a possibility to zoom in and out of the image to check and mark small details. 

In addition, a small survey was done about the pictogram meanings on the segmentation 

page. Several people were asked about how they understood the pictograms with a short 

description of the related process and the survey showed that four out of six pictograms 

were understood mostly correctly and the others not. The most controversial ones were 

the Process and Color choose buttons. Some of the respondents defined the Process 

pictogram as something related to measuring or modifying angles, area of object or 

whole image.  

 

The first full application check with mockup images of ideal sphere showed problems 

with adjustment of old intersections. A model billet made with only two images taken with 

90° angle between each other around the vertical axis is shown on the left side of figure 

28. In the middle of figure 28 a model is shown, which was made with four images taken 

with 0°, 45°, 90° and 135° angles around the vertical axis without adjustment of old in-

tersections. The same model but with adjusted old intersections is shown on the right of 

figure 28. Figure 28 was adjusted to be brighter than the original for better perception of 

the models.  

 

   

Figure 28. Model billet (right), model billet with found intersections (middle) and model 
billet adjusted to found intersection (right). 

 

The model billet on the left looks like a rounded cube due to lack of object form infor-

mation. The model billet in the middle with new found intersections became to resemble 

spherical shape. Yet, it is clearly seen on the right billet that the adjustment algorithm 

chooses the wrong points to adjust and this results in a distorted model and disappear-

ance of a multitude of object edges and surfaces. This problem became the stumbling 

block of the whole project as any further intersection search becomes useless whereas 

unadjusted lines will invoke an appearance of new intersections in places where they do 
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not belong. Nonetheless, the model billet made with only two images shows good results 

with usage of available information about the project.  

 

 

Figure 29. Perspective distortion with maculae inclusion. 

 

Another particular issue that was encountered in the project is perspective influence. 

Figure 29 shows two scaled contours, a blue colored one taken in front of the object and 

an orange one with a top down angle, thus having width expanded to the top part of the 

object and squeezed bottom. In spite of this problem being serious one, it is not as vital 

to the overall project as wrong adjustment of old intersection and may be easily avoided 

with keeping the device perpendicularly to the ground. In the given example, the original 

blue figure will be affected only on the “shoulder” part of the object and nowhere else. 

Perspective distortion may be corrected by means of OpenCV, yet it has to be computed 

in some way. Most of the correction formulae rely on the camera lens parameters that 

differ between lenses and should also include device rotation angles in reference to an 

object. 
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Figure 30. Model billet examples. 

 

Figure 30 demonstrates two examples of model billets made with two images, a bottle 

on the left in perspective view and a teapot in orthographic view. Superfluous line seg-

ments are observed on the teapot figure, multiple of them inside its handle and two pass-

ing from its spout to lid. The line segments appear due to a logical imperfection of either 

intersection search algorithm or the algorithm that adduces multiple consequent points 

with a short distance and thus breaking the line segment sorting. Figure 30 was also 

adjusted to be brighter than the original for better perception.  

 

The final application has not met the initial expectations and it only partly met the set 

goal. It provides good results in the form of a model billet on the basis of only two taken 

images, as shown in figure 30, though any further recreation and transformation of the 

billet into a meaningful model is impossible due to aforementioned problems. The model 

billet was made on average in 20 seconds and had at least 100,000 vertices of the sur-

face, depending on the size of the images taken. Some of the vertices appear as dupli-

cates in the same coordinates and may be filtered out at the last stage of reconstruction, 

after conversion to the point cloud to avoid breaking the connecting lines.  
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8 Conclusion 

 

The aim of this final year project was to develop a fully working mobile phone based 3D 

scanning application. The application was developed for the Android operational system 

and smartphones of a standard configuration. The application used the non-contact sil-

houette technique for the 3D scanning of objects. The silhouette technique uses detected 

contours of the objects, extrudes the contours and finds the intersections between the 

contours. 

 

The case study described in this thesis demonstrates that the development of a 3D scan-

ning application that only uses a device photo camera and rotation angles for the model 

reconstruction is possible and involves multiple techniques based on usage of external 

libraries and mathematics. The OpenCV library was used for the image processing in 

the project. The library provided all necessary functions for object segmentation and con-

tour detection.  

 

The objective of the project was met in a semi-successful way. The application allows 

recreating a 3D model of an object on the basis of taken images, yet problems of per-

spective influence and old intersection adjustments remain and do not allow reconstruct-

ing the model in an accurate way. Due to these problems, this application cannot be 

compared to any released commercial and non-commercial software. However, it may 

be used as a starting point for future development and searching for solutions to the 

aforementioned problems and, at some point, for becoming a sustainable and competi-

tive product. Overall, the project bar was set very high and overall it was challenging, 

demanding and time consuming. 
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