

Pavel Ivanov

Three-dimensional Scanning of Objects Using a
Mobile Phone

Photogrammetry Silhouette Technique

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineering

Thesis

March 21, 2017

 Abstract

Author(s)
Title

Number of Pages
Date

Pavel Ivanov
Three-dimensional scanning of objects using a mobile phone

65 pages
21 March 2017

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option

Instructor Harri Airaksinen, Principal Lecturer

The purpose of this study was to find a solution and develop a working mobile phone appli-
cation that allows user scanning of specific objects with usage of standard phone configura-
tion without involvement of any additional external devices. This thesis demonstrates the
implementation of the 3D scanning application including problems found during develop-
ment and results of the application workflow.

An appropriate solution was found in the form of silhouette scanning technique. The solution
allows reconstructing the model with moderate inaccuracies using a combination of data
gathered from multiple embedded sensors and processing of the data.

A semi-successful mobile phone application was built in the project by using an open-course
code library OpenCV for the Google Android mobile platform. The application produces a
3D model billet of the scanned object on the basis of taken images and rotation angles, yet
an accurate version of the object cannot be recreated and further work is needed before the
application will reach a sustainable and competitive state.

Keywords 3D scanning, photogrammetry, silhouette, mobile phone, po-
sition sensors

Contents

1 Introduction 2

2 Brief history of computer graphics 4

2.1 Origins 4

2.2 3D modelling and animation 5

2.3 3D modelling software 6

2.4 3D scanners 9

3 Theory of 3D modelling 15

3.1 3D modelling 15

3.2 3D scanning 17

4 Smartphone 3D scanner prototyping 22

4.1 Usage of mobile device and sensors 22

4.2 Initial composition 23

4.3 Device rotation determination 25

4.4 Man-to-machine interface 27

5 Image processing with OpenCV 34

5.1 Object segmentation 34

5.2 Referenced scaling 35

5.3 Contour recognition 38

5.4 Transfiguration to point cloud 39

6 Point cloud processing 40

6.1 Adjustment and extrusion 40

6.2 Revolution and recreation 41

6.3 Adduction to OBJ format 45

7 Implementation results and discussion 47

8 Conclusion 53

References 54

Abbreviations

2D Two-dimensional

3D Three-dimensional

CAD Computer-aided design

CGI Computer generated imagery

DSLR Digital single-lens reflex

IT Information technology

GUI Graphical user interface

MMI Man-to-machine interface

NURBS Non uniform Rational B-Spline

OBJ File format used for storing data about 3D

model

OpenCV Open library of computer vision functions

2

1 Introduction

Throughout human history people have endeavoured to cease the time, seize the mo-

ment and embody it in any available form of fine arts. Humans have devised and nurtured

a multitude of arts, starting from the most ancient cave drawings and Venus figurines,

statues of Ancient Greece and the Renaissance period, and including the relatively re-

cent epoch with the involvement of the latest chemical, mechanical and electrical accom-

plishments. Artists, sculptors and artisans have spent years of their lives in the recreation

of only one moment or idea. Over time, progress has brought and still brings new abilities

and opportunities for realization of ideas to creative people.

Since the middle of the twentieth century, computer technologies started development

with a quick pace. Breakthroughs in chemistry have permitted minimizing significantly

electronic components needed for production of computer hardware. The consequence

of this was the appearance of first mobile phones and the rapid development of their

capabilities and rising amount of embedded technologies. In twenty years, phones have

transformed from simple transportable communication devices to miniature computers

with a single camera or several cameras and various sensors, including accelerometer,

magnetometer and gyroscope.

The invention of the computer presented an opportunity to humanity to develop a new

art - computer graphics. The development of computer graphics advanced similarly to

the development of human arts: from the simplest textual and pixel graphics to photore-

alistic three-dimensional models, from necessity to calculate every value and draw every

pixel manually to a dynamic generation of world models and drawings with the help of

machine learning and artificial intelligence.

Collaboratively with three-dimensional modelling, three-dimensional scanning is evolv-

ing, drastically behind the modelling by means of time and broadness of used technolo-

gies. The scanning allows recreating a billet of a meaningful model for subsequent re-

finement. However, present realizations of the scanning process do not allow recon-

structing top-quality models without a participation of a specialist and require considera-

ble financial and time expenditures for procurement and maintenance of applied high

technology equipment. In addition, the mobile application market does not have a free,

open source and commonly available solution on a turnkey basis without the involvement

of supplementary devices or protracted configuration and calibration.

3

The objective of the study described in this thesis was a creation of a fully functioning

three-dimensional scanning application. The application was developed for Android-

based mobile devices of a standard configuration and used the open source library

OpenCV, which is mainly aimed at image processing and real-time computer vision. The

scanning application covers all working processes, starting from taking a camera shot to

recreation of a model in the form of an OBJ file, which is a widely-used standard in the

3D modelling industry and suitable for the subsequent import and modification.

4

2 Brief history of computer graphics

2.1 Origins

The “computer graphics” term was used for the first time publicly in the year 1960 by the

art director of The Boeing Company, William Fetter, who worked with research of graphic

technologies for a future application in the development of jet planes drafts [1]. Multiple

sources also state him saying that his work colleague Verne Hudson suggested it to him

originally [2]. At first, the term computer graphics was used inside the company for de-

scription of works and drafts made by a mechanical plotter controlled by a computer [1].

Fetter was convinced that the appearance and wide distribution of computers will change

and broaden up the creative potential of humanity and that the computer in its complete

form will be serving as a tool for an explicit projection of thoughts and emotions. Together

with his colleagues, programmers and engineers of Boeing Company, Fetter developed

first in the world a computer model of the human and its motion simulations, shown in

figure 1, thereby demonstrating a revolutionary new face of computer facilities applica-

tion. His following artistic work and participation in the Arts and Technology movement

inspired him to support a growing collaborative society of artists and engineers. His ef-

forts to build a bridge of communication between artists and engineers led to the creation

of “Circles I”, an early computer-generated film made in cooperation between Boeing

engineers, Doris Chase, local filmmakers and artists. Fetter’s dedication and endeavours

showed to artists a computer as an instrument to work with and gave a first impetus to a

wide distribution of computer graphics. [1.]

Figure 1. William Fetters Boeing man model. Reprinted from cgsociety.com [3].

5

2.2 3D modelling and animation

In 1972, two graduate students, Ed Catmull and Fred Parke, of Utah University intro-

duced their thesis project – a one-minute movie with a three-dimensional polygonal rep-

resentation of a human hand, which became one of the first prototypes of 3D computer

animation. The movie contains a process of the creation and several short computer

animations – a hand rotation, a fingers’ flexure, pointing by a finger to a watcher and a

hand’s wireframe model at the end. [4.] Selected movie frames are shown in figure 2.

Figure 2. Frames from ‘A Computer Animated Hand’. Copied from Steemit [5].

Later, Catmull became one of the cofounders of a company called Pixar, specializing in

the production of feature-length movies fully made with the computer graphics [4].

In 1977, the first movie of the George Lucas’ Star Wars trilogy was released in wide

screen theaters and it had a three-dimensional wireframe imagery that represented the

Death Star inner plans and structure, shown in figure 3. It was made by a computer artist

Larry Cuba on the basis of a photo of a matte painting by using a minicomputer with a

monochrome display and a vector-graphics system that allowed drawing only lines. [6.]

6

Figure 3. Frame from ‘Star Wars’ movie. Reprinted from Price [6].

The computer-generated imagery started to appear in high-budget movies during the

1980’s and the 1990’s, the most remarkable and well-known being Tron, Terminator 2,

Start Trek IV and James Cameron’s The Abyss. In 1995, Ed Catmull and his company

Pixar released the feature length movie Toy Story made in full of the 3D computer-gen-

erated imagery, which was nominated and won multiple awards for the animation, tech-

nical and special achievements and innovations [7]. Pixar and a number of other com-

panies, including Disney and DreamWorks, has developed the idea of a computer-gen-

erated imagery feature length cinematography and gave to the world such marvelous

movies as WALL-E, Zootopia, Finding Nemo, Shrek. [8.]

Creation of CGI-based movies is no longer a prerogative for a dedicated business. Mo-

tion picture companies and directors are able to recruit independent graphic studios for

implementation of particular aspects or parts of the movie. In 2009, James Cameron

concluded a contract with Weta Digital and Industrial Light and Magic companies to ac-

complish work on visual effects, modelling and a motion capture of actors for the creation

of the movie Avatar. Production also involved such companies as Microsoft, which de-

veloped and provided a cloud computing technology and the Digital Asset Management

system specifically for the movie, a server render farm of Hewlett-Packard servers and

Pixar’s technologies of Renderman and Alfred queue management system. [9.] A signif-

icant speedup of the work process and the release of the incredibly high-quality CGI in

the Avatar movie were the result of this extraordinary union. The movie won all possible

nominations related to computer graphics including one of the most popular – the Oscars

[10].

Nowadays the computer animation can be seen anywhere, as special effects on televi-

sion, in cinemas and games, and in different multimedia applications. It keeps evolving,

trying to reach the most photorealistic level of the computer graphics. The achievement

of the photorealism will heavily affect the production processes in the film industry and

the life of ordinary people.

2.3 3D modelling software

The first commercial software for creation and working with the 3D graphics were

launched in the 1980’s. A well-known company called Autodesk entered the market in

7

1982 with its first and primary product AutoCAD, a commercial drafting software appli-

cation for computer-aided design, which allowed and simplified the process of the draft

production on personal computers. Possibility to create three-dimensional models in the

manner of either transformation of two-dimensional drafts or a model creation from a

scratch was added in subsequent versions of the application. The company cultivated

the idea of working with the 3D graphics and in 1990 released a fully dedicated modelling

software called 3D Studio, known as 3DS Max nowadays, for the DOS operational sys-

tem. [11.]

Alongside with Autodesk, competitive companies were developing and fighting for the

market of computer graphics. Wavefront, Softimage and Side Effects Software were the

most notable of them.

The main products of Softimage, Softimage 3D and its successor XSI, were aimed to

work with CGI for feature length movies. They were used for the creation of visual effects

of Titanic, Fifth Element, 300 and Jurassic Park. During its lifespan, Softimage heavily

influenced the animation industry. Softimage was the first to bring animation tools to per-

sonal computers under the Windows system and as a result increased affordability and

accessibility of tools to end customers. Softimage developed the first integrated anima-

tion, effects and post-production systems. In 1994, Microsoft bought the company to

strengthen its own role in the multimedia and interactive television production, yet six

years later sold Softimage to Avid Technologies, which wanted to expand its own busi-

ness to the CGI market. [12.]

Wavefront products were oriented to cover a wide range of computer graphics applica-

tions and were used on television, in movies, and in academic and engineering visuali-

zations. Wavefront started its way with release of Advanced Visualizer, a suite of inde-

pendent applications for an image and graphic animation processing that was used for

the production of CGI in Jurassic Park, Terminator 2 and Abyss. Wavefront was the first

in the world to release one of the earliest commercial tools for scientific visualizations,

named Data Visualizer. In 1995, the Wavefront company was bought by Silicon Graphics

Inc. and was merged with Alias Systems Corporation into the super company called

Alias|Wavefront as a response to Microsoft’s attempt of taking over the 3D market by

purchasing the Softimage company. Alias|Wavefront released their most well-known

product, a 3D modelling and animation application called Maya, based on the code of

Advanced Visualizer. [13.]

8

Autodesk company was more prosperous than other companies in the industry. It

avoided being purchased by big IT corporations and in the years of 2006 and 2008 it was

able to buy its previous competitor Softimage from Avid [14] and Alias|Wavefront from

Silicon Graphics Inc. [15], becoming one of the largest companies in the industry. Its

major role in the market permits the Autodesk company to increase the prices of its own

products [16] and implement a subscription-only based purchase model as a result [17],

neglecting extremely negative responses from customers.

The modelling software market was relatively closed until the end of the 1990’s. Small

companies with their own products stand almost no chance in competition with industry

leaders. Nonetheless, an inaccessible affordability for private customers, a high barrier

to entry and an absence of a wide selection on the market stimulated the appearance of

a number of free alternatives, the most notable being Blender, Anim8or and Open CAS-

CADE. Blender started as an in-home toolset, made by Ton Roosendaal, and later was

transformed into a commercial product under Ton’s company named Not a Number. The

company used to provide services and commercial products for the Blender and was

financed by several investment companies. Low sales and economic problems made

investors to discontinue financing in early 2002, which led to open sourcing Blender un-

der the GNU license and the community support and development. [18.]

Blender was considered as the most popular modelling software for 3D printing in 2015.

Nevertheless, as it is shown in figure 4, the number of Autodesk products (AutoCAD,

Maya, 3DS Max, 123D Design, Inventor, Fusion 360, and Meshmixer) allows naming

Autodesk company as the largest player in the industry with the widest audience cover-

age. [19.]

9

Figure 4. Popular modelling software used for 3D printing. Copied from Top 25: Most
Popular 3D Modeling & Design Software for 3D Printing [19].

2.4 3D scanners

The first attempt to create a functional 3D scanner was taken in 1980’s. It was a contact

probe scanner, which could provide precise results but the complete scanning process

took a very long time, and the scanner could not scan objects with a soft surface well. In

search of speeding up the scanning process and avoiding the prodding problems of ob-

jects, researchers decided to look into other possibilities and started developing scan-

ning based on optical technologies. [20.]

At the time, only three types of the optical sensors were available, shown in figure 5:

• Point sensor, which scanned only one point of the object at once and due to this

did a lot of physical movement across the scanning object [20];

• Area sensor, which made an area scanning at once, but was technically difficult

to realize [20];

• Stripe sensor, which captured a band of multiple points of object at once [20].

10

Figure 5. Point, Area and Stripe scanning optical technologies. Reprinted from
Hoffmann [20].

Stripe technology was the golden mean between the capturing speed, accuracy and the

complexity of technical realization and was chosen for further development. The optical

sensor needed to accomplish the scanning multiple times from different positions for

capturing objects in three-dimensional space. Data, collected from scans, could be rep-

resented by millions and millions points and had duplications, which raised difficulties to

software for processing this kind of data amount. [20.]

In the 1980’s, Cyberware Laboratories developed the Head Scanner, the first scanner to

capture human shapes and proportions for the animation industry. It used a low intensity

laser to create a highlighted profile of an object after which a reading sensor captured

the profile. In an extended version of the scanner, a second sensor would capture a color

of the object at the time of scanning. The output of the scanner was represented in a

cloud of points, in which each point had coordinates of the X-, Y- and Z-axes and a 24-

bit RGB value for color. The Head Scanner and its example results are shown in figure

6. [21.]

11

Figure 6. Cyberware Head Scanner and its results. Copied from cyberware.com [21].

In the 1990’s, the company made a step further and developed a successor to the Head

Scanner – the Whole Body Scanner. It allowed capturing the full human body shape and

its color in only 20 seconds, starting moving down from the head. The Whole Body Scan-

ner and its example results are shown in figure 7. [21.]

Figure 7. Cyberware Whole Body Scanner and its results. Reprinted from
cyberware.com [21].

The scanning solutions of Cyberware Laboratories were very expensive and affordable

only to big companies, with the Head Scanner starting from $63,000 and the Whole Body

Scanner starting from $200,000 in domestic American sales [22]. Both the Head and the

Whole Body Scanners were full-scale working stations due to their sizes and weights. In

packed condition, the Head Scanner took 1.9 x 2.0 meters and weighed 127 kg; the

Whole Body Scanner was 2.0 x 1.2 meters and 450 kg [23]. They were not easily trans-

portable and demanded setup and calibration after the haulage.

12

In late the 1990’s, many companies, including the earlier mentioned Cyberware, made

efforts to expand and develop scanning technologies. Digibotics launched a laser point

based scanner that worked in four axes with six degrees of freedom but was slow and

unable to trace a color. 3D Scanners introduced REPLICA, a laser stripe based scanner,

which made a serious progress in the industry. The Faro Technologies and Immersion

companies tried to reduce production expenses of scanners and released low-cost prod-

ucts that were able to create a complete model but were slow and had accuracy that was

lower than usual. Another 3D Scanners product, named ModelMaker, was a combined

laser stripe scanner with a manually operated arm. ModelMaker was able to create com-

plex and accurate models and color them, while being a flexible and fast device. Its com-

plete scanning process could take just mere minutes. [20.]

Since the middle of the first decade of the 2000’s, transportable 3D scanners – such as

first generation models of REVscan [24] - started to appear and penetrate into profes-

sions not tied to the one specific workplace. They found their own application in different

offsite work, e.g. in work of U.S. federal investigators and anthropologists [25]. The 3D

scanning became widespread in medicine, in computer tomography [26], in museums

and in archeologic work. It was used for saving the cultural heritage in digital form, like a

scanning of Kasubi Tombs in 2009 [27] and a scanning of Thomas Jefferson’s Monticello

in 2002 [28].

Currently, the 3D scanner market is diverse and extensive. Scanners has undergone the

process of minimization and became easily transportable by hands in comparison with

early scanning stations. A variety of stationary desktop and handheld scanners is avail-

able with affordable cost with different scanning techniques involved [29].

Affordability and accessibility of specific electronic components and the widespread dis-

tribution of computer hardware allow many hobbyists to develop their own scanning so-

lutions at home. Ordinarily, they publish their designs and drafts on the Internet free of

charge with the full description on what components are needed, where to buy the com-

ponents and how to assemble the working station. Some of them even put low-cost do-

it-yourself kits of their scanners on the market for sale.

13

FabScan is one of the most notable homemade scanners. Francis Engelmann started

the FabScan project as his bachelor’s thesis with the production cost of 150 euros. Orig-

inally, it was based on a laser, a rotary object plate with a stepper motor and a simple

web camera. Engelmann released FabScan as an open-source project so that everyone

could use and apply any changes to it. [30.] Mario Lucas used the FabScan project as a

basis for his own thesis work and extended it into a Raspberry PI platform, shown in

figure 8. By doing so, he minimized the scanner with usage of a native Raspberry camera

and separating FabScan with computer hardware. [31.]

Figure 8. FabScan PI and its result. Copied from Thar [32].

The creation of FabScan has shown that with the certain diligence and determination, a

person is able to achieve significant results without access to serious manufacturing ca-

pacities and obtain in the result a high-quality product. Due to efforts and ingenuity of

Francis Engelmann, FabScan became a great alternative to commercial products on the

market. Most importantly, his developments are open to public access and modifying,

which will allow this project to live and progress through society contributions.

Homemade scanners are able to compete with featured commercial products even by

now and affect the industry by striking to the overall price, thereby forcing companies to

release more low-cost products.

Fairly recently smartphone-based scanners were introduced to the market. A rapid evo-

lution of mobile devices and their operational systems allowed them gradually to adopt

the functionality of computer systems in some aspects of data processing. Smartphone-

based 3D scanners are represented in the majority as a combination of two devices: an

independent attachment that does actual scanning and a smartphone, which is used

merely as a computing unit. EORA 3D Scanner is an example of combined devices [29].

However, a number of 3D scanners that work only with a standard configuration of

14

smartphone is drastically small in comparison with the number of combined 3D scanners.

3D scanners aimed for the standard configuration of smartphone are represented as

standalone applications, which use principles of photogrammetry. The most notable

ones are Autodesk 123D Catch (http://www.123dapp.com/catch), Trnio

(http://www.trnio.com/) and Scann3D (http://scann3d.smartmobilevision.com/).

In spite of being of the same type, the way they work differs sharply. All computations for

model reconstruction in 123D Catch and Trnio are performed on the cloud [33]. This

structure of the application demands a network connection and the ownership of a user

account in the service of providing company. In addition, the structure restricts the role

of the application only to the image capture and a preview of a completed model. On the

contrary, Scann3D executes all computation exclusively on the device, albeit it still allows

publishing the model on the Internet [33]. Undoubtedly, the cloud computing benefits in

the speed of work, but the 3D scanner becomes divided into client and server parts,

which hampers the application support.

The smartphone-based segment of the 3D scanning market is developing slowly. At the

time of writing this thesis only three given applications displaying reasonable results were

available. Furthermore, only Autodesk 123D Catch was available on all popular mobile

operational systems, when Scann3D was limited to Android and Trnio to iOS only [33].

3D scanners have been defined as a convenient tool in various areas of human activity.

The American Federal Bureau of Investigation (FBI) uses them for cast creation of crime

or accident scenes [34]. Museums and historians use scanners for saving ancient arti-

facts, relics and remains as digital models [35]. In medicine, they are used for creation

of prostheses, dental implants and orthoses. Plenty of professions are able to find a

practical application for 3D scanning.

15

3 Theory of 3D modelling

3.1 3D modelling

A three-dimensional model is a recreation of an abstract or physical object, made in form

of a point cloud or a polygonal mesh with connection by diverse geometric entities.

Visualizations of point cloud and mesh are shown in figure 9.

Figure 9. Point cloud (a) and corresponding polygonal mesh (b). Reprinted from Hosoi
et al [36].

Point cloud is the simplest representation made of multitude of separate points in 3D

space. Typically, point clouds are not used in the modelling but are products of a 3D

scanner work which will be converted into a mesh later via different processing algo-

rithms.

Mesh, or polygonal mesh, is a set of vertices, edges and faces that represents the object

surface, where a vertex is simply a point in space, where an edge is a line connection

between two vertices and a face is a set of closed edges, which can be a triangle face

consisting of three edges or a quad face made of four edges. Visualization of the given

elements is shown in figure 10. [37.]

16

Figure 10. Visualization of vertices (1), edges (2) and quad faces (3). Copied from
What is a Mesh? [37].

Usually, models are classified into two categories – solid models and surface models. A

solid model represents an object and its physical characteristics, used for engineering

and scientific simulations such as load analysis. A surface model is a representation of

an object shell without any physical characteristics, and it is used for visualization only,

such as in movies and games. [38.]

A 3D modelling is a process of a model creation. A model is visualized as a two-dimen-

sional image via the 3D rendering process or other visualization technologies. There are

several commonly used methods for modelling [39]:

• Polygonal modelling, represented by vertices connected with edges for forming

of a polygonal mesh. Due to the planar nature of polygons, curved surfaces are

approximately simulated by using a multitude of polygons. The polygonal model-

ling is a popular modelling process because of flexibility, overall lightness and

possibility of a polygonal mesh to render in easy and quick way. [39.]

• Curve modelling, where curves are used for the generation of a surface geometry

with mathematical equations and are influenced by weight control points. For de-

scription of surface forms, the curve modelling may rely on non-uniform rational

B-splines (NURBS), geometric primitives and common splines. [39.]

• Digital sculpting, where a model is used as clay during usual sculpting to form an

object surface with application of different displacements [39].

• Code-driven modelling, where the code or a procedure generates a model in con-

ditions set by user [39].

17

• 3D scanning, where a model is generated based on provided data. Different tech-

niques are described in the following chapter.

3.2 3D scanning

A 3D scanning is a process of a capturing object shape with usage of specific equipment

and producing a 3D model as a result. The produced model may be in a different form,

such as a point cloud, a polygonal mesh, either texturized or colorized.

3D scanners can be categorized by:

• Range of use – short, mid and long ranges, which depends on the manufacturer

choice. In general, all stationary desktop scanners with a rotating stand may be

considered as short range, because their range of scanning are limited to their

physical size.

• Type of an object region scanning – a point, a line or an area scanning, shown in

figure 5 on page 10.

• Type of an applied scanning technology.

Scanning technologies are usually divided into two general categories:

1. Contact, where a scanning device is using a mechanical touch probe to deter-

mine physical geometrical characteristics of a specific object. Contact technolo-

gies were first applied technologies in the 3D scanning and are still used today

in modern coordinate-measuring machines in combination with other scanning

methods. [40.]

2. Noncontact, which involves a variety of other proximity scanning methods, such

as a laser triangulation and pulse, a structured and modulated light, and photo-

grammetry. The presented noncontact methods include active methods, which

emit any kind of a light or a laser signal onto an object, and passive, which do not

emit anything and rely on reflected ambient radiance. [40.]

Laser triangulation

A laser triangulation scanner uses two general devices, a laser-generating module and

a reading sensor or a camera, for obtaining the distance to the scanning point of refer-

ence. Distance to the object point (Z mark in figure 11) is calculated by applying the

triangulation principle with known baseline b and angle α between the laser module and

18

the camera. The angle and baseline parameters determine the aggregate performance

of the scanner in aspects of sensing range, occlusion of either laser light or camera’s

reading due to obstacles or other object surfaces and depth resolution. The laser trian-

gulation technology is one of the most used technologies in handheld and portable de-

vices. [41; 42.]

Figure 11. Laser triangulation scanner apparatus. Reprinted from Munaro et al [41].

Laser pulse scanners are based on the time-of-flight principle and are almost similar to

the laser triangulation scanners on module level, with application of a laser source and

a reading sensor. The accuracy of a scanner depends on the precision of a time meas-

urement between the emitting and receiving laser, reflected from an object surface. Dis-

tance to a scanned point is determined by half of the measured time, due to a laser taken

a round-trip and a well-known speed of light. [42.]

Structured light

The structured light technology is based on the same triangulation principle but instead

of a laser-emitting module, a light source is used. It projects a multiple linear pattern

patch to the object and examines a line edge deformation to calculate the distance and

form. Projected patterns provide a highly precise depth perception and accurate meas-

urements as a result. The structured light technology is considered as highly accurate

and low noise but habitually not very portable. The technology is also sensitive to ambi-

ent lighting and limited to an area scanning only. An example of the scanning process of

the structured light is shown in figure 12. [42.]

19

Figure 12. Structured light scanner usage. Copied from McDonald [43].

Modulated light

Modulated light scanning systems use a time-of-flight principle, by analogy to laser pulse

systems. The source radiates a light signal with a continually varying amplitude in form

of a sine wave. The camera receives the reflected light and determines the distance by

analyzing how much the light phase was shifting. In contrary to the structured light, mod-

ulated systems are not interfered by the light of other than scanners sources. The tech-

nology has the same pros and cons as the structured light. [40.]

A reflectance and transparency of an object surface significantly affect the accuracy of

the aforementioned light and laser scanning technologies. The laser signal will not return

to the reading sensor after being absorbed with a low reflectance level surface or a per-

meating translucent surface. [41.] There is no simple and viable solution to this problem

but mere workarounds, such as heating the object and acquiring its geometrical shape

via a thermal imaging device [44] or coating a surface with a temporary non-transparent

spray [45]. An example of a dark-colored object with low reflectance problem is shown

in figure 13.

20

Figure 13. Reflectance problem example. Reprinted from Wohl [46].

Photogrammetry

The photogrammetry is a science of making accurate measurements on the basis of

taken photos. It is not dedicated to the three-dimensional scanning only, but involves it

as one of the parts of application. A photogrammetry-based scanning relies only on a

reflected ambient luminesce and is considered as a passive method. [47.] Due to a vast

development of the image processing, it includes a multitude of methods that are used

in the scanning [40].

Stereoscopy

the stereoscopy involves usage of two cameras, pointing at the same object and taking

pictures at the same moment of time. Slight differences between pictures and a known

angle between cameras allow computing a disparity map and a depth map, which are

used for determining the distance to an object surface vertices, with a one vertex per

map pixel. [40.]

Photometry

The photometric scanning implies taking multiple photos of an object under different spe-

cific light conditions, such as with a light source above, below, in front of and behind the

object. During the process the object should stay stationary. [40.] Typically, the technol-

ogy demands setting up a special photometry booth with a great number of cameras

pointing under a purposely-calculated angle and a plenty of light sources for obtaining

21

the best results, which is quite an expensive technology to be built up from scratch, an

example of which is shown in figure 14 [48]. Notwithstanding this, low-cost versions also

exist with appropriately reduced quality, using only one DSLR camera and four light

sources attached to it [49].

Figure 14. Photometric scanning process photoset. Copid from Next Generation
Photometric Scanning [48].

Silhouette techniques

The silhouette technique scanning derives object shape in form of an outline from photos,

usually taken on high contrast background or chromakey. A surface recreation is

achieved by extruding the outlines and finding the intersections between them. Due to

this algorithm, cavities and small details, hidden in between convexities, are not de-

tected. [40.]

22

4 Smartphone 3D scanner prototyping

4.1 Usage of mobile device and sensors

According to statistics of the year 2015, almost one third of the world’s population owns

at least one smartphone, making it one of the widest spread technologies and the percent

of penetration keeps growing, following the increasing affordability of smartphones [50].

Performance of smartphones is rising annually, ensuing the same Moore’s law, as the

computer system performance [51]. Even now, it is possible to face a plethora of 3D

games with a qualitative graphics and a various CAD software, needing considerable

capacities during the work that was released specifically for the mobile phones.

The Google Android is a mobile operation system, currently dominating the market with

the coverage of 86% of all smartphones in the world. Another popular smartphone oper-

ational system is the Apple iOS with coverage only in 12% of the market. [52.] In general,

both operation systems are equal in terms of convenience and functionality to an end

user. In this situation, it will be better to aim on the Google Android platform during the

development of the prototyping application, because the Android platform is more ac-

cessible in concepts of cost and it is more widespread, giving an opportunity to test the

application on a larger number of devices.

The latest version of the Google Android, 7.1 Nougat, was released on 4th October 2016.

In obedience to official statistics of 9th January 2017, it is used only on 0.2% of all Android

devices, and the most popular versions are still 6.0 Marshmallow with 29.6%, 5.0 Lollipop

with 33.4% and 4.4 KitKat with 22.6% of all Android devices [53]. For achieving the max-

imum coverage of Android users, the aim should be set to the lowest given version, since

all consequent versions have backward compatibility with previous ones. In total, with

development aimed to the 4.4 version, prototyped application will be accessible to 86%

of all Android users.

A standard configuration of modern smartphones includes front and read cameras with

flash, an accelerometer, a gyroscope, a magnetometer and, in some cases, more ex-

traordinary sensors such as a barometer, a thermometer and a dosimeter [54]. The

Google Android does not have explicit requirements to specifications of accuracy and

23

precision of supplied device sensors; thus, hardware implementation varies between

models and manufacturers. It is logical to expect that high-priced devices have installed

more expensive and accurate sensors while low-cost models have cheap ones with big-

ger fallibilities. Furthermore, a sensor is a measuring instrument that must be calibrated

over the time. Some of the supplied sensors were calibrated during a factory manufac-

turing and some were not. Regrettably, there are no statistics on this subject. This leads

to the fact that the result of the prototyped application work will vary as well between the

smartphones. Nonetheless, sensors can be calibrated manually [55] with the use of a

third-party application and they can provide quite good results of gathered data.

In spite of marketing specialists determining the camera quality by the amount of ac-

quired megapixels, the amount of megapixels is not related to the camera quality. The

megapixel is one million of pixels that forms the image [56]. A photo quality relies on

camera optics, a camera sensor and a subsequent processing. Smartphone camera op-

tics are not comparable with professional optics by virtue of their own dimensions and

architecture for the sake of mobility and minimization, yet it is enough to produce images

of acceptable quality. Indeed, there are certain types of phones with advanced cameras,

so called camera phones, but they are very rare on the smartphone market. Optics im-

provement is an expensive and a sophisticated objective; thus, manufacturers empha-

size increasing the number of megapixels [57], not only amongst smartphone cameras

but also amongst any other ones. An important factor heavily affecting a photo quality on

a mobile device is an autofocus, which is realized by a contrast detection on the majority

of smartphones [58].

4.2 Initial composition

In consequence of the fact that the prototyped application was limited by basic specifi-

cations and a standard configuration of smartphones, preference to the silhouette scan-

ning technique was given, needing not any additional devices.

The choice of this technique applied further restrictions to the application during the

photo shooting:

• object has to be on focus to avoid an unclear silhouette’s contour

• object has to be centered in the photo for a truthful juxtaposition of silhouette and

a device rotational angle

• object has to fully fit in the photo

24

• object has to be distinguished on the background, superfluous details must not

be recognized as a part of an object

• object and its relief should not cast deep black shadows to avoid their influence

on silhouette detection

• photo shooting has to be accomplished in a short time, because a device will not

be in totally static condition

In the development of an application roadmap, the first appearing question was to how

to take a photo in the best way. How to achieve the best focus of the object and its

contrast? The best decision is to delegate this function to an external application, set as

default in the user’s smartphone, because creation of a meaningful professional photo

application is not an objective of this study and deserves a separate and detailed discus-

sion.

During the time of a photo shooting, device rotational angles have to be acquired and

stored. Acquisition has to be done on the basis on a smartphone’s magnetometer, ac-

celerometer and gyroscope data. Rotational angles may be stored in for example INI-

format for a future reference in a model reconstruction. Notwithstanding that the INI-

format is considered as deprecated by Microsoft, it is easily readable and modifiable by

user in its raw form. Regrettably, Android does not support the INI file format natively

and an additional external code library ini4j has to be used for it [59].

Presumably, a taken photo has to be scaled down to speed up a processing calculation

on the small powers of a mobile device.

The object of scanning has to be extracted from a background, which means relying on

automatic segmentation is risky due to capturing superfluous details or discarding the

meaningful ones. The user should be able to mark manually all necessary areas to be

discarded or added.

Considering the fact that the camera will move around the object, size of the object will

be fluctuating between photos depending on camera approaching and drifting apart. Ex-

tracted objects from different photos have to be aligned to the same size for a successful

juxtaposition of silhouettes. Due to the unknown distance to the object, a question ap-

peared on how to determine a scaling coefficient of images.

25

The contours of silhouettes have to be retrieved from objects of the same size. Contour

must be a precise and distinct line of one color with the width of one pixel. This format

allows transfiguring the contour easily to a point array in three-dimensional space.

Contours, transfigured to point array, should be revolted around axes in 3D space. It is

important that contour points were centered regarding the starting points of all axes in

space for a successful detection of intersections in the future.

The most logical solution for a search of intersections will be an extrusion of contours.

Extrusion has to be accomplished by casting a line through each point of array, which is

parallel to the camera view vector with line’s center situated directly in the point. The

length of the casted line should be more than a maximum distance between the most

remote points of the contour. It is a good idea to use the width or the height of a taken

photo, depending on what the biggest value is.

Model reconstruction has to be done by a search of intersections between lines of ex-

truded contours. During the intersection of two lines, closest points of lines have to be

translated to an intersection point, thereby forming the surface of an object eventually.

The Google Android platform has multiple open source libraries for image processing,

but only BoofCV (http://boofcv.org/) and OpenCV (http://opencv.org/) are applicable for

all requirements of prototyped application. The OpenCV library was selected because of

two factors: it is better in comparison with calculation speed of BoofCV [60] and many

large IT corporations, including Intel, Google and Microsoft [61], use the OpenCV. The

latest version of OpenCV for the Android platform is 3.1.0 and it limited the lowest usable

version of Android to 5.0 [53], decreasing by this coverage to 64% of all Android users.

4.3 Device rotation determination

The Android operation system does not provide direct access over sensors but maintains

access through the specific framework. The operation system offers multiple ways of

obtaining and handling the sensors’ data. Device rotation determination methods typi-

cally use a combination of accelerometer, magnetometer and gyroscope sensors. In par-

ticular, the Rotation Vector Sensor interface uses all of the mentioned hardware sensors,

whereas the Game Rotation Vector Sensor uses only the gyroscope and accelerometer.

Thus, the Game Rotation Vector Sensor points to another reference point instead of

26

binding to the North Pole, and the Geomagnetic Rotation Vector Sensor avoids gyro-

scope usage, superseding it with the magnetometer. Apart from the given options, the

framework allows creating a custom implementation for rotation angles obtainment with

utilization of only the gyroscope or any other sensor combinations. The aforementioned

realizations provide raw data from sensors that can be processed into a rotation matrix

and Euler angles by supplementary framework functions. [62.]

Figure 15. Android device coordinate system (left) and the world’s frame reference
(right). Reprinted from Android Developers [63].

Android distinguishes two types of coordinate systems. On the one hand, devices use a

standard 3-axes coordinate system relative to their display. It is based on a natural ori-

entation of the device, typically portrait for smartphones and landscape for tablets. The

coordinate system for the device, which put into its natural orientation, has a horizontal

X-axis pointing to the right side, a vertical Y-axis pointing upwards and a Z-axis points

towards the outside of the screen, as shown on the left in figure 15. On the other hand,

all rotation determination methods that have a magnetometer involved use a coordinate

system relative to the world’s frame as a reference, shown on the right in figure 15. Its

Z-axis points to the sky, the Y-axis points to magnetic north of the Earth and the X-axis

points roughly to the East. Withal, sensor system axes are not rearranged when device

is revolted and this should be done manually if a certain need appears. Rotation angles

are calculated based on mentioned axes: pitch as rotation around the X-axis, roll around

Y-axis and azimuth instead of yaw around negative Z-axis in Euler form. [62; 63; 64.]

The diversity of sensors also presents several problems coming with them. The gyro-

scope has a drift around the Z-axis, yet the accuracy of the relative rotation is higher than

with the magnetic field sensor. The magnetometer has a magnetic north as a constant

point of reference and reduced battery usage in comparison to other sensors but it is

influenced by changes in the magnetic field around the device. A heavy usage of multiple

27

sensors will consume battery’s charge at a fast rate, depending on how fast the applica-

tion queries the data from them [62]. Most angle retrieval methods may have a gimbal

lock, loss of one dimension in space, in certain positions [65]. In some cases, it is possi-

ble to avoid gimbal lock by rotating the retrieved rotation matrix into a different coordinate

system with a designated framework function.

The prototyped application was aimed to use the Rotation Vector Sensor interface for

retrieving the device rotation with both good precision and reference to the world’s frame

that will allow transferring project files between devices and populating one project by

images taken from multiple devices while having the rotation angles presented in the

same coordinate system. The framework suggests using the device’s Z-axis as a sensor

system’s Y-axis for augmented reality and other camera based applications [66]. By re-

lying on these settings, the smartphone will provide stable and usable rotation angles

around the world’s frame Z-axis with the starting point on the magnetic north, around the

horizontal plane and around the camera view vector or the yaw in any orientation.

Figure 16. Camera rotation in reference to object, made with free graphic editor GIMP
2 [67].

Even though the retrieved Euler angles may be directly assigned to an object and repre-

sent its rotation, they have to be inverted by sign at first. The camera view vector rotates

around its own axes during the photo shooting and assigning angles to other objects is

not possible in an ordinary case. However, by assuming that a static object will always

be at the other end of the camera view vector, angles may be assigned and reverted.

Reversion of angles has to be done due to a change of a rotation direction, as if it was

not the camera revolting around an immobile object but the object revolted and the cam-

era stand still as shown in figure 16. Thus, the prototyped application will be in a way

similar to desktop scanners that have a rotational stand.

4.4 Man-to-machine interface

28

The graphical user interface of the prototyped application was developed in accordance

to a rule of minimal interaction between the user and application. The user must have

access only to the most necessary operating levers of the application and everything

else must be hidden under the hood, prepared beforehand or computed automatically.

The interface of the prototyped application is limited by the dimensions and resolution of

the smartphone display. It is extremely impractical to force the user to adapt and orien-

tate in a complex architecture and intently look into a multitude of small elements. There-

fore, an Occam’s razor has to be used for cutting out, simplifying and unifying all unnec-

essary and protruding elements. Elements that remain have to be brought to the intui-

tively understandable and as standard as possible pictograms wherever feasible.

Since 2014 and the Android version L, the Google has promoted the usage of material

design on all devices including the versions where the design has not been implemented

originally [68]. The main idea of the design is that application pages open, switch and

minimize as “cards”, almost invisibly and smoothly with application of shadow effects.

Pages avoid sharp edges and angles while being more intelligent and responsive [69].

In the design development, a standard Android material design guidelines were followed.

Basing on the given roadmap of the application, a page with a list of created projects, an

interactive page to work with object segmentation and a page to show the result of scan-

ning process were needed as minimum.

The list of projects is shown on the starting page of the application. The list was realized

as a standard scrollable list of containers, sorted by modification date, where latest date

is always on the top. The container itself consists of the project name, optionally of the

date of a creation or a modification and a controlling button that shows the menu with

actions. The menu has standard options like a renaming or a deletion of the project,

viewing the result and re-doing the segmentation and calculations of the result. Besides

the list of projects, the page has a floating action button, responsible for the creation of

a new project. A mockup of the project page is shown on the left in figure 17. All following

mockups were made in the free graphical editor GIMP 2 [67].

29

Figure 17. Project page (left) and model page (right) mockups, made with free graphic
editor GIMP 2 [67].

The 3D reconstructed model page is fairly simple. A 3D model in form of a point cloud is

placed in the center of the page with a possibility to rotate it in all axes by standard

swiping gestures. The page does not have any control elements and thus its work and

interaction may appear as unobvious for a new user. The new user is introduced with a

short description of actions shown in the popup message, with “Swipe to rotate” and

“Pinch to zoom”. The page mockup is shown on the right in figure 17.

The segmentation page architecture is composed of several elements – an original photo

of the object, a result of segmentation, a result of contour detection, a drawing area for

marking parts of the object and a button panel.

Initially, the photo and resulting images were planned to be shown in the form of a se-

quential list, but in this case the user had to determine in a very inconvenient way how

well contour was detected and if there were any missing or superfluous elements by

continually scrolling up and down. For avoidance of a hustle, all elements were placed

superimposed on top of each other. The original photo was put on the lowest level, the

segmentation result is placed on top of it with opacity of 70%. On the following layer, a

result of contour detection was put with the same level of opacity. The subsequent layer

is intended for marking elements of the image that should be removed or added. For

30

easy perception of the user, the green color was chosen for adding and red for deletion.

Controlling elements, i.e. buttons, are situated on the highest level.

By means of this approach, an extracted object and its contours will be brightly high-

lighted and readily discernible, while other parts of the image are partially darkened. This

allows easily evaluating the quality of detected contours, existence of noise and parasite

details.

Android smartphones have a bottom button bar with ‘Back’, ‘Home’ and ‘Recent’ buttons,

also known as soft keys, either in physical form or in emulated form in the bottom part of

the screen that will take a vital space of the segmentation screen. It is necessary to hide

the emulated button bar, maximize the page to full screen mode and put control elements

there with an alternative ‘Back’ button. Material design guidelines suggest realizing con-

trol elements in the lower part of the screen as a solid and monolithic bottom navigation

bar that also consumes vital screen space and covers everything beneath it. In this par-

ticular case, design guidelines were disregarded and control elements were realized as

independent and separately standing buttons of circular form for retrieving larger observ-

able space.

Tentatively, the following control elements were needed:

• a “Back” button for returning to project list page

• a “Drawing tool” button to switch between color filling and pencil

• a “Color” button to change a currently selected color of the drawing tool between

green and red

• an “Undo” button to cancel the latest action

• a “Next” button to proceed to the next photo

• a “Compute” button for applying the image segmentation on the basis of user

input data and contour detection.

Although the material design suggests the menu curtain should be used on the left side

of the display, its exploitation seems to be exceedingly unpleasant because the user has

to perennially open and close it for accessing each control element. Hence, control ele-

ments were realized in the form of buttons in the bottom of the screen for instant access

and have intuitively understandable pictograms for space saving.

31

Search and selection of intuitively understandable pictograms for a common user have

turned into a small study, in the course of which a realization has came that one image

can be perceived in completely different ways between people. Due to this fact, only

popular pictograms were used, perceiving of which does not cause numerous interpre-

tations and discrepancies. All the chosen pictograms are shown in figure 18, given on

page 32.

Pictogram ‘Menu’, shown in figure 18 (a), is a variation on the theme of famous and

ubiquitous ‘hamburger’ icon [70]. A clear indication of the menu, in particular navigation

menu, gained a foothold on the icon. The ‘hamburger’ icon was used on the project page

for management of a selected project.

Check mark, shown in figure 18 (b), is a conventional concept of consent and acceptance

and always used for affirmative or approval buttons [71].

The ‘Undo last action’ pictogram, shown in figure 18 (c), is a classic and longstanding

icon in the field of information technology that appeared with the meaning of cancelling

the last action since the first versions of Microsoft Word in the 1990’s [72].

The first difficulties appeared in selecting the pictogram for ‘Back’ button. The most pop-

ular icon is an arrow pointing to the left and it would be logical to choose exactly it, but

by its composition and movement direction it reminds of the ‘Undo’ pictogram. Besides,

the ‘Back’ and ‘Undo’ buttons were placed next to each other and the user may become

confused and make wrong actions. Hence, for greater differences, an ‘Exit’ icon that

represents the door was chosen, which has no discrepancies. It is in use by Google and

reminds of a standardized sign of fire exits [73]. It is shown in figure 18 (d).

The ‘Drawing tool’ button had to be represented by two pictograms at once: a pen, for a

small detail selection, and a filling for an area selection. Action that has to be performed

for direct filling must be enclosed in the filling area pictogram for its clarity to the user. In

majority of graphic editing software, the filling area action is realized by one click inside

some enclosed form that has to be filled in. The creation of the closed form for the filling

execution is excessive in context of the project and it may be done by going from an

opposite side and making an inverted filling – to select the object into a rectangular frame

with a swipe gesture and fill everything except that. A squared frame icon [74] was taken

as the starting point and two points were added, located diagonally and symbolizing a

32

necessary action to make the filling – to touch the screen and stretch the frame for se-

lection. The produced icon is shown in figure 18 (f).

The ‘Color’ button also demanded two pictograms that fortunately did not present any

difficulties during creation. Each of them is an icon of a squared frame [74] filled with

either green or red color. The icon is shown in figure 18 (g).

The pictogram for the ‘Compute’ button was the hardest to determine. There is no single

established or longstanding pictogram for terms like ‘computation’, ‘process’ or ‘pro-

cessing’ at this moment. A search engine helpfully suggested the following options:

• a multitude of gears, which are usually associated with ‘Settings’

• a microchip and server stack, unknown to common users

• two, three or four arrows inscribed in a circle that looks similar to the ‘Undo’ button

or recycling symbol

• a timer that probably suggests to click the button and simply wait for something.

Uncertainty during the search and a huge amount of options brought an idea of associ-

ating computations with a measuring device, shown in figure 18 (h). The scale with an

arrow is an essential attribute of every science apparatus and, as analogy, a computa-

tion.

(a) Menu [75] (b) Check mark [76] (c) Undo, repeat [77] (d) Exit [78]

(e) Edit, pen [79] (f) Square, fill (g) Color [74] (h) Gauge, meter [80]

Figure 18. Pictograms for application buttons.

Button placement was built in accordance to material design guidelines suggestions

about non-standard forms and pages with comparably simple content. It was recom-

mended in the guidelines that control elements should be placed on the right side of the

dialog, with an affirmative element situated on the right side of a dismissive element.

Other buttons, placed in between of the affirmative and dismissive buttons were subject

33

to the same logic: the ‘Compute’ and ‘Drawing tool’ buttons were set on right, ‘Undo’ and

‘Color’ were set on the left.

Figure 19. Segmentation page mockup during the process. Original photo (left), user
markings (middle), extracted object with edges (right). All images made with free

graphic editor GIMP 2 [67].

Interaction with the segmentation page and computed results were visualized with a 3D

scene made in the free 3D modelling software Blender 2.78 [81] and the rendered im-

ages were processed with the free graphical editor GIMP 2 [67]. The user interface work-

flow is shown in figure 19.

34

5 Image processing with OpenCV

5.1 Object segmentation

Reviewing and selecting the segmentation algorithm was based on understanding that

images taken with a smartphone camera could be of mediocre and low quality. Further-

more, there was an expectation that the provided images were done on a complex back-

ground and had potential color similarity between them and the object. The segmentation

result determines the overall quality of the reconstructed model.

OpenCV provides multiple realized and ready to use algorithms for object segmentation,

namely marker-based Watershed and GrabCut, based on Graph Cuts. Both of them

have a possibility for accepting markers from the user for achieving a better outcome.

Both of them showed good results with nicely cut regions on working with a complex

background [82].

Watershed is a segmentation algorithm that treats an image as a topographical map in

terms of geography, where brightness of a pixel defines its height and constructs the

ridges from them. Resulting basins determine the segmentation of the image. [83.]

The GrabCut segmentation algorithm is based on iterated Graph Cuts. It uses edge and

region information encapsulated in a provided picture for the creation of energy functions

to retrieve segmentation. [84.]

Watershed separates segmented objects into multiple independent layers, while

GrabCut uses two main layers of background and foreground plus one supplementary

layer for each. The Watershed ability may lead to heavy over segmentation of the com-

plex picture in automatic mode [83], and the usage of separate layers for each user

marking in manual mode. The user has to mark the object with an uninterruptable line to

retrieve a single object contour that may lead to problems if the object has a through

hollow where the background may be seen, i.e. a toroid figure. Handling multiple layers

of the foreground and background demands additional code logic in application.

GrabCut showed better results than the Watershed algorithm during segmentation of

object that had color similar to the color of background. Watershed may consider and

include into foreground layer parts of the background if color does not have a drastic

35

difference [82]. The solution to this problem may be using fairly definitive markers. How-

ever, even with them the object edge may vary randomly unless markers stand close to

each other.

On the other hand, GrabCut segmentation is much slower than Watershed [82], inheriting

this issue from the Graph Cut ancestor.

In the end, GrabCut scored in all positions against Watershed, except the speed of cal-

culations. Comparing quality and rapidity, quality won and GrabCut was chosen. It

seemed to be more promising and provide better results than the Watershed algorithm.

After implementation of essential code for GrabCut utilization, algorithm performance

was inspected on a real device by launching segmentation calculations for a 20-mega-

pixel image without any markers. A Sony Xperia Z1 phone was used for the testing. The

total duration of segmentation was approximately 45 minutes, which is unacceptable for

application flow. The processing time decreased to 15 seconds when image size was

reduced to 1.1 megapixel (1280 per 920 pixels) with user markers and selection of the

object. At first, this issue induced to do auto-scaling of all images to 1 megapixel size,

but this solution would restrict the usability of the application and ignore constantly grow-

ing performances of new smartphones. Therefore, the application lets user the set the

image size in his/her photo application and display a warning that suggests that it will

take longer to process large size images before shooting.

The OpenCV GrabCut function returns an 8-bit image matrix as a result [85]. It has a

filled contour of the object that looks completely black to the human eye. The GrabCut

function marks the background with a value of zero, black, and the foreground object

with a value of four, also black. The foreground values should be set to true white color,

value 255, for simplifying the following processing and human control over it.

5.2 Referenced scaling

Translation of extracted object shapes to the same size appeared to be the most complex

task to solve during development of the 3D scanning application. Nevertheless, a work-

ing solution to the problem was found.

36

The size of the object on the first image is taken as a standard one and it is used in all

subsequent images. The scaling coefficient for each image is calculated based on the

ratio between the heights of the object on the current and previous images. Before the

calculation of the scaling coefficient, the difference between rotation angles of camera

view vector of the current and the previous images must be computed. The current image

must be rotated on the difference to neutralize the smartphone rotation around the cam-

era view vector.

The process of angle calculation is visualized in figure 20, where the object of shooting

is shown symbolically as a star [86]. The camera that took image B is shown with a

camera symbol [87] and the camera’s view vector is shown in form of vector AO. The

calculated rotation angle is shown as angle φ.

Figure 20. Rotation angle visualization, made with matplotlib [88].

For a better perception of the algorithm a test case with a standard image A and a scal-

able image B will be described. At first, the distance between the top and bottom extreme

points of the object has to be found on image B. In this case, pixels are treated as dis-

tance units due to the lack of original physical units.

37

Image A should be rotated on a specific angle that represents the camera view vector

for image B from the point of view of image A. Inasmuch as a smartphone roams in 3D

space and operations are done with 2D images, two 3D space angles of the X- and Z-

axes have to be brought into one 2D space angle. Rotation around 3D Z-axis is consid-

ered as a common horizontal X-axis and a rotation around 3D X-axis as a common ver-

tical Y-axis. This leads to a condition in which each point of the axis has a value of two

angles at once, and the starting point is shown as 0°, 180° and 360° accordingly. As a

solution, the sinus of an angle is used that has one value for the previously mentioned

examples to avoid cluttering.

After bringing the rotational axes into 2D space, a new point, i.e. A, is created, where the

sinus of the 3D X-axis angle determines its position on the 2D Y-axis and the sinus of

the 3D Z-axis angle – position on the 2D X-axis correspondingly. Two new points are

needed for greater convenience, point O in the center of axis and the second point B on

the X-axis. At this moment, there are two ways – to convert points into vectors AO and

BO and to find the angle between them or apply the law of cosines to three points with

the same result. Image A will be rotated on the retrieved angle and extreme points will

be obtained.

The ratio between objects’ heights is a scaling coefficient of image B. It is also necessary

to take into account a perspective influence on the image object, which adds more prob-

lems during coefficient calculation. Yet, no solution on how to get rid of that influence has

been found.

Thus, this algorithm is applicable to all images in the project, starting from the second

one, since the first one is used as a reference of standard size.

(a) (b) (c)

Figure 21. Referenced scaling visualization, made with Blender [81] and GIMP 2 [67].

38

Another 3D scene was created in Blender [81] for better understanding of algorithm work

with two cameras and one free of charge 3D model [89], shown in figure 21. Cameras

were located at various distances from the model and rotated under different angles im-

itating accidental smartphone placement during shooting. Standard image A with the

visualized camera vector of image B and the found rotation angle φ are shown in figure

21 (a) and scalable image B with marked extreme points and distance d between them

are shown in figure 21 (b). In addition, small perspective influence on the object is no-

ticeable. Figure 21 (c) shows image A, which has already been rotated, with retrieved

extreme points and distance d between them.

5.3 Contour recognition

The Canny edge detector is the most suitable for contour recognition on the black and

white mask of the segmented object that was retrieved from GrabCut.

The Canny operator, also known as the Canny edge detector, considered as an optimal

edge detector due to the low level of inaccuracy, precisely determines the center of the

edge and every edge marked only once. It was developed by John Canny in 1986 and

still is considered as the best algorithm of its kind. [90.]

(a) (b)

Figure 22. Canny edge detector with both thresholds set at 250.

OpenCV realization of the Canny edge detector allows specifying the value of upper and

lower thresholds which are used directly for edge determination. A pixel is defined as

edge if its gradient is above the upper threshold and it is discarded if gradient is below

than lower one. [90.] Due to the fact that the object mask is 8-bit and that the color value

39

varies between 0 as true black and 255 as true white, it makes sense to set both thresh-

olds as close as possible to the white color value that represents the object shape such

as 250. The usage of the designated threshold shown in figure 22, where (a) is a source

object mask and (b) is a Canny edge detector result.

5.4 Transfiguration to point cloud

Due to the fact that computer images are n-dimensional digit arrays, necessary elements

may be found through simple iteration. A Mat element of the OpenCV library represents

an n-dimensional dense array that is used for storing and modifying loaded images,

which operates with convenient table concepts, known as rows and columns [91].

It is important to know which of the X-, Y- or Z-axes are considered as a vertical axis

during the conversion of image into points of 3D space. A uniform standard accepted

between the formats of 3D models and modelling software simply does not exist. Blender

[81], Autodesk 3D Studio Max and Unreal Engine see the Z-axis as the vertical axis,

when Unity Engine uses the Y-axis. As it was told previously in chapter 4.3 Device rota-

tion determination, Google Android API uses world’s frame Z-axis as the vertical axis,

pointing to the sky.

For avoidance of confusion strengthening, the application will keep utilizing the men-

tioned Android definition of the Z-axis as the vertical axis in the 3D space of the recon-

structed model that also will lead to direct usage of the obtained rotation angles without

any swapping of axes during transfiguration.

Spatial coordinates of an element can be identified via matrix iteration and via using

element’s position in the row as the X-axis value and its position in the column as the Z-

axis value. The starting point is located in the top left corner of the matrix and the direct

usage of the column position will lead to vertical mirroring of the object. A solution to this

problem will be a utilization of difference between the total number of rows and the cur-

rent column position as s coordinate.

40

6 Point cloud processing

6.1 Adjustment and extrusion

A reconstruction process is erected on searching for intersections between extruded

contours. Coordinates that were obtained during the transfiguration process may vary in

space in dependence to size and location of the object on the image. Due to this, ex-

truded contours have to be centered by height and width to the origin of coordinates.

Otherwise, they will intersect only partly or not at all.

The quest for the method of giving volume to the 2D planes in the 3D space was the

second problem to solved in this project. In the light of very limited sources available for

model recreation, it was very hard to find a way or technology that may be applied. From

non-contact passive technologies listed in 3.2 3D scanning chapter at page 17 only the

silhouette technique was suitable to be used in the project. In this way, the scanning

application will be somewhat similar to the realization of the 3D scanner of same

technique done at the University of Linköping by Karin Olsson and Therese Persson in

2001 [92]. Olsson and Persson used a desktop computer and a rotating stand [92].

Figure 23. Star contour after extrusion process, made with matplotlib [88].

41

The extrusion process is represented by the creation of a line segment that passes

through one of the detected contour points by determining its location on the Y-axis,

inasmuch as the locations of the X- and Z-axes were defined by the point itself. Ascer-

tainment of negative and positive points at the Y-axis is done through utilization of a

maximal value of taken photo dimensions, either height or width. Since pixels are acting

role of measure units for distance and the object is located in the center of photo, it will

allow avoiding the appearance of line segments not reaching each other and as result it

will not lead to loss of the intersection point. On the other hand, any six-digit number

could be used here. An example of the extrusion process is shown in figure 23.

6.2 Revolution and recreation

The revolution of the line segment points made during the extrusion process was done

with basic mathematics. Undoubtedly, rotation in three-dimensional space is more diffi-

cult than in 2D where everything is rotated only around the Z-axis. The rotation axis has

to be chosen and rotation is applied to one point twice by the X- and Z-axes with formu-

lae, shown in formulae 1 [93]. Rotation around the Y-axis is not relevant here, as it was

already described in chapter 5.2 Referenced scaling.

𝑦′ = 𝑦 × cos 𝑞 − 𝑧 × sin 𝑞

𝑧′ = 𝑦 × sin 𝑞 + 𝑧 × cos 𝑞

𝑥′ = 𝑥

𝑥′ = 𝑥 × 𝑐𝑜𝑠 𝑞 − 𝑦 × 𝑠𝑖𝑛 𝑞

𝑦′ = 𝑥 × 𝑠𝑖𝑛 𝑞 + 𝑦 × 𝑐𝑜𝑠 𝑞

𝑧′ = 𝑧

Formulae 1. Rotation formulae: around X-axis (left) and Z-axis (right). Data gathered
from Owen [93].

Model recreation is based on the search of intersections between lines of different ex-

truded contours. In 2D space this search is not difficult to accomplish because all entities

are operating on the same level of the Z-axis, but in 3D space everything becomes more

complicated than usual.

Ordinarily, lines in 3D space do not intersect at all or have an intersection somewhere in

the infinite point of space. In the case when two lines do not intersect at one specific

point, they may be interconnected by as short an additional line segment as possible.

The set distance threshold of the segment will determine whether the lines intersect or

not. At this point, not one but actually two points of intersection will be found located on

two provided line segments. [94.]

42

Figure 24. Shortest distance between two lines. Reprinted from Bourke [94].

Figure 24 shows two lines P1P2 and P3P4 with defined points Pa and Pb that are closest

to the intersection. Pa is determined by formula 𝑃𝑎 = 𝑃1 + 𝑚𝑢𝑎(𝑃2 − 𝑃1) and Pb with a

similar one 𝑃𝑏 = 𝑃3 + 𝑚𝑢𝑏(𝑃4 − 𝑃3). The mua and mub values are varying in an infinity

range, and the mu values of line segments amid P1P2 and P3P4 range from 0 to 1. At this

point, there are two alternative options on determining the shortest possible line segment

amid Pa and Pb points – either to acquire the Pa Pb line segment length and get its

minimum or find a line segment that is perpendicular to given lines. [94.] The options

allow to write dot products equations as

(𝑃𝑎 − 𝑃𝑏) 𝑑𝑜𝑡(𝑃2 − 𝑃1) = 0 [94],

(𝑃𝑎 − 𝑃𝑏) 𝑑𝑜𝑡(𝑃4 − 𝑃3) = 0 [94].

Extension of dot product equations with equation of lines will look as

(P1 − P3 + 𝑚𝑢𝑎(P2 − 𝑃1) − mu𝑏(P4 − P3)) 𝑑𝑜𝑡(𝑃2 − 𝑃1) = 0 [94],

(P1 − P3 + 𝑚𝑢𝑎(P2 − 𝑃1) − mu𝑏(P4 − P3)) 𝑑𝑜𝑡(𝑃4 − 𝑃3) = 0 [94].

Extended dot product equations may be unfolded in terms of coordinates to the following

form

𝑑1321 + 𝑚𝑢𝑎𝑑2121 − 𝑚𝑢𝑏𝑑4321 = 0 [94],

𝑑1343 + 𝑚𝑢𝑎𝑑4321 − 𝑚𝑢𝑏𝑑4343 = 0 [94].

Where

𝑑𝑚𝑛𝑜𝑝 = (𝑥𝑚 − 𝑥𝑛)(𝑥𝑜 − 𝑥𝑝) + (𝑦𝑚 − 𝑦𝑛)(𝑦𝑜 − 𝑦𝑝) + (𝑧𝑚 − 𝑧𝑛)(𝑧𝑜 − 𝑧𝑝) [94].

43

The mu formulas may be finally produced on the basis of extended dot product equations

as

𝑚𝑢𝑎 = (𝑑1343𝑑4321 − 𝑑1321𝑑4343) ÷ (𝑑2121𝑑4343 − 𝑑4321𝑑4321) [94],

𝑚𝑢𝑏 = (𝑑1343 − 𝑚𝑢𝑎𝑑4321) ÷ 𝑑4343 [94].

The length of the shortest line segment can be calculated on the basis of mua and mub

and compared with set distance threshold for intersection determination. [94.]

The given method is tailored for working with infinite lines and not limited line segments.

Direct application of the method will cause appearance of intersection points in places,

which line segments should not reach. In order to make sure that an intersection point

was determined somewhere close to the intersected line segment, two triangles have to

be created and their perimeters compared. The first triangle determines the maximal

allowed distance to any future intersection point and is built upon two intersected line

segment points and the distance threshold. The second one is built on the determined

intersection point and the same line points. The intersection point is considered to be

related to the intersected line segment if the intersection triangle perimeter is less or

equal to other one.

Lines of extruded contours should belong to independent arrays for avoidance of the

intersection search between parallel lines of the same contour. A model billet is made by

determining the intersections between the first and second contour arrays and saving

the determined ones into an independent array. The model billet has to be formed with

the first two images that have an angle difference in the X- or Z-axis of at least 90° to

allow the application to cut away as much as possible before starting a further process.

Line iteration should start from the third contour array, search for intersections with all

previous intersections and later adjust previous contour lines to intersection points.

Hence, it should form the model in the same way a sculptor carves a statue from marble.

Figure 25 shows a simplified version of reconstruction process casted to 2D space. On

the left chart, the second contour array (green lines) searches for intersections with the

first contour array (red lines) and finds them, marked as four black points. On the right

chart, the contours are mapped to the new coordinates of the intersection points. The

third contour array (blue lines) is applied to the first two modified contours and it suc-

cessfully searches for its own intersections, marked once again as four black points. The

process continues until the last of contour arrays.

44

Figure 25. Simplified reconstruction process, made with matplotlib [88].

When the object has complex forms, the line segment will have multiple intersection

points. Thus, a bringing of its end points to intersection ones becomes impossible. Since

nobody can guarantee that the intersection points will appear in order, the obtained

points have to be sorted by increasing the distance from the line segment starting point

and later they have to be used for creating sub line segments. In addition, a case must

be taken into account, when the contour edge will have multiple consequent points in-

stead of only one point, which may be considered as starting ones. It will ruin the order

of the intersection points and the surface created with sub line segments will not be cor-

responding to real one. Hereupon, intersection points that have a distance of one unit or

fewer units between points must be adduced to one point, closest to the starting point of

the line segment.

Each point of intersection stores the reference to the line it intersected. After being sorted

by the increasing distance from the starting point and forming the actual line segments,

old intersected lines have to be adjusted to a new point location. Two intersected lines

connected with a new intersecting line may not be connected at a point anywhere else

and may be even parallel in one of the spatial planes, however, they are expected to

converge at one of the object edges. A problem appears on how to determine which of

the intersected lines points has to be adjusted. As it is assumed that two ends of line

segments are converged to the object edge, the sum of angles between the points and

the intersecting line will be smaller than the sum of others.

45

The line segments will not reflect the real surface of object after conversion into point

cloud because only two points are available and hence a long line segment will be shown

as two independent and non-related points in space. The conversion process has to

comprise creation of additional points between the starting and ending point of the line

segment with the pre-set step. The step value should be selected carefully due to a

drastic increase of points and workload on the application and the device.

The amount of taken images influences the smoothness of the reconstructed model. As

an example, if the user takes only two images of a round ball, one image in front of the

ball and second image from the side of the ball, the application will reconstruct the ball

only into the shape of rounded cube due to lack of shape information.

6.3 Adduction to OBJ format

The final goal of the smartphone scanner application was point cloud formation and stor-

ing it as OBJ industrial standard. The point cloud retrieved during the recreation process

may be adduced to the OBJ format quite easily.

Figure 26. OBJ file example, text version (left) and rendered object (right). Data
gathered from Bourke [95].

Initially, the OBJ file standard was developed by the Wavefront company for its own

products but later the standard became widespread in the industry. The standard defines

the OBJ file format as a plain ASCII text file. The file name must not have spaces which

should be changed to other printed characters. It uses all common three dimensional

elements, like vertices, line, edges, surfaces and curves and supports both free-form and

46

polygonal objects. Vertex is determined by the “v x y z” line of text, where x, y and z are

its coordinates in space respectively. Figure 26 demonstrates the example box in its text

and rendered forms. [95.] Point cloud may be stored in this rather simple form for future

use in any of 3D modelling software.

47

7 Implementation results and discussion

The final application turned out to be a complex product with multiple components and,

in consequence, all these components have to be tested independently before the first

full system check. Testing might be done through unit or integration tests. Hardware data

retrieval may be tested only as a real-life measurement. In particular, the following com-

ponents demand more scrupulous examination:

• Rotation angle retrieval,

• Object segmentation and image processing,

• Referenced scaling,

• Point cloud processing,

• Intersection search algorithm,

• User interface workflow convenience.

Due to severe time constraints, several important modules including the referenced scal-

ing and intersection algorithm have not passed comprehensive testing, leaving a possi-

bility for an exceptional workflow case of any kind to appear at any moment of module

work. Moreover, the application has not been tested on as many devices as it was

planned initially.

The rotation angle retrieval implementation showed very good results on the Sony Xperia

Z1 device with Android version 5.1.1. In a fully static condition, the angle varied within

the boundaries of ±0.3°. When the device was held by a human hand in an approximately

static position, error rate increased up to ±1° due to jittering of the hand. It is possible to

increase the reading rate of the sensor and filter obtained data for compensating the

human factor. After changing the position of the device, the rotation angles took some

time to stabilize. The angles of the X-axis, horizontal, and the Y-axis, along the camera

view vector, stabilized almost momentarily, but the Z-axis took up to 10-15 seconds to

get the first stable values. It may become a problem to an end-user, if images are taken

in short intervals with assignment of un-stabilized angles and as a result reconstruction

of a highly distorted model. The application should notify the user with a signal or popup

message that angles are stabilized and an image may be taken.

Furthermore, the used rotation vector interface includes utilization of a magnetometer

and its data may be affected by external magnetic fields. Particularly, the data error rate

48

increases when the device has WI-FI, mobile internet connection or GPS turned on de-

pending on its power. However, even with listed influences from the inside, the present

method gave high accuracy of acquired data. Testing was carried out in house conditions

and thus it may not be guaranteed that the device was not under the impact of powerful

external magnetic fields due to an absence of any equipment that is able to record power

of the present magnetic field. The solution to the external influence problem may be

measuring of the surrounding magnetic field by means of an embedded magnetometer

for its power and variability and switching to magnetometer-free rotation interface in case

of high results on any of given parameters. This solution will also lead to inability to ex-

tend the project by adding more images or using the project as an extension to other

ones.

In addition, testing revealed a gimbal lock position and disorientation in space when ro-

tation angles start fluctuating erratically in a device position close to a flat or reverse flat,

precisely after 87° and -87° around the horizontal axis. As it was stated in chapter 4.3

Device rotation determination, this problem may be solved partially by swapping the sen-

sors axes. After swapping the sensor axes, the rotation values stop fluctuating. However,

swapping of axes increases rotation values by unknown value, thus producing a gap in

comparison to previous rotation values and require more rigorous tuning.

Rotation angle retrieval is done right after returning to the scanning application from the

user defined photo application. This implementation creates a certain time gap between

image creation in device memory and recording of rotation angles and rather is a proto-

typing shortcoming than a real problem. Nonetheless, the time gap may be reduced by

recording the angles in a background thread into an array sorted by a timestamp and

picking the timestamp of the files and appropriate array data upon returning from the

photo application.

Object segmentation of the 1.1 megapixel images takes up to 15 seconds and may be

considered as an acceptable result. Yet, testing demonstrated that sometimes it misfires

and produces small maculae with the size of several pixels, created on the edge of user

markers, an example which is shown in figure 27. Maculae appear in a random place

and their amount is random too. This is a serious problem that affects referenced scaling

and the following reconstruction process steps. The maculae may be removed manually

49

by creating additional covering markers but this implies multiple repeats of the segmen-

tation process need to be made. Another possible solution could be searching for small

objects by means of OpenCV and following removal of them.

Figure 27. Maculae example.

Object segmentation does not always give the best results by including superfluous de-

tails into the object that also leads to the creation of additional user markers and process

repeats. On average, each image has two to five segmentation runs, which increases

the average processing time of one image to a bit more than one minute.

Referenced scaling was tested in real life conditions with several objects and under dif-

ferent rotation angles. It showed very good results with an error rate of resized image up

to ±1 pixel. The referenced scaling process heavily relied on the truthfulness of rotation

angles and image masks cleared of any maculae.

Point cloud zero adjustment, extrusion, rotation and intersection search testing did not

show any particular problems in unit testing conditions. Simple mathematics always

works flawlessly. However, the intersection search algorithm may have a lot of excep-

tional cases that could appear only in full project testing.

User interface workflow proceeds well for the end-use, yet it has several small structural

imperfections. The Floating action button on the Project page hides the control button of

the lowest project in the list from the view with impossibility for accessing it if the project

list fits the page. Another issue arose from the long time to process object segmentation

and model reconstruction, when the page simply freezes and not respond to any com-

mands. A popup message blocking the screen with the current status of the process

should be shown to make the user aware of the situation. The segmentation page should

50

also include a possibility to zoom in and out of the image to check and mark small details.

In addition, a small survey was done about the pictogram meanings on the segmentation

page. Several people were asked about how they understood the pictograms with a short

description of the related process and the survey showed that four out of six pictograms

were understood mostly correctly and the others not. The most controversial ones were

the Process and Color choose buttons. Some of the respondents defined the Process

pictogram as something related to measuring or modifying angles, area of object or

whole image.

The first full application check with mockup images of ideal sphere showed problems

with adjustment of old intersections. A model billet made with only two images taken with

90° angle between each other around the vertical axis is shown on the left side of figure

28. In the middle of figure 28 a model is shown, which was made with four images taken

with 0°, 45°, 90° and 135° angles around the vertical axis without adjustment of old in-

tersections. The same model but with adjusted old intersections is shown on the right of

figure 28. Figure 28 was adjusted to be brighter than the original for better perception of

the models.

Figure 28. Model billet (right), model billet with found intersections (middle) and model
billet adjusted to found intersection (right).

The model billet on the left looks like a rounded cube due to lack of object form infor-

mation. The model billet in the middle with new found intersections became to resemble

spherical shape. Yet, it is clearly seen on the right billet that the adjustment algorithm

chooses the wrong points to adjust and this results in a distorted model and disappear-

ance of a multitude of object edges and surfaces. This problem became the stumbling

block of the whole project as any further intersection search becomes useless whereas

unadjusted lines will invoke an appearance of new intersections in places where they do

51

not belong. Nonetheless, the model billet made with only two images shows good results

with usage of available information about the project.

Figure 29. Perspective distortion with maculae inclusion.

Another particular issue that was encountered in the project is perspective influence.

Figure 29 shows two scaled contours, a blue colored one taken in front of the object and

an orange one with a top down angle, thus having width expanded to the top part of the

object and squeezed bottom. In spite of this problem being serious one, it is not as vital

to the overall project as wrong adjustment of old intersection and may be easily avoided

with keeping the device perpendicularly to the ground. In the given example, the original

blue figure will be affected only on the “shoulder” part of the object and nowhere else.

Perspective distortion may be corrected by means of OpenCV, yet it has to be computed

in some way. Most of the correction formulae rely on the camera lens parameters that

differ between lenses and should also include device rotation angles in reference to an

object.

52

Figure 30. Model billet examples.

Figure 30 demonstrates two examples of model billets made with two images, a bottle

on the left in perspective view and a teapot in orthographic view. Superfluous line seg-

ments are observed on the teapot figure, multiple of them inside its handle and two pass-

ing from its spout to lid. The line segments appear due to a logical imperfection of either

intersection search algorithm or the algorithm that adduces multiple consequent points

with a short distance and thus breaking the line segment sorting. Figure 30 was also

adjusted to be brighter than the original for better perception.

The final application has not met the initial expectations and it only partly met the set

goal. It provides good results in the form of a model billet on the basis of only two taken

images, as shown in figure 30, though any further recreation and transformation of the

billet into a meaningful model is impossible due to aforementioned problems. The model

billet was made on average in 20 seconds and had at least 100,000 vertices of the sur-

face, depending on the size of the images taken. Some of the vertices appear as dupli-

cates in the same coordinates and may be filtered out at the last stage of reconstruction,

after conversion to the point cloud to avoid breaking the connecting lines.

53

8 Conclusion

The aim of this final year project was to develop a fully working mobile phone based 3D

scanning application. The application was developed for the Android operational system

and smartphones of a standard configuration. The application used the non-contact sil-

houette technique for the 3D scanning of objects. The silhouette technique uses detected

contours of the objects, extrudes the contours and finds the intersections between the

contours.

The case study described in this thesis demonstrates that the development of a 3D scan-

ning application that only uses a device photo camera and rotation angles for the model

reconstruction is possible and involves multiple techniques based on usage of external

libraries and mathematics. The OpenCV library was used for the image processing in

the project. The library provided all necessary functions for object segmentation and con-

tour detection.

The objective of the project was met in a semi-successful way. The application allows

recreating a 3D model of an object on the basis of taken images, yet problems of per-

spective influence and old intersection adjustments remain and do not allow reconstruct-

ing the model in an accurate way. Due to these problems, this application cannot be

compared to any released commercial and non-commercial software. However, it may

be used as a starting point for future development and searching for solutions to the

aforementioned problems and, at some point, for becoming a sustainable and competi-

tive product. Overall, the project bar was set very high and overall it was challenging,

demanding and time consuming.

54

References

1. Oppenheimer Robin. William Fetter, E.A.T., and 1960s Computer Graphics
Collaborations in Seattle [online]. ACADEMIA; 2005.
URL: http://www.academia.edu/7801224/William_Fetter_E.A.T._and_1960s_
Computer_Graphics_Collaborations_in_Seattle
Accessed 2 December 2016.

2. Peddie Jon. The History of Visual Magic in Computers: How Beautiful Images

Are Made in CAD, 3D, VR and AR. Springer: 2013.

3. Shklyar Dmitry. 3D Rendering History. Part 1: Humble Beginnings [online].

CGSociety; 2004.
URL: http://www.cgsociety.org/index.php/CGSFeatures/CGSFeatureSpecial/
3d_rendering_history_part_1._humble_beginnings
Accessed 1 December 2016.

4. Utterson Andrew. A Computer Animated Hand [online]. Library of Congress;

2011.
URL: https://www.loc.gov/programs/static/national-film-preservation-board/
documents/computer_hand2.pdf
Accessed 1 December 2016.

5. A Computer Animated Hand [online]. Steemit; 2016.
URL: https://steemit.com/animation/@stino-san/-a-computer-animated-hand
Accessed 9 December 2016.

6. Price A. David. The Making of Computer Graphics for Star Wars (Episode IV),
1977 [online]. The Pixar Touch; 2009.
URL: http://www.pixartouchbook.com/blog/2009/11/20/the-making-of-computer-
graphics-for-star-wars-episode-iv-197.html
Accessed 2 December 2016.

7. Encyclopedia Heritage World. List of Pixar Awards and Nominations (Feature
Films) [online]. Project Guthenberg Self-Publishing Press.
URL: http://www.gutenberg.us/articles/list_of_pixar_awards_and_nominations_
(feature_films)
Accessed 5 December 2016.

8. Fronczak Tom. Top 100 Most Influential Animation Studios of All-Time [online].
Animation Career Review; 2012.
URL: http://www.animationcareerreview.com/articles/top-100-most-influential-
animation-studios-all-time?page=0,9
Accessed 6 December 2016.

9. Niculescu Armand. The Software Used in the Making of Avatar [online]. Media
Division; 2010.
URL: http://www.media-division.com/software-used-making-of-avatar/
Accessed 6 December 2016.

10. The 82nd Academy Awards | 2010 [online]. Oscars.com; 2010.
URL: http://www.oscars.org/oscars/ceremonies/2010
Accessed 9 December 2016.

55

11. Walker John. The Autodesk File. Bits of History, Words of Experience [online].
Index Librorum Liberorum; 2016.
URL: http://www.fourmilab.ch/autofile/
Accessed 5 December 2016.

12. Softimage: "16 Years of Leadership and Innovation" [online]. Softimage; 2001.
URL: http://web.archive.org/web/20021015000229/www.softimage.com/
Corporate/Press/Facts/16years.htm
Accessed 9 December 2016.

13. Alias About Us [online]. Alias; 2004.
URL: https://web.archive.org/web/20040411045330/http://www.alias.com/
eng/about/history/
Accessed 9 December 2016.

14. Elliott Phil. Autodesk to Acquire Softimage [online]. GamesIndustry.biz; 2008.
URL: http://www.gamesindustry.biz/articles/autodesk-to-acquire-softimage
Accessed 10 December 2016.

15. Autodesk to Acquire Alias for $182 Million Cash [online]. CGISociety; 2005.
URL: http://www.cgsociety.org/index.php/CGSFeatures/CGSFeatureSpecial/
autodesk_to_acquire_alias_for_182_million_cash
Accessed 10 December 2016.

16. Johnson Steve. Autodesk Confirms Outrageous Upgrade Price Increase
[online]. Blog Nauseam; 2012.
URL: http://www.blog.cadnauseam.com/2012/10/19/autodesk-confirms-
outrageous-upgrade-price-increase/
Accessed 18 December 2016.

17. Wong Kenneth. Autodesk Will Only Sell Subscription Licenses for Desktop
Products After February 1, 2016 [online]. Digital Engineering; 2015.
URL: http://www.digitaleng.news/virtual_desktop/2015/02/autodesk-will-only-
sell-subscription-licenses-for-desktop-products-after-february-1-2016/
Accessed 18 December 2016.

18. History [online]. Blender.org; 2013.
URL: https://www.blender.org/foundation/history/
Accessed 22 December 2016.

19. Top 25: Most Popular 3D Modeling & Design Software for 3D Printing [online].
3D Print Pulse; 2015.
URL: http://www.3dprintpulse.com/software/?open-article-id=3886965&article-
title=top-25--most-popular-3d-modeling---design-software-for-3d-printing&blog-
domain=materialise.com&blog-title=i-materialise
Accessed 9 December 2016.

20. Hoffmann Vasco. A Brief History of 3D Scanning [online]. 3D Scanners Ltd;
1998.
URL: http://vr.isdale.com/3DScanners/3d_scan_history/history.htm
Accessed 10 December 2016.

21. Cyberware. Cyberware Scanners [online]. Cyberware; 1999.
URL: http://cyberware.com/products/scanners/

56

Accessed 10 December 2016.

22. Cyberware. Domestic Product Price [online]. Cyberware; 1999.
URL: http://cyberware.com/pricing/domesticPriceList.html
Accessed 10 December 2016.

23. Japantech. 高速3Dﾚｰｻﾞｰｽｷｬﾝ [online]. Japantech.

URL: http://www.japantech.co.jp/pc/contents15.html#%E9%A1%94%E9%A0
%AD%E9%83%A8%EF%BC%93%EF%BC%A4%E3%82%B9%E3%82%AD%
E3%83%A3%E3%83%B3
Accessed 1 January 2017.

24. Creaform3D. Legacy Products: REVscan Scanner [online]. Creaform3D; 2017.
URL: https://www.creaform3d.com/en/customer-support/legacy-products/
revscan-scanner
Accessed 11 February 2017.

25. DeLaurentis Peter. 3D Scanning: A New Tool for Cracking Tough Cases
[online]. Forensic Magazine; 2009.
URL: http://www.forensicmag.com/article/2009/02/3d-scanning-new-tool-
cracking-tough-cases
Accessed 11 February 2017.

26. Noel Julien. Computed Tomography Advances for 3d Scanning [online].
Medical Design; 2009.
URL: http://medicaldesign.com/contract-manufacturing/computed-tomography-
advances-3d-scanning
Accessed 11 February 2017.

27. Blecha Erika, Bowers Hannah, Barton Justin. Royal Tombs at Kasubi [online].
CyArk.
URL: http://archive.cyark.org/royal-tombs-at-kasubi-info
Accessed 11 February 2017.

28. Luebke Dr. David, Lutz Christopher, Wang Rui, Woolley Cliff. Scanning
Monticello [online]. University of Virginia; 2002.
URL: http://www.cs.virginia.edu/Monticello/
Accessed 11 February 2017.

29. www.3ders.org. The Best 3D Scanners of 2015 [online]. www.3ders.org; 2015.
URL: http://www.3ders.org/articles/20151209-best-3d-scanners-2015.html
Accessed 11 February 2017.

30. Engelmann Francis. FabScan: Affordable 3D Laser Scanning of Physical
Objects [online]. RWTH Aachen University; 2011.
URL: https://hci.rwth-aachen.de/materials/publications/engelmann2011a.pdf
Accessed 11 December 2016.

31. Lukas Mario. FabScan Pi - an Open-Hardware Stand-alone Web-enabled 3D
Scanner [online]. RWTH Aachen University; 2015.
URL: http://hci.rwth-aachen.de/materials/publications/lukas2015a.pdf
Accessed 11 December 2016.

32. Jan Thar. 3D Scanner: FabScan Pi [online]. Instructables; 2016.

57

URL: http://www.instructables.com/id/3D-Scanner-FabScan-Pi/?ALLSTEPS.
Accessed 11 December 2016.

33. Lansard Martin. The Five Best (and Free!) 3D Scanning Mobile Apps [online].
Aniwaa; 2016.
URL: http://www.aniwaa.com/blog/five-best-free-3d-scanning-mobile-apps/
Accessed 8 January 2017.

34. FBI.gov. Crime Scene Documentation [online]. FBI.gov.
URL: https://www.fbi.gov/services/laboratory/forensic-response/
crime-scene-documentation
Accessed 30 December 2016.

35. Lee J. Jane. 5 Ways Smithsonian Uses 3-D Scanning to Open Up History
[online]. National Geographic; 2013.
URL: http://news.nationalgeographic.com/news/2013/09/130904-3d-printing-
smithsonian-whale-skeleton-technology-science/
Accessed 4 December 2016.

36. Hosoi Fumiki, Nakabayashi Kazushige, Omasa Kenji. 3-D Modeling of Tomato
Canopies Using a High-Resolution Portable Scanning Lidar for Extracting
Structural Information [online]. MDPI; 2011.
URL: http://www.mdpi.com/1424-8220/11/2/2166/htm
Accessed 11 December 2016.

37. Mode Lab. 1.6.1 What is a Mesh? [online]. Mode Lab; 2015.
URL: http://grasshopperprimer.com/en/1-foundations/16/
1_What%20is%20a%20Mesh.html
Accessed 24 December 2016.

38. Sculpteo. 3D Model and CAD Model [online]. Sculpteo.
URL: https://www.sculpteo.com/en/glossary/3d-model-definition/
Accessed 11 December 2016.

39. Sculpteo. 3D Modeling: Creating 3D Objects [online]. Sculpteo.
URL: https://www.sculpteo.com/en/glossary/3d-modeling-definition/
Accessed 11 December 2016.

40. A Mostafa. 3D Laser Scanners’ Techniques Overview [online]. International
Journal of Science and Research; 2015.
URL: https://www.ijsr.net/archive/v4i10/SUB158346.pdf
Accessed 12 December 2016.

41. Munaro Matteo, Wai Yan So Edmond, Tonello Stefano, Menegatti Emanuele.
Efficient Completeness Inspection Using Real-Time 3D Color Reconstruction
with a Dual-Laser Triangulation System [online]. ResearchGate; 2015.
URL: https://www.researchgate.net/publication/
283108894_Efficient_Completeness_Inspection_Using_Real-
Time_3D_Color_Reconstruction_with_a_Dual-Laser_Triangulation_System
Accessed 25 December 2016.

42. 3D Systems, Inc. 3D Scanners. A Guide to 3D Scanner Technology [online]. 3D
Systems, Inc.
URL: http://web.archive.org/web/20161017220639/http://www.rapidform.com/

58

3d-scanners/
Accessed 26 December 2016.

43. McDonald Kyle. Structured Light 3D Scanning [online]. Instructables.
URL: http://www.instructables.com/id/Structured-Light-3D-Scanning/
?ALLSTEPS
Accessed 26 December 2016.

44. Eren Gönen. 3D Scanning of Transparent Objects [online]. TEL; 2011.
URL: https://tel.archives-ouvertes.fr/file/index/docid/584061/filename/
these_A_EREN_Gonen_2010.pdf
Accessed 26 December 2016.

45. ShapeGrabber. Inspecting Transparent or Reflective Parts with a 3D Laser
Scanner [online]. ShapeGrabber; 2015.
URL: http://www.shapegrabber.com/
inspecting-transparent-reflective-parts-3d-laser-scanner/
Accessed 26 December 2016.

46. Wohl Jimmy. Digitizer Education | Part 3: Materials for 3D Scanning [online].
MakerBot; 2013.
URL: https://www.makerbot.com/media-center/2013/11/08/
digitizer-education-part-3-materials-for-3d-scanning
Accessed 26 December 2016.

47. Walford Alan. What is Photogrammetry? [online]. Photogrammetry; 2007.
URL: http://www.photogrammetry.com/
Accessed 1 March 2017.

48. INFINITE-REALITIES. Next Generation Photometric Scanning [online].
INFINITE-REALITIES; 2016.
URL: http://ir-ltd.net/next-gen-photometric-scanning/
Accessed 12 December 2016.

49. Zhang Yiwei, Gibson M. Graham, Hay Rebecca, Bowman W. Richard, Padgett
J. Miles, Edgar P. Matthew. A Fast 3D Reconstruction System with a Low-cost
Camera Accessory [online]. Scientific Reports; 2015.
URL: http://www.nature.com/articles/srep10909
Accessed 26 December 2016.

50. Statista. Number of Smartphone Users Worldwide from 2014 to 2020 (in
Billions) [online]. Statista; 2016.
URL: https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/
Accessed 14 January 2017.

51. Triggs Robert. How Far We’ve Come: A Look at Smartphone Performance over
the Past 7 Years [online]. Android Authority; 2015.
URL: http://www.androidauthority.com/
smartphone-performance-improvements-timeline-626109/
Accessed 22 January 2017.

52. IDC. Smartphone OS Market Share, 2016 Q3 [online]. IDC; 2016.
URL: http://www.idc.com/promo/smartphone-market-share/os

59

Accessed 14 January 2016.

53. Android Developers. Dashboards [online]. Android Developers; 2017.
URL: https://developer.android.com/about/dashboards/index.html
Accessed 14 January 2017.

54. PhoneArena.com. Did You Know How Many Different Kinds of Sensors Go
Inside a Smartphone? [online]. PhoneArena.com; 2014.
URL: http://www.phonearena.com/news/Did-you-know-how-many-different-
kinds-of-sensors-go-inside-a-smartphone_id578
Accessed 14 January 2017.

55. Stonekick Apps. Magnetometers, Accelerometers, and the Calibration
Procedure for Your Android Device [online]. Stonekick Apps; 2013.
URL: http://www.stonekick.com/blog/
magnometers-accelerometers-and-calibrating-your-android-device/
Accessed 2 February 2017.

56. Bjork Gail. What Is a Megapixel? [online]. Digicamhelp.
URL: http://digicamhelp.com/camera-features/camera-parts/megapixels/
Accessed 22 January 2017.

57. Lee Paul, Stewart Duncan. Predictions 2016. Photo Sharing: Trillions and
Rising [online]. Deloitte; 2015.
URL: https://www2.deloitte.com/global/en/pages/technology-media-and-
telecommunications/articles/tmt-pred16-telecomm-photo-sharing-trillions-and-
rising.html#
Accessed 22 January 2017.

58. Patkar Mihir. Which Smartphone Has the Best Autofocus; How Does It Work?
[online]. MakeUseOf; 2015.
URL: http://www.makeuseof.com/tag/which-smartphone-has-the-best-
autofocus-how-does-it-work/
Accessed 22 January 2017.

59. ini4j. Java API for Handling Windows Ini File Format [online]. Sourceforge.net;
2011.
URL: http://ini4j.sourceforge.net/
Accessed 21 January 2017.

60. BoofCV. Relative Speed of BoofCV and OpenCV [online]. BoofCV; 2013.
URL: http://boofcv.org/index.php?title=Performance:OpenCV:BoofCV
Accessed 22 January 2017.

61. OpenCV. About [online]. OpenCV; 2017.
URL: http://opencv.org/about.html
Accessed 22 January 2017.

62. Android Developers. Position Sensors [online]. Android Developers.
URL: https://developer.android.com/guide/topics/sensors/sensors_position.html
Accessed 31 January 2017.

63. Android Developers. SensorEvent [online]. Android Developers.
URL: https://developer.android.com/reference/android/hardware/

60

SensorEvent.html
Accessed 12 February 2017.

64. Android Developers. Sensors Overview [online]. Android Developers.
URL: https://developer.android.com/guide/topics/sensors/
sensors_overview.html
Accessed 21 February 2017.

65. Jones M. Eric, Fjeld Paul. Gimbal Angles, Gimbal Lock, and a Fourth Gimbal for
Christmas [online]. NASA; 2000.
URL: https://www.hq.nasa.gov/alsj/gimbals.html
Accessed 21 February 2017.

66. Android Developers. SensorManager [online]. Android Developers.
URL: https://developer.android.com/reference/android/hardware/
SensorManager.html
Accessed 21 February 2017.

67. GIMP. The Free & Open Source Image Editor [online]. GIMP.
URL: https://www.gimp.org/
Accessed 16 January 2017.

68. Brian Matt. Google's New 'Material Design' UI Coming to Android, Chrome OS
and the Web [online]. Engadget; 2014.
URL: https://www.engadget.com/2014/06/25/googles-new-design-language-is-
called-material-design/
Accessed 22 January 2017.

69. Material Design. Introduction [online]. Material design.
URL: https://material.io/guidelines/
Accessed 16 January 2017.

70. Ferreira Michel. Would You Like Fries with That? [online]. Booking.com Blog;
2014.
URL: https://blog.booking.com/hamburger-menu.html
Accessed 24 January 2017.

71. FSymbols. Tick Symbols [online]. FSymbols; 2017.
URL: http://fsymbols.com/signs/tick/
Accessed 24 January 2017.

72. Veltri Alejandro. Why Are the “Undo” and “Redo” Arrow Icons Commonly
Round? [online]. User Experience Stack Exchange; 2015.
URL: http://ux.stackexchange.com/questions/83723/
why-are-the-undo-and-redo-arrow-icons-commonly-round
Accessed 24 January 2017.

73. Turner Julia. The Big Red Word vs. the Little Green Man [online]. Slate; 2010.
URL: http://www.slate.com/articles/life/signs/2010/03/
the_big_red_word_vs_the_little_green_man.html
Accessed 24 January 2017.

74. Bolshakova Anastasya. Media, Multimedia, Player, Square, Stop [online].
Iconfinder.

61

URL: https://www.iconfinder.com/icons/1167977/
media_multimedia_player_square_stop_stopping_icon#size=1
Accessed 24 January 2017.

75. Bolshakova Anastasya. Check, Checklist, Dots, List, Menu Icon [online].
Iconfinder.
URL: https://www.iconfinder.com/icons/1167996/
check_checklist_dots_list_menu_icon#size=1
Accessed 24 January 2017.

76. Designerz Base. Available, Checkmark, Done Icon [online]. Iconfinder.
URL: https://www.iconfinder.com/icons/186405/
available_checkmark_done_icon#size=1
Accessed 24 January 2017.

77. Lung Yannick. Undo Icon [online]. Iconfinder.
URL: https://www.iconfinder.com/icons/183192/undo_icon#size=1
Accessed 24 January 2017.

78. Google. App, Exit, To Icon [online]. Iconfinder.
URL: https://www.iconfinder.com/icons/326635/app_exit_to_icon#size=1
Accessed 24 January 2017.

79. Silva Thiago. Basic, Edit, Pen, Pencil, Thiago Pontes Icon [online]. Iconfinder.
URL: https://www.iconfinder.com/icons/981079/
basic_edit_pen_pencil_thiago_pontes_icon#size=1
Accessed 24 January 2017.

80. Lung Yannick. Gauge, Pressure, Reading Icon [online]. Iconfinder.
URL: https://www.iconfinder.com/icons/183415/
gauge_pressure_reading_icon#size=1
Accessed 24 January 2017.

81. Blender. Free and Open 3D Creation Software [online]. Blender.
URL: https://www.blender.org/
Accessed 22 January 2017.

82. Rujikietgumjorn Sitapa. Segmentation Methods for Multiple Body Parts [online].
The University of Tennessee; 2008.
URL: https://www.imaging.utk.edu/publications/papers/dissertation/
2008-aug-sitapi-pilot.pdf
Accessed 30 January 2017.

83. Liu Dingding, Soran Bilge, Petrie Gregg, Shapiro Linda. A Review of Computer
Vision Segmentation Algorithms [online]. University of Washington; 2012.
URL: https://courses.cs.washington.edu/courses/cse576/12sp/notes/remote.pdf
Accessed 29 January 2017.

84. Marsh Matthew. "GrabCut" - Interactive Foreground Extraction using Iterated
Graph Cuts [online]. Rhodes University; 2005.
URL: http://www.cs.ru.ac.za/research/g02m1682/
Accessed 19 February 2017.

85. OpenCV. Miscellaneous Image Transformations [online]. OpenCV; 2015.

62

URL: http://docs.opencv.org/3.1.0/d7/d1b/
group__imgproc__misc.html#ga909c1dda50efcbeaa3ce126be862b37f
Accessed 12 February 2017.

86. Google. Favorite, Rate, Star Icon [online]. Iconfinder.
URL: https://www.iconfinder.com/icons/326703/favorite_rate_star_icon
Accessed 4 February 2017.

87. Xinh Studio. Camera, Device, Film, Movie, Multimedia, Recorder, Video Icon
[online]. Iconfinder.
URL: https://www.iconfinder.com/icons/763252/
camera_device_film_movie_multimedia_recorder_video_icon
Accessed 4 February 2017.

88. Matplotlib. Introduction [online]. Matplotlib.
URL: http://matplotlib.org/
Accessed 3 February 2017.

89. 3DXO.com. Christmas Tree Star 2 [online]. 3DXO.com.
URL: http://www.3dxo.com/models/10580_christmas_tree_star_2
Accessed 3 February 2017.

90. OpenCV. Canny Edge Detector [online]. OpenCV; 2017.
URL: http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/
canny_detector/canny_detector.html
Accessed 4 February 2017.

91. OpenCV. Basic Structures [online]. OpenCV; 2014.
URL: http://docs.opencv.org/2.4.10/modules/core/doc/basic_structures.html
Accessed 4 February 2017.

92. Olsson Karin, Persson Therese. Shape from Silhouette Scanner [online]. Digi-
tala Vetenskapliga Arkivet; 2001.
URL: http://www.diva-portal.org/smash/get/diva2:18671/FULLTEXT01.pdf
Accessed 18 February 2017.

93. Owen Scott. 3D Rotation [online]. ACM SIGGRAPH; 1998.
URL: https://www.siggraph.org/education/materials/HyperGraph/
modeling/mod_tran/3drota.htm
Accessed 16 February 2017.

94. Bourke Paul. Points, Lines, and Planes [online]. Paul Bourke - Personal Pages;
1988.
URL: http://paulbourke.net/geometry/pointlineplane/
Accessed 18 February 2017.

95. Bourke Paul. Object Files (.obj) [online]. Paul Bourke - Personal Pages.
URL: http://paulbourke.net/dataformats/obj/
Accessed 15 February 2017.

