VAMK

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES

Anass Shekhamis

Multi-Instance Quotation System (SaaS) Based

on Docker Containerizing Platform

Technology and Communication
2016

FOREWORD

This is the final paper of my thesis at Vaasa University of Applied Science, Vaasan

Ammattikorkeakoulu, in Information Technology Degree Programme.

I want to thank my supervisor, Jukka Matila, for his guidance and help that he provided
to accomplish this thesis. His professional notes, knowledge, and mentoring methods

have assisted writing this thesis and delivering high quality end results.

| also want to express my appreciation and thanks to the sponsor of this thesis work,
Pool Interactive Qy, for providing this opportunity, and to the teachers and staffs who

have helped me and provided their knowledge during my study period.

Finally, I would extend my gratitude to my family and friends who supported and up-

held me through every step.

Anass Shekhamis
Vaasa, Finland
05.04.2017

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Degree Programme of Information Technology

ABSTRACT

Author Anass Shekhamis

Title Multi-Instance Quotation System (SaaS) Based on Docker Con-
tainerizing Platform.

Year 2016

Language English

Pages 133

Name of Supervisor Jukka Matila

This thesis covers the development of a quotation system that is built as a multi-instance
SaaS. Quotation systems usually come as part in customer relationship management
systems, but not necessarily included. They also tend to have invoicing alongside the
original functionality; creating quotations for customers.

The system uses Microservices Architecture were each service is a replaceable and up-
gradeable component that achieve certain functionality and easily integrate with other
third-party applications such as invoicing and team management systems through their
API.

The thesis discusses the purpose of building such system which is directed specifically
towards in-house construction and maintenance companies. Then, the difference be-
tween multi-tenant and multi-instance when building SaaS in the cloud and the practice
of building a REST API that could be easily integrated with external web service and
third-party software and APIs. After that, the web security principles and software con-
tainerization concepts were introduced. Next, the process of collecting the system re-
quirements, analyzing them, and design the solution supported by the UML diagrams
and the system architecture description. Then, the solution structure and the technology
stack were introduced followed by the system implementation of the back-end as API
and the front-end web application as a single-page application that consumes that API.
Furthermore, the implementation of authorization access on the user and the API level
was discussed. Finally, the deployment using Docker and Kubernetes was explained
briefly.

It can be concluded that the implemented has a well-designed architecture, and met the
expectation of the current customers and the sponsor. Moreover, the system could be
improved and optimized, and more features could be added.

Keywords SaaS, Quotation System, Multi-Instance, Containerizing, Cluster-
ing

CONTENTS

FOREWORD
ABSTRACT
1 INTRODUCTION ..ottt e e 13
L1 PUMPOSE ... 13
1.2 Overall structure of the thesSiS..........covvviiriiniiiiec e 13
IR T = - To3 (o £ 11 o USSR 14
2 SOFTWARE DESIGN AND ARCHITECTUREccooe i, 15
2.1 QUOLALION SYSTEM . ..iiieiieiie ettt 15
2.2 SOFtWArE @S @ SEIVICE ...ccuviviiiiiiieiieieese e 15
2.3 Cloud ArChITECIUIEc..eveieicieeiee e 15
2.4 Multi-instance VS MUIti-tenant..........ccooeveiieriesieneese e 16
2.5 RESTIUI APIS ..ot 19
2.6 Single Page Application (SPA)ccceieieii e 20
2.7 External Web Services and Third-Party APIs Integration 21
2.8 Web Application Performancecccoeveiiiinieieie e 21
3 WEB SECURITY AND SOFTWARE CONTAINNARIZING..................... 23
3.1 INTOrmMAtion SECUTILY.....ccviiviiiiiieiieee e 23
3.1.1 Defense in Depthc.ccveiiiiiiiicecece e, 23
3.1.2 Web Application Security and OWASP..........cccccevveviveieieennnn, 24
3.1.3 ACCESS CONMIOL....cueeiiiieciieie e 26
3.2 Software CONAINEIIZINGccooveieriirieiere e 26
4 REQUIREMENTS AND SYSTEM ANALYSIS ..ot 29
4.1 System DeSCHPLION.......c.civiie e 29
4.2 Collecting REQUITEMENTScciiieieieiesie e 29
4.3 Analyzing the REqUITEMENTScoviiiriieiiiesieeeee e 31
4.4 System Architecture and MICIOSEIVICES........ccucivuveiieiieesiee e esie e s 32
4.5 UML DIagrams........cciieiiieiiie i s sie st siee et sae e sraeabe e s 34
5 SOLUTION STRUCTURE AND RELEVANT TECHNOLOGIES............. 38
5.1 Data PErSISIENCEocveieeeieiiieiiieie e se e see e rte e eeste e sraesre e sree e 38
5.2 BACK-BNA......ooiiiiieiee e 39
5.3 Authentication and Authorization ... 43
oI I 0]] = o PSSP 48

SYSTEM IMPLEMENTATION: BACK-END AS APL.......cccoiiiiiiii, 53

6.1 Installing Development Requirement..........cccovvveiieeresiesee e 53

6.2 InStalling LaraVel..........coviiioiiieeeee e e 53
6.3 Environment Configuration...........cccoeoeriieninenieiese e 54
6.4 Application Configuration............ccceviveieiiieiieere e 55
6.5 Installing External Packagescccocveveiieiicic i 58

6.5.1 Laravel 4 GENEratorsccovvieieeieiie e 58

6.5.2 FAKEI ..eie e e 59

6.5.3 JWT Authentication for Laravel............ccoceveiiiinininininenn, 59

6.5.4 Laravel DOMPDF WIAPPETccoveiueiieiieiesieceeie e eee e 61

6.5.5 INtervention IMage.........ccooeieiiiiriiirieee e 61
6.6 ORM and MOGEISccoiiiiieiieiecieseee e 62
6.7 Migrations and SEEUING.........cccvevueiiriieeieiie e 66
6.8 ROULING ..ottt re e 72
6.9 Filtering REQUESTS.........oiiiiiiiiiieieeer e 74
6.10 Controllers and BUSINESS LOGIC.......cc.ooirireririeieieie e 74
6.111mMages @S BASEOAceiiueiiiiiieiiii st 79
6.12TeStiNG the APL.......ooieice e 80
6.13 PerfOrMAaNCE.....c..iiiiciieieeie ettt re e 84
SYSTEM IMPLEMENTATION: FRONT-END AS SPA.......ccoeeiieeeiee 86
7.1 Installing Dependenciescccceiveieeieiic i, 86
7.2 Application Setup and Configuration............c.ccceevveiieeie v, 87
7.3 Application COMPONENES.......ccviieiiiiiierie e 90
7.4 Session Storage for COMPONENTS.ccerireririeieiee s 101
7.5 Uploading IMagES.......ccuciieiiiiieiiiecie ettt 105
7.6 Internationalization..........cccoieieieieie e 106
7.7 Interactive Tutorial for System USage.........cccevveveieneieninineneceeens 110
7.8 PerfOrMAaNCE........eiieiieie et nne s 112
SYSTEM IMPLEMENTATION: SECURITY ...ocoviiiiiiiiiei e, 116
8.1 User Communication LeVel..........cccooiiieiiiienieeie e 116
8.2 Microservices Communication LeVelcccoovevviiniivevvsieseece e 119
8.3 Custom Properties and AUthorizationccoceeeieieiencicseneceen 120
DOCKER DEPLOYMENT AND ORCHESTRATIONcccooeiviiiieien, 122
9.1 Docker Architecture and ECOSYSEMccccvvvviiieiiieiiicsie e 122
9.2 Installing Docker COMPONENTS........ccoviriieiinieieeee s 123

9.3 Clustering and Orchestration with Kubernetescccccovevviveiviinnnen, 125

9.4 Deployment Docker CONtAINEISc.cccueruveieieerieeiesee e eeesee e e e

10 SUMMARY

REFERENCES..

LIST OF APPRECIATIONS

SaaS Software as a Service

IT Information Technology

REST Representational State Transfer

API Application Programming Interface
SPA Single Page Application

OWASP Open Web Application Security Project
DBMS Database Management System

CRM Customer Relationship Management
MIS Management Information System

ERP Enterprise Resource Planning

HRM Human Resource Management

HTTP Hypertext Transfer Protocol

CORBA Common Object Request Broker Architecture
RPC Remote Procedure Call

WSDL Web Service Definition Language
SOAP Simple Object Access Protocol

CRUD Create, Read, Update, and Delete

SPA Single Page Application

SPI Single Page Interface

ul User Interface

XSS Cross-Site Scripting

CSRF

LXC

DBA

DevOps

UML

ACID

RDBMS

LAMP

MVC

ORM

CLI

SSH

1oC

JWT

CORS

SWT

SAML

MVVM

IFE

MVVM

PHP-FIG

npm

Cross-Site Request Forgery

LinuX Containers

Database Administrator

Software Development and Information Technology Operations
Unified Modelling Language

Atomicity, Consistency, Isolation, Durability
Relational Database Management System
Linux, Apache, MySQL, Perl/PHP/Python
Model-View-Controller

Object-Relational Mapping

Command-Line Interface

Secure Shell

Inversion of Control

JSON Web Token

Cross-Origin Resource Sharing

Simple Web Token

Security Assertion Markup Language Token
Model-View-ViewModel

Immediately Invoked Function Expression
Model-View-ViewModel

PHP Framework Interop Group

node package manager

UX User Experience

GPG GNU Privacy Guard

LIST OF FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.

Cloud computing architecture.

Multi-instance architecture

Multi-tenant architecture

Modern single page applications structure.
Defense in Depth: Onion Model

Virtual Machine Structure

Docker Containers Structure

The system's components

Monolith and microservices

The use case diagram of the quotation application
Entity relationship diagram of some components
Class diagram of some of the system components
The database diagram of the quotation application
Back-end application structure

The config directory

The database directory

The working process of the JSON Web Tokens.

The length of an encoded JWT compared to an encoded SAML.
Front-end web application structure
Front-end's component directory

Resource route

Customer resource routing

Postman Application GUI

Array of customers' objects

Customer's response object

Create customer POST request

Created customer object response

Response error message

Customer's update PUT request

Update customer's information response object
Delete request

Soft delete illustration

User specific menu

Language menu

Side navigation menu

Details landing page

Invalid input error messages

An example of the header, payload, and signature parts forming the JWT.

16
17
17
21
24
27
28
31
33
35
36
37
39
41
42
42
44
46
47
51
51
72
73
80
81
81
82
82
82
83
83
83
84
90
20
91
94
96

Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.

Details have been updated response modal
Customer deletion confirmation modal

"Create New Quote" view

"Create a New Customer" form

"Choose a Customer" populated after creation
"Create a New Template" form

"Create a New Package" form

Session storage of the components

Logo Upload form

"Services" component view in Swedish

"Take a Tour" for the "Materials" component view
Interactive tour of setting up a material

Network panel recordings of Chrome DevTools webpage
Chrome DevTools Profiles Panel

Audits panel suggestions for Chrome DevTools webpage

100
101
101
102
102
103
103
104
105
109
110
110
113
114
114

LIST OF TABLES

Table 1. REST API general example

20

1 INTRODUCTION

1.1 Purpose

This thesis covers building a Software as a Service (SaaS) driven system that is
intended for companies working in in-house constructions and maintenance field. The
application automates the process of creating quotes for the company’s customers, tak-
ing the measurements and the dimensions of a located area, estimate the required
material for each maintenance or construction service, calculate the final expenses of

that quote, and finally, invoice the customer.

Since the whole system has been built as a multi-instance SaaS, and each business will
have its own application, the need to manage these sets of applications has been
introduced. Thus, a clustering application has been created for that reason. This
clustering application will take care of registering a new company, automating the
process of creating a new application for the registered company, and provide an access

point to that request through a subdomain.
1.2 Overall structure of the thesis

The main ten chapters of this thesis provide a broad understanding of how the system is
built, the chosen software architecture and the reason behind it, and the technology
stack. Chapter one provides an introduction and overall view of the scheme. Chapter
two covers the theoretical background and some concepts like REST APIs and SPAs,
the solution structure and the relevant technologies including but not limited to data per-
sistence, and third-party APIs integration. Chapter three covers some relevant concepts
about information security, and software containerizing. Chapter four and five discuss
the requirements, system analysis, system architecture, and the used technology stack.
Chapter six and seven provide detailed information about parts of the system implemen-
tation at the API and the web application level. Chapter eight shows how the security
parts are implemented in the code and the communication level. Chapter nine is about
using Docker containerizing platform to structure the application for deployment and
managing containers with orchestration tools. Chapter ten wraps up and summarizes the

content of the thesis.

1.3 Background

Pool Interactive, which is the sponsor of this thesis work, saw the necessity of such a
system and the amount of time and effort it will save if implemented. The requirements
and the implementation are being placed according to lengthy discussions and meetings

to reach the gratification the company craving.

2 SOFTWARE DESIGN AND ARCHITECTURE

2.1 Quotation system

A quotation is an agreement that the provider/supplier will deliver or offer to the buy-
er/consumer which consists of the services at a stated price, under specified conditions.
Those quotations are documents/forms that are used to inform the consumer how much
the service will cost before committing to it. They also tend to commit the provider to a
specific fee which is being calculated by providing parameters such as labor, time, raw

materials and extra costs. /1/

The outcome serves as a contract containing the cost of the total service in details, and a
scheduled time for a delivery that both parties agree upon. Any change, later on, will
affect that outcome, and the customer should be informed beforehand. A quotation

could contain payment and invoice. /1/

According to the definition above, an idea for a quotation system that aids to automate
the process of creating a quote for in-house construction and maintenance businesses

was born.
2.2 Software as a Service

Software as a Service is a software delivery model in which the software is accredited
on a subscription basis and is centrally hosted. It became a common delivery model for
many business applications like management information system (MIS), enterprise
resource planning (ERP), customer relationship management (CRM), database
management system (DBMS) software, and human resource management (HRM).
SaasS, usually is browser-based web application and accessed through the internet. /2/

2.3 Cloud Architecture

SaaS service model is one of the four foremost categories of cloud computing, along
with Data as a Service (DaaS), Platform as a Service (PaaS), and Infrastructure as a
Service (laaS). Cloud architecture requires components to form the cloud computing.
These components are consist of front-end platforms (fat client, thin client, or mobile
device), back-end platforms (services, and storage), a cloud-based delivery, and a net-
work (internet). /3/

Cloud Computing Architecture

5 3 =

Figure 1. Cloud computing architecture. /7/

2.4 Multi-instance VS Multi-tenant

SaaSs are being built by IT upon four architectures mainly; those are multi-instance,
multi-tenant, single instance, and flex tenancy. The result will not differ to the end user
much, but it will differ regarding the architecture of the system, data and its access, the
configuration, and user management. This thesis will focus on multi-tenant and multi-
instance, and in their simplest form, they both have a tendency to solve the same

problem, however, multitenancy adverse to multi-instance.

In a multi-instance architecture, multiple companies will run their own separate instance
of the application, with their own separate database. Also, it could run on a different
operating system (OS), and a different hardware platform, so it is very flexible. Each
business will have access to its data separately from the other, which means that each
company will have its users, customers, services, materials, categories, packages,

templates, and quotes. /4/

Tenant 3 Tenant 3 Tenant 3

Application Application Application
Instance Instance

Instance Application

3

Database Database Database
Instance Instance Instance Database

Figure 2. Multi-instance architecture

However, in a multi-tenant architecture, multiple companies will be using a single
instance of the application, with a single database, running on the same hardware and
same OS. This architecture does not give much flexibility but simplifies the process of

adding features and fixing code bugs. /4/

Q

Tenant 1 Tenant 2 Tenant 3

{ ~p Application }

g

Database

Figure 3. Multi-tenant architecture

Many argued that the multi-instance be better than multi-tenant approach when it comes
to cloud architecture, and according to many, this is how the enterprises run their

mission-critical applications. /5/ /6/

The following are two lists of the advantages and disadvantages of multi-tenant

approach.

Pros:

Cons:

Cost effective. Using the same infrastructure and resources.

One shared cloud. The cloud provider sustains for all users.

Time effective. It requires less time and resources for updates/upgrades a large
number of users at a given instance.

Always on the latest version. Changes take place in the whole environment and

happen once for the system/application.

Shared database. Any action that affects the multi-tenant database will affect all
shared customers.

Preventing exposure of data happens in the application layer. The developer
team will be responsible for preventing data exposure from one client to another,
which will sufficiently increase in terms of complexity.

Any security breach has a massive effect as it will affect every tenant in the
system.

Not customizable. Tenants cannot customize the application to fit all their

requirements.

Now, for multi-instance, here are the two lists.

Pros:

Data isolation. Each consumer has its database and infrastructure.

Great flexibility and control of configuration and customization.

High availability. If one instance is down due to infrastructure issues, it will not
affect others.

High scalability. Let it be in the case of an individual server, virtual machine, or
container per consumer; it is always easy to add more resources including, but
no limited to, memory, CPU, or cache.

Ability to move consumers individually.

e Highly customizable. Updates and upgrades can be performed on individual

customer instances where it fits the requirements and the needs of the user.
Cons:

e Itis harder to deploy changes to multiple instances.
e Not cost effective when it comes to creating and configuring the environment

such as the database or the application.
2.5 RESTful APIs

REST{ul or, or shortly REST, stands for Representational Stateless Transfer, is a web
service and a hybrid architecture style evolved from various network-based architectural
styles, incorporated with restraints which define a uniform connector interface for
designing networked applications which rely on stateless, client-server cacheable
communications protocol (HTTP). It is a way to provide interoperability between
computer systems on the internet. The idea behind it is that rather than using complex
mechanisms such as CORBA, RPC, SOAP or WSDL, simple HTTP requests to create,

update, delete, or read (CRUD) data are used to make calls between machines. /8/

REST relies on HTTP verbs and statuses to form the communication with the API.
Defining routes that a machine can make calls to, and either request or manipulate the

data, in case it has the authorization to perform that.

The following is a general example of a REST API, where resource could be any factual

resource i.e. users, products, or similar.

URL HTTP verb HTTP body Response
/api/resource GET or HEAD Empty List of resource
/api/resource/:id | GET or HEAD Empty Single resource by

its id
/api/resource POST JSON, XML or Create new
String resource and

return a reference
to it

lapi/resource/:id | PUT JSON, XML, or Update a specific
String resource by its id

/api/resource/:id | DELETE Empty Delete an existing

resource by its id

Table 1. REST API general example

2.6 Single Page Application (SPA)

Single Page Application, also known as Single Page Interface (SPI), is a web applica-
tion that fits on single web page providing a native-like user experience as if using a na-
tive mobile or desktop application. Usually, what is seen on the browser while viewing
a web page is a combination HTML, CSS, and JavaScript, being loaded from the server.
While requesting another web page from the same domain in a traditional technique, it
will end up in a situation where the browser will have to reload those CSS and JavaS-
cript files again, unless the browser cached them. SPA concept will load those files
once, and make calls to a thin, thick stateful, or thick stateless server architecture load-
ing the data from an API; using AJAX. /9/

The most notable characteristic of the single page applications is the ability to redraw
single part of the user interface without making a server round trip to retrieve HTML.
Multiple JavaScript implemented this idea, both partially and comprehensively, includ-
ing but not limited to AngularJS and Ember.js. /10/ /11/

SPAs faced some issues in the early stage concerning search engine optimization, which
was due to the absence of JavaScript execution on crawlers of few search engines. A
work around this issue was that the application would handle rendering the first page on
the server, and updates the subsequent on the client, which was challenging since
rendering code needs to be written in a different language on the server and the client.
Some JavaScript full-stack frameworks did solve this problem where the same JavaS-
cript code runs on the server and the client. An example of such framework was Mete-
or.js. /12/

Google search engine crawls URLs containing fragments starting with “#!” which is
called hash bang. However, SPA site needs to implement some behavior to allow

extraction or relevant metadata by search engine’s crawlers.

The following figure shows how a modern single page application is structured.

emits events DomM
changes
renders
Wiew > Template
Y
obsenes
queries and
writes to
Maodel ™ Storage

Figure 4. Modern single page applications structure. /13/

2.7 External Web Services and Third-Party APIs Integration

Building large systems requires time that could be saved if the same functionality could
be achieved by using components from other applications and web services. Such ser-
vices could be only API-centric or standalone applications with API built around them
to provide an ability to interact with them. This popular approach has an enormous

impact on saving development time and reusing systems.

The same concept applies to a system that is being built with an idea of exposing func-
tionality to external systems and applications. However, such process is not easy and
requires following best practices even for enterprises.

2.8 Web Application Performance

In general, performance could be defined as the achievement of a specified duty meas-
ured against predetermined known standards of precision, completeness, cost, and
speediness, and is based on perception. Web application performance does agree with
the previous definition. However, good performance is a relative term where it varies
depending on the type of the application and the usage, and what seems to be good

enough today might not be in the future. /19/

Typically, optimizing web application performance goes through three steps: measur-
ing, diagnosing, and fixing issues. Developers most of the time tend to overdo perfor-
mance fixes and sacrifice usability. Rich web applications tend to have a higher thresh-
old of page load traded for reach user experience.

3 WEB SECURITY AND SOFTWARE CONTAINNARIZING

3.1 Information Security

Information security, also shortened InfoSec, is a set of strategies, methodologies, and
practices for managing the tools, policies, and processes to prevent, detect, and
document unauthorized access, use, modification, inspection, and disruption of digital,

physical or any other form of confidential, sensitive, and private information. /14/ /15/

Confidentiality, integrity, and availability together form the core principles and the key
concepts of information security. Confidentiality is a set of rules promise that limits and
restricts access to particular types of information to unauthorized entities and processes.
Integrity is the assurance of accuracy and inclusiveness that the information is
accessible over its entire life-cycle. Some practices would be network management
procedures to guarantee data integrity, including monitoring authorization levels for all
users, recording system administration actions, parameters, and maintenance activities,
and creating disaster recovery plans for occurrences such as power outages, server
failure, and virus attacks. Availability means that data should be available whenever it is

needed.
3.1.1 Defense in Depth

Defense in depth, also known as “Castle Approach,” is a multi-layer of security controls
in an information technology system that assures its protection from the initial creation
to the final disposal. This information assurance concept can be divided into three

zones: physical, technical, and administrative.

Physical controls are the physical limits that prevent access to the IT system like guards,
fences, CCTV systems. Technical controls are the hardware and the software that pro-
tects the system and its resources like disk encryption and fingerprints readers.
Administrative controls are the policies and procedures that ensure there is a proper

guidance available to security.

network

application

Figure 5. Defense in Depth: Onion Model /16/

3.1.2 Web Application Security and OWASP

Web application security is part of the information security that takes care of the securi-

ty of web applications, websites, and web services.

OWASP stands for Open Web Application Security Project, which is a foundation that
came online on 2001, to become a non-for-profit charitable organization in 2004 to
guarantee the continuing obtainability and support for its work. The core values of
OWASP are open, innovation, global, and integrity, which ensure transparency, and
honesty to anyone around the world. /17/

The most recognizable work from OWASP is the OWASP Top 10 project, which is an
important awareness document that provides a list of the ten most critical web applica-

tion security risks. /18/

According to the OWASP Top 10 for 2013, the top security risks are in the following

order.

Injection: Injection flaws, such as SQL injection happens when untrusted data is
directed to an interpreter as part of a command or query. The invader’s conten-
tious data can trick the interpreter into executing unintended commands or re-
trieving data without authorization.

Broken Authentication and Session Management: application authentication and
session management are not implemented properly, allowing attackers to com-
promise passwords, keys, or session tokens.

Cross-Site Scripting (XSS): XSS flaws arise when an application receives un-
trusted data and sends it to a web browser without validation or escaping, allow-
ing attackers to execute scripts in the target’s browser hijacking user sessions, or
redirecting the user to malicious sites.

Insecure Direct Object References: direct object reference arises when a devel-
oper leaks a reference to an internal implementation object, such as a file,
directory, or database key. Without an access control check or other protection,
attackers can manipulate these references to access unauthorized data.

Security Misconfiguration: good security entails having a secure configuration
defined and deployed for the application, application server, web server, and da-
tabase server. Secure settings should be defined, implemented, and maintained,
as defaults are often insecure. Furthermore, software should be kept up to date.
Sensitive Data Exposure: many web applications do not correctly protect sensi-
tive data, such as credit cards, and authentication credentials. Invaders may snip
or alter such unprotected data to conduct credit card fraud or identity theft.
Missing Function Level Access Control: Usually, applications authenticate func-
tion level access rights before allowing that functionality visible in the UI.
Applications have to accomplish the same access control checks on the server
before each function is accessed. If requests are not confirmed, attackers will be
able to forge requests to access functionality without authorization.

Cross-Site Request Forgery (CSRF): such attack forces a victim’s browser to
send a forged HTTP request, including the victim’s session cookie and any other
automatically included authentication information, to a vulnerable web applica-
tion. This allows the attacker to force the victim’s browser to generate requests

the vulnerable application thinks are legitimate requests from the victim.

9. Using Components with Known Vulnerabilities: such as libraries, frameworks,
and other software modules, almost always run with full privileges. If a vulnera-
ble component is demoralised, such an outbreak can ease serious data loss or
server occupation.

10. Unvalidated Redirects and Forwards: web applications normally send and redi-
rect users to other websites, and use untrusted data to regulate the destination
pages. Lacking such validation, attackers can send victims to phishing or mal-

ware sites or use forwards to access unauthorized pages.

Applying security techniques to prevent such vulnerability should be taking place in the
earlier stages of development and continue throughout the software development lifecy-
cle, and never been left out until the end.

3.1.3 Access Control

In simple form, access control is the guarantee that accessing information must be re-
stricted to the users who are authorized to have such privileges. Access control consists
of three steps: Identification, Authentication, and Authorization.

e ldentification. Who someone or something is. In software development, the
claim could be in the form of username or email.

e Authentication: Verifying the previous identity claim. Before granting access to
a user that is claiming an identity, verifying the user must be performed like
checking ID or fingerprints. In software development, this could be a PIN or
password.

e Authorization: the process of which a machine or a user are being determined
the resources that they are allowed to access and the actions they can perform.
Usually, authorization has two forms in software development: role- and permis-

sion-based access control.
3.2 Software Containerizing

Software containerizing is an alternative to machine virtualization which involves en-
capsulating an application with its operating environment in a container that could run
on any suitable physical machine like computers, virtual machines, bare-metal servers,

and cloud clusters, without taking care of the dependencies of that application. /20/

Docker is a lightweight containerizing solution that runs on the same OS kernel. Its
standards enable containers to run on all the main Linux distributions and recently on
Microsoft Windows. It is secure by default as the containers isolate the applications
from one another while providing an additional layer of protection for the application.

Docker is currently the world’s leading software containerizing platform.

The major features of Docker are that accelerates developers work where they can take
copies of their live environment and run them on any new endpoint running a Docker
engine, eliminating environment inconsistencies, and include only the application with
its dependencies; sharing the kernel with other containers while virtual machines
include the application and all the binaries, libraries, and the entire guest operating

system.

BINS/LIBS BINS/LIBS BINS/LIBS

GUEST OS GUEST OS GUEST OS

HYPERVISOR

HOST OPERATING SYSTEM

INFRASTRUCTURE

Figure 6. Virtual Machine Structure

APP 2

BINS/LIBS BINS/LIBS BINS/LIBS

DOCKER ENGINE

HOST OPERATING SYSTEM

INFRASTRUCTURE

Figure 7. Docker Containers Structure

Docker is not the first software containerizing platform, the foundation for containeriza-
tion lies in the LinuX Containers (LXC) format, which is a user space interface for the
Linux kernel containment features. Other containerizing solutions would be CoreOS’s
rkt, Microsoft Drawbridge, and Ubuntu’s LXD.

4 REQUIREMENTS AND SYSTEM ANALYSIS

In this chapter, a detailed description of the requirements and system architecture op-

tions are discussed.
4.1 System Description

Golv1l is a flooring, tiling, and painting small in-house construction company that found
a need to automate their work and did not find a potential solution in the market that
solve their problems. The idea of building a customized solution came up at the early
stage, however, as the need of such system and the lack of an existing quotation system
that is intended for those businesses appeared, Pool Interactive saw an opportunity to
build it as SaaS. /22/

Each company will have its own subdomain and its data, including users, customers,
services, materials, categories, packages, templates, and quotes, separated from the oth-
ers. The users of the system will be able to save the company’s customers information,
the type of services they provide, and the materials they use. After that, they will be able
to create quotes for a client depending on the previous information, where each quote
will have the measurements, the active date, the services, the materials, and the total
calculated automatically. After that, the administrators will be able to invoice the cus-
tomers depending on the information that the quote contains. The system works like that
in its basic form. However, more details and functionalities needed to be handled later

on during collecting requirements and development stage.
4.2 Collecting Requirements

Understanding the problem is the first step to solving it, and to achieve that, all the pos-
sible necessary information about the problem needs to be collected. In most of the agile
software development methodologies, the lifecycle of the development process is rela-
tively short and happens frequently, keeping the potential user of the outcome software,
application, or system in the circle and informed of each added feature as early as possi-

ble. Such practice of developing software has proved its effectiveness and efficiency.

The following are the results of several meetings and gathering requirements, which
gave a good enough understanding to outline the main features of the system and to ana-
lyze probable accompaniments in the future.

¢ Roles and permissions.
Three levels of roles are being discussed at this stage; super admin, admin, and
operator or maintainer, and the access control will be determined by the roles
where the permissions are fixed for the whole role.

e Management functionalities.
The super admin role holds the responsibility of these functionalities.
A company’s details such as business name, the company’s representative name,
address, and phone number need to be collected for further use, in addition to
managing users with their roles.

e Administration functionalities.
Two roles will be responsible for these functionalities, which are admin and
super admin.
Handling customers’ information such as name, email, phone number, address.
Managing services and materials information like title and price. Dealing with
templates, which represent the skeleton of the quote, as well as supervision of
quotes and invoices.

e Quoting functionalities.
All three roles have access to these functionalities.
Consisting of creating quotes for customers immediately, and have them pushed

to the admins to confirm and proceed.
Further discussions revealed more features that considered general and edge cases.

e Starting tools and plans costs: Some additional costs were not fitting as services
that could be added to the general service components. Thus, a starting tool or
plan component became a substitute for such purpose.

e Packages: Typically, a service needs material. This need formed a necessity to
have some packing component that wraps a service and material together. A list
of packages is what put a template together.

e Types and categories: When dealing with an area of work; for instance, floor or
ceiling, services tend to vary. Therefore, package types and categories are neces-
sary to distinguish and locate a package while creating a quote.

e Extra costs: Some quotes will have additional costs that are not part of a tem-
plate or a starting plan which is being handled by adding them directly to the

quote itself.

4.3 Analyzing the Requirements

At this stage, a formal understanding of what exactly needs to be implemented has been
reached. Analyzing the requirements and giving examples will help more regarding how
to put all the previous components together to form the whole functioning system. Some
clarification will be dealt with to help understand each element separately, and how

combining two or more will create another.
The following figure will contribute to illustrate the whole idea of the components.

— O > @

- . Starting tool
Service
Material or plan

Package Template

Figure 8. The system's components

e Service: Any act, or deed that the company offers as part of its services. For in-
stance, installing ceramic and porcelain floor tiles is a multi-steps process where
one needs to plan the tile layout, mix the thin-set and apply it, test the mortar
and begin laying tile, and comb the thin-set. Each step represents a service.

e Material: Any physical substance that is used by the company to perform a ser-
vice. For instance, while painting a wall could be a service, paint is a material
that is employed in this process represents a material.

e Starting tool or plan: Any extra cost that is not combined with a single service
and cannot be created as material. For example, a roll that is used as a tool for
painting services is considered a starting tool, which cannot serve as a material
because it is being used for multiple times. Costs for driving to the customer’s

construction site is a valid starting plan.

e Package: Each service, to fulfill its needs, requires a material. This combination
of a service and a material called a package. Polishing walls is an example of a
package. However, some services might not require a material to be performed,
and that is valid when creating a package. Taking measurements serves as an ex-
ample. Every package must be assigned an area (floor, wall, or ceiling) that it
will be performed upon it.

e Template: These are the base that the quote will be created upon. Floor tiling is
an instance of a template. Templates contain packages and starting tools and
plans.

e Quote: The main component of the system that will be the contract between the
company and the customer to deliver its services. “Refurbishing the kitchen” is

an instance of a quote.
4.4 System Architecture and Microservices

After having a whole idea of the system requirements, and analyzing them to form and
understanding of how the system should work, the architecture procedure is the next
phase. Microservice architecture approach, which is an approach for architecting large
applications as modular services each has a specific business goal, seems to be a good

fit for such system for many reasons.

Monolithic application means that an application has various capabilities, and all those
capabilities are put together in a single application that runs in a single process. Micro-
services approach tends to take each of these capabilities and place them in their own
processes where instead of having one process, have a network of communicating pro-
cess. A good example of this is the Unix command line, where if a list of all the files in
a directory sorted, multiple different commands will be placed in a pipeline to do so.

It also has a consequence for distribution. In a monolith approach, scaling would be by
cluttering the application on multiple machines, while in a microservices approach, a
this is more flexible where different services could be placed on various machines, and

in case a service has more load than others, another copy of them could be added.

A monolithic application puts all its (] A microservices architecture puts '
functionality into a single process... ® each element of functionality into a

. separate service...
L
... and scales by replicating the ... and scales by distributing these services
monolith on multiple servers across servers, replicating as needed.
e e v
oV oV ®lle ®|e®
/
L - =||v
< L 2
oV oV oo I\ g

Figure 9. Monolith and microservices /23/

Services in microservices architecture are small, independent applications, where each
is running in its own process, and communicate with other services with a lightweight
mechanism, usually APIs, to form a single system or application. Each service is a lan-
guage-agnostic, highly decoupled module that has a single responsibility and does a
small task. /23/

The following is a list of some of the common characteristics of microservices architec-

ture.

e Componentization via services: A service is behaving as an independently re-
placeable and upgradeable component, where if a single service needed to be
changed, none of the others needs to be tampered with.

e Organization around business capabilities: Most of the software development
organizations organize themselves around the technology, where one can find
DBAs, DevOps, back-end or server developers, and front-end or Ul designers.
In microservices architecture, the key is that the organization should happen
around business capabilities and focus on the end users.

o Decentralized data management: In the monolithic approach, the whole data is
setting in one big database and often commits to right across the entire company

teams, while microservices architecture suggests that each service is responsible

for its data and its persistence. A service can never talk to another service persis-
tence layer directly, but only through its API.

e Infrastructure automation: Techniques like continues delivery and blue/green
deployment that allow the business to put changes alive with zero downtime are

mandatory to make microservices architecture works.
There are many factors to consider when to use monolith or microservice approach.

e Monolith is more straightforward and familiar approach to use, while micro-
services approach tends to have more complexity because it introduces distribut-
ed computing and asynchronous communications.

e Microservices approach has the ability to deploy various parts independently,
while this is hard while dealing with the monolith.

e Microservice gives a high availability to the whole system. For instance, if a
service is down for some reason, that does not affect the other services. Howev-
er, this will make consistency much harder to maintain.

e Microservice helps preserve modularity and keeps module boundaries solid
which is a good practice in software development.

e Microservice allows using multiple platforms. For example, a service using a
programming language while another service using different programming lan-

guage.

Considering the characteristics of the microservices architecture, and the factors above,
this approach seems to be a good fit for the quotation system. The system will consist of
a service for registering new companies and initiate a new instance of the application, a
service for dealing with subscription plans and payments, a service of the quoting func-

tionalities, and a service for invoicing.
45 UML Diagrams

In software engineering, UML is a modeling language that is used to visualize the de-

sign of the system. /24/

The following is the use case diagram of the quoting application.

Managing the company's

details and information

Managing users

Managing customers
Managing services

Managing materials

Managing packages
Managing templates

Figure 10. The use case diagram of the quotation application

Creating quotes
Managing quotes

Managing starting

Maintenance

Super
Admin

tools and plans

Admin

The diagram shows the user cases and the actors in the application. Each use case repre-
sents a functionality or a set of functionalities toward a component in the system and
which role can perform this use case. For example, admin can manage the customers,
create a new client, update his/her data, and delete a client, but a maintenance actor can-
not perform these functionalities. In the same way, the super admin can access and
manage the company’s details and information while an admin and maintenance role

cannot accomplish such action.

The following is a partial entity relationship diagram that represents the relationship be-

tween some components of the application.

—

Package

has Template

- “
has
name

Customer

\\/
~ g

Figure 11. Entity relationship diagram of some components

business
id

From the entity relationship diagram, one can notice that each customer has a quote or
multiple quotes (one-to-many), where each quote has a template (one-to-one), and each
template consists of multiple packages (one-to-many).

A class diagram representation of the previous relationship is shown below. Explicitly,
the relationship between the classes is presented. The “1” represents that the class of
this side of the relation must be presented once. However, “0..1”” embodies that the class

might not occur, but if it did, it is one occurrence.

Similarly, “0..*” embodies that the class might be present once or multiple time, or

might not. Finally, “1..*” expresses that the class should be present at least once.

For instance, each customer can have zero or many quotes, where the quote must belong
to one customer only. A quote must have one template associated with it only, while it

must have at least one package.

Material Service
+title: string + title: string
+ description: string + description: string
+ price: double + price: double
+type: array(string) 1
1
Package Template
+fitle: string 1—,-4 +title: string
1 description: string + description: string
+ sarvice: Service _1.;_______________1 + packages: array(Package)
+ material: Material + startings: array(Starting)
1.* !
Cuote
+ title: string
Customer 1 stari_date: date
* name: siring 1 + status: array(string) 1—"’
+ emal: sting Y +floor_m2: double

+ phone: string .
+ ceiling_m2: double

+ address: string +wall_m2: double

+template: Template
+ customer: Customer

+ packages: array(Package)

Figure 12. Class diagram of some of the system components

The previous UML diagrams are preferred in every software design stage, but not lim-
ited to them only. For instance, package, sequence, activity, and component diagrams
are significant decomposing or aggregating system parts visually to provide a better un-

derstanding.

5 SOLUTION STRUCTURE AND RELEVANT TECHNOLOGIES

In this chapter, the solution structure and the technology stack will be discussed.
5.1 Data Persistence

Data persistence is where the data are being stored. There are different options for per-
sisting data, mainly relational databases, and non-relational databases, and for those,
there are also various options. For instance, some examples of the non-relational data-
bases are JSON-based storage like MongoDB, key-value data store or in-memory data

structure store like Redis, or graph database like neo4j. /25/ 126/ 127/

Non-relational databases tend to have faster access and can handle a larger amount of
data than the relational databases. However, relational databases have the ability to
manage relations and transactions reliably. Most of the non-relation databases lack
transactions where atomic modifiers, the A in ACID, can only work against a single en-

tity.

The quotation system relies highly on transactions and relations between its compo-
nents, which made relational database management systems more convenient and suita-
ble solution. MySQL is an open source RDBMS, and it is part of the LAMP stack.
Many content management systems use MySQL including WordPress and Drupal, and
it is also used in several prominent websites and web applications including Facebook,
Twitter, Flickr, and YouTube. /28/

Depending on the entity relationship diagram, a database diagram has been created.

— 4 ¢ quoting startings
: o quoting users : € quoting package_template"\ :
%
\\
marons = 4 e \
:Q quoting.password_reminders :Q quoting.services \ : ¢ Quoting starting_template |
\
\ "
:Q quotingiinio oting. materials \\ [
|
>—.:Q quoting templates -
: 0 quoting packages Quolipgpackagesquote /
,’/
/
,/
/
: O quoting.quotes "‘
| :0 quoting category_package
“J & quoiing customers
/ :@ guoting images
, ': £ quoting categories : & guoting.extras
: @ quoting.quote_starting

Figure 13. The database diagram of the quotation application

The diagram shows the relationship between all of the components in the quoting appli-
cation.

5.2 Back-end

MVC design pattern was chosen to be the architectural pattern for the back-end. Even
though this pattern was created for desktop applications, it became commonly used as
an architecture for web applications in many programming languages. Many web
frameworks impose the pattern and divide the responsibilities between the client and

server. /29/

Laravel is an open source MVC framework built using PHP. It has many features that
make it one of the most popular MVC frameworks. The following are some of these
features. /30/

e Routing: Laravel provides an interface for defining routes of the application. The
simplest route accepts a URI and closure.
e Middleware: It provides a mechanism for filtering HTTP requests entering the

application. For instance, Laravel comes with a middleware that verifies the au-

thenticated user. If the user is not authenticated, it will be redirected to a login
page or other pages that have been defined by the developer. Middleware can be
global, which runs on every HTTP request to the web application, assigned to a
specific route, or grouped with several others.

Controllers: A controller class organizes request handling and business logic of
the web application. Restful or resource controllers is a way of assigning a
CRUD route to a controller with a single line of code.

Validation: Laravel provides multiple approaches to validate incoming data.
Eloguent ORM: Eloquent is an object-relational mapper that implements Active
Record design pattern for working with the database. It presents database tables
as classes, with their object instances tied to single table rows.

Query builder: It provides classes and methods to create and run database que-
ries without letting the developer writing them manually and uses PDO parame-
ter binding to protect the application against SQL injections attacks. It also pro-
vides a caching mechanism for the results of executed queries.

Migrations: It provides an easy way to build the database schema of the applica-
tion using Laravel’s schema builder, and act like version control for the data-
base. This makes the deployment and updating the application simple.

Seeding: By using seed classes, Laravel allows seeding the application’s data-
base with test data, or initial data for the application setup.

loC Container: Inversion of Control Container is a design pattern for managing
class dependencies and performing dependency injection. The whole Laravel
framework idea revolves around 10C Container, and understanding that is vital
to building a large, well-organized applications.

Artisan command: Artisan is a CLI that comes with Laravel which provides sev-
eral useful commands to assist while building a web application. Some of the
commands would be for quickly creating controllers, caching and clear cache,
migrating and seeding, dealing with the environment file, and running the appli-
cation on the PHP development server. Artisan commands are not limited to
these features, and Laravel allows developers to extend the list of commands by
providing an interface to create new ones.

Autoloading classes: It provides an automatic loading of the classes without the
need for manual maintenance of inclusion paths. That will load only the used

components.

e Dependencies: Laravel uses composer as a dependency manager to add frame-

work-agnostic and Laravel-specific packages from Packagist repository. /31/
The following are some of the Laravel-specific packages that are ready to use.

e Cashier: For managing subscriptions billing services, handling coupons, and
generating invoices.

e SSH: For executing CLI commands programmatically on a remote server using
SSH protocol.

The back-end has the following structure, which is based on Laravel 4.2.

¥ app
classes

v

commands
config
controllers
database
lang
models
start
storage
tests

views
filters.php
routes.php
» bootstrap

v

public

» vendor
.gitattributes
.gitignore

artisan
composer.json
composer.lock
CONTRIBUTING.md
phpunit.xml
readme.md

server.php

Figure 14. Back-end application structure

The app directory contains the application logic that contains:

e “classes” directory: It has been added to the application for customized classes
that don’t follow the framework definitions.

e “config” directory: It handles the configurations of the application including the
application API keys, timezone, authentication, cache, database, mail, and re-

mote connections.
config
b lacal

P packages

P testing
app.php
auth.php
cache.php
compile.php
database.php
mail.php
queue.php
remote.php
services.php
session.php
view.php
workbench.php

Figure 15. The config directory

e “controllers” directory: It is the directory that contains all the controllers.

e “database” directory: It contains the migrations and seeds.

¥ database

P migrations
b ceeds

.gitignore

Figure 16. The database directory

e “models” directory: Containing all the models of the application.

e “start” directory: Which contains all the initiations to help in the application set-
up.

e “storage” directory: Contains the log, session, and cache files.

e “tests” directory: Contains the test cases for the application.

e “views” directory: It contains the HTML and PHP templates that are used to
view the output. In this case, it is used only to render the outcome for emails and

PDFs templates.

o “filter.php” file: It has the application and route filters which are events that are
used to do any work before or after a request to the application.

e “routes.php” file: It contains the routes to the application.

At the same level of the app directory is the vendor directory which contains all the
packages that are being installed by composer including the Laravel code base. Also,
the public directory which usually has the JavaScript and CSS files. The bootstrap
directory which contains the autoloading file that register the composer autoloader, the
paths to the app directory, public directory, and storage directory, and the start file that
will create a new Laravel application instance which serves as the "glue" for all the
components of Laravel, and is the loC container for the system binding all of the

various parts.

Laravel makes it easy to have multiple different configurations for different environ-
ments in the same application. For instance, the application could have development,
production, and testing environments and easily switch between the three as needed.
That is useful for situation where running tests should be on testing stage, and the appli-
cation should have configurations that suit the case. Same while sending emails, where
in the development stage, the application should not actually send any email but mock

the process of doing so.
5.3 Authentication and Authorization

Because the back-end is being built as a REST API, there are no sessions to be tracked
while dealing with authentication. That produced a need to find another mechanism to
handle the authentication. One solution is to use a token that will be sent in the header

of each request to the API.

JSON Web Token (JWT) is an open standard JSON-based object defined in RFC 7519
that assert claims for securely transmitting a digitally signed set of information using a

secret or a public/private key pair.

JWTs are small in size which makes the data transmission between the server and the
client faster and could be transmitted through HTTP header, URL, or even POST pa-

rameter.

JWTs could be used in different scenarios. However, the most widely used one is in au-
thentication. Each request to a route or resource that is permitted with a JWT will in-
clude the token allowing a logged-in user to access that route or resource.

The process usually follows this scenario. The user logs in with his/her credentials and a
JWT will be returned and should be saved locally, typically in local storage, session
storage, or a cookie. Then whenever the user agent sends a request to a protected route
or resource, the JWT should be attached to the “Authorization” header using “Bearer”

schema. It looks like the following.

Authorization: Bearer <token>

The server will get the JWT from the “Authorization” header, and allow or decline the

access depending on its validity. The following figure presents the last process.

Server

1. POST /users/login with username and password

2. Creates a JWT

3. Returns the JWT to the Browser with a secret

4. Sends the JWT on the Authorization Header

5. Check JWT signature.
Get user information
6. Sends response to the client from the JWT

Figure 17. The working process of the JSON Web Tokens. /32/

The statelessness of the JWT makes it a great fit for stateless data APIs, not mentioning
that dealing with Cross-Origin Resource Sharing (CORS) is not an issue as the cookies
are not used. Also, because JWTs are self-contained, the required information for au-
thentication are in the token which eliminates the need to query the database.

The token is composed of a header, a payload, and a signature separated by dots “.”,
therefore, it looks like the following: “xxxx.yyyy.zzzz” as “header.payload.signature”

structure.

The header entails two parts: the used hashing algorithm, and the type of the token.
“HMAC SHA256” and “RSA” are some of the examples of the hashing algorithms, and
the type of the token is JWT. The header will be “Base64Url” encoded forming the first
part of the JSON Web Token.

The following is an example of the header.

"alg": "HS256",
"typ": "JWT"
}

The payload consists of the claims. Claims are the data of the entity, which is usually
the user, and other metadata. They are divided into three types: public, private, and re-
served. The public claims are defined by the users of the JWTs and should be defined as
a URI that has a collision resistant namespace or identified in the IANA JSON Web To-
ken Registry. The private claims are the customized claims that are created for sharing
the information between the server and the client agent. The reserved claims are the
recommended predefined claims, which their names are three characters long. The fol-

lowing is a list of some reserved claims.

e “jss”: Is the issuer of the JIWT.
e “sub”: Is the subject of the JWT.

e “aud”: Is the audience of the JWT. The audience represents the intended recipi-

ents of the JIWT.
e “exp”: Is the expiration time of the JWT.
e “jat”: Is the “issued at” claim that identifies the issue time of the JWT.

e “jti”: Is a unique, case sensitive JWT ID.

The payload will be “Base64Url” encoded forming the second part the JWT. The fol-
lowing is an example of the payload.

"sub": "0987654321",
"name": "John Doe",
"id": 98743,

"admin": true

}
The signature is the last part of the token which consists of the sign of the encoded
header, the encoded payload, a secret string, and the algorithm the has been specified in
the header. It is used for verifying the sender of the JWT and determining that the mes-
sage has not been tampered with while it has been sent. The following shows how to

create a signature using the HMAC SHA256 algorithm.

HMACSHA256(base64UrlEncode(header) + "." + base64UrlEncode(payload), secret)

Adding all the previous parts together forms the token. The following is an example of a
signed JWT.

eyJhbGci0iJIUzITNiIsINR5cCI6IKpXVCJI.
eyJzdWIi0iIxMjMENTY30DkwIiwibmFtZSI6IkpvaG4
gRG9I1IiwiaXNTb2NpYWwiOnRydWV9.
ApcPyMDB901PSyXnrXCjTwXyr4BsezdI1AVTmud2fU4

Figure 18. An example of the header, payload, and signature parts forming the JWT.
132/

JSON Web Tokens are not the only solution when it comes to stateless authentication or
sharing information securely, some other options exist, like Security Assertion Markup
Language Tokens (SAML), and Simple Web Tokens (SWT) and both options use XML
to transfer data. /33/ /34/

However, JWTs have the prosperity of using JSON instead of XML where the prior is
less verbose and smaller in size when encoded than the last. Usage-wise, JWT is suita-
ble for multiple platforms (like the web, and mobile) due to the easiness of the pro-
cessing it. For example, JSON parsers map to objects directly in most of the program-
ming languages, while XML does not have this natural mapping. Security-wise, SWT
can use HMAC algorithm to symmetrically sign a token with a secret, while JWT can

use public/private key pairs. However, SAML can use the last approach, but signing

XML with XML Digital Signature is very difficult comparing it to signing JSON. The
following figure shows the length of an encoded JWT compared to an encoded SAML.

® © ® Byson weo Tokens - jwtie % |
L c iwtio

Encoded .. i onin

eyJhbGei0iJIUzITNiISINRScCI6IkpXVCJI9.ey
JzdWIi0iIxMjMBNTY30DkwIiwibmFtZSI6Ikpva
G4gRG91IiwiYWRtaW4iOnRydWV9,TJVA950rM7E
2cBab3@RMHrHDcEfxjoYZgeFONFh7HgQ

Decoded oo

¥ HS256 SUPPORTED)

HEADER: ALGORITHM & TOKEN TYPE

"alg": "HS256",
“typ®: "IN

PAYLOAD: DATA

{
“sub": "1234567898@",
“name”: “John Doe”,
“admin®: true

}

VERIFY SIGNATURE

HMACSHA256
base64UrlEncode(header) + "." +
base64UrlEncode(payload),
secret

) secret base64 encoded

® ® samL-semitoolio x =
€« C samltool.io =
SAML W Follow @auth0 - 3,150 followers
SAML ENCODED PASTEATOKENHERE SAML DECODED & Prettify [not editable) Expand
OLIc3BybnNIIHE NRbWxwPS Jlcm46b2FzaXMBb ; ‘Sam:““"f’"j“ SAML2 O nrotocol [Det B21ck
mMFZXMBAGMBUOFNTDoyLjABCHVAGI]b2WIIEIEPSJIN]IxYZRINGFIN 3 | comitenuay e namesie HEaC “A
WQ2MGM3N]hiY ZIiICBWZX JzaWauPSIyLAilEIzc3VISWS2dGFudDOIM) i xmins:sami="um:oasis:namesc:SAML:2.0:assertion">urn:matul
AxNCOXMCOxNFQxNDozMjoxN10IlCBEZXNOaWShdGlvbjOiaHROCHM 5 </samlIssuer>
6LyShCHAUYXVOaDAUY 29tL RICIRICIOZYW1scCI+ PHNRbWwESXNzd 6 | <samip:Status>
WVIHhtbG520nNRBWwInVybipvYXNpczpuYWilczp0Y zpTQUIMOju 7 | <samipStatusCode Value="urn-oasis:names c:SAML:2 O:statug
MDphcaNIcnRpb24iPnVybjptYXRIZ2I0LmFIdGgwLmNvb Twye2FbDpJ : ;:‘:'i;‘;‘:;n
CINTZXI+PHNRbWwOINOY XRicz48c2FtbHABU3RNAHVZG29KZSBW e aninsieamicum:oasismamesic.SAML:2, Ossertion” Versior=1
YWxIZTOIdXJUOMIhc21z0m5hbWVzONR|OINBTUWSEMI4wOnNOYXR1 1 <samlssuersum:matugitauth0.com</samlissuer>
czpTAWN|ZXNzII8+PCOzYWIscDpTAGFOdXM+PHNhEWWEGXNZZXJ0 12 <Signature
aW9uIHhtbG520nNhbWw9InVybjpvYXNpczpuYWiiczpOYzpTQUIMOJI xmins="http:/fwww.w3.0rg/2000/09/xmidsig#">
uMDphc3NIcnRpb24ilFZicnNpb249iluMCigSUGSIIBVksTFQ3Rmxp ‘S‘Uc“fn";'f:""‘ TP sorer]
' ’ <Cananicalizati . = http: /e w301
YWirYVFIVZZyNGJyRIBERZVFMIg3NIIgSXNZdWV JbnNOYWSOPSIyMD <SignatureMethod Algorithm="htp://www.w3,0rg/2000/0{
EOLTEWLTEOVDEQOjMyOJE3LjItMVoiPjxzYWisOklzc3Vic/5lem46bWF P <Reference URR"F. BVIGLTTRRMaGUNEbFODGEEI
OdWdpdCShdXROMCS]b208LINKEWWESXNZAWVyPjxTaWduYXRlcm 18 <Transforms>
UgeGisbnMIImhOdHAGLy93d3cudzMub3JnLziwMDAVMDkveGlsZHN 19 <Transform Algorithm="http://www.w3.0rg/2000/09/x
PZyMIPIXTaWALZWRIbmZVPixDYWSvbmI[¥WxpemFOaWauTWV0aGS 20 <Transform Algorithm="hitp://wérvw3.01g/2001/10bx
KIEFsZ28yaXRohTOiaHROCDoVL 3d3dy53My SvcmevMjAWMSEXMCI4b é; '_"L;"“"SI‘P:”‘I"S 3 Aloorithm<hin e nB.0re/2000104
o <DigestMethod Algarithm="http:/www.w3.0rg

WZXh]LWMxNG4jlig+PFNpZ25hdHVy ZUlIdGhvZ CBBbGdvemI0aGO 5 DigestValue- ZDKIGOIHITUSOnaWZQVISACEZINC=</D1{
9ImhOdHABLYS3d3cudzMub3JnL ziwMDAVMDkveGlsZHNpZyNyc2Etc 34 </Reference>
2hhMSIVPIXSZWZIcmVuY 2UgVVJIPSIXzVWSzdMVDAGHGIVaZthUXY 25 </Signedinfo>
XNnI0YnJGMERHNUUzWDc2Ij48VHIhbnNmb3Jtcz48VHIhbnNmb3.Jtl 26 “SignatureValue-1Fgpt7AsHCME2gTAI5BachvGQVaDWHSH

SAML INFO

Figure 19. The length of an encoded JWT compared to an encoded SAML. /32/

5.4 Front-end

The web application was built as a Single Page Application using AngularJS MVW
framework, where MVVW stands for Model-View-Whatever. AngularJS was identified
as MVC pattern, but due to many changes in the API itself and refactoring big amount
of its code, it is now more like MVVM. That created a split in the AngularJS communi-
ty and created inconsistency in the paradigm, which made the development team change
it to MV* or MVW where the developers can use whichever paradigm that suits their
needs, MVC or MVVM. /10/

Some of the features that AngularJS provides are the following.

e Data binding: Also known as two-way data binding which is a way where if the
view gets updated, the model will change as well and vice versa.

e Deep linking: AJAX driven applications do not have the ability where the link
echoes where the user is in the application. AngularJS provides this benefit mak-
ing the web application feel more like a desktop application.

e Form validation: Is a mandatory part while dealing with applications that want
to provide a good user experience to its users. Thus, AngularJS provides a
mechanism to maintain form validation without the need to write the logic in Ja-
vascript.

e HTTP Requests: AngularJS has services that are built on top of the XHR JavaS-
cript APl and simplifying the asynchronous calls by using promises.

e Reusable components: A component is a way to package an HTML, CSS, and
behavior using directives to hide the complexity and reuse that component.

e Dependency injection: Where a part of the application will use only the needed
component and functionality and leave the rest.

e Testability: AngularJS was built to be testable assuring the business logic sepa-
ration and providing mocks.

e Localization: AngularJS has filters, modules, and directives making the applica-

tion available in multiple locales.

Those features and more made AngularJS a good fit for the system. Working with An-
gularJS requires an understanding of some JavaScript concepts and design patterns. The
following is a list of some concepts that need to be explained in order to be efficient

with JavaScript and AngularJS. These concepts are made while dealing with functions.

Function as an abstraction: Using this approach when dealing with functions that
are written by a third-party developer and the maintainer of the application

wants to sanitize those functions or simply seeks to add some routine to it.

var output = function () {
console.log(“this is an output’);
}
var printOutput = function (fn) {
console.log(‘starting’);
try {
fn();
} catch (ex) {
console.log(ex);

}
console.log(‘ending’);
}
printOutput(output);

The example shows how to define functions as an abstraction. The “output”
function expression represents the third-party code, while the “printOutput”
function expression represents the abstraction layer. “printOutput” accepts a
function as a parameter, wrap it in a try-catch statement, and adding a routine of
simply logging “starting” and “ending” correspondingly before and after the
function execution.

Building modules: A module, in computer science and software development, is
a collection of data and features/methods that could be packaged together to per-
form useful work. The main aim of the modules is to hide the information and
the data from the outside access providing an API to the rest of the application to
interact with it. The following example is a design pattern called “Revealing

Module Pattern” showing how to use functions to create a module.

var createWorker = function () {
var workCount = 0;
var taskl = function () {
workCount++;
console.log(“taskl’ + workCount);

¥
var task2 = function () {
workCount++;
console.log(‘task2’ + workCount);
}
return {
jobl: taskl,
job2: task2
}

}

var worker = createWorker();
worker.jobl1();
worker.job2();

The module is the “createWorker” function expression. It has “workCount”
which is a local variable, and “task1” and “task2” as local function expressions.
The return statement is what makes the revealing module pattern because it is
providing an object with “job1” and “job2” properties revealing the functionality
of the module “task1” and “task2” consecutively. However, the “workCount”
variable remains local to the module as it is not exposed in the return statement.
The “worker” variable in the global scope creates an instance of the module and
can call the methods by the property key name like “job1”” and “job2”.

This pattern is helpful while dealing with AngularJS services and factories. For
instance, while dealing with customers CRUD operations API calls, a service or
a factory could wrap these functionalities in a function and reveal it using the
last pattern.

e Immediately Invoked Function Expression (IIFE): In software development,
global variables are well known for being bad practice and should be avoided.
They are a source confusion and bugs, especially in dynamically typed lan-
guages like JavaScript because it is easy for override a global variable that was
defined before. This behavior is dangerous, and while the module pattern helps
in this by reducing the global variables to one, IIFE contributes to reducing that
number to zero by defining a function and invoking it on the spot. The following
shows how to set an IIFE declaring an anonymous function and invoking that
function immediately.

(function() {

10);

The front-end web application follows a modular approach and single responsibility
principle for structuring where each component is placed according to the business ex-
pression that it implies. For example, a user profile is a component that has its own di-
rectory which contains the controller, the view, and the services that are needed to make
this component works. While the other approach of defining the structure depending on
functionality, like a directory for controllers, services, and others, is more suitable for

small applications, it does not seem to useful approach for this system.

The following figure shows how the front-end application is structured.

compon ents

index. html

Figure 20. Front-end web application structure

“index.html” file: Is the starting point of the application.
“components” directory: Contains the application components, each as a directo-
ry which has the controller, the view, the services, and any other specific func-

tionality for that component like filters.

details

footer

templates

Figure 21. Front-end's component directory

“dist” directory: Contains the customized CSS, images, and JavaScript files that
are general to the application.

“languages” directory: Contains the JSON files that are used for as human lan-
guages translations that the system provides.

“shared” directory: Contains the common functionalities that are used across the
application like filters, directives, and views.

“vendor” directory: Contains the third-party frameworks, libraries, plugins,

modules, and directives that are external dependencies for the application. Also,

“app.js” which contains a definition of the father application module, app con-

figuration, and routing functionalities.
The last structure helps to apply AngularJS best practices like the following.

e Rule of one: This states that a file should contain one and only one component.
For instance, defining a module, a controller, and a service/factory each should
be in its file.

e Using “controllerAs” syntax: It is a syntactic sugar over “$scope” to help avoid
using the “$scope” methods and consider them only when needed.

e Define a controller for a view: This will keep the controller focused and non-
reusable where the reusable functionalities should be moved to the services and
factories.

e Single responsibility for services and factories: A service or a factory should
have a single responsibility, and once the service starts to surpass its determina-
tion, a new one should be created.

e Separating API calls: Some tend to forget the thin controller concept which
states that the controllers should not deal much with the business logic, but di-
recting the logic to the right place. In AngularJS, controllers are for presentation
and collecting data for the view knowing whom it should as for the data and not
how to get it. Therefore, creating data services that are responsible for API calls,
local storage, and other data operations is a good practice. It also helps while

testing controller by mocking those calls.

6 SYSTEM IMPLEMENTATION: BACK-END AS API

The following chapter will discuss the process of building the back-end API-centric ap-
plication including installing Laravel, configuring the environment and the application,
defining models, creating database migrations and seeding, declaring routing, handling
the business logic, and tweaking the performance among other tidbits.

6.1 Installing Development Requirement

Ubuntu 14.04 is the OS that has been used for production and development servers, and
LAMP is the technology stack that has been used for developing this application. The
production server requires multiple steps of configuration, which is why the installation

configurations of the software were minimalistic on the development server.

First, starting with installing Apache that would serve as the web server using the fol-

lowing command.

sudo apt-get install apache2

Second, installing MySQL as a database server using the following command.

sudo apt-get install mysql-server
Third, installing PHP with “php5-mcrypt”, “libapache2-mod-php5”, and “php5-json”
meta-packages using the following command.

sudo apt-get install php5 php5-mcrypt libapache2-mod-php5 php5-json

Finally, installing Git version control system with the following command. /35/

sudo apt-get install git-all

The last four commands will install the latest stable version of each software that is
available in the repositories used by Ubuntu. The server has Apache 2.4, MySQL 5.5,
PHP 5.6, and Git 2.7 now installed and ready.

6.2 Installing Laravel

There are a few requirements before installing Laravel, and the following shows those

requirements.

e PHP 5.4 and above.
e MCrypt PHP extension.

e Composer PHP package manager for managing Laravel’s dependencies.

From the previous step, PHP 5.6 and MCrypt PHP extension are installed. However, the

extension needs to be enabled using the following command.

sudo php5enmod mcrypt

After that Apache needs to be restarted using this command.

sudo service apache2 restart
The last requirement is installing Composer package manager. The following com-
mands should be executed from the home directory. The commands will download the
latest composer installer and name it “composer-setup.php”, verify the installer SHA-

384, run it with specifying the name as “composer”, and lastly remove it. /36/

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"

php -r "if (hash_file('SHA384', '‘composer-setup.php') ===
'55d6ead61b29c7bdee5cccfb50076874187bd9f21f65d8991d46ec5cc90518f447387fb9f76ebaelfbbacf3
29e583e30') { echo 'Installer verified'; } else { echo 'Installer corrupt'; unlink('‘composer-setup.php'); }
echo PHP_EOL;"

php composer-setup.php --filename=composer
php -r "unlink(‘composer-setup.php');"

Now composer is installed and ready.

There are multiple ways to install Laravel: using Laravel installer, using composer, us-
ing Git, or simply downloading it. However, the easiest and most efficient way is via

composer using the “create-project” command.

composer create-project laravel/laravel {directory} 4.2 --prefer-dist

Running the previous command in the “\var\www\html™ Apache directory replacing

“{directory}" by the desired name will install and create a Laravel 4.2 project.
6.3 Environment Configuration

Laravel based projects must have a random string application key that is sat after the
installation. However, because composer was used to install Laravel, this key was al-
ready sat. The application key ensures that the encrypted data and the user sessions are
secure. Also, the “storage” directory requires a set of permissions to so that Laravel can

gain access to its content like caches, sessions, and logs.

Laravel comes with “htaccess” file for defining rules and configurations used by
Apache specifically for this project directory. The following configurations are used to
allow pretty URLs where the file name and extension are dropped.

<IfModule mod_rewrite.c>

<IfModule mod_negotiation.c>

Options -MultiViews

</IfModule>

RewriteEngine On

Redirect Trailing Slashes...

RewriteRule ~A(.*)/$ /S1 [L,R=301]

Handle Front Controller...

RewriteCond %{REQUEST_FILENAME} !-d

RewriteCond %{REQUEST_FILENAME} !-f

RewriteRule ” index.php [L]
</IfModule>

However, Apache’s “mod_rewrite” module should be enabled, and Apache server must

be restarted using the following commands.

sudo a2enmod rewrite

sudo service apache2 restart

6.4 Application Configuration

As mentioned in the application structure, the application’s configurations of Laravel
4.2 exist in the “config” directory which is located in the “app” directory. Each configu-

ration file returns an array.

In the “app.php”, the debug mode is sat to true which is helpful for debugging while the
application is in the development phase where a more detailed error messages with
stack trace will be displayed when an error occurs. The rest of the configurations like
“timezone”, “locale”, “fallback locale”, and “cipher” will remain the same as precon-
figured by the framework. Service providers can be autoloaded by referencing them in
an array associated with “providers”, and Laravel already has multiple service providers

initiated.

"providers' => array(

'Illuminate\Foundation\Providers\ArtisanServiceProvider',
'Illuminate\Auth\AuthServiceProvider',
'Illuminate\Cache\CacheServiceProvider',
'Illuminate\Session\CommandsServiceProvider',
'Illuminate\Foundation\Providers\ConsoleSupportServiceProvider',
‘Illuminate\Routing\ControllerServiceProvider',
'Illuminate\Cookie\CookieServiceProvider"',
'Illuminate\Database\DatabaseServiceProvider',
'Illuminate\Encryption\EncryptionServiceProvider',
'Illuminate\Filesystem\FilesystemServiceProvider"',
'I1luminate\Hashing\HashServiceProvider"',
'Illuminate\Html\HtmlServiceProvider',
'Illuminate\Log\LogServiceProvider"',
'I1luminate\Mail\MailServiceProvider"',
'Illuminate\Database\MigrationServiceProvider',
'Illuminate\Pagination\PaginationServiceProvider"',
'Illuminate\Queue\QueueServiceProvider"',
'Illuminate\Redis\RedisServiceProvider',
'Illuminate\Remote\RemoteServiceProvider"',
'Illuminate\Auth\Reminders\ReminderServiceProvider',
'Illuminate\Database\SeedServiceProvider"',
'Illuminate\Session\SessionServiceProvider"',
'Illuminate\Translation\TranslationServiceProvider',
'Illuminate\Validation\ValidationServiceProvider',
'Illuminate\View\ViewServiceProvider',
'I1luminate\Workbench\WorkbenchServiceProvider"',

)s

This array is extensible, and any added Laravel package could be included in this array,

and the framework can have access to it on every request to the application.

There is also an array with the aliases of the registered classes that come with Laravel.
This array is also extensible where any package that extends a Laravel’s facade class
can have an alias. The following shows the original array that comes with the frame-

work.

‘aliases' => array(

"App’ => 'Illuminate\Support\Facades\App',
'Artisan’ => 'Illuminate\Support\Facades\Artisan',
"Auth’ => 'Illuminate\Support\Facades\Auth',
‘Blade’ => 'Illuminate\Support\Facades\Blade',
‘Cache’ => 'Illuminate\Support\Facades\Cache',
‘ClasslLoader’ => 'Illuminate\Support\ClassLoader’,
'Config’ => 'Illuminate\Support\Facades\Config"',
'Controller’ => 'Illuminate\Routing\Controller’,
'Cookie’ => 'Illuminate\Support\Facades\Cookie"',
'Crypt’ => 'Illuminate\Support\Facades\Crypt',
‘DB’ => 'Illuminate\Support\Facades\DB',
'‘Eloquent’ => 'Illuminate\Database\Eloquent\Model"’,
'Event’ => 'Illuminate\Support\Facades\Event',
'‘File' => 'Illuminate\Support\Facades\File',
‘Form' => 'Illuminate\Support\Facades\Form',
'‘Hash' => 'Illuminate\Support\Facades\Hash',
"HTML' => 'Illuminate\Support\Facades\HTML",
‘Input’ => 'Illuminate\Support\Facades\Input’,
‘Lang’ => 'Illuminate\Support\Facades\Lang’,
'Log’ => 'Illuminate\Support\Facades\Log",
'Mail’ => 'Illuminate\Support\Facades\Mail',
‘Paginator’ => 'Illuminate\Support\Facades\Paginator’,
'Password’ => 'Illuminate\Support\Facades\Password"',
'Queue’ => 'Illuminate\Support\Facades\Queue',
'Redirect’ => 'Illuminate\Support\Facades\Redirect’,
'Redis’ => 'Illuminate\Support\Facades\Redis"',
'Request’ => 'Illuminate\Support\Facades\Request"',
'Response’ => 'Illuminate\Support\Facades\Response',
'Route’ => 'Illuminate\Support\Facades\Route',
'Schema’ => 'Illuminate\Support\Facades\Schema"',
'Seeder’ => 'Illuminate\Database\Seeder',
'Session’ => 'Illuminate\Support\Facades\Session"',
'SoftDeletingTrait' => 'Illuminate\Database\Eloquent\SoftDeletingTrait’,
'SSH' => 'Illuminate\Support\Facades\SSH',
'Str!’ => 'Illuminate\Support\Str',

"URL' => 'Illuminate\Support\Facades\URL',
'Validator' => 'Illuminate\Support\Facades\Validator',
'View' => 'Illuminate\Support\Facades\View',

)s

After that, the database connection should be configured. The database configurations

could be found in the “database.php” file in the “config” directory.

The “default” represents the default database connection name which is one of the con-
nections that are specified in the “connections” array. The following shows the default
sat to “mysql” and setting the connection host, username, database name, password,
charset, and collection for the “mysql”.

‘default’ => 'mysql’,
‘connections' => array(

‘sglite’ => array(

‘driver’ => 'sqlite’,
'database’ => _ DIR__.'/../database/production.sqlite’,
"prefix’ = ',

)>

'mysql’ => array(
"driver' => 'mysql’,
"host' => 'localhost’,
'database’ => 'quotation',
'username’ => 'root’,
'password' => 'root',
"charset’ => 'utf8"’,
‘collation' => 'utf8 unicode_ci',
"prefix’ = "',

)s

‘pgsql’ => array(
"driver’ => 'pgsql’,
"host' => 'localhost’,

"database’ => 'forge',
"username' => 'forge',
"password’ => "'

3
‘charset' => 'utf8’,
"prefix’ = ',
'schema’ => 'public’,
)>
"sglsrv' => array(
‘driver’ => 'sqlsrv’',
"host' => 'localhost’,

'database’ => ‘'database’,
'username' => 'root’,
'password’ => "',
"prefix’ = "',

)s
)s

6.5 Installing External Packages

This section will discuss some packages that are used while developing this application,

and how to install them.
6.5.1 Laravel 4 Generators

Laravel generators is a package that provides additional commands to Laravel’s Artisan
CLI to help developing applications faster. Instead of creating models, controllers, mi-
grations, or seeds directly, this package contributes to ease the scaffolding process and

to initiate the created component with data immediately. /37/

To install this package, the following line should be added to the “required-dev” or “re-

quire” in “composer.json” file.

"way/generators": "~2.0"

Moreover, run the following command to update composer’s dependencies.

composer update --dev

Finally, the following line needs to be added to the service providers array in the

“app.php” file.

'Way\Generators\GeneratorsServiceProvider'

6.5.2 Faker

Faker is a PHP library that is used to produce fake data. It is useful for seeding database
with data, stress-testing the database, or populate any persistence technology like XML,
or JSON files with data. /38/

Installing Faker is similar to installing any library with composer, including the last
package. The only step is to require that library by composer either by using “‘composer

require’ command or by adding it directly to “composer.json” file.

composer require fzaninotto/faker

6.5.3 JWT Authentication for Laravel

JWT-Auth is a Laravel package for simplifying dealing with JSON Web Token from
the server-side perspective. The “0.4.*” version of the package should be installed as the

Laravel version is 4.2. /39/

First, the package should be added directly to “composer.json” because of the specific

version of it.

"tymon/jwt-auth": "0.4.*"
After that, composer needs to update its dependencies which will check for all the pack-
ages, update the existing ones if there is any new available version, and install the pack-

ages that have not been installed.

composer update

Then, the service provider of this Laravel package needs to be added to the “providers”

array in the “app.php” configuration file.

"Tymon\JWTAuth\Providers\)JWTAuthServiceProvider',

Optionally, classes aliases for the facades of this package could be included in the “ali-

ases” array in the “app.php” configuration file.

"JWTAuth' => "Tymon\JWTAuth\Facades\WTAuth',
'JWTFactory' => "Tymon\JWTAuth\Facades\IWTFactory',

This package needs to be configured before using it, and running the following “artisan”

command will create a configuration in the “app/config/packages” directory.

php artisan config:publish tymon/jwt-auth
The configuration file that has been set up is named “config.php” which exists in the
“tymon/jwt-auth” directory in the “packages” directory. The configurations are

represented as a PHP associated array with the following key-value pairs.

e “secret”: This is the string that is used to sign the token. For security reasons, the
string is recommended to be generated by a cryptographically secure pseudo-
random string generator. However, the package comes with a helper command
to generate a new key.

php artisan jwt:generate

e “ttI”: Is the time that the token is valid for in minutes. Sixty minutes is the de-
fault.

e “refresh ttl”: Is the time that the token can be refreshed within and it is in
minutes as well. 20160 minutes is the default.

e “algo”: Is the hashing algorithm. “HS256” is the default.

e “user”: Specifies the full PHP namespace of the User model. “User” is the de-
fault value.

e “identifier”: Specifies the unique property of the user as the “sub” claim in the

token payload. The default value is “id”.

e “reuired claims”: Represents an array of the JWT required claims. The default
value is the resulting array.
[3))))]

e “blacklist enabled”: Is used to invalidate tokens. The default is “true”.
e “providers”: Is an array of the user, JWT, authentication, and storage service

providers. The default array looks like the following.

6.5.4 Laravel DOMPDF Wrapper

This package allows the developer to write HTML, and it will parse the HTML DOM

into a PDF that could be saved in a file, streamed for viewing, or downloadable. /40/

Similar to the last packages, this one does also follow these steps. Include it in the

“composer.json” file, and update composer.

"barryvdh/laravel-dompdf": "0.4.*"

Add the service provider to the “providers” array.

'Barryvdh\DomPDF\ServiceProvider,

Moreover, optionally use the facade by adding an alias to the “aliases” array.

'PDF' => 'Barryvdh\DomPDF\Facade',

6.5.5 Intervention Image

This library helps to handle and to manipulate images in PHP by easing the process of

creating, editing, and composing them. Even though this library is a standalone library,

it ships with service providers and facades for Laravel integration, which makes it a bet-

ter compared to other image processing and manipulation PHP libraries. /41/

Installing this library is similar to the previous packages, include the following in

“require” a section of the “composer.json” file, and run ‘composer update .

"intervention/image": "A2.3"

Then, the service provider should be added to the “providers” array.

'Intervention\Image\ImageServiceProvider',

Optionally, an alias could be included in the “aliases” array.

'Image' => 'Intervention\Image\Facades\Image'
Although this package does not require any configurations, it is a good practice to create
a configuration file for it. The following artisan command will create one in the

“app/config/packages” as “intervention/image/config.php”.

php artisan config:publish intervention/image

The configuration file should return an associated array with one key named “driver”
which represents the used image driver that is used by the library. Two drivers could be
chosen from, the “GD library” and “Imagick”, and both are open source helper libraries

to process images.
6.6 ORM and Models

Laravel comes with an ORM called Eloquent, which is and implementation of the Ac-
tive Record design pattern to deal with database operations. It is a powerful tool as it
maps a class to a data relation and saves much time having the outcome be an object

that could be converted easily to any data structure needed.

Models classes extend the elogquent class and lives in “app/models” directory, which is
not mandatory but recommended. They could be created manually, or using the genera-
tor package that has been installed before. The following is the artisan command that is

used to create a new model called “customer”.

php artisan generate:model Customer

It will create a new model called “Customer” and placed it in “Customer.php”. The fol-

lowing is the content of the model.

<?php

class Customer extends \Eloquent {}

This is a valid model and does not require anything to work with it. Eloquent will as-
sume that the table name of the User model is the lowered case plural name of the mod-
el which is “users” in this case. However, by defining a protected property named

“table”, one can explicitly mention the name of the table that should be used.

Also, Eloquent will assume that the model table has a primary key column named “id”.
However, this convention can also be overridden by defining a property named

“primarykey”.

Laravel records the time of when the model has been saved or updated into the database
table by defining “created at” and “updated at” columns. Those timestamps can be dis-
abled by creating a property named “timestampes” and set it to false. It also provides a
soft delete ability by using a “SoftDeltetingTrait” PHP trait. After that, “deleted at”
must be added to “dates” array, which is defined as a property of the model and repre-
sents the timestamp of when the deletion of the record happened.

Models that extend Eloquent will accept an array of attributes through its constructor.
However, this could be a security issue if the user input passed into the model because it
will make the model’s attribute modifiable. This security concern is called mass as-
signment, and Eloquent helps to protect against it by defining two array properties in the
model called “fillable”, and “guarded”. The “fillable” property contains the attributes

that can be mass assigned, while “guarded” is the opposite.

Laravel uses a validation API that helps to validate user input and provide meaningful
and elegant error messages. Rules could be assigned directly to the “make” method that
the “validator” class offers. However, a better approach is to define those rules in the

model as they are actually part of it, which is considered a good practice.

The following is an associated array named “rules” which is showing the defined vali-

dation rules for the “Customer”.

public static $rules = [

v
-

=> N

v
-

v
-

=> B

15

The keys of the array are all or part of the “fillable” array values. The “name” and ‘““ad-
dress” keys are required, which means that the validator will reject the input if it does
not contain a name and address. The “email”, “phone”, and “mobile” keys must be

unique values in the “customers” table, and if not, the validator will reject the input.

These rules are basics for that specific model. However, other models could have more
complex validation rules, and each key could have multiple rules. For example, the

“Quote” model has the following rules.

public static $rules = [

>
>

[1,
=> []:
=> [])

=> [])

15

9 ¢ 29 ¢

As observed, the “floor”, “wall”, “ceiling”, “calculated price”, “calculated price tax”,
“final price”, and “final price tax” values must have a form of number with a
maximum of two numbers after the decimal point according to the regular expression.
The “status”, and “start date” keys require more than one rule. The “status” should be
present, and its value is one of the following: done, created, canceled, or processing.

The “start_date” on the other hand is required and must be of a type date.

Relationships between models could also be created, and this feature is supportive while
a model requests other model related data to be retrieved. These relationships represent
the relationship between the database tables like one-to-one, one-to-many, and many-to-
many relationships. For instance, the previous “Customer” model could have many
“Quote” model. This relationship could be defined in a function that has the plural name

of the “Quote” model representing the “many” relationship.

public function quotes()

{
}

return $this->hasMany('Quote');

The “hasMany” method is a defined method in the Eloquent class which indicate the

relationship with the mode “Quote”, namely one-to-many. However, the reversed rela-

tionship could also be defined, and that relationship is defined in the target model,

which is, in this case, the “Quote” model.

public function customer()

{
}

return $this->belongsTo('Customer');

The “belongsTo” method expresses the reversed relationship with the customer, namely

many-to-one.

The result of the “Customer” model is the following class.

<?php
use Illuminate\Database\Eloquent\SoftDeletingTrait;

class Customer extends \Eloquent {

use SoftDeletingTrait;

protected $dates = ['deleted_at'];

protected $fillable = ['name', 'email’, 'phone', 'mobile’,

protected $guarded = ['id'];

public static $rules = [
'name' => 'required’,
‘email’ => "unique:customers",
'phone’ => "unique:customers",
'mobile’' => "unique:customers",
'address' => 'required’,

1;

public function quotes()

{

return $this->hasMany('Quote');

}

'address’',

'note'];

The following is the defined models that are used in the quotation application: Catego-

ry, Customer, Extra, Image, Info, Material, Package, Quote, Service, Starting, Template,

and User.

6.7 Migrations and Seeding

Laravel’s migrations help versioning the database schema, which keeps the develop-
ment team up to date with the latest schema. Those migrations use a schema builder

API to help to build the application’s schema.

Migrations live in “app/database/migrations” directory, and each one will have a
timestamp bundled in the file name. That timestamp is created automatically by the
framework to help to detect the order that the migration API should run or revert.
Laravel’s Artisan CLI has a command to create a migration file which will create a

barebone migration class.

php artisan migrate:make create_users_table

The migration file name, in this case, will be a timestamp followed by “cre-
ate_users_table”. For instance, this is a valid migration name created by running the last
command “2015 12 29 105218 create users_table”. Additional attributes could be

added to the command to indicate the name of the database table.

php artisan migrate:make create_users_table --create=users

The command will take care of some of the schema builder boilerplate. However,
Laravel generators package comes with more efficient commands when dealing with
migrations. The command will detect the schema method that it should choose depend-
ing on migration name. For example, running the following command will apply the

“create” method of the schema builder API.

php artisan generate:migration create_users_table

Running the previous command will create the migration file such as running the artisan
command. However, it will help initiating the “create” method with “id” and
timestamps for each created table. The following is the outcome of running the previous

command.

<?php

use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;

class CreateUsersTable extends Migration {

public function up()

{
Schema: :create(, function(Blueprint $table)
{
$table->increments();
$table->timestamps();
})s
}

public function down()

{
Schema: :drop()

}

The “up” function is used by the migration API to detect its job when the migration
runs, while the down is for reversing or rolling back the migration. The “Schema” API
has a “create” method which will create a new table, a “drop” method which will drop a
specified table, and “table” method which is used when adding or deleting columns
from a table. “Blueprint $table” is mandatory, and it is called the table builder. It con-
tains a variety of methods that represent column types. For example, boolean, double,
integer, medium integer, small integer, string, text, timestamp, null, unsigned integers
and more. Some of these methods are specific and have special meaning. For instance,
“increments” is a method that will create a column that is an auto incremented integer
that will act as a primary key, and “timestamps” will add “created at” and “updated_at”

columns.

The “generate:migration” command has an option called “fields” which helps to define
the columns names and types. The following is the command that is used to create the

“customers” table with its columns.

php artisan generate:migration create_customers_table --fields="name:string,
email:string:nullable:unique, phone:string:nullable:unique, mobile:string:nullable:unique, address:text,
note:text:nullable"

Resulting in the next migration.

<?php

use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;

class CreateCustomersTable extends Migration {

/**
* Run the migrations.
*
* @return void
*/
public function up()
{
Schema: :create('customers', function(Blueprint $table)
{
$table->increments('id");
$table->string('name");
$table->string('email')->nullable()->unique();
$table->string('phone')->nullable()->unique();
$table->string('mobile")->nullable()->unique();
$table->text('address');
$table->text('note')->nullable();
$table->timestamps();
$table->softDeletes();

)

/**
* Reverse the migrations.
*

* @return void

*/
public function down()
{
Schema: :drop(' customers');
}

However, the “softDeletes” is added manually which is also a special method that will

add the “delete_at” column to the table for soft deletes timestamp.

For foreign keys, the table builder also provides special methods that will add refer-
ences. For instance, the quotes table has “customer id”, and “template id” columns that

represent foreign keys. The following is the “create quotes table” migration.

<?php

use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;

class CreateQuotesTable extends Migration {

/**

* Run the migrations.

*

* @return void

*/

public function up()

{

Schema: :create('quotes’, function(Blueprint $table)

{

$table->increments('id");

$table->string('title’);
$table->text('note')->nullable();
$table->decimal(' floor', 12, 2)->nullable();
$table->decimal('wall', 12, 2)->nullable();
$table->decimal('ceiling', 12, 2)->nullable();
$table->decimal('calculated price', 12, 2);
$table->decimal('calculated price tax', 12, 2);
$table->decimal('final price', 12, 2)->nullable();
$table->decimal('final price tax', 12, 2)->nullable();
$table->enum('status', array('done', 'created', 'canceled',

'processing’))->nullable();

>onDelete('cascade');

>onDelete('cascade');

/**

s

$table->date('start date');
$table->integer('template id')->unsigned()->index();
$table->foreign('template_id')->references('id"')->on('templates')-

$table->integer('customer_id"')->unsigned()->index();
$table->foreign('customer_id')->references('id"')->on('customers"')-

$table->timestamps();
$table->softDeletes();

* Reverse the migrations.

*

* @return void

*/

public function down()

{
¥

Schema: :drop('quotes");

To run the migration and create the table, the “migrate” Artisan CLI command should

be executed.

php artisan migrate

Laravel provides an easy way for seeding a database with test data. Seed classes are

stored in “app/database/seeds” and can have any desired name. However, logical names

are recommended. Each seced class must have a “run” function. Finally, the database

seeder class should call the seeder classes using “call” method.

Seed classes use models or database query builder to populate the database with the test
data. Those classes could be created manually, but the Laravel generators package could
help easing this process by via the “generate:seed” artisan command. Creating a seed

class for the “customers” table could be achieved executing the following command.

php artisan generate:seed customers

The generated class has the name “CustomersTableSeeder” which is the convention that
the package use.

<?php

use Faker\Factory as Faker;
class CustomersTableSeeder extends Seeder {

public function run()

{
$faker = Faker::create();
foreach(range(1, 10) as $index)
{
Customer::create([
1)
}
}

The Laravel generators package assumes that “Facker” is the library that is used to gen-

erate test data.

In the “run” function, a new instance of “Faker” is being created. After that, a “foreach”
loop, which will run ten times, will execute the “create” method on the “Customer”
model, which takes an associative array where keys are being the columns or the model

fillable (mass assigned) properties, and the values are the test data of each one.

“Faker” provides a smart API that generates almost every type of data like names, ad-
dresses, phone numbers, digits, texts, paragraphs, sentences, words, dates, emails,
URLs, IPs, files, images, barcodes and more. It also provides formatting options by de-
fining formatter classes that ship with the library.

Using “Faker”, the array that is passed to the “create” method is the following.

Customer: :create([
‘'name' => $faker->name,
"email' => $faker->email,
"phone’ => $faker->phoneNumber,
'mobile' => $faker->phoneNumber,
'address' => $faker->address,
'note' => $faker->paragraph,

s

The “QuotesTableSeeder” is used to seed the “quotes” table.

<?php

// Composer: "fzaninotto/faker": "vi.3.0"
use Faker\Factory as Faker;

class QuotesTableSeeder extends Seeder {

public function run()

{

$faker = Faker::create();

foreach(range(1, 20) as $index)
{
Quote: :create([
'title' => $faker->word,
'note’ => $faker->realText(100),
‘floor' => $faker->randomFloat(2, ©, 100),
'wall' => $faker->randomFloat(2, ©, 200),
‘ceiling' => $faker->randomFloat(2, 0, 100),
‘calculated price' => $faker->randomFloat(2, 0, 500),
‘calculated_price_tax' => $faker->randomFloat(2, o, 500),
‘final price' => $faker->randomFloat(2, 0, 500),
‘final price_tax' => $faker->randomFloat(2, @, 500),
"status' => $faker->randomElement(['done', 'created', 'canceled',
'processing']),

'start_date' => $faker->date(),
"template_id' => rand(1, 10),
"customer_id' => rand(1, 20),

s

Some of the tables are created as pivot tables in the many-to-many which do not have
models that represent mappers to them. For such case, the Laravel’s query builder is a
suitable option. For instance, quotes have starting tools and plans values, and the next
seeder class demonstrates creating test data for the “quote_starting” pivot table.

<?php
use Faker\Factory as Faker;

class QuoteStartingTableSeeder extends Seeder {

public function run()

{
$faker = Faker::create();
foreach(range(1, 20) as $index)
{
DB::table('quote starting')->insert([
"quote_id"' => rand(1, 20),
‘starting_id' => rand(1, 10),
‘starting_checked' => rand(0,1),
‘starting name' => $faker->sentence,
‘starting price' => $faker->randomFloat(2, 10, 100),
1)
¥
}
}
6.8 Routing

This section discusses the routing mechanism and the system’s defined routes. Routes
are specified mostly in the “app/routes.php” file. Using the “Route” API which has
methods that define the HTTP method, the URI, and a closure or a directed method on a
controller. There is a particular type of routes called the “resource” route which is a
RESTTful route for a resource, and it will create the following paths, each accompanied
with its HTTP verb and route name.

Verb Path Action Route Name
GET /resource index resource.index
GET /resource/create create resource.create
POST /resource store resource.store
GET /resource/{resource} show resource.show
GET [resource/{resource}/edit edit resource.edit
PUT/PATCH /resource/{resource} update resource.update
DELETE /resource/{resource} destroy resource.destroy

Figure 22. Resource route

“/resource/create” and “/resource/{resource}/edit” are for viewing a form that will take
care of creating or editing the resource consecutively. However, these methods are not
needed as the front-end will take care of that. The routing API allows a subset of the
previous methods to be defined. For example, the “customer” resource route is defined
with index, store, update, destroy, and show end points.

Route: :resource(

B , array(=> array/(,

s s)))s
The first parameter of the resource route is the name of the resource, the second is the
controller that will handle the operations, and the last is optional and has the subset of

the desired methods.

destray

Figure 23. Customer resource routing

The “api” prefix is defined using the “group” method. This method groups a set of
routes and applies specific rules to them. For instance, the prefix “api” is defined on al-

most all of the application routes.

Route: :group(array(=>), function () {
// Defined routes

1)

Some routes are defined by methods named get, post, put, or delete. These methods rep-
resent the HTTP verb that is applied or accepted on these routes. For instance, to get
customer’s quotes, the following route is defined.

Route: :get(, array(=> R =>

))s

This route accepts a GET HTTP request. The “{id}” is a route parameter that represents
the customer id. The “get” method accept an array as a second parameter where the “as”
is the route name, and “uses” is the method name that will handle the request on the

controller.

6.9 Filtering Requests

Filtering requests is a mechanism for restricting access to specific or all routes.
Laravel’s ships with several sets of filters like authentication, and CSRF filters. Filters

could be defined in the “app/routes.php” or “app/filters.php” file.

The “app/filters.php” file contains a “before” and “after” methods, where they are used
to do any work before or after the request. As the back-end is being built as an API, the
API should enable the CORS. This is done by placing some HTTP headers before ac-
cepting the request.

App: :before(function($request)
{

header()5
header()5
if (Request::getMethod() ==) {
$headers = [
1
return Response: :make(, 200, $headers);
¥

1)

b

However, when the application is in production, the “Access-Control-Allow-Origin’
header should replace the “*” by the web application domain that is consuming this
API.

6.10 Controllers and Business Logic

Controllers act like an orchestration level of the application. They assemble business
logic in class and use patterns like dependency injection to form a much better-

structured application that follows software design best practices.

Controllers live in “app/controllers” directory. However, this can be changed by regis-
tering another desired directory in the “classmap” of the “composer.json” file. Control-
lers can be created manually or using Artisan CLI, and all of them must extend “Base-
Controller” class that lives in the same directory and extends “Controller” class by it-

self.

Using the Artisan command to create a new controller has an advantage of specifying

the exact same set of methods that are allowed when creating the resource route.

php artisan controller:make CustomersController --only=index,store,update,show,destroy

This will create a controller class in “app/controllers” named “CustomersController”,

and scaffold it with five methods: index, store, update, show, and destroy.

<?php
class CustomersController extends \BaseController {

public function index()

{
}

public function store()

{

}

public function show($id)

{

}

public function update($id)
{

}

public function destroy($id)
{

}
}

The “index” method should retrieve a list of all the customers using the “Customer”

model.

public function index()

{

return Customer::all();

}

Laravel’s Eloquent models are smart enough to explicitly return the response as JSON,

which makes the process even faster.

Saving a new customer object is handled in the “store” method.

public function store()

{
$data = Input::all();

$validator = Validator::make($data, Customer::$rules);

if ($validator->fails())
{

return $validator->messages();

}

return Customer::create($data);

First, the “all” method on “Input” handles receiving the data while dealing with POST
requests, which will be sent as JSON. These data are saved in a variable called “$data”.
Then validating the data by using the “make” method on the “Validator” which takes
two parameters, the inputs and the rules, and store than in an object called “$validator”
which will be used to check if the data is valid. The “fails” method of “$validator” will
return true in case the data is not valid. Otherwise, it will return false. “Validator” pro-
vides descriptive error messages that could be returned in case the validation failed.
These messages are returned using “messages” method. Finally, and if the data is valid,
the customer will be created using the “create” method on the “Customer” model which

is an Eloquent method, and returned as JSON.

The “show” method is used to retrieve a customer object by its id.

public function show($id)
{

return Customer::findOrFail($id);

}

The “findOrFial” method is another Eloquent method which, as the name indicates, tries
to find a row, in this case, a “Customer” row, by its id, and fails with “404 could not

found” error if it could not.

The “update” method is used for updating a customer.

public function update($id)
{

$customer = Customer::findOrFail($id);

$data = Input::all();

$validator = Validator::make($data, Customer::rules($id));
if ($validator->fails())

{

return $validator->messages();

}

$customer->update($data);

return Response::json([=> s

It will accept an id which is passed in the URL and tries to find the customer that is
associated with it, and if it could not, it will return a “404 could not found” error. After
that, the steps of getting the input data and validate it are the same while creating a new
customer. Then, the customer’s object that is stored in “$customer” variable has an “up-
date” method that will update the associated row in the database with the entered data.
Finally, a customized JSON is created using the “json” method on the “Response” class

and returned.

The last method is the “destroy” method which will delete a customer.

public function destroy($id)

{
Customer: :destroy($id);

return Response::json([=> D;

The method will receive a customer id through the URL and runs the “destroy” method
on the “Customer” model which will soft delete the customer row by setting the “delet-

ed_at” to the corresponding timestamp of when the deletion happened. This behavior

occurs due to the soft delete operations on the model itself, but the “destroy” method

usually deletes the desired resource permanently.

The controller is not restricted to these methods only; it can extend as it goes. For in-
stance, the “CustomerController” class define a method calls “quotes” which will return

a list of the quotes that are associated with a customer by his id.

public function quotes($id)

{
return Customer::with()->findOrFail($id);

}

The “with” method on the “Customer” method is a special one that helps reduce the
number of queries that are needed to attain such result. It will include, depending on the
model relationship with the “Quote” model that is defined in its class, the list of the

quotes with the customer information as well.

Moreover, the relationship between models could be hard to achieve when attempting to
save the object and its relational data. For instance, while storing a “template” object,

“packages” and “startings” ids needs to be saved in their pivot tables.

public function store()

{
$data[1 = Input::get()
$datal] = Input::get()
$datal 1 = Input::get();
$datal 1 = Input::get()

$validator = Validator::make($data, Template::$rules);

if ($validator->fails())
{
return $validator->messages();

}

return DB::transaction(function () use ($data) {
$template = Template::create($data);
$template->startings()->sync($data[1);
$template->packages()->sync($data[DR
return Template::with()->with()-

>findOrFail($template->id);
1)
}

This is possible due to the relational methods that have been defined in the “Template”
model, and the “sync” method. However, this process could go wrong at some point,
and the data would end up half-saved. For instance, the template information could be

saved, but for some reason, the “sync” operations failed. This will produce inconsisten-

cy that is avoidable by using the “transition” method on the query builder API, which
will wrap the process in a database transition that will guarantee that all or none of the

operations will occur.
6.11 Images as Base64

When building APIs, the most efficient way of transferring files is by encoding and de-
coding. The quotation system uses Base64-encoded files between the API and the web
application. The API will receive an image, check the type and the size, save a reference
in the database, decode the image, and finally save it on the disk permanently using the

Intervention Image library.

For instance, updating the logo of the company that is using the quotation system.

public function logoUpload()

{
$info = Info::findOrFail(1);
$data = Input::all();
if (($data[] == || $data[] ==
($data[] <= 2000000)) {
if ($data[] ==) {
$logo = 5
} else if ($datal] ==) {
$logo = H
¥
Image: :make((string) ($data[1))->save($logo);
$info->logo = $logo;
$info->update($data);
return Response::json([=> 1)
}
return Response::json([=> s
}

“Image::make((string) ($data[base64’]))->save($logo)” is the part where the Interven-
tion Image library decode and save the logo image on the desk in the “public/img” di-

rectory.

To retrieve the logo image, a reference to the image must be returned to identify the re-

quired image, encode the image, and send it in JSON.

) &&

/**
* get the logo.

*

* @return Response

*
puglic function getLogo()
{ $info = Info::findOrFail(1);
$data = (string) Image::make($info->logo)->encode('data-url');
return Response::json(['img' => $data]);
}

6.12 Testing the API

To test the API, Postman Google’s Chrome Application, which is also a standalone
desktop application, is used. Postman has a simple, yet powerful GUI platform which

has testing, documenting, and monitoring features for API development. /42/

[]:] Runner Import Builder ’ Signin & & @

History

Figure 24. Postman Application GUI
The “customer” endpoints will be tested, including getting a list of all the customers or

one by its id, creating, updating, and soft deleting a customer.

To get a list of customers, a GET request must be sent to “api/customer’ end point. The

response should be an array of customers’ objects.

GET http://localhost8080/api/customer Params Save

Body (9) Status: 200 0K Time: 883 ms
Pretty 150N e

1~

o

3 s

4 "Alfreda O'Keefe",

5 "Alverta3s@hotmail.com™,

["+07 () 2652420687" ,

7 "(258)909-8821x85429",

8 "address": "4948 Jabari Stream\nRamonaborough, RI 56319-5398",

9 "note”: "Dignissimos perspiciatis perferendis quia non wveritatis dolorem cupiditate aspernatur. Vero
consectetur esse animi debitis et libero sunt. Aspernatur maiores iste quia rerum odit illo explicabo aut.
Doloremgque perspiciatis dolorem assumenda tempore sunt id.",

18 "created_at": "2016-86-86 11:59:48",

11 "updated_at": "2016-86-86 11:59:48",

12 "deleted_at": null

13 bs

14> {

15 "ig": "2",

16 "name": "Giovanni Ondricka Jr.",

17 "email™: "Kaci.Crona@hotmail.com",

18 "phone": "138-982-6762x1244",

19 "mobile": "+18(8)4558762624",

28 "address": "410 Josiah Course‘nlLake Boydview, CO 72258",

21 "note”: "Minus odit et quis. Rerum non conseguatur omnis doloribus delectus libero. Et saepe ad laborum
consectetur.”,

22 "created_at": "2016-86-86 11:59:48",

23 "updated_at": "2016-86-86 11:59:48",

Figure 25. Array of customers' objects

Getting the customer’s information which his id is one by sending a GET request to

~ - ~
api/customer/1".
GET http:/flocalhost:8080/api/customer/1 Params Send v Save
Authorization (1) Code
Type No Auth
Body (9) Status: 200 0K Time: 417 ms
Pretty JSON
1~ {
2 s
3 Alfreda 0'Keefe",
4 i "Alverta3f@hotmail.com”,
5 "phone™: "+97(8)2652428687",
["mobile”: "(258)989-8021x85429",
7 "address": "4948 Jabari Stream\nRamonaborough, RI 56319-53%@",
8 "note”: "Dignissimos perspiciatis perferendis quia non veritatis dolorem cupiditate aspernatur. Vero consectetur esse
9 "created_at™: "2016-86-86 11:55:48",
ia "updated_at": "2016-86-86 11:55:48",
11 "deleted_at": null
12 [}

Figure 26. Customer's response object

To create a new customer, a POST request with JSON object containing the required

data should be sent.

POST http://localhostz8080/apifcustomer Params

(1) Body ®

form-data x-www-form-urlencoded '® raw binary

-
2 "name": "John Doe",

3 "email™: "john.doe@gmail.com",

4 "phone": "B264242432",

5 "mobile”: "@96637456228",

6 "address": "Narpesvdgen 16, 64288 Nirpes, Finland”,
7 "note”: "Some notes”

]

Figure 27. Create customer POST request

The response will be the created customer object.

Body (9) Status: 200 OK Time: 349 ms

Pretty JSON

"name": "John Doe",

, 64288 Nirpes, Finland",
"note" Some notes",
"updated_at": "2817-82-25 @8:00:52",

9 "created_at": "2817-82-25 @8:00:58",

1@ "id": 41

Figure 28. Created customer object response

To demonstrate what will be the response if a required field is missing, the “name” from
the previous POST request is intentionally removed. The following expressed object

was returned.

Body (9) Status: 2000K Time: 362 ms
Pretty JSON
2~ ‘ "name": [
3 "The name field is required.”
4]

b

Figure 29. Response error message

To illustrate the update process, a PUT request is sent to "api/customer/41" to update the

previously created customer, with the new data that are needed to be saved.

PUT htp://localhost:8080/apifcustomer/4 | Params

Body @
form-data x-www-form-urlencoded ® raw binary
1~ |{
2 "mame"”: "John Doe",
3 "emall™: "] dos@yahoo.com™,
a "phona": * "
5 "mobile”: »37456228",
b "address": "Nirpesvigen 16, 642080 Nirpes, Finland”,
7 "mote”: "Some other notes"

5 i

Figure 30. Customer's update PUT request

A JSON object with “response” key and “true” value is returned.

Body (9) Status: 200 OK Time: 336 ms

Pretty

"response™: true

I

Figure 31. Update customer's information response object

Finally, to test the delete customer functionality, a DELETE request is sent to
“api/customer/41” which will delete the previously created customer object that holds
the id of 41. A JSON object with “response” key with “true” as a value is returned.

DELETE http://localhost:8080/api/customer/41 Params

Eﬂdy

S

Pretty

"response”: true

)

Figure 32. Delete request

As mentioned before, the customer is softly deleted by setting “deleted_at” column on
that customer row to the timestamp of when the operation occurred. The following
shows the value of the “deleted at” timestamp was assigned after the previous DELETE

request.

41|John Doe | john.doe@yahoo.com 0264242432 096637456228 Mérpesvagen 16, | Some other 2017-02-25 08:00:50 | 2017-02-25 08:32:33 | 2017-02-25 08:32:33
64200 Narpes. notes
Finland

Figure 33. Soft delete illustration

6.13 Performance

Caching and optimizing code are some options that are mostly considered while dealing
with application performance. The process could be excessive and time-consuming, but

some common practices should be applied at least, especially in production.

The following is a list of performance optimization practices that could be implemented

by any back-end application or unique to Laravel.

e Database indexes: They are helpful when retrieving data using the SELECT
statement, but might slow the code while inserting, updating, or deleting data.

o Database normalization: This should be by architecture, and keeping more fre-
quent requested data at one table, while less demanded in another.

e Database Engine: Using the right engine that suits the application needs. In the
case of the quotation application, MySQL InnoDB was the best fit.

e Composer’s autoload: Composer is using PSR-4 Autoloader recommendation
from PHP-FIG by the time of this paper was written. Optimizing the autoload
mechanism could be achieved by running “composer dumpautoload -0°".

e Class map optimization: The back-end ended up with a few hundreds of files af-
ter all. One way to optimize performance is to combine the essential used files
(such as filters and service providers) on each request into one file. Laravel’s
provide a “config/compile.php” file which accept the files that could be com-
bined in its array, and by running “php artisan optimize’, the framework will
combine and optimize these files.

e Caching: Laravel supports Memcached and Redis for back-end caching with lit-
tle to no configurations where they are stored in “app/config/cache.php” file.

Storing data that are desired to be cached is achievable using the following.

Cache: :put(, , $minutes);

The key is a unique key that will be used to retrieve the value during the lifetime

that is specified in minutes using “$minutes”. For instance, when retrieving a list

of customers, it is recommended to save the data in cache for later use, and the
next time a user requests the data, a check will run on the cache to retrieve it
first. If the data does not exist or has expired, it will be retrieved again from the

database.

if (Cache::has()) {
$value = Cache::get()
}

Laravel provides an easier mechanism.

$value = Cache::remember(, $minutes, function()

{
return DB::table()->get();

1)

Code profiling: This is an obvious step, but many developers tend to forget it.
There are always improved, and more performant algorithms, the most im-

portant is to choose one that will suit the situation better.

7 SYSTEM IMPLEMENTATION: FRONT-END AS SPA

This chapter discusses building the front-end web application that will consume the API

and visualize what has been done so far.
7.1 Installing Dependencies

The front-end development is not a simple process like it used to be. Dependency
managers, package managers, and automation systems are must have tools. Therefore,

before starting the development, some of those tools need to be installed.

Node package manager (npm) is a dependency package manager that is used to install
and update the application’s dependencies like libraries and frameworks. It is installed
with Node.js but can be mounted manually. However, npm should update to the latest
version always before use. Ironically, npm is treated as just another package and main-

tained by itself, which is why npm is used to update npm. /43/

npm install npm@Iatest -g
Now npm could be used to install the other dependencies, including an automation and
task runners. Automation tools help to automate repetitive tasks such as minifying and
bundling JS and CSS files, running unit tests, running code analysis, real-time browser

sync and refresh, and much more, saving lots of time. /44/

Gulp is an automation toolkit that uses JavaScript to do the previous tasks. Because of
the Gulp configuration nature, it is an excellent fit and a better option than other toolkits
like Grunt that uses JS objects for configurations. Installing gulp requires Gulp CLI to

run globally.

npm install gulp-cli -g
Then gulp can be installed locally and as a development tool, and “gulpfile.js”, which

will contain gulp configurations, should be created.

npm install gulp -D
touch gulpfile.js
Now that npm and gulp are ready, the libraries and frameworks could be installed and

minified easily for production.

The web application was built as a SPA, and AngularJS is the framework that is used to
achieve this. Using npm, AngularJS could be installed in a directory called
“node_modules” which is where all the dependencies are stored. In production, gulp is

used to move these dependencies to “vendor” directory.

npm install angular

Installing other modules, directives, and libraries follow the same process. The follow-

ing is a list of all the dependencies.

e Angular Route (“ngRoute”): For routing and linking URLSs to views and control-
lers. /45/

e UI Bootstrap: Are Twitter’s Bootstrap, which is an Ul front-end framework,
components written in AngulaJS. /46/

e Angular Messages (“ngMessages”): A directive that is used to show/hide mes-
sages based on a JS object’s key/value. Mainly used to display messages for
form fields. /47/

e Satellizer: It is a token-based authentication module. In the quotation system, it
is used to while dealing with authentication when sending requests to the back-
end. /48/

e ngStorage: This module helps while working with local and session storage. /49/

e Angular Translate: This module eases the process of creating multilingual web
applications by using the data binding that AngularJS provides. /50/

e Angular Base64 Upload: Converts files into Base64 encoded models. /51/

Finally, to ease the process of building an Ul, AdminLTE template theme was chosen as
a starting point due to the features that it provides such as mobile first responsive design
(using Twitter bootstrap), valid HTML and CSS syntax, lightweight, and support for
major browsers. Not mentioning that most of the components and plugins have Angu-

larJS equivalents or could be wrapped in directives to suit AngularJS needs.
7.2 Application Setup and Configuration

The application starting point is the “index.html” file in the root of the application direc-
tory. It includes the necessary CSS and JavaScript files for the application to perform, in
addition to the container “div”” with “ng-view” directive. That directive is used by the

“ngRoute” module to render the views that associated with the visited URL.

The “vendor/app.js” file contains the father AngularJS module and the rest of the appli-
cation configuration. First, a new AngularJS module called “quote” is instantiated with
all the dependencies and assigned to a variable called “app” to be used as a reference to

when defining constants, and configurations.

var app = angular.module(, 0

B B)

bl J])J

Then, an Angular]JS constant named “API” is defined, which holds the URL of the
back-end API that the web application will send requests to. AngularJS constants life

scope is through the whole module which makes them accessible by all the services.

app.constant(,)

The configuration in AngularJS application is defined in the “config”, which takes a
function like the following.

app.config(function ($routeProvider, $translateProvider, $authProvider) {});
Currently, the translation/multilingual and the routing functionalities configurations are
handled. For the translation/multilingual settings, a method to determine from where the
translations will be loaded should be added, and another one for sanitizing the language

specific texts.

Language translations could be defined as an object to the “translations” method on the
translation service provider “$translateProvider”, which is a good choice for small ap-
plications. However, this is not helpful when dealing with medium to large applications.
Therefore, the “useStaticFilesLoader” method was chosen, which will load the transla-
tions from static JSON files. To determine where the module should load these files, the

method accepts a JavaScript object that represents the options.

$translateProvider.useStaticFilesLoader({
prefix:)
suffix:

1)

The “prefix” is the directory that contains the translation files in perspective to the load-
er HTML file; “index.html”. The “suffix” is how the file name ends and could be any-

thing, but must end with “json”.

For security reasons, the translation module must provide a sanitizing strategy that will
be used to prevent any injected HTML, or JavaScript from being executed. To specify
the strategy, the “useSanitizeValueStrategy” method is used.

$translateProvider.useSanitizeValueStrategy()

The routes are configured using the “$SrouteProvider” and chained “when” methods.

Each “when” appearance describes an URL, with the associated view and controller.

.when(> {
templateUrl: components + R
controller: s
controllerAs:

9]

The ‘/customers’ is the partial URL, the “templateUr]” is the path to the view, and the
“controller” is the used controller. The “controllerAs” is optional, and it is an approach
to replace the “$scope” object that keeps the view, and the model synced (data binding).
This makes the controllers clean and “$scope”-free while maintaining almost every fea-

ture available.

The URL in “when” accepts parameter as well. Parameters are helpful for when passing
information between views for example. They can be defined by prepending colon *“:”

to the parameter name.

.when(, {
templateUrl: components +)
controller: N
controllerAs:

}

To set a default URL which will handle redirecting in the case of hitting non-existing

ones, the “otherwise” method on the “$routeProvider” is used.

.otherwise({
redirectTo:

1)

For Satellizer’s configuration, only the API route that the JWT should be retrieved from

is asked.

$authProvider.loginUrl = ;

7.3 Application Components

As discussed in Chapter 5, the front-end web application is structured as components.
This is applied to business components like “customers”, and visual or Ul components
like the user menu. Each component has at least one view and one controller associated
with it. However, some might have more than one view and controller. For instance, the

“packages” component has two views and two controllers associated with these views.

Even though each component might have its services file, some components could use
the other ones’ services. Each service is an AngularJS factory returns a JavaScript ob-

ject, which consists of API calls and other functionalities unique to that component.

There are three UI components: “header” for the header menu, “aside” for a side menu,
and “footer” for the page footer. The header menu contains the user-specific menu, such

as a link to user’s profile, log out, and changing the language.

Admin
All Privileges

Tasks Messages Details

Profile Sign Out!

Figure 34. User specific menu

Change the Language

English

svenska

Figure 35. Language menu

While the header menu is user specific, the side menu is application specific. The side

menu represents a navigation menu to the application components.

Quick Quote

Company LTD.
LOGO pany

Online
& Info and Details

8 uUsers

Il Customers
Starting Tools and Plans
Services

Materials

&) Packages

&0 Templates

™ Quotes

&6 Create New Quote

Figure 36. Side navigation menu

The view “aside.html” of the side menu is associated with a controller
“AsideController”. The view contains an “aside” HTML element has a “ng-controller”

attribute directive that defines a controller-as syntax.

<aside class= ng-controller= >

</aside>
In the “aside”, a “section” with a “div” that represents the logo image, the company
name, and the online status is defined, followed by a “ul” element that describes the
navigation menu. The logo image “img” element binds a logo variable from the control-

ler in “ng-src” for late binding.

The navigation list is defined as a set of “li” elements.

<1i class="header">MANAGEMENT</1i>

<i class="fa fa-gears"></i> Info and Details

</1i>
<1i>

<i class="fa fa-users"></i> Users

</1i>
<li class="header">ADMINISTRATION</1i>

<i class="fa fa-suitcase"></i> Customers

</1li>

<i class="fa fa-location-arrow"></i> Starting Tools and Plans

</1i>

The “#” is mandatory while dealing with anchor’s “href” in AngularJS as it triggers the

“ngRoute” module.

The controller is defined in a file named “component/aside/controller.js” as the follow-
ing.

(function () {
"use strict";

var app = angular.module('quote');

app.controller('AsideController', ['$http', 'API', '$rootScope', function ($http, API,
$rootScope) {

1y
10);

As of all the JavaScript code pits, everything is wrapped in an IIFE and in strict mode.
To define a controller, a reference to the “quote” module is returned and assigned to a
variable named “app”. Then the controller is defined using the “controller” method
which takes two parameters, the name of the controller, and an array or a function that
contains the controller functionalities. The “$http” is an AngularJS built-in service that

provides an API to ease up the process of making HTTP requests. The “API” an Angu-

larJS constant that has been defined in the “app.js” previously. The “$rootScope” is the
father scope object and all other scopes are descendants of it.

The “AsideController” will call the API requesting the image logo using the “$http”
AngularJS service.
app.controller(, [, , , function ($http, API,

$rootScope) {
var vm = this;

$http({
method: s
url: API +
}).then(function (response) {
vm.logo = response.data.img;
}, function (error) {
console.log(error);

1)
D

First, creating a variable named “vm?” that hold the “this” keyword, which references the
controller function. Then, executing the “$http” call which accepts an object of options
like the method name (“GET”), and the URL, returning a promise that is handled using
the “then” method. The “then” method accepts two parameters that are callbacks func-
tions, the first handles the success of the promise, while the second handles the fail. In
that example, the success will assign the Base64 encoded logo image to “vm.logo”
which is rendered as seen in the view previously. The API call should be moved to an

AngularJS service or factory, but due to the simplicity of this controller, it was kept.

The content of the application is then rendered according to the URL, which will be re-
solved with the “ngRoute” as mentioned before. The landing page of the application is
the details page, which is the page that contains quick statistics, general information

about the company, and uploading logo image.

The “details” component consists of a view, a controller, and a service. The company’s
details are molded in an HTML form, with un update button. On the other side, the up-

load logo form, which hence the name will upload a logo image.

Quick Quote = B) admin

(osa)) CompanyLTD. Company's Details cene-=

Online
Finished Quotes v . Unfinished Quotes

More Info & More Info & More Info ©

48 Info and Details

Total Quotes

& Users

More Info &

General Information Logo Upload
Name* Golvl
Choose File | Mo file chosen
Representative Joakim Bondfolk
Materials Email joakim@golv1.fi

Address Sodertdget 10 64210 Kalax, Finland

Phone Number 050340 6987
‘What Do This Involuptatem maxime labore minus sequi eos. Ut quo
Company accusantium aliquam aperiam veniam est. y
Provide? :
Convrisht @ Ouick Ouote. All rights reserved. Created By Pool Interactive

46.101.120.7/application/#/details

Figure 37. Details landing page

The update information form should have a name attribute, which will be used to access
its input fields for validation. It should also have a “ng-submit” attribute, which is an
AngularJS directive that will call a function on form submitting.

<form class="form-horizontal" name="updateDetails" role="form"

ng-submit="details.submitUpdateDetails(updateDetails.$valid)" novalidate>

</form>

The “details” in “ng-submit” is the controller-as, which is how the view can have access
to its controller. The “submitUpdateDetails” is a method that is defined in the controller
and accepts a Boolean value. The “updateDetails.$valid” is an expression that will be
translated to a Boolean depending on the form validity. The “novalidate” is an HTMLS5
attribute to prevent the browser from validating the form using the default validation

and leave the process to AngularJS.

The process of validating the “input”, “select”, and “textarea” HTML elements is some-
how similar with minor changes. For instance, the company’s name field in the previous

details update form is defined as the following.

<div class=

ng-class=
>
<label class= >Name*</label>
<div class= >
<input autocomplete= name= type= class=
placeholder= required
ng-model= >
<div class= ng-messages=
ng-show= >
<div ng-messages-include= ></div>
</div>
</div>
</div>

The previous structure is how Twitter Bootstrap assembles its input fields to be the ap-

pear on Figure 37.

The “ng-class” is an AngularJS directive used to dynamically add/change classes to an
element using expressions that translate to Booleans. For instance, the “has-error” is a
class defined by Bootstrap, which will mark the input in red color. The expression “up-
dateDetails.detailsName.$touch” is the form name, followed by the input name, fol-
lowed by the special AngularJS property “$touch” which translates to a Boolean value
having true when the input was focused in and out. The other expressions “updateDe-
tails.detailsName.$invalid” has the same first two parts while the last represents the in-

validity of the input field, and return a Boolean value as well.

The “ng-model” attribute of the “input” is an Angular]JS directive which binds to the
property “name” of the object “company” in the controller. The “div” that follows the
input acts as a container for the error messages using the “ngMessages” module. The
“ng-messages” Angular]S directive holds the directed input field error as “updateDe-
tails.detailsName.$error” where “$error” is a property that will run the registered valida-
tors and once the validity of the field change to invalid, the model will be sat to “unde-

fine” presenting the right message defined in the “shared/messages.html”.

<p ng-message= >This field can't be empty!</p>
<p ng-message= >This field is too short</p>
<p ng-message= >This field is too long</p>

<p ng-message= >Must be a valid emaill!</p>

The “ng-show” directive will display the “div”, which is hidden, once the expression
validates to true. That expression, “updateDetails.detailsName.$touched” is the filed

form name, followed by the field name, and the “$touched” special property that vali-

dates to true once the input is focused in and out. The inner “div” is a special include
“div” that will include the “shared/messages.html” file using the ‘“ng-messages-

include”, and that file contains the previous set of messages in “p” elements.

Like every HTML form, a submit button should be added at the end.

<button type="submit" class="btn btn-flat btn-success pull-right"
ng-disabled="updateDetails.$invalid">Update!
</button>

The “ng-disabled” is an Angular]JS directive that works like the “disabled” HTML
attribute but keeps the binding. This directive will evaluate the expression, and either

disable or enable the button.

To test the desired results, the name of the company was left empty, and the entered
email was invalid. The error messages appeared instantly, and the “update” button was

disabled as shown in the following figure.

General Information

Name* _ompany LTL
This field can't be empty!
Representative Joakim Bondfolk
Email joakim
Must be a valid email!
Address Sodertdget 10 64210 Kalax, Finland
Phone Number 050 340 6987
What Do This n voluptatem maxime labore minus sequi eos. Ut quo
Company accusantium aliquam aperiam veniam est.
... P
Provide?

Figure 38. Invalid input error messages

The validation functionality was provided without writing any JavaScript logic, which

is another AngularJS advantage.

The data of the company’s information is loaded first in the form; then the form is sub-
mitted with the new data once the update button is clicked. That previous process is

handled in the controller.

(function () {
"use strict";

var app = angular.module('quote');

app.controller('DetailsController', ['Details', function (Details) {
var details = this;
// Business logic of the details controller
s
10)s

First, the controller is instantiated, and a dependency on the “Details” service iS inject-
ed. The “Details” service is defined in “services.js” as a factory, and it depends on the
“$http” service and “API” constant to make calls to the API.

(function() {
var app = angular.module('quote');
app.factory('Details', function ($http, API) {
return {
getDetails: function () {
return $http({
method: 'GET',
url: API + 'info'
}).then(function(response) {
return response.data;
}, function (error) {
console.log(error);

1)

};
1)
HO;

The “getDetails” is responsible for retrieving the company’s information by sending a
GET HTTP request to the API and handle the promise by returning the response data to

the controller. The controller will assign the data to the desired model; the “company”.

Details.getDetails().then(function (data) {
details.company = data;

}, function (error) {
console.log(error);

s

Due to the nature of the two-way data binding, the form will be populated with the data.

Updating the information is determined in the same way, where the “updateDetails” is

defined in the factory’s returned object.

updateDetails: function (details) {
return $http({
method: R
url: API + s
data: details
}) .then(function(response) {
return response.data.response;
}, function (error) {
console.log(error);

1)
s

The argument that is passed to this function is a JavaScript object which contains the
company’s updated information which has been collected, and assigns that to the “data”
in the options object of the “$http” service. That “updateDetails” is used in the “De-
tailsController” when the form is submitted.
details.submitUpdateDetails = function (isValid) {
if (isvalid) {
Details.updateDetails(details.company).then(function (update) {
if (update ===) {
responseMessage()

} else {
responseMessage()s

}

}, function (error) {
console.log(error);

1)
}
1

The “submitUpdateDetails” is the function that will be executed when the form is sub-
mitted, and it is the one that has been bound to the “ng-submit” in the view. That func-
tion accepts a Boolean value which is passed from the view and denote the validity of
the form. The object of the updated data is passed then to the “updateDetails” method,
and a promise is returned and handled. In case the data has been updated successfully,
the response from the service is “true”, and the “responseMessage” function will be
called with “update success”. Otherwise, the “responseMessage” will be called with
“update fail”. The “responseMessage” is a defined function that will accept a prede-
fined action and will pass that action to a function on the “Details” service that will de-

termine the response message to that action.

function responseMessage(action) {
details.message = Details.messages(action);
jQuery('#messageModal').modal('show");

The “jQuery” is a retrieved reference of the jQuery library which is used to open a
Bootstrap modal to display the message. The “messages” is defined in the “Details”

service like the following.

messages: function (action) {
switch (action) {
case 'update_success':
return {
head: 'Update Action',
body: 'Company\'s general information have been updated

successfully!"’
}s
case 'update_fail':
return {
head: 'Update Action Failed',
body: 'Sorry, we could not update your information, please try
again later!'
}s
case 'upload_accepted':
return {
head: 'Upload Logo',
body: 'Logo has been updated successfully!"’
s
case 'upload_not':
return {
head: 'Upload Logo Not Accepted’,
body: 'Logo image not accepted: not supported type or file too
large!"
}s
case 'upload_error':
return {
head: 'Upload Logo Failed',
body: 'Sorry, we could not upload the logo, please try again
later!’
¥

The “head” and the “body” are related to the modal, which is identified in the view as
the following.

<div class="modal fade modal-primary" id="messageModal">
<div class="modal-dialog">
<div class="modal-content">
<div class="modal-header">
<button type="button" class="close" data-dismiss="modal" aria-label="Close">
×</button>
<h4 class="modal-title">{{details.message.head}}</h4>
</div>
<div class="modal-body">
{{details.message.body}}
</div>
<div class="modal-footer">
<button type="button" class="btn btn-outline btn-flat" data-
dismiss="modal">Close</button>
</div>
</div>
</div>
</div>

The model will dynamically display the response message. For instance, when the com-

pany’s details are updated, the following modal will confirm.

Update Action

Company’s general information have been updated successfully!

Figure 39. Details have been updated response modal

Pop-up modals are also used for other processes such as deletion confirmation where
the modal indicates this by the message and the adaptation to the color scheme which
increase the UX. The following is the modal that is used to delete a customer which will

show after the “delete” button in the “customers” view table is clicked.

Delete Customer Confirmation

Are you sure you want to delete customer Ralph Osinski?

Figure 40. Customer deletion confirmation modal

7.4 Session Storage for Components

Creating a quote is a process that depends on the already-existing components such as
services, materials, packages, and templates, besides customers, which means that those
components should exist for a quote to be created. However, this might not be ideal for
the user to be forced to do it in that particular order for multiple reasons, most im-
portantly forgetting to follow that scenario. Taking that into consideration, the session

storage in the browser was used to solve that problem and achieve a better UX.
The following scenario could help to simulate the problem and the solution.

Creating a Quote By choosing a template and a customer.

New Quote Form: Fill in measures New Quote Form: Choose a template
Title* Kitchen Choose a Template* Optio et exercitationem animi at. -
Choose a - u Extra Costs (euro) Delivery 50 x
Customer*
Sand Papers 24 x
Floor 17.5 NOTE! Measurements in
m? (Leave the field empty
or zero in case you want
Walls o8 to exclude it.)

NOTE! Check boxes to activate fields below.
Ceilin, 175
€ ! Custom Costs

Extra Notes
Floor Packages

Walls Packages

Package

cupiditate

Starting Date* 2017-03-14
Service totam (47.72 euros)

R est (65.69 euros)

Figure 41. "Create New Quote™ view

The “Create New Quote” view filled with data, as shown above, just to notice that the
customer was not created yet. Navigating to the “Customers” view will reset the form,
and the whole data will be gone. To prevent such scenario, an “Add” button was added

to the view next to the “Choose a Customer” drop-down menu.

Clicking that button will keep the “Create a New Quote” form populated and navigate

to the “Customers” view where the customer can be created.

Create a New Customer - x
Name* Email Phone Number
John Doe john.doe@example.com 712-668-2122
Mobile Number Address* Extra Notes
248-479-2232 2677 Corpening Drive, Illinois, 62639 Vim an equidem oporteat delicata.
z
Reset Create and Back to Quote

Figure 42. "Create a New Customer" form

The “Create and Back to Quote” button will only be displayed if the navigation was
performed like the previous scenario. After clicking the button, the customer will be
created and navigate back to the “Create New Quote” view with that customer being

chosen.

Creating a Quote By choosing a template and a customer

New Quote Form: Fill in measures New Quote Form: Choose a template
Title* Kitchen Choose a Template* Optio et exercitationem animi at. v
Choose a . u Extra Costs (euro) | Delivery 50 M
Customer*
Sand Papers 24 x
Floor 175 NOTE! Measurements in
m? (Leave the field empty
or zero in case you want
Walls 62 to excludeit.)
NOTE! Check boxes to activate fields below.
Ceilin; 17.5
& ! Custom Costs
Extra Notes Aeterno omittam complectitur ut nec, sea posse dicunt at.

Eueum maiorum blandit singulis. Nobis detraxit convenire Floor Packages

/
Starting Date* 2017-03-14 Walls Packages

E=zs cupiditate

Service totam (47.72 euros)

Figure 43. "Choose a Customer" populated after creation

This is not limited to the customers only but extended to the templates in this view as
shown above. Furthermore, the packages, and starting tools and plans do have this fea-
ture added to the “Templates” view. The “Packages” view also include this feature to

the services and materials.

Create a New Template + x

Title* Choose Starting Plallsﬁnols,’(osts
Choose packages Description
m * Meis soluta delic ibus eos an, sea veritus

£ us T 5 es meiet.

Reset Create and Back to Quote

Figure 44. "Create a New Template" form

Create a New Package - x
Title* Choose Service* Choose Material
Wooden Floor rerum v consequatur v
FOR* Choose Categories Description
FLOOR = WALL CEILING x Aeque petentium in vis, vis id ferri tamquam
partiendo.

....... P

Reset Create and Back to Template

Figure 45. "Create a New Package" form

Creating these components back-to-back, the system will cover all the missing compo-

nents without losing the state data.

To illustrate how this feature was developed, the customer creation was chosen for
instance. Using the “ngStorage” module that has been installed previously, a session
storage object instance was created at the top of the “quotes/new.controller.js” control-

ler.

quote.$storage = $sessionStorage;

Next, a function is created that will set a property in the session storage to keep track of
the status and navigate to the “Customers” view. The function will be bound to the
“Add Customer” button on the view.
quote.addCustomer = function () {
// Set to true to come back after creating the customer
quote.$storage.quote_customer_loc = true;

// Navigate to customers page to create customer
$location.path("/customers™);

s

The quote object is created and saved as an instance in the session storage. Placing the
initiation of the quote in a function is useful for resetting object functionality.

quote.$storage.quote = {
title: "',
note: "',
customer: O,
template: 0,
floor: 0O,
wall: o,
ceiling: o,
startings: [],
status: 'created’',
start_date: "',
extras: [],
packages: {
floor: [],
wall: [],
ceiling: []
¥
total: {
price: 0,
tax: 24,
final: ©

s

Similarly, the customer object should also be saved in the session storage, which will be
handled in the “customers/main.controller.js” controller. After that, when the “Create
and Back to Quote” button is clicked, the following is executed.
// Set to false after finishing from creating the customer
customers.$storage.quote_customer_loc = false;

// Navigate to back to "creating a quote" page
$location.path("/create-quote™);

The same process is used for all the components that require this temporary save, and

because it is a session storage, the data will not be lost until the browser is closed.

Key Value
ngStorage-packageToCreate {"title";"Wooden Floor","description™;"Aeque petentium in vis, vis id ferri tamquam pa...
ngStorage-package_material_loc false
ngStorage-package_service_loc false

{title™"Kitchen”, "note™:"Aeterno omittam complectitur ut nec, sea posse dicunt at. E...
ngStorage-quote_customer_loc false
ngStorage-quote_template_loc true
ngStorage-templateToCreate {"title":"Kitchen template","description":"Meis soluta delicatissimi eos an, diam iudico...
ngStorage-template_package_loc true
ngStorage-template_starting_loc false

Figure 46. Session storage of the components

7.5 Uploading Images

As discussed in Chapter 6 Section 6.11, the images should be sent as Base64 encoded
files to the APl where they will be decoded and saved on the disk with a reference in the
database. For that, the front-end web application will take care of encoding the images.

To illustrate this process, the “Upload Logo” feature is chosen as an example.

Using the module “angular-base64-upload” that has been installed previously, the pro-
cess of converting files from file input to Base64 encoded becomes easy.

First, the file input should have an attribute “base-sixty-four-input”, which will tell the
previous module to take over this file input and Base64 encode the file.
<input type="file" class="form-control"” ng-model="details.logoImg"
name="logoImg" accept="image/jpeg,image/png"
maxsize="2000" required

base-sixty-four-input>

The “ng-model” will take care of holding the output of the encoded file, besides other
useful information such as the size, the file type, and the file original name. The
“maxsize” is a validation attribute that the module provides, and it defines the maxi-
mum size of the file in Kilobytes. Besides those Angular]S attribute directives, the “ac-

cept” which will specify the accepted file types is a native HTML attribute.

To enhance the UX, the image is being displayed next to the file input. The image is
using the encode file which will change every time a new image file was chosen, giving
an instant view.

<img ng-if="details.logoImg" class="center-block img-responsive img-thumbnail®

ng-src="data:{{details.logoImg.filetype}};base64, {{details.logoImg.base64}}"
alt="Logo" />

Logo Upload

| Choose File | logo.png

Figure 47. Logo Upload form

7.6 Internationalization

Internationalization, which is also referred to as ‘i18n’ is the process of making a
product, or an application easily enables localization for viewers that vary in culture or
language. For instance, in the Finnish language, the date format is “day.month.year”,
while in American English it is “month/day/year”. The same for numbers, and curren-

cies.

AngularJS helps with this matter using the internationalization module that was devel-
oped by the AngularJS team. By installing and including the module as a dependency
for the app, it requires nothing else for it to wok. The localization that needs to be

supported should be included.

AngularJS uses its filter mechanism to apply the loaded localization. For instance, the

following shows how to apply the “date” filter on a Unix timestamp in seconds.

{{“1489320732” | date}}

The language is also a part of the internationalization. As seen before, the header menu
has a language menu where a language can be chosen. Using the translation module that
has been installed before, the language could be switched instantly without a need to
request the page again. The module uses the two-way data binding feature that is pro-

vided by AngularJS to load the translations of a language.

The configurations of the translation module were handled before when the application
was configured in the “app.js”. However, to make use of that, the translations are saved
as JSON files in the “languages” as the standard abbreviation for the language such as

‘en’ for English, and ‘sv’ for Swedish.

The JSON object structured as each component has its own block, and the keys were all
capitals. For instance, the “Services” component has the header, create and update form,
the table which lists the services, the service details modal, and the delete modal, and
each of those has a block in the “SERVICES” translation block. This consistency in the
structure made it easier to search and detect the translation. The same structure should

be used for the other languages in order to maintain the translation.

"SERVICES": {
"HEADER": {
"TITLE": "Services",
"SUBTITLE": "View, create, and delete services. Services are what the company provide.",
"TOUR" :"Take a Tour",
"UPDATE_HEADER": "Update Service"
¥
"CREATE_UPDATE": {
"CREATE_HEADER": "Create a New Service",
"UPDATE_HEADER": "Update Service Form",
"TITLE": {
"TITLE": "Title",
"PLACEHOLDER": "Service Title"

1
"AMOUNT": {
"TITLE": "Charging Amount",
"PLACEHOLDER": "i.e. 5.55"
¥

"DESCRIPTION": {
"TITLE": "Description",
"PLACEHOLDER": "What is this service?"
¥
"BACK": "Back",
"UPDATE": "Update!",
"RESET": "Reset",
"CREATE": "Create!"
¥
"SERVICES_LIST": {
"HEADER": "Services List",
"TABLE":{
"ID": "Service ID",
"TITLE": "Title",
"AMOUNT": "Charging (euro per square meter)",
"ACTIONS": {
“MORE": "More",
"DELETE": "Delete",
"EDIT": "Edit"

}
}
¥
"DETAILS": {
"HEADER": "Service Details",
"TITLE": "Title",
"AMOUNT": "Charging Amount",
"DESC": "Description",
"CLOSE": "Close"
}s
"DELETE": {
"CONFIRM": "Delete Service Confirmation",
"MESSAGE": "Are you sure you want to delete service"”,
"NO": "No",
"YES": "Yes"
}

To reflect these translations on the view, the “translate” directive is used. To

demonstrate this, the service title “label” HTML element looks like the following.

<label class=
translate= >Title</label>

Even though the translate covers most of the cases, some cannot be achieved using it.
One of these cases is the HTML attributes content translation such as the “placeholder”
attribute. In this case, the “translate” filter is used. For instance, the former label is

followed by an input that has a “placeholder” attribute.

<input class= type=
placeholder=
autocomplete= name= required minlength=
ng-model= >

The module offers a service “$translate” that makes loading the language easy by using
the “use” method. This method takes the language that needed to be loaded which
matches the file name without the “.json” extension. For example, “$translate.use(‘en’)”
will load the English JSON object. However, to make this change dynamic, a function
which will return the language depending on the user choice was placed in the “compo-

nents/TranslateController.js”.

var vm = this;

vm.$storage = $localStorage;

vm.changelLang = function (Lang) {
vm.$storage.lang = Lang;

$translate.use(Lang);

s

The language abbreviation is stored in the browser local storage, and the function will

update the user preference in the local storage for the future, and use that as a choice.

However, to enhance the UX, the system will detect the browser language, and load the
language if it has any translation file, if it does not support it, then it will default back to

English.

var checkLang = function () {
// Get the language of the browser
var browserLang = window.navigator.userLanguage || window.navigator.language,
availablelLangs = ['en', 'sv'];

if (!vm.$storage.lang) {
switch (browserLang) {
case 'en-US':

vm.$storage.lang = ‘en’;
break;
case 'en':
vm.$storage.lang = ‘en’;
break;
case 'sv-SV':
vm.$storage.lang = 'sv’';
break;
case 'sv':
vm.$storage.lang = 'sv’';
break;
default :
vm.$storage.lang = 'en’;
}
}
// Check the language
if (availablelangs.indexOf(vm.$storage.lang) == -1) {
// Default back to English
vm.$storage.lang = ‘en’;

}

// Return that language
return vm.$storage.lang;

s

By changing the language to Swedish, the services components page will look like in
the following figure.

QuickQuote = m) admin
TERSIET ven simmet s Moo e e

Skapa en ny tjanst - x

€& Info och detaljer Rubrik” Kostnad* Beskrivning
euros/m?
y

W Kunder Aterstall
7

Tjansterlista - x
ha Tjanster

Tjinster-ID Rubrik Kostnad (euro per kvadratmeter)

Material

23 [biea | coera | cocra |

& Mallar

Figure 48. "Services" component view in Swedish

7.7 Interactive Tutorial for System Usage

A system that is not easy and clear to use is more likely to fail, regardless of the features
that it might provide. Thus, most of the applications have documentation tutorials, video

tutorials or hands-on training.

The hands-on training is the most efficient solution and is chosen by many enterprises.
However, it is an expensive process, and hard to maintain when the system is rapidly

developing and changing.

A similar result could be achieved by creating an interactive tutorial that will show the
user the steps of using with the application. For each component view, and “Take a

Tour” button appears at the top next to the header.

Materials View, edit, and delete materials.

Figure 49. "Take a Tour" for the "Materials" component view

When the button is clicked, an interactive tour will start, highlighting the steps of creat-

ing that component while explaining in details each step.

Default value*
ie.5 euros/m?

Default Value is the value that
you add when you choose the
material's type to be Range.
The value would be the initial

value when creating a
template.

Exit —Previous = Next—

Figure 50. Interactive tour of setting up a material

The library that was used to achieve this result is “Intro.js”, which is standalone and has
no dependencies. To make it work with AngularJS, a wrapper module with directives

was created. /52/

In each view, a set of id attributes for each HTML element that requires an explanation
should be added. As a convention, the id holds a value of “step” followed the number of
the step. For instance, the “div”’ element that contains the “Amount/Max” looks like the

following.

<div class="col-1g-2 col-md-3 col-sm-12 col-xs-12 form-group" id="step3">
</divs

Then, in the controller that is responsible for that view, the tour steps should be defined

as an array of object. Each object represents a step in the tour and contains two manda-

tory properties: an element which is the HTML element id and intro which is the de-

scription that associated with that element.

{

element: '#stepl',

intro: 'A material is the perceptible part of a package. The
material combined with a service creates a package. Think of a
material as a substance or tool that helps to perform a service/work. A good example of a
material could be "Paint/Dye for Walls" and combined with a "Painting a Wall" service, creates
a package.'

¥

{

element: '#step2',
intro: 'Type determines the material charged amount while creating a quote.
<i>Fixed</i> is for when the material have a fixed price and can\'t be changed (for example
when you have only one class of a material in the market). <i>Range</i> is when you have a
variaty of materiall's prices.’
s
{
element: ‘'#step3’,
intro: 'Make sure to add the amount that you are going to charge for the material.'’
s
{

element: ‘'#stepd’,
intro: 'Materials are being charged as euro per square meter, and VAT is applied
upon them.'
¥
{

element: '#step5',
intro: 'Default Value is the value that you add when you choose the materiall's
type to be <i>Range</i>. The value would be the initial value when creating a template."'
s
{

element: '#step6',
intro: 'A list of all the materials.'

¥
{

element: '#step7',
intro: 'Come back again every time you want a tour.'
}

15

To maintain the code quality, the array is returned from a service where the translation
could be applied. Then, those are loaded into the controller where the write function is
called depending on the chosen language.

var tourSteps = Materials.enTour(),

nextlLabel = 'Next⟶',
prevLabel = '⟵Previous"',
skipLabel = 'Exit',
donelLabel = 'Done’;

if (materials.$1Storage.lang == 'sv') {
tourSteps = Materials.svTour();
nextlLabel = 'Nasta⟶"';
prevLabel = '⟵Foregdende';

skipLabel = 'Avsluta';
donelLabel = 'Fardig’;

Finally, the options are loaded dynamically using the data-binding.

materials.IntroOptions = {
steps: tourSteps,
showStepNumbers: false,
exitOnOverlayClick: true,
exitOnEsc: true,
nextlLabel: nextLabel,
prevLabel: prevLabel,
skipLabel: skiplabel,
donelLabel: donelabel,
tooltipPosition: 'auto'

1

To trigger the translation change, the translation module emits a call that other modules
can subscribe to when the language is changed successfully.
$rootScope.$on('$translateChangeSuccess', function() {

// updating steps config
updateLangConfig();

1)

7.8 Performance

Optimizing a web application performance should happen when needed, and as early as
possible. It contains three steps: evaluating the performance, analyzing and detecting the

issues/bottlenecks, and fixing those issues.

Evaluating and measuring the performance happens by mentoring it (on production).
Some of the tools that are used to diagnose the performance are Google Chrome Dev-
Tools and YSlow. /53/ /54/

Google Chrome DevTools is a very useful set of tools that comes with Google Chrome
browser. It consists of multiple tabs where each one group functionality. For instance,
the “Network” panel shows the requested resources and how they are getting download-
ed in real time which makes it easy to detect and identify the ones that are taking time
more than expected. This is considered a fundamental process to optimize the page per-
formance. The following figure shows the “Network™ panel recording for the Chrome

DevTools website over a slow network.

mg Media Font Dx Manifest Other

15000 ms 000 ms

Type Initiator Size ‘Waterfall

Fdeveloper.chrom... document
2onload=init 30 script 543B 225s L
saript
saript
stylesheet

stylesheet

(UTuA.woff2 font

text/plain

59 requests | 15.5KB transferred | Finish: 28.95s |

Figure 51. Network panel recordings of Chrome DevTools webpage

The “Profiles” panel helps to record and to profile the CPU and memory usage of Ja-
vaScript and CSS. Some profiling types are “JavaScript CPU Profile” which shows the
consumed time of the webpage’s JavaScript functions, “Heap Snapshot” which profiles
the consumed memory of the webpage’s JavaScript objects and DOMs, and “Allocation

Profile” which displays JavaScript functions’ memory allocation.

e Profiles Application Security Audits Augun

Record JavaScript CPU Profile

Take Heap Snapshot

Record Allocation Timeline

Record Allocation Profile

Figure 52. Chrome DevTools Profiles Panel

The “Audits” panel analyze the web page load and suggest methods to optimize it and

reduce the load time.

& d]

@ -

ensions (14)
hould be specified for all images in order to speed up page display. The following image(s) are missing a width and/or height:
https://developer.chrome.cor

Web Page Performance
T Optimize the order of styles and scripts (3)
in the document head (1)
dering performance.
to the document head.

uxww: 100% is not used by the current page.

y the current pag
t used by the current page.

Figure 53. Audits panel suggestions for Chrome DevTools webpage

Some of the optimization processes that have been done on the network level were re-
ducing the JavaScript, CSS, and image files size by using Gzip compression and

“minifiers”. Gulp was used to automate this process.

Also, content delivery network providers were used to fetch some external libraries and
frameworks for production instead of fetching them from the server which saved the
bandwidth and increased the performance by distributing the load.

8 SYSTEM IMPLEMENTATION: SECURITY

In this chapter, the authentication and authorization of the user and the service level are

discussed.
8.1 User Communication Level

This level is about the communication between the client and the system. In more de-
tails, the web application and the API. However, the API is built as a REST API, and
REST is stateless, as the name indicates. Thus, the session-cookie mechanism would not
work. Token-based authentication is the solution, and JWT is chosen for multiple rea-
sons mentioned in Chapter 5, Section 5.3. For both the API and the web application, the

helper libraries were installed and configured previously.

From the API perspective, a route that will handle the authentication and returning the

JWT is created like the following.

Route: : post(,)5

After that, creating the “AuthenticateController” with a method called “authenticate”
which will receive the user’s credentials and return the JWT corresponding to the user if

the credentials are right.

public function authenticate()

{
$credentials = Input::only(,)
$user = User::where(B , Input::get())->First();
$customClaims = [=> $user->id, => $user->email];
try {
if (! $token = IWTAuth::attempt($credentials, $customClaims)) {
return Response::json([=> 1, 401);
}
} catch (JWTException $e) {
return Response::json([=> 1, 500);
}
return Response::json(compact())s
}

The response is the JWT in JSON with a property called “token” in the case of proper
credentials. Otherwise, 401 Unauthorized will be returned if the credentials are not val-

id, or 500 Internal Server Error in the event of an exception.

Now the routes that need to be protected should be wrapped in a group that applies the

“jwt-auth” filter.

Route: :group(array('before’ => 'jwt-auth'), function() {
// protected routes

1)

Another method “getAuthenticatedUser” in the “AuthenticateController” is defined to

retrieve the authenticated user from the token.

public function getAuthenticatedUser()

{
try {
if (! $user = JWTAuth::parseToken()->authenticate()) {
return response()->json(['user_not found'], 404);
}
} catch (Tymon\JWTAuth\Exceptions\TokenExpiredException $e) {
return response()->json(['token_expired'], $e->getStatusCode());
} catch (Tymon\JWTAuth\Exceptions\TokenInvalidException $e) {
return response()->json(['token invalid'], $e->getStatusCode());
} catch (Tymon\JWTAuth\Exceptions\JWTException $e) {
return response()->json(['token_absent'], $e->getStatusCode());
}
return response()->json(compact(‘user'));
}

Now the web application which is consuming the API should use the “Authorization”
HTTP header with “Bearer” followed by the token to authenticate. However, the token
could be sent via a query string as “token” in the URL. Fortunately, Satellizer is config-

ured to do so.

In the “auth” component on the front-end side, the “$auth” service, which is a special

service comes with Satellizer, is used to send the credentials.

var credentials = {
email: vm.email,
password: vm.password

}s

$auth.login(credentials).then(function(data) {
if ($rootScope.myPreviLocation) {
$location.path($rootScope.myPreviLocation);
} else {
$location.path("/details");
}
}, function () {
vm.showhWrong = true;

1)

A promise is returned, and if the response includes the token, a redirection takes place.

Otherwise, an error will be shown in the view.

<div class= ng-show= >
<div class= translate= >
An email has been sent to you, please check your mailbox!
</div>
</div>

The token is stored automatically in the local storage of the browser. However, this be-
havior could be changed to use other methods such as a cookie, or session storage. To
protect the web application AngularJS routes, the “resolve” property on the route
“when” options is used.
resolve: {
auth: [R , function($g, $window) {
var userInfo = $window.localStorage.getItem();
if (userInfo) {
return $q.when(userInfo);
} else {
return $q.reject({ authenticated: 1)

}
3

It will check for the token existence in the local storage, and send a request to the API
authentication route to check if the user is authorized. If it is not, then an object with
“authenticated” property sat to false is returned forcing the app to go to the authentica-

tion route again.

The JWT time is set to be short for security reasons. However, if the user was inactive
for longer than the JWT lifetime, then the application should reject any request and nav-

igate to the login page again.

Achieving this requires the “$httpProvider” and “$provider” injected in the
“app.config” function.

app.config(function ($routeProvider, $authProvider, $translateProvider, $httpProvider,
$provide) { ... }

Then defining the method that will take care of the redirect when the token is expired,

absent, invalid, or missing.

function redirectWhenLoggedOut($q, $injector) {
return {
responseError: function(rejection) {
var $location = $injector.get()
var rejectionReasons = [B B

s 15

angular.forkEach(rejectionReasons, function(value, key) {

if(rejection.data.error === value) {
$location.path()
}
3
return $q.reject(rejection);
}
}
}
$provide.factory(, redirectWhenLoggedOut);
$httpProvider.interceptors.push()

8.2 Microservices Communication Level

The microservices communicate with each other’s using REST and to secure the com-
munication between the services, JWT was used. It is enough to demonstrate how the
communication between two microservices, such as the quoting service and the invoic-

ing service, is secured as the others follow the same strategy.

When a quote is delivered, a task to create an invoice for that quote will be created and
pushed to a task queue system, which will be used later by a message broker to pull that
task from the queue to the worker. The worker will delegate that task to the invoicing
service, which will require access the quoting service to get the quote data. The access
cannot be granted to any of the services unless it is authenticated.

In such a scenario, the JWT is used to secure the calls, and it is placed in an HTTP
header. Some of the properties of the JWT’s payload are used by the authentication pro-

29 <¢

cess such as “iss”, “aud”, and “sub”.

"iss": "http://invoice.localhost/",
"aud": "http://quote.localhost/",

"sub": "http://quote.localhost/quote/5784/"

}
Each service has its private and public key, and the JWT that is generated is signed by
the invoicing service using its private key. The keys will be used to validate the JWT.
When the quoting service receives the request, it will extract the JWT from the header
and decode it. After decoding it, the quote service will check the issuer, the “iss”, and
know that it is the invoicing service. Then, the quote service will locate the public key
of the invoicing service and validate the signature. Finally, it will respond depending on
the validation, and the invoicing service will receive the quote data if the validation was

passed.

For the other requests, such as “POST” and “PUT?”, the data is passed as an MD5 hash
to a custom claim “inf” in the JWT payload to ensure that the data is not tampered with
along the way. However, the JWT is signed and not encrypted, so the SSL is used to

encrypt the request.

"iss": "http://invoice.localhost/",
"aud": "http://quote.localhost/",
"sub": "http://quote.localhost/quote/5784/",

"inf": "<md5 hash of the payload>"
}

8.3 Custom Properties and Authorization

Each user has a role associated with his/her credentials. To pass the role between the
web application and the API, an extra property in the JWT payload’s custom claims was
added.

That claimed was used by the API through a filter applied to the targeted routes, and by
the web application in the “resolve” of each AngularJS route. A simple check was per-

formed to obtain the desired results.

{

"role": "admin"

}

9 DOCKER DEPLOYMENT AND ORCHESTRATION

This chapter will give an insight into the Docker architecture and its ecosystem, how to
install it with other components, and how to deploy Docker containers using Kubernetes

clustering and orchestration engine.
9.1 Docker Architecture and Ecosystem

Until recently, most of the cloud platforms were based on virtual machines which as
discussed in Chapter 3, Section 3.2, encapsulate guest operating systems alongside the
libraries and the software applications. However, Linux containers are considered oper-
ating system level virtualization which provides isolated user-space instances, and pro-
cesses on a single host machine (sharing the same Linux kernel). Containerization has

made it clear that it is the future regarding software containerization in the cloud.

Docker as a tool was built as an abstraction on top of the low-level Linux containers al-
lowing easy programmatic creation and distribution of container images, in addition to
launching and deploying containers. It provides a command line tool and HTTP API
which makes managing containers easy and automatable. Docker containers ship with
the containerized software applications’ dependencies which keeps the deployment pro-
cess the same regardless of the technology or the Linux distribution running the con-
tainer. This standardized unit of the application and its dependencies is the Docker im-
age, which is a layered immutable approach to creating images. Docker encompasses an
ecosystem of other tools and services such as Docker Hub which is a central repository

that hosts Docker images. /55/
Docker is a client-server application with a number of components.

e Docker Engine: The core of the Docker platform.

e Docker Client: Is the client which will accept the calls from the command line
and send them to the Docker Daemon via HTTP or TCP socket regardless of the
hosting machine (same or different). However, it will not interact with the imag-
es and containers directly.

e Docker Host: The server-side of the Docker Engine which contains the Docker
Daemon, the images, and the containers. It exposes an HTTP API for managing

containers and images.

e Docker Daemon: The process that interacts with the images and the containers
that are hosted on the same Docker Host.

e Docker Registry: A remote service that host and publish Docker images. Docker
Hub is the official Docker Registry, and most of the common applications, pro-
gramming language runtimes, and databases have official Docker Hub images.

e Docker Machine: Command line tool that is used to create and manage Docker
Hosts which can be controlled by the local Docker Client.

e Docker Swarm: Clustering tool to administer a group of Docker Hosts acting as
a single Docker Host. The communication is through an API that is quite similar
to the Docker API. The Docker Swarm API is used by the Docker Client.

e Docker Compose: Specifies and groups containers to run and network together.
These are the main Docker components in its ecosystem, but there are much more.
9.2 Installing Docker Components

First, Docker Engine component must be installed in order to be able to install the rest.
However, because the server is running Ubuntu Trusty 14.04, some packages are rec-
ommended to be installed such as “linux-image-extra-*” packages that allow Docker to

use “aufs” storage drivers.

sudo apt-get install \
linux-image-extra-$(uname -r) \
linux-image-extra-virtual
As most of the packages on Debian distributions, Docker could be installed using repos-
itories or by downloading the DEB package and install it manually. However, the for-

mer approach is much better as it eases up the installation and upgrading.

Docker has both Enterprise and Community Editions. However, the Community Edition

will be installed here starting by allowing “apt” to use a repository over HTTPS.

sudo apt-get install \
apt-transport-https \
ca-certificates \

curl \

software-properties-common

Then adding the Docker’s official GPG key.

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

After that, the following command will setup the stable repository.

sudo add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/ubuntu \

$(1sb_release -cs) \

stable"
Finally, updating “apt” package index and installing Docker Engine. The “VERSION”
should be the Docker version. Specifying the version of Docker recommended on pro-

duction systems.

sudo apt-get update

sudo apt-get install docker-ce=VERSION
Docker Daemon binds to a Unix socket that is used by “root” user, so other users need
to use “sudo” in order to use the Docker commands. To avoid using “sudo” each time, a

“docker” group could be created, and the user could be added to it.

sudo groupadd docker
sudo usermod -aG docker $USER
It is also recommended to run Docker on system boot, and this could be achieved using

“systemd” or “upstart”.

sudo systemctl enable docker

Secondly, the Docker Machine will be installed. It is worth mentioning that Docker
Machine usually installed automatically if Docker is installed on Mac or Windows, or

by installing Docker Toolbox (old solution for Windows and Mac).

To install Docker machine, the binary should be downloaded and extracted to the
“PATH”.

curl -L https://github.com/docker/machine/releases/download/v0.10.0/docker-machine-
“uname -s -"uname -m° >/tmp/docker-machine &&

chmod +x /tmp/docker-machine &&

sudo cp /tmp/docker-machine /usr/local/bin/docker-machine

By running the following command, the installation could be tested if it was successful.

docker-machine version

It will basically return the version of the Docker machine.

Finally, Docker Compose also installed by default for Windows and Mac users, but not

for Linux. The following command shows how to download the binary.

curl -L "https://github.com/docker/compose/releases/download/1.11.2/docker-compose-
$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

Then, the binary should be granted executable permissions.

chmod +x /usr/local/bin/docker-compose

To check if the installation was successful, the version of Docker Compose could be

verified.

docker-compose

9.3 Clustering and Orchestration with Kubernetes

Docker Swarm is the native orchestration and clustering engine for Docker. However, it
Is not the only one. Kubernetes is another most common used engine to deploy contain-

ers inside clusters.

Google created Kubernetes which was the outcome of years of experience working with
Linux containers. Kubernetes solved many problems that Docker had in its early stage
around version 1.0, which made it a very useful tool alongside Docker. /56/

Kubernetes uses “etcd” which is a distributed key-value store for critical data of a dis-
tributed system. It has a load balancer integrated, and it provides an easy way to move
containers without losing data by mounting persistence volumes. It also uses “flannel”

for networking between containers. /57/ /58/

Kubernetes does not use Docker CLI or Docker Compose to define containers. It uses a
different API and different definitions as it was not made for Docker exclusively. For

that, Kubernetes has a learning curve handling its CLI and configurations.
The advantages of using Docker Swarm are the following:

e Easy and fast to install and use.
e Share almost the same API with Docker.
e Compliment Docker tools such as Docker Compose.

e Lightweight.

However, its disadvantages are:

e Limited in functionality to the Docker API.

e Limited fault tolerance.

Kubernetes, on the other hand, has the following advantages:

e Modular.
e Runs consistently on any OS.

e Easy service organization with pods.
However, its disadvantages are:

¢ Difficult to install and configure.

¢ Incompatible with Docker CLI and tools such as Docker Compose.

9.4 Deployment Docker Containers

The needs are to deploy applications quickly and automate most of the parts, easily
scale Docker hosts, continuous deployment when new features come, and deploy on

multiple providers.

By deploying Docker containers, the build happens during the development phase lead-
ing to much efficient consistency between development and production stages, not men-
tioning the apps are loosely coupled and modular by nature, and each container has its
own IP.

To deploy a new application, the “Dockerfile” should be created, Docker machine start-

ed, and the image is built.

docker-machine start
docker build -t quotation-app:vl .

To install Kubernetes and launch a cluster, the following could be run.

export KUBERNETES_PROVIDER=vagrant; wget -q -O - https://get.k8s.io | bash
It will run Kubernetes in Vagrant on a local virtual machine. However, it could be run-
ning on any desired provider that is supported by Kubernetes such as Google App En-
gine, AWS, and Microsoft Azure.

To run the quotation application container on the previously created cluster, the follow-

ing could be run.

kubectl run quotation-app --image=PROJECT_ID/quotation-app:v1 --port=8080
kubectl get deployment quotation-app

The number of replicas could be scaled easily like the following, and they will be added

automatically.

kubectl scale deployment quotation-app --replicas=4
kubectl get deployment quotation-app

To create a load balancer and expose the deployed container to be accessed through the
web, the following commands should be executed.

kubectl expose deployment quotation-app --type="LoadBalancer"
kubectl get services quotation-app

An external IP will be returned, which could be used by the web server to direct the re-

quests to the container.

To separate the tenants from each other, each tenant was given a namespace in Kuber-
netes which isolates the users of a certain cluster. Also, the scaling should be automated.
The following command shows how to scale a deployment of a “quotation-app” on a

number of pods between two and five and target the CPU utilization at 50%.

kubectl autoscale deployment quotation-app --min=2 --max=5 --cpu-percent=50

10 SUMMARY

This thesis presented the development of a quotation system that utilizes Microservices
architecture on top of a multi-instance SaaS approach deployed using Docker and Ku-

bernetes.

First, it started by discussing what is a quotation system and what is the purpose of
building one that is directed to in-house construction and maintenance companies. Then,
the difference between multi-tenant and multi-instance when building SaaS in the cloud
and the practice of building a REST API that could be easily integrated with external
web service and third-party software and APIs. After that, the web security principles
and software containerization concepts were introduced. Next, the process of collecting
the system requirements, analyzing them, and design the solution supported by the
UML diagrams and the system architecture description. Then, the solution structure and
the technology stack were introduced followed by the system implementation of the
back-end as API and the front-end web application as a single-page application that
consumes that API. Furthermore, the implementation of authorization access on the user
and the API level was discussed. Finally, the deployment using Docker and Kubernetes

was explained briefly.

It can be concluded that the implemented has a well-designed architecture, and met the
expectation of the current customers and the sponsor. Moreover, the system could be

improved and optimized, and more features could be added.

REFERENCES

/1/ Business Dictionary. Quotation Definition. Accessed 14.1.2017.

http://www.businessdictionary.com/definition/quotation.html

/2] Wikipedia. Software as a Service. Accessed 14.1.2017.
https://en.wikipedia.org/wiki/Software _as_a_service

/4] Wikipedia. Multitenancy. Accessed 14.1.2017.
https://en.wikipedia.org/wiki/Multitenancy

/5/ Service Now. Why Cloud Architecture Matters: The Multi-Instance Advantage over
Multi-Tenant. Accessed 14.1.2017.

https://servicematters.servicenow.com/why-cloud-architecture-matters-the-multi-

instance-advantage-over-multi-tenant/

/6/ Cloud Tweaks. Cloud Architecture — The Multi-Tenant Versus Multi-Instance De-
bate. Accessed 14.1.2017.
http://cloudtweaks.com/2016/08/cloud-architecture-multi-tenant-versus-multi-instance-
debate/

/71 Slideshare. Cloud Computing. Accessed 14.1.2017
http://pt.slideshare.net/Agarwaljay/cloud-computing-simple-ppt-41561620

/8/ Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. 2000. University of California, Irvine. Chapter 5: Representational
State Transfer (REST). Accessed 21.1.2017

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest arch style.htm

/91 Wikipedia. Single Page Application. Accessed 21.1.2017
https://en.wikipedia.org/wiki/Single-page application

/10/ AngularJS by Google. Accessed 21.1.2017
https://angularjs.org/

/11/ Ember.js. Accessed 21.1.2017

http://emberjs.com/

http://www.businessdictionary.com/definition/quotation.html
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Multitenancy
https://servicematters.servicenow.com/why-cloud-architecture-matters-the-multi-instance-advantage-over-multi-tenant/
https://servicematters.servicenow.com/why-cloud-architecture-matters-the-multi-instance-advantage-over-multi-tenant/
http://cloudtweaks.com/2016/08/cloud-architecture-multi-tenant-versus-multi-instance-debate/
http://cloudtweaks.com/2016/08/cloud-architecture-multi-tenant-versus-multi-instance-debate/
http://pt.slideshare.net/Agarwaljay/cloud-computing-simple-ppt-41561620
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Single-page_application
https://angularjs.org/
http://emberjs.com/

112/ Meteor.js. Accessed 21.1.2017

https://www.meteor.com/

/13/ Mixu's single page app book. Modern web applications: an overview. Accessed
21.1.2017
http://singlepageappbook.com/goal.html

114/ Wikipedia. Information Security. Accessed 21.1.2017
https://en.wikipedia.org/wiki/Information security

/15/ SANS. Information Security Resources. Accessed 21.1.2017

https://www.sans.org/information-security/

/16/ Wikipedia. Defense in Depth. Accessed 21.1.2017
https://en.wikipedia.org/wiki/File:Defense In Depth - Onion Model.svg

117/ OWASP. Accessed 21.1.2017

https://www.owasp.org/index.php/Main Page

118/ OWASP. OWASP Top Ten. Accessed 21.1.2017
https://www.owasp.org/index.php/Category:OWASP Top Ten Project

/19/ Business Dictionary. Performance. Accessed 21.1.2017

http://www.businessdictionary.com/definition/performance.html

/20/ Webopedia. Containarization. Accessed 21.1.2017
http://www.webopedia.com/TERM/C/containerization.html

121/ Docker. Accessed 21.1.2017

https://www.docker.com/

122/ Docker. What is Docker? Accessed 21.1.2017
https://www.docker.com/what-docker

122/ Golv1. Accessed 22.1.2017
http://www.golv1.fi/

123/ James Lewis; Martin Fowler. Microservices. Accessed 25.1.2017

https://martinfowler.com/articles/microservices.html

https://www.meteor.com/
http://singlepageappbook.com/goal.html
https://en.wikipedia.org/wiki/Information_security
https://www.sans.org/information-security/
https://en.wikipedia.org/wiki/File:Defense_In_Depth_-_Onion_Model.svg
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.businessdictionary.com/definition/performance.html
http://www.webopedia.com/TERM/C/containerization.html
https://www.docker.com/
https://www.docker.com/what-docker
http://www.golv1.fi/
https://martinfowler.com/articles/microservices.html

124/ UML. What is UML? Accessed 4.2.2017

http://www.uml.org/what-is-uml.htm

125/ MongoDB. Accessed 5.2.2017

https://www.mongodb.com/

126/ Redis. Accessed 5.2.2017
https://redis.io/

127/ Neo4j. Accessed 5.2.2017
https://neo4j.com/

128/ Wikipedia. MySQL. Accessed 5.2.2017
https://en.wikipedia.org/wiki/MySQL

129/ Wikipedia. Model-View-Controller. Accessed 5.2.2017
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

/30/ Laravel. Accessed 5.2.2017

https://laravel.com/

/31/ Packagist. Accessed 8.2.2017
https://packaqgist.org/

132/ JIWT. Introduction to JSON Web Tokens. Accessed 12.2.2017
https://jwt.io/introduction/

133/ Wikipedia. Security Assertion Markup Language. Accessed 12.2.2017
https://en.wikipedia.org/wiki/Security Assertion Markup Language

134/ MSDN. Simple Web Token (SWT). Accessed 12.2.2017
https://msdn.microsoft.com/en-us/library/azure/hh781551.aspx

135/ GIT. Getting Started - Installing Git. Accessed 18.2.2017
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

/36/ Composer. Download Composer. Accessed 18.2.2017
https://getcomposer.org/download/

http://www.uml.org/what-is-uml.htm
https://www.mongodb.com/
https://redis.io/
https://neo4j.com/
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://laravel.com/
https://packagist.org/
https://jwt.io/introduction/
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
https://msdn.microsoft.com/en-us/library/azure/hh781551.aspx
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://getcomposer.org/download/

137/ Jeffry Way. Laravel-4 Generators. Accessed 18.2.2017
https://github.com/JeffreyWay/L aravel-4-Generators

138/ Francois Zaninotto. Faker. Accessed 18.2.2017
https://github.com/fzaninotto/Faker

/39/ Sean Tymon. JWT-Auth. Accessed 18.2.2017
https://github.com/tymondesigns/jwt-auth

/40/ Barry vd. Heuvel. Laravel-DOMPDF. Accessed 19.2.2017
https://github.com/barryvdh/laravel-dompdf/tree/0.4

141/ Intervention. Intervention Image. Accessed 19.2.2017

https://github.com/Intervention/image

/42/ Postman. Accessed 23.2.2017

https://www.getpostman.com/

143/ npm. Accessed 23.2.2017

https://www.npmjs.com/

144/ Gulp. Accessed 23.2.2017
http://qulpjs.com/

145/ AngularJS Team. ngRoute. AngularJS Documentations. Accessed 23.2.2017
https://docs.angularjs.org/api/ngRoute

146/ Angular Ul Team. Ul Bootstrap. Accessed 23.2.2017
https://anqular-ui.github.io/bootstrap/

147/ AngularJS Team. ngMessages. Accessed 23.2.2017

https://docs.anqularjs.org/api/ngMessages/directive/ngMessages

/48/ Sahat Yalkabov. Satellizer. Accessed 23.2.2017
https://github.com/sahat/satellizer

149/ G. Kay Lee. ngStorage. Accessed 23.2.2017
https://github.com/gsklee/ngStorage

https://github.com/JeffreyWay/Laravel-4-Generators
https://github.com/fzaninotto/Faker
https://github.com/tymondesigns/jwt-auth
https://github.com/barryvdh/laravel-dompdf/tree/0.4
https://github.com/Intervention/image
https://www.getpostman.com/
https://www.npmjs.com/
http://gulpjs.com/
https://docs.angularjs.org/api/ngRoute
https://angular-ui.github.io/bootstrap/
https://docs.angularjs.org/api/ngMessages/directive/ngMessages
https://github.com/sahat/satellizer
https://github.com/gsklee/ngStorage

/50/ Angular Translate Team. Angular Translate. Accessed 23.2.2017

https://github.com/angular-translate/anqular-translate

/51/ Angular Base64 Upload. Accessed 23.2.2017
https://github.com/adonespitogo/angular-base64-upload

/52/ Intro.js. Accessed 13.3.2017
http://introjs.com/

/53/ Chrome DevTools Overview. Accessed 15.3.2017

https://developer.chrome.com/devtools

/54/ YSlow. Accessed 15.3.2017
http://yslow.org/

/55/ Docker Hub. Accessed 26.3.2017
https://hub.docker.com

/56/ Kubernetes. Accessed 3.4.2017
https://kubernetes.io/

/57/ CoreOS’s etcd. Accessed 3.4.2017
https://github.com/coreos/etcd

/58/ CoreOS’s flannel. Accessed 3.4.2017
https://github.com/coreos/flannel

https://github.com/angular-translate/angular-translate
https://github.com/adonespitogo/angular-base64-upload
http://introjs.com/
https://developer.chrome.com/devtools
http://yslow.org/
https://hub.docker.com/
https://kubernetes.io/
https://github.com/coreos/etcd
https://github.com/coreos/flannel

