

Eemil Aikio

Developing a Virtual Appliance to Simulate Broken Networks

An Open-Source, Infrastructure-As-Code Virtual Appliance

Developing a Virtual Appliance to Simulate Broken Networks

An Open-Source, Infrastructure-As-Code Virtual Appliance

Eemil Aikio
Bachelor’s Thesis
Spring 2017
Tietojenkäsittely (Business Information
Technology)
Oulu University of Applied Sciences

3

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tietojenkäsittely, Järjestelmäasiantuntemus

Tekijä: Eemil Aikio
Opinnäytetyön nimi: Rikkinäisten verkkojen simulointi palvelinsovelluksella
Työn ohjaaja: Jukka Kaisto
Työn valmistumislukukausi- ja vuosi: kevät 2017 Sivumäärä: 37

Opinnäytetyön tavoite on kehittää sovellus, joka simuloi rikkinäistä verkkoyhteyttä. Aihe tuli toi-
meksiantajalta, HowNetWorks Oy:ltä. HowNetWorks on suomalainen startup-yritys, joka on kehit-
tämässä verkon testaustyökaluja ominaisuuksille mitä perinteiset testit eivät testaa.

Sovelluksen nimi on hnwProxy. Kyseessä on virtual appliance, eli käyttövalmis virtuaalipalvelin
jonka kuka tahansa saa vapaasti ladattua. Tämä löytyy GitHub:sta osoitteesta
github.com/hownetworks/hnwproxy. hnwProxy on kehitetty infrastruktuuri koodina -menetelmillä
avoimen lähdekoodin lisenssillä. Infrastruktuuri koodina on uusi ajattelutapa
palvelininfrastruktuurin hallinnassa, jossa pyritään käyttämään automaatiotyökaluja ja
ohjelmistokehityksestä tuttuja menetelmiä järjestelmän laadun parantamiseksi.

Teoriaosuudessa esitellään verkkojen laatutekijät sekä infrastruktuuri koodina. Tässä ensimmäi-
sessä luvussa pyritään selvittämään mitkä asiat vaikuttavat verkkoyhteyden laatuun, eli mitä
hnwProxy tulee simuloimaan. Infrastruktuuri koodina -luvussa on käytössä aihetta laajasti katta-
va, Kief Morrisin kirjoittama, Infrastructure as Code kirja lähteenä. Verkkojen Laatutekijät -luvussa
käytetään monta eri lähdettä, näistä kattavin on Kurose & Rossin Computer Networking: A Top-
Down Approach.

Lopputulos on palvelinjärjestelmä joka täyttää projektin alussa asetetut vaatimukset. hnwProxy
pystyy simuloimaan erilaisia rikkinäisiä verkkoja, ja sitä voidaan käyttää useammassa eri virtuali-
sointialustassa.

Asiasanat: Infrastruktuuri koodina, tietoverkot, virtualisointi

https://github.com/hownetworks/hnwproxy

4

ABSTRACT

Oulu University of Applied Sciences
Business Information Technology, Option in System Administration

Author(s): Eemil Aikio
Title of Bachelor´s thesis: Developing a Virtual Appliance to Simulate Broken Networks
Supervisor(s): Jukka Kaisto
Term and year of completion: Spring 2017 Number of pages: 37

The objective of this thesis is to develop a virtual appliance that will simulate broken networks. A
virtual appliance is a ready-to-use server that can be run on a virtualization platform. This thesis
was commissioned by HowNetWorks Oy. HowNetWorks is a startup based in Oulu and Helsinki,
Finland, developing tools to measure networks in ways that most tests do not. The objective of
this appliance is therefore to simulate the network properties that HowNetWorks is testing, to help
their development.

The appliance, called hnwProxy, is created using infrastructure-as-code methodologies. This can
be downloaded from GitHub at github.com/hownetworks/hnwproxy. Infrastructure-as-code is a
new paradigm in infrastructure management, using practices from software engineering along
with automation tools to create higher quality, more reliable and higher performing systems.

The theoretical background of this thesis consists of network quality and infrastructure as code.
Network quality describes what factors affect the quality of a connection, i.e. what we can simu-
late with hnwProxy. For infrastructure-as-code, the book Infrastructure as Code by Kief Morris is
used almost exclusively as reference. Network quality is more dispersed. There is no single book
about the topic, the most used reference is Kurose & Ross’s Computer Networking: A Top-Down
Approach. This covers computer networking quite exhaustively, but further references for more
niche or loosely related topics are still needed.

The result of this thesis is the virtual appliance, hnwProxy. This can simulate a broken network
connection is several different ways and can run on a few different virtualization platforms, so it
has met all requirements.

Keywords: Infrastructure as Code, Networks, Virtualization

https://github.com/hownetworks/hnwproxy

5

CONTENTS

1 INTRODUCTION ... 7

1.1 This Report ... 7

1.2 The Commissioner – HowNetWorks Oy ... 8

2 NETWORK QUALITY FACTORS .. 9

2.1 Traditional... 9

2.2 Esoteric .. 11

3 INFRASTRUCTURE AS CODE ... 16

3.1 Infrastructure Definition .. 16

3.2 Server Configuration .. 18

3.2.1 Change Management Models .. 18

3.2.2 Scripting ... 19

3.2.3 Ansible ... 20

3.3 Server Templates ... 21

3.3.1 Packer .. 22

3.3.2 Atlas ... 22

3.4 Software Engineering Practices ... 22

3.4.1 Version Control .. 22

3.4.2 Continuous Integration ... 23

3.4.3 Continuous Delivery ... 24

4 HNWPROXY DEVELOPMENT .. 25

4.1 Requirements ... 25

4.2 System Architecture ... 25

4.2.1 Server Templates ... 25

4.2.2 Connecting to hnwProxy .. 26

4.3 Software Engineering Practices ... 28

4.4 Proxy CLI.. 29

4.5 Proxy CLI Modules ... 29

4.5.1 DNS Block .. 30

4.5.2 Transparent Proxy ... 31

4.5.3 DNS Redirect ... 32

4.6 Maintenance ... 32

6

5 CONCLUSION ... 34

6 DISCUSSION .. 35

REFERENCES .. 36

7

1 INTRODUCTION

The topic of this thesis is developing a virtual appliance that can simulate a broken network con-

nection. A virtual appliance is a pre-configured, ready-to-use virtual machine that can be run on a

virtualization platform such as Hyper-V. The appliance is named hnwProxy, after the project’s

commissioner. hnwProxy is open-source, and built using infrastructure-as-code methodologies.

hnwProxy simulates a network connection by shaping the network traffic that passes through it,

either via VPN connection or SOCKS proxy.

The research questions of this thesis are:

 In what ways can a network be broken?

 How can this be simulated by a server?

 How can we create a virtual appliance using infrastructure-as-code (IAC) methodologies?

hnwProxy is needed because there are no similar tools available. There are numerous network

connection simulation programs available, but most of these only simulate a small number of

things that could be wrong with a network. One example of this is an application called Comcast.

Comcast is a free, open source network connection simulator, that emulates the bandwidth, la-

tency, and packet loss of various types of Internet connections (Comcast, cited 2016-10-25).

1.1 This Report

The theory section of this report describes network quality factors and infrastructure as code.

Network quality describes various factors that can affect the quality of a network connection.

These are the things that hnwProxy emulates. The second section describes infrastructure as

code. It explains what infrastructure-as-code is, how it is applicable to server systems and com-

mon principles and practices.

The practical part of this report describes the process of developing hnwProxy. Two important

sections include system architecture and software development methods. System architecture

describes the high-level architecture of hnwProxy, how it is in the final product and the reasoning

8

behind it. Software Development Methods will discuss how software development tools and

methodologies were used in the project.

1.2 The Commissioner – HowNetWorks Oy

HowNetWorks is a startup company located in Oulu and Helsinki, Finland. It is one of the first

companies being supported by Ääkköset (eng: Scandinavian ABC / ScanABC), a new startup

accelerator in Oulu. HowNetWorks is developing technologies to measure network connections in

ways that traditional tests do not, with the goal of launching a consumer-facing web app around

the beginning of 2017.

There are numerous network measurement tools available for both consumers and IT profes-

sionals, but these only measure a small number of properties that factor into the quality of a net-

work connection. A well-known example of this is speedtest.net. Speedtest.net measures your

connection’s bandwidth and latency. Despite getting a good score, your Internet connection could

still work poorly if your router’s DNS server is redirecting you to malicious sites. For some of

these more esoteric factors, there are individual tests available to IT professionals but no easy

way to test everything at once.

9

2 NETWORK QUALITY FACTORS

2.1 Traditional

The traditional methods of measuring a computer network are bandwidth, latency, and packet

loss (Kozierok 2006, 34). These are commonly measured, and simulated by network simulation

tools.

Bandwidth is the amount of data that can be transferred over a given time. It is typically ex-

pressed in bits (b) per second. A bit is a small amount of data, so SI prefixes are used. A typical

local area network (LAN) might have a maximum bandwidth of 1 gigabit per second (Gb/s)

whereas an internet connection might be 10% of that, 100 megabits per second (Mb/s). There are

many bandwidth measurement tools available, such as speedtest.net. Throughput is sometimes

used interchangeably with bandwidth, but these two are not the same. Throughput is an actual

measured value, and bandwidth is purely theoretical. (Kozierok 2006, 35.)

Latency is the timing between a cause and effect. In networking, this typically means the time

between sending some data and receiving a response (Kozierok 2006, 35). Many Internet con-

nection tests such as speedtest.net also test latency. The ping tool included with most operating

systems also tests latency, using ICMP echo request packets (Kozierok 2006, 1464).

Packet loss is the measurement of packets that do not make it from their sender to a recipient.

There can be many causes for packet loss, two common ones are network congestion and fire-

walls. Network congestion is when a router or switch receives more data than it can send out over

a short period. This period is determined by the device’s packet buffer, a piece of memory where

it stores packets upon receiving them, before sending them out. While this memory is full, the

device cannot store any more packets and must drop them. (Kurose & Ross, 2013, 41.)

Packet loss can also be caused intentionally, by a network’s firewall. Firewalls can be configured

to whitelist or blacklist ports, protocols, or other properties depending on how advanced they are.

On virtually every network, a firewall is used to ensure some amount of separation between the

internal network and Internet. In a simple network, you have one firewall that all traffic passes

through. Usually this is configured to only allow traffic in that was initiated by a host in local net-

10

work. (Kurose & Ross 2013, 731-739.) Due to the mostly binary nature of firewalls (block or al-

low), if a firewall is causing packet loss, the loss will likely be all or nothing; either blocking all

packets with a certain property or letting them through.

Figure 1. Inline IPS, placed behind a firewall. (Gibson 2016, 280.)

Related to firewalls, Intrusion Prevention Systems (IPS) can also be the cause of intentional

packet loss. IPSs are used to detect and stop network based threats, using either signature or

anomaly-based detection. Signature-based detection uses known characteristics of different

attacks to detect them. An example of this would be a SYN flood attack, in which many SYN

packets are sent to a host. Anomaly-based detection works by comparing traffic characteristics to

a known baseline. For example, if a host is receiving a larger than normal amount of ICMP

packets then it might be under attack. IPSs often use both methods of detecting attacks, since

they both have unique weaknesses and strengths. IPSs are not meant to replace firewalls, but to

provide additional protection. They are normally placed inline with network traffic, behind a

firewall (as in figure 1). This is done because the analysis methods used by IPSs are

computationally more expensive than the rules used by firewalls, which can already block a good

amount of simple attacks. (Gibson 2016, 275–283.)

11

2.2 Esoteric

This chapter describes more esoteric factors that affect the quality of a network connection. This

might be a property that can be measured, or something binary such as the existence of a tech-

nology. These usually aren’t measured by network testing tools, nor are they simulated by net-

work simulation tools.

Packet loss was already mentioned in the previous chapter, but it is being featured in this one as

well. Typically, packet loss is indicated as a percentage of packets that do not make it to their

recipient. If congestion is the cause of packet loss, it can be useful to determine the relation of

throughput to packet loss. If the loss percentage does not change with throughput, the packet

loss might be described as static. The opposite of this being dynamic packet loss where you lose

more packets with increased throughput. This distinction is useful to make, because from it you

can infer where in the network there is congestion. If network congestion is occurring in the

backbone, packet loss is more likely to be static. This is because a single host makes up a small

percentage of total traffic, so they cannot affect how much the network is overloaded by any no-

ticeable amount (in the short term). Alternatively, if the network congestion takes place closer to

the host, packet loss is likely to be more dynamic. In this case, a single host makes up a larger

portion of all network traffic, so they can cause network to become more or less congested.

Domain Name System (DNS) is a fundamental part of the Internet, and other computer net-

works. DNS is the protocol used to lookup IP addresses and other information from hostnames

(e.g. example.com) and vice versa. DNS servers store DNS records and respond to queries for

these records made by clients and other DNS servers. For your Internet connection to work

properly, it is necessary to have both working and accurate name resolution available. Because

of the importance of DNS to the Internet, it can be used for censorship or to manipulate access to

web sites.

Most computers on a residential Internet connection use DNS servers provided by the connec-

tions internet service provider (ISP). In many countries, the government requires ISP’s to block

access to certain web sites, often via DNS (Savola 2013, 88). On corporate networks, computers

will use the company’s DNS infrastructure which can also be used for blocking sites.

12

A much worse consequence of inaccurate name resolution is the ability for a bad actor to hijack

your traffic. Because computers use DNS names for virtually every connection they make, an

attacker with the ability to modify DNS packets can do a lot of damage. This requires that the

attacker either runs their own malicious DNS server and somehow gets their target to use it, or

intercepts and modifies DNS packets in-transit. There have been cases where ISP’s have modi-

fied DNS queries to insert advertisement’s in to web pages. (Singel, cited 2016-10-26.) Home

routers are a very attractive target for hackers because they typically have weak security. A secu-

rity researcher in the US estimates that 25–30% of households use a router with known vulnera-

bilities (Dunn, cited 2016-10-26). This is one way a hacker could get someone to use their mali-

cious DNS server.

Because of the cleartext and unauthenticated nature of DNS, it is not difficult to hijack in-transit.

Figure 2 shows a single IPTables rule that redirects DNS queries to the server at 4.2.2.1 (Level3

public DNS). This uses destination NAT in a slightly unorthodox way to rewrite the destination

address of packets likely containing DNS queries.

Figure 2. Firewall rule to redirect DNS queries.

Network Address Translation (NAT) is a common feature of IPv4 networks and can sometimes

cause problems. NAT is configured on a network’s router, and it translates the IP addresses of

packets that the router forwards between networks. The most common usage of NAT is to enable

computers to share a single IPv4 address. NAT was originally created for this purpose, to con-

serve IPv4 addresses. (Kurose & Ross, 2013. 349.)

Figure 3 shows an example of many-to-one NAT, sometimes called port address translation

(PAT). This maps any number of internal addresses to a single external address. When a com-

puter sends a packet to the Internet, its source address is the local address of the sending com-

puter (1). This is replaced with the router’s public IP address (2) when it is forwarded by the rout-

er. When the router receives a reply (3), it then replaces the destination address in the packet

with the local IP of the original sending computer (4). The router knows what IP addresses to

change because it keeps track of sessions in its NAT translation table. Sessions are distinguished

from each other using port numbers (see the table in figure 3).

13

FIGURE 3. NAT example (Kurose & Ross, 2013, 350.)

Static and Dynamic NAT are less commonly used forms of NAT. Both create a one-to-one map-

ping between external and internal addresses. Most of the time when someone refers to NAT,

they mean many-to-one NAT as described in the previous paragraph.

The problem that NAT creates is that it breaks “end-to-end” connectivity. This is the principle that

hosts should be able to communicate with each other directly, without anything in between modi-

fying their packets. In a many-to-one NAT, hosts can only initiate connections from within the

network, they cannot receive connections. This might seem like a nice security feature, but it is

not. You can accomplish the same thing with a modern firewall, with the bonus of being able to

whitelist specific port numbers or IP addresses which can receive connections. Another problem

that NAT creates is that it breaks some protocols which rely on IP headers, such as IPSEC. (Sri-

suresh & Holdrege 1999, 2.)

There are many workarounds for problems created by NAT, but the simplest is to stop using it

altogether. On an IPv4 network, this can be difficult due to the scarcity of addresses. With IPv6,

this is a nonissue. Port forwarding and Universal Plug and Play (UPnP) are workarounds that

enable many-to-one NATed devices to receive connections from outside the network. Both ac-

complish this by creating a mapping on the router which maps a single external port number to an

internal host. Any packets sent to that port are translated to the specific host, without the host

having to initiate a session. (Kurose & Ross, 2013. 352.)

14

A Proxy is a server acting as an intermediary for requests made by clients. Most of the time prox-

ies are used to handle web requests made by clients on a network. There are many reasons

someone might want to use a proxy server:

 Caching

 Web filtering

 Malware scanning

 Statistics gathering

 For some nefarious reasons

Proxies are usually configured on network hosts, either manually or automatically. Web Proxy

Auto Discovery Protocol (WPAD) is a mechanism that allows hosts to discover a proxy server

using DHCP or DNS (Cisco, accessed 2016-12-03).

Proxies can also be used transparently (transparent proxy). In this situation, the networks hosts

are unaware of the proxy, and do not have to configure any settings. Instead, web traffic is redi-

rected by a router to the proxy server. (Kozierok 2006, 1386.)

HTTP traffic is trivial to proxy, because it is cleartext. HTTPS is harder, because it is secured

using SSL/TLS. Due to this, the proxy server must establish 2 connections for each outbound

HTTPS session: one between the proxy and remote server, and one between the proxy and the

client. In this case, the proxy server emulates a client to the remote server and emulates the re-

mote server to the local client. This is difficult to do in practice, because it requires the proxy to be

able to generate valid certificates for the remote server’s hostname. This is not possible unless

the client trusts a certificate authority run by the proxying organization. An alternative is to down-

grade the client-to-proxy connection to HTTP, while keeping the proxy-to-server connection

HTTPS. HTTP downgrading is mostly performed for malicious reasons, if an attacker cannot

generate their own trusted certificates. (Marlinspike, M. Accessed 2016-12-03.) Luckily there is a

defense for this: HTTP Strict Transport Security (HSTS).

HSTS is a mechanism that allows browsers to keep a list of sites that they should never visit over

HTTP. This list is populated either by a web server using the “Strict-Transport-Security” HTTP

header field, or can be baked-in to a browser. (Hodges, J., Jackson, C. & Barth, A. 2012. Ac-

cessed 2016-12-03.)

15

The existence of transparent proxy on a network can be a cause for concern. It can mean that

your traffic (web or other) is being read or modified. It could also be used just for caching. A hy-

per-sensitive malware-scanning proxy could cause problems despite the network operator having

good intentions.

16

3 INFRASTRUCTURE AS CODE

Infrastructure is a general term for the hardware/software layer below software applications. This

can include networking, storage, compute resources, operating systems, and anything in be-

tween. Many organizations use infrastructure automation tools and scripting languages to make

the upkeep of this infrastructure more efficient. Infrastructure as code (IAC) is a new approach to

infrastructure automation, using practices from software development. The goal of IAC is to im-

prove the quality and efficiency of infrastructure management even more than traditional automa-

tion can allow. (Morris 2016, 3.)

Infrastructure as code (IAC) is often used when managing cloud environments because of the

huge number of infrastructure components involved. In an IAC environment, your infrastructure is

defined using definition files and scripts. These definition files are run through different infrastruc-

ture automation tools to produce a resulting server infrastructure. Definition files differ from

scripts, in that they are not procedural (e.g. do x, y, then z). Definition files are declarative, mean-

ing that they declare how something should be, and infrastructure automation tools then use their

own logic to make this happen. Definition files are typically written using a data serialization lan-

guage such as YAML or JSON, but scripting languages can also be used. This depends entirely

on the tool being used. (Morris 2016, 50.)

3.1 Infrastructure Definition

Infrastructure definition tools are the “meat” of infrastructure as code. They are used to define,

implement, and change infrastructure running on an infrastructure platform. Two examples of this

are AWS CloudFormation and Hashicorp Terraform. CloudFormation is used to manage re-

sources in Amazon AWS. Terraform is similar, except that it works with more than one platform.

Figure 4 shows a snippet from a terraform configuration file. This defines a single virtual server

running in EC2 as a web server. Lines 1-3 define the properties of the server, and the section

after “provisioner” defines what server configuration tool should be used to finish the server’s

configuration.

17

FIGURE 4. Terraform configuration file. (Morris 2016, 55).

Vagrant is another infrastructure definition tool. Vagrant differs from other tools in that it is not

meant for production use, but for creating local virtual server environments. This is useful for

developers and other people who can use it to quickly spin up a sandboxed server environment

where they can test out their code. Vagrant environments are defined in a Vagrantfile, a

declarative configuration file that uses the Ruby scripting language. (Hashimoto 2013, 1.)

FIGURE 5. A Vagrantfile

Vagrant uses the term “provider” to describe platforms where virtual servers can run. It supports

multiple providers such as VirtualBox, Hyper-V and even some cloud services such as

18

DigitalOcean and Amazon EC2. All providers require some type of operating system image to

create a virtual machine from, and with local providers such as Hyper-V, this is referred to as a

“box”. A box is simply a file archive which contains a virtual machine image and some metadata.

In a Vagrantfile, you can specify either a box from HashiCorp’s public box repository or a custom

box using its download link. (Hashimoto 2013, 76.)

Once a server has been created using a provider, it is configured using a “provisioner”. A provi-

sioner is a component in Vagrant that modifies the guest server in some way. The file provisioner

can copy a file, whereas a shell script provisioner will run a shell script. Figure 5 (previous page)

shows a shell provisioner which runs the script “provision.sh” from the scripts directory.

3.2 Server Configuration

Server configuration tools are used to configure servers once they have been created in an infra-

structure platform. They can also be used when creating server templates as will be described in

later chapters. Server configuration tools are also popular outside of infrastructure-as-code envi-

ronments where they are used for managing server configurations.

3.2.1 Change Management Models

Before looking at server configuration tools, it is important to understand change management

models. These models determine how changes are applied to servers, either upon creation or to

existing servers.

Ad Hoc change management is the traditional methods of applying changes to servers. Simply

put, you apply changes as they are thought to be necessary, either manually or with some form of

automation. This is the least automated, most fragile change management option. Ad-hoc change

management creates several problems that IAC aims to solve:

 Documentation: everything needs to be manually documented. Even worse, documenta-

tion can differ from reality if not kept up-to-date.

 Disaster recovery is difficult.

19

 Server Reproducibility is poor.

(Morris 2016, 69)

Configuration Synchronization is the process of repeatedly applying configuration definitions to

servers. This is done using configuration management tools such as Ansible, Chef, or Puppet.

This is the most common approach to infrastructure as code, and is often used in other types of

environments. The main weakness of configuration synchronization is that any setting which is

not defined is left unmanaged. These settings are prone to configuration drift, require additional

documentation effort and make the server less reproducible. (Morris 2016, 69.)

Immutable infrastructure is the idea that servers are not changed at all, and any changes are

done by replacing the server with a new one. Changes are made to a server template, which is

used to build a new server. This makes servers in production very predictable, and easily re-

placeable. One difficulty with immutable infrastructure is handling persistent data. (Morris 2016,

70.)

Containerized services are a hybrid of the previous change management methods. Applications

and services are packaged in containers which are treated as immutable. Changes are made by

creating a new version of the container and then deploying that to production. Containers are a

new way of running applications on servers. The premise is that you package your application

and its dependencies into a single container image which can then be run on a containerization

platform. This means that your application is decoupled from the software and hardware it is run-

ning on, and will work on anything capable of running a containerization platform. An example of

this is Docker. With containerized services, the host server still needs to be managed with some

change management method but changes are much simpler and fewer. (Morris 2016, 70.)

3.2.2 Scripting

Scripting was, and still is, a popular way of automating tasks. Despite the increasing popularity of

automation tools, there are still some tasks that can and should be automated using scripting

languages. Automation tools cannot do everything, and scripting is often used to fill these gaps.

20

To work reliably in an infrastructure-as-code environment, scripts should be able to run unattend-

ed, without human interaction. This presents a few requirements:

 Idempotence: The script can be run multiple times with no ill effect.

 Pre-checks: The script checks that its starting conditions are appropriate.

 Post-checks: The scripts checks that it has executed successfully.

 Visible failure: Any failures are easily visible.

These requirements increase the complexity of scripts. This may be one of reasons automation

tools and declarative configurations are becoming more popular. (Morris 2016, 44.)

3.2.3 Ansible

Ansible is one of many configuration management tools available. It uses YAML (a data serializa-

tion language) for its configuration declaration. Ansible uses an agentless architecture, where the

servers it manages do not have to have agent software installed. Ansible connects via SSH and

does all its configuration using Python scripts. (Hochstein 2015, 1.)

A simple Ansible setup uses 2 configuration files: a playbook and an inventory. A playbook de-

fines what actions will be applied to what servers. For example, on web servers you might require

apache to be installed and running. An inventory defines what servers Ansible will manage. This

can include servers by IP address or hostname, and can classify servers into groups. The play-

book in figure 6 affects servers in the webservers group. (Hochstein 2015, 21.)

Once your playbook and inventory are ready, you run them on some machine that has Ansible

installed. Ansible will then parse the playbook, and generate some python scripts. It will then con-

nect via SSH to the appropriate servers, copy the python scripts and run them (Hochstein 2015,

4).

21

FIGURE 6. Ansible playbook for a web server (Hochstein 2015, 31)

3.3 Server Templates

Server templates are a way of creating new servers in an infrastructure-as-code environment.

Simply put, a server template is an image of a server operating system that can be copied to

create a new server. Templates are used because they make deploying servers easier and fast-

er, because you do not need to re-install the operating system and make the same configuration

changes every time. Typically, the process to create a server template goes like this:

Install Server Apply Customizations Capture Image

Depending on the environment in question, you might need to use a highly customized or a mini-

mally customized server template (or somewhere in between these two). A minimal template has

a minimal amount of software and configurations installed, so it can be used to create many dif-

ferent types of servers. It takes up little disk space and is flexible, but almost always requires

additional configuration after deployment. In this situation, you would apply additional configura-

tions to the server using a server configuration tool as described in the previous chapter. The

opposite of this is a highly-customized server template. With a highly-customized template, the

template contains all the software and configurations to perform a specific task. This requires very

22

little configuration after deployment, so deployment is very fast. The downside to this method is

the template’s lack of flexibility. (Morris 2016, 117.)

3.3.1 Packer

Packer is a tool created by HashiCorp. It is used for creating server templates for different types

of platforms such as VMWare, Amazon EC2, and Docker. Packer works by creating a server in

the platform in question, customizing it and then capturing an image. Much like Vagrant, Packer

also supports the concept of provisioners. In each Packer configuration file, you can specify a

provisioner (or multiple) that will be used to configure the server before it is captured to create a

template. (HashiCorp 2016, cited 2016-11-06.)

3.3.2 Atlas

Atlas is a service run by HashiCorp. Among other things, it can be used to catalog Vagrant boxes

and build them using Packer. One popular use of Atlas is storing Vagrant boxes in its public box

repository. This lets anyone use the box in their Vagrantfile just by entering the name of the box,

such as ubuntu/trusty64 (in this case ubuntu is the user who uploaded the box and trusty64 is the

box name).

3.4 Software Engineering Practices

A big part of infrastructure as code is applying practices from software engineering to your envi-

ronment. This was not possible before but is now with the introduction of declarative configuration

and various automation tools.

3.4.1 Version Control

Version control systems are used to store and manage changes done to files. These are usually

plaintext files, as used with code and configuration files. Some benefits of version control are:

23

 Traceability: VCS’s provide detailed history of changes made.

 Rollback: You can easily roll your infrastructure back to a previous version.

 Actionability: The VCS can trigger an action when changes are committed, such as

running an automated test suite.

(Morris 2013, 15-16.)

As of 2016, Git is the most popular version control system (Version Control System Popularity in

2016, accessed 2017-01-02). Git was created in 2005 for the development of the Linux kernel, by

Linux Torvalds and other kernel developers. At the time, there were no free VCS’s that could

handle large, distributed, and highly parallelized (=branched) software projects. (A Short History

of Git, accessed 2017-01-02.)

3.4.2 Continuous Integration

Continuous Integration (CI) is the process of frequently integrating and testing changes to a sys-

tem. CI has traditionally been used in software development, for testing software builds. A devel-

oper would hook some CI system to their version control system, and it would automatically run

tests every time a change was made. If any tests failed, the developer would be aware immedi-

ately so they could fix the problem. This ensures a very fast feedback loop and stops problems

from growing out of control.

Figure 7. Testing pyramid (Morris 2013, 198.)

With the introduction of infrastructure automation, it is now possible to use CI for infrastructure.

Scripts and configuration files can be put in a VCS, and automatically tested using various tools.

24

Low-level tests are used for testing individual files or small subsections of a system. When testing

individual files, they are typically analyzed using a linter; a program that checks the file for syntax

correctness, stylistic issues, or bad habits such as inefficient code. This is also called static

analysis because it does not run the code/configuration. Unit testing is also low-level, but it works

slightly differently. Unit testing attempts to run the code/configuration and checks that it works

properly.

There is also mid- and high-level testing. High-level testing aims to test a system as a whole, for

example, by deploying it to a test environment. Mid-level testing aims to test a section of a sys-

tem, such as an individual server. A well-balanced test suite uses all these methods, since they

have unique strengths and weaknesses. Low-level tests are quick, easy, and inexpensive to run.

Their weakness is that low-level tests usually catch only simple errors. High-level tests are much

more expensive, and slower to run, but they can catch more complex problems and verify that the

system works. (Morris 2013, 195-210.)

3.4.3 Continuous Delivery

Continuous Delivery (CD) is the next step up from continuous integration. The goal of continuous

delivery is to verify that every change is ready to go out to production, by using high-level tests

(as described above). This might be done using a test environment, where changes are applied

first. Once the changes are applied and tests are passed, the changes can be accepted into pro-

duction. An extension of this is called Continuous Deployment. With continuous deployment,

changes are rolled into production with no human interaction if all tests are successful. (Morris

2013, 187.)

25

4 HNWPROXY DEVELOPMENT

4.1 Requirements

In an early meeting with HowNetWorks, we discussed various technologies that could be used for

realizing hnwProxy. Based on this discussion, some requirements surfaced:

- 100% Codified: the system exists as a series of plaintext files, stored in a version control

system. Anyone can download these and easily spin up their own instance of hnwProxy

- Support VirtualBox as a local hypervisor. The main users of hnwProxy use Macs. Be-

cause of this, VirtualBox is a good choice since it is cross-platform compatible.

- Open Source: there is no reason for the alternative.

4.2 System Architecture

The infrastructure platform used by hnwProxy is Vagrant. As described in earlier chapters, this is

a tool used to create virtualized server environments. Using Vagrant, hnwProxy can be brought

up either on a local hypervisor of cloud platform with a few simple commands. Properties of the

server are configured in Vagrant’s Vagrantfile, along with provisioners to configure the server

after it is booted. For each supported provider (VirtualBox, Hyper-V and cloud platforms) certain

provider-specific settings are also configured.

Ubuntu 14.04 was chosen as the base OS for hnwProxy due to its widespread use and server

template availability.

4.2.1 Server Templates

hnwProxy does not use a custom server template. Instead, it uses a freely available template for

whichever hypervisor platform it is created on. This is done for two reasons:

1. Simplicity. Using a custom server template will increase the complexity of hnwProxy as

well as its deployment time. The benefits of a custom server template do not justify the

added complexity.

26

2. Compatibility. By creating hnwProxy in a way that it is compatible with most Ubuntu

14.04 pre-made templates, it can be more easily deployed to new virtualization platforms.

4.2.2 Connecting to hnwProxy

Management of hnwProxy is done using SSH. Vagrant automatically manages SSH keys and

settings for its machines, so it is not necessary to configure anything manually. By typing “vagrant

ssh” when in hnwProxy’s directory, vagrant will connect using a key it created during provisioning.

In addition to managing hnwProxy, you also need some way of routing your traffic through it.

Figure 8. Connecting to hnwProxy, Logical View

There are two ways of connecting to hnwProxy: VPN or SOCKS proxy. Both methods work re-

gardless of whether hnwProxy is running on your local machine or in the cloud, since they con-

nect by IP address. VPN is the simplest: there is a VPN server running on hnwProxy, and you

can connect to it using any compatible VPN client. In this situation, all your network traffic is rout-

ed through hnwProxy, unless otherwise configured by the VPN client. The PPTP VPN protocol

was chosen because of its simple client-side configuration and good compatibility with Windows

and MAC OS built-in VPN software. PPTP is not secure, but in this application the benefits of an

easy-to-use VPN protocol outweigh the risks of an insecure one.

The second way of connecting to hnwProxy is via SOCKS5 proxy. SOCKS is a proxying protocol

that works at a lower level than HTTP proxies. It allows for proxying arbitrary TCP/UDP connec-

27

tions, though in this case it is used only for HTTP(S). (Leech, Ganis, Lee, Kuris, Koblas & Jones

1996, 2) Most browsers support SOCKS proxies, including Firefox and Chrome. One benefit of

SOCKS over HTTP proxies is that it can also proxy DNS queries. It also does not require a

SOCKS server to be running, because many SSH clients (including the one Vagrant uses) sup-

port dynamically creating SOCKS proxies through their SSH tunnels. Typically, this is done with

the “-D” flag. This is the method used by hnwProxy, you can create a SOCKS5 proxy by connect-

ing with the vagrant command “vagrant ssh -- -D 6000” and then configuring your browser or

operating system to use localhost:6000 as a SOCKS server.

Figure 9. Configuring SOCKS settings in Firefox

28

4.3 Software Engineering Practices

hnwProxy is an open-source project, hosted on GitHub. It is located at

github.com/hownetworks/hnwProxy. hnwProxy uses the MIT License, a permissive free software

license. This was chosen for its simplicity and good compatibility with other free software licens-

es.

A version control system (Git) was used during the development of hnwProxy. Git was chosen

because it is currently the de-facto VCS, and is what GitHub supports. This is relevant because

HowNetWorks’ and ScanABC use GitHub for their own version control repositories.

Continuous integration with CircleCI was used in the development of hnwProxy. Because this is

not a traditional software project, normal CI tests could not be used. The way CircleCI “builds”

hnwProxy is by deploying, an instance of it to DigitalOcean. If all commands used return an exit

code of 0 (no error) then the project is presumed to be working and the build passes. A badge on

hnwProxy’s readme page shows the state of the last build. This is a high-level test, as it tests how

well the different parts of hnwProxy work (Vagrantfile, provision scripts, setup scripts).

Figure 10. hnwProxy Builds in CircleCI

In addition to a deployment test, hnwProxy’s shell scripts are also linted using ShellCheck and

yamllint. These are low-level tests as described in section 3.4.2. Because both tools will return an

error code from even a small, possibly inconsequential error, their output is ignored for the

https://github.com/hownetworks/hnwProxy

29

purpose of passing/failing the CircleCI build. This output is still valuable, and visible in full detail

from CircleCI’s build page.

 Figure 11. ShellCheck output

4.4 Proxy CLI

Proxy CLI is a tool used to run and discover modules i.e. collections of scripts from the command

line. This is what enables the user to modify hnwProxy to simulate a broken network. Proxy CLI

works by running modules located in the proxy_modules folder. For example, running “proxy

module1 start” will run “proxy_modules/module1/module1”, with the start parameter. Figure 12.

shows the main files used by Proxy CLI. The description file in each module’s directory is used by

proxy CLI when listing available modules. The setup file is run once every time hnwProxy is pro-

visioned, to install any dependencies or make changes needed by the module.

Figure 12. Proxy CLI Files

4.5 Proxy CLI Modules

Proxy CLIs modules can be any type of executable, but in this case, they’re all bash scripts. For

each module, its main executable needs to be located at

proxy_modules/module_name/module_name. This is then run by Proxy CLI when the module’s

30

name is passed as a parameter. Figure 13. shows the port-blocking module being used. This

blocks outgoing packets by their destination port number.

Figure 13. Using Proxy CLI’s port-blocking module

Because the purpose of hnwProxy is to simulate a broken network, most of its modules work via

IPTables, a software firewall commonly used by Linux distributions. IPTables was chosen be-

cause if its widespread use and documentation availability. Some Linux distributions use an IP-

Tables frontend such as UFW or FirewallD, but these would not have been appropriate as they

hide features with the intention of making IPTables easier to use.

4.5.1 DNS Block

The dns-block module blocks queries for specific types of DNS records. For example, A, AAAA or

NS records. This works using the IPTables “string” module which matches a sequence of bits in a

packet, commonly entered as a string. In this case, we need to match the Type field of a packet,

which is 2 bytes and specifies what type of record is being queried. Because the string module

searches the whole packet for the sequence of bits, and the type field is only 2 bytes long, using

this alone would result in a noticeable number of false positives. One way of reducing false posi-

tive is to increase the amount of data that needs to be matched. Luckily, right after the Type field

is the Class field, which is almost always the same value of IN, aka. 0x0001 (00000000 00000001

in figure 14). With this we can double the amount of data that needs to be matched, now 4 bytes.

Finally, with IPTables protocol and port filtering we can apply the fil9ter only to DNS queries

which can be identified by the UDP protocol and destination port 53.

31

There are several ways this module could have been made, but IPTables-only was chosen be-

cause it was simple and did not require any additional software to be installed. Another method

would have been to use IPTables’ NFQUEUE feature which allows for delegating the decision of

passing/dropping a packet to userspace software. A python script could have used the Netfil-

terQueue library (Kerkhoff Technologies, Inc. 2016, accessed 2017-01-10) to interact with

NFQUEUE, and scapy for analyzing received packets.

Figure 14. DNS A record query captured with Wireshark

4.5.2 Transparent Proxy

The transparent proxy module transparently proxies http and https traffic. There are two parts to

this module: the IPTables rules that redirects network traffic and the transparent proxy server,

mitmproxy. The IPTables rule use the REDIRECT target which redirects packets to a specified

port on the local machine. This is done by changing the packet’s destination IP. Mitmproxy was

chosen as the proxy server because it is open source, has a good amount of documentation

available, and supports proxying TLS/SSL connections.

32

4.5.3 DNS Redirect

The dns-redirect module redirects DNS packets to a user specified server. This can be useful for

simulating a user that is using a malicious DNS server, either because of a hacked device or

because their packets are being modified in-transit. This module uses IPTables’ destination NAT

feature in a slightly unorthodox way to redirect DNS packets (distinguished with the TCP/UDP

destination port 53). Normally destination NAT changes the destination address of a packet, for

example to direct it to an internal server with a private IP address. This same process is used,

except in reverse: the NAT is applied to packets going out from the server instead of coming in.

This allows for us to redirect packets to an arbitrary IP address.

4.6 Maintenance

As a software project, development of hnwProxy is never over. Even after major development has

stopped, it is necessary to maintain the project as its dependencies and other related software

continues to change.

The OS used by hnwProxy is Ubuntu 14.04. Being an LTS release, it will be supported until 2019.

Some of the hnwProxy’s base configuration is done with Ansible. This uses declarative configura-

tion, so it should be less fragile than a script that does the same thing. The way hnwProxy was

developed, it should be compatible with various Linux distributions with a little tweaking. Most

Proxy CLI modules work using IPTables, which is configured using Ansible. IPTables is common

to many Linux distributions. The greatest maintainability weakness appears to be hnwProxy’s

use of the apt package manager. This is used to install software during provisioning and by some

modules in their setup scripts. Not all Linux distributions use Apt, and software available — its

version, or even existence — varies with each distribution.

Using CircleCI, hnwProxy is provisioned to DigitalOcean once for each commit. This should be a

good indicator that it still works, as a single provisioning step (such as running a script) failing will

cause the test to fail. This does present one concern from the maintainability standpoint: what

DigitalOcean account and API key will CircleCI use? Currently it uses the account and API key of

this thesis’s author along with DigitalOcean credits received as a benefit of being a student. A

33

single deployment costs almost nothing (0,01 EUR), but this is still something that must be ad-

dressed once the thesis is officially ended.

34

5 CONCLUSION

The purpose of this thesis was to develop a virtual appliance that would simulate a broken net-

work connection. There are several similar projects in existence, but most only simulate the

bandwidth, latency, and packet loss of networks. hnwProxy simulates less commonly thought of

properties such as packet filtering and transparent proxying. These are not new concepts, but

their implementation in a network simulating appliance probably is. This along with this report’s

network quality factors section are the two unique products of this thesis. When completing this

thesis, there was no single source that could answer the question: “what makes a network con-

nection good/bad?”. Rather, it was necessary to compile information from multiple sources to gain

a thorough understanding of the topic.

Infrastructure as code is an exciting and fundamentally different way of managing infrastructure,

compared to traditional methods. This had many benefits in developing a virtual appliance, one

being the fact that the appliance exists solely as a collection of plaintext files. These are in a pub-

lic version control system that anyone can use and even contribute to. There is no need to build

or host disk images, or for the user to download them, aside from a commonly used server tem-

plate. The barrier of entry to make changes is low, and changes can be systematically managed

using version control principles.

The result of this thesis was a virtual appliance that met its original requirements, and was ap-

proved by the project’s commissioner. hnwProxy can be deployed to several virtualization plat-

forms (VirtualBox, Hyper-V, and DigitalOcean), and can simulate a broken network in many ways

that comparable software solutions do not. Some of these are things measured by HowNetWorks,

such as which DNS server someone is using or which TCP/UDP ports are open. Because of

hnwProxy’s Proxy CLI module system, new features can be added with minimal overhead.

35

6 DISCUSSION

In many ways, this project is successful. It has met its original requirements and been approved

by the commissioner (HowNetWorks). This being said, there are things that could have been

improved.

This project was originally started in October 2016 with the intention of finishing in approximately

3 months. This is quite a tight schedule, but I thought it would work. My school schedule was

almost empty until January 2017 so a lack of time was not a problem. This chapter was written as

the last part of this thesis on January 29th, 2017.

Originally, I met with the HowNetWorks team weekly to discuss the project and get feedback. As

the project progressed, these meetings became fewer and fewer. Around December 2016 pro-

gress slowed down noticeably and remained that way for the rest of this project. Maybe if I had

been proactive and kept these weekly meetings going, that would have prevented this stagnation.

Another failure was starting the practical part of this thesis right in the beginning, alongside the

theoretical part. I should have waited for at least 2–3 weeks to research infrastructure-as-code

and networking in more detail. A lot of big decisions, such as what infrastructure platform to use

and the overall topology of hnwProxy were made right in the beginning and not changed at all

during development. If I had waited, I would have been better prepared to make these decisions.

This being said, these decisions were discussed with HowNetWorks and seem to have worked

out alright.

There are a few reasons why this thesis topic was chosen. The topic itself was not particularly

interesting to me. More than that, I was interested in researching something new (infrastructure

as code) and applying it to a project. I also wanted to network, to make new professional ac-

quaintances. I could have gotten a topic from my current job in the IT field, and even been paid

for my work, but chose not to for the reasons above.

36

REFERENCES

1.2 Getting Started – A Short History of Git. 2014. Accessed 2017-01-02, https://git-

scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git

Dunn, J. 2015. Home router security 2015. Accessed 2016-10-26,

http://www.techworld.com/tutorial/security/home-router-security-2015-9-settings-that-will-keep-

bad-guys-out-3609122/

Gibson, D. 2016. SSCP Systems Security Certified Practitioner All-in-One Exam Guide, Second

Edition. USA: McGraw-Hill Education

Hashimoto, M. 2013. Vagrant: Up and Running. USA: O’Reilly Media Inc.

Hochstein, L. 2015. Ansible: Up and Running. USA: O’Reilly Media Inc.

Hodges, J., Jackson, C. & Barth, A. 2012. HTTP Strict Transport Security (HSTS). Accessed

2016-12-03. https://tools.ietf.org/html/rfc6797

Kerkhoff Technologies, Inc. 2016. Accessed 2017-01-10, https://github.com/kti/python-

netfilterqueue

Kozierok, C. 2005. The TCP/IP Guide. USA: No Starch Press

Kurose, J. & Ross, K. 2013. Computer Networking: A Top-Down Approach (6th edition). USA:

Pearson

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D. & Jones, L. 1996. SOCKS Protocol Version 5.

Accessed 2016-12-20. https://tools.ietf.org/html/rfc1928

Marlinspike, M. 2009. New Tricks For Defeating SSL In Practice. Accessed 2016-12-03.

https://blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-

SSL.pdf

Morris, K. 2016. Infrastructure as Code. USA: O’Reilly Media Inc.

37

Packer Documentation, HashiCorp. 2016. Accessed 2016-11-06, https://www.packer.io/docs/

Savola, P., 2013, Copyright injunctions against Internet connectivity providers especially with

regard to peer-to-peer networking. Aalto University. Communications and Networking. Licentiate

Thesis.

Singel, R. 2008. ISPs’ Error Page Ads Let Hackers Hijack Entire Web, Researcher Discloses.

Accessed 2016-10-26, https://www.wired.com/2008/04/isps-error-page

Srisuresh, P. & Holdrege, M. 1999. IP Network Address Translator (NAT) Terminology and Con-

siderations. Accessed 2016-11-06. https://tools.ietf.org/html/rfc2663

Treat, T. 2016. Comcast. Accessed 2016-10-25, https://github.com/tylertreat/comcast

Version Control System Popularity in 2016. 2016. Accessed 2017-01-02,

https://rhodecode.com/insights/version-control-systems-2016

Web Proxy Auto Discovery Protocol, Cisco. 2010. Accessed 2016-12-03.

https://www.cisco.com/c/en/us/td/docs/security/web_security/connector/connector2972A/WPADA

P.html

	CONTENTS
	1 Introduction
	1.1 This Report
	1.2 The Commissioner – HowNetWorks Oy

	2 Network Quality factors
	2.1 Traditional
	2.2 Esoteric

	3 Infrastructure as code
	3.1 Infrastructure Definition
	3.2 Server Configuration
	3.2.1 Change Management Models
	3.2.2 Scripting
	3.2.3 Ansible

	3.3 Server Templates
	3.3.1 Packer
	3.3.2 Atlas

	3.4 Software Engineering Practices
	3.4.1 Version Control
	3.4.2 Continuous Integration
	3.4.3 Continuous Delivery

	4 hnwProxy Development
	4.1 Requirements
	4.2 System Architecture
	4.2.1 Server Templates
	4.2.2 Connecting to hnwProxy

	4.3 Software Engineering Practices
	4.4 Proxy CLI
	4.5 Proxy CLI Modules
	4.5.1 DNS Block
	4.5.2 Transparent Proxy
	4.5.3 DNS Redirect

	4.6 Maintenance

	5 Conclusion
	6 Discussion
	REFERENCES

