

	
	
	
	
	
	
	

Creating software component using atomic
design and test-driven development

Le, Nghi

2017 Laurea

	 2	

Laurea University of Applied Sciences
Leppävaara

Creating software component using atomic design and test-driven
development

 Nghi Le Vinh
 Degree Programme in

Business Information Technology
 Bachelor’s Thesis
 January, 2017

	 3	

Laurea University of Applied Sciences Abstract
Degree Programme in Business Information Technology
Bachelor’s Thesis

Le, Nghi Vinh

Creating software component using atomic design and test-driven development

Year 2017 Pages 61

We are living in the age of hyperconnectivity where millions of people are using digital com-
munities to exchange information with each other. People are radically changing the rules of
business. They demand effortless, smooth, and personalized experiences at every touch
point of the customer journey. To make the most of the opportunities ahead, businesses
must go beyond hardware devices and traditional ways of serving their customers.

Nordea is keenly aware of these opportunities. The bank is building new digital solutions to
offer its customers the best-in-class experience. This thesis project concerns the building of a
common software component that can be used by developers to facilitate their development
process in one of Nordea’s digital project. In the financial sector, each change must be done
in the way that it is secure, compliant, yet scalable and maintainable. This thesis project
serves as a proof of concept of why and how using common components helps developers to
complete their development faster, as well as making software well-organized, scalable and
maintainable.

The thesis report offers a brief introduction to Nordea, as one of the leading banks in North-
ern Europe. The theoretical section discusses the concepts underlying the thesis project, such
as good practices in software development. In addition to that, it briefly explains various
development methodologies in the project implementation process, such as atomic design,
test-driven development, and code coverage. The objective was to build a common compo-
nent that was scalable, maintainable and could later be used by other developers to build
their software features.

In this thesis project, atomic design is mentioned since it is the methodology that is used in
system designs which lead to the design of common components. In the project implementa-
tion, test-driven development (TDD) is used. TDD is an increasingly popular and practical de-
velopment methodology in today's software industry. It depends heavily on the repetition of
a succinct cycle of development iterations. Tests cases are converted from a breakdown of
functionalities/features requirements. Using TDD, developers feel more productive, the de-
velopment process results in more tests, fewer defects with better software design and main-
tainable code. In addition to that, code coverage is used as the metrics to measure how effi-
ciently the tests in TDD have been exercised.

As a result of this thesis project, a common component is developed as a proof of concept of
how common components can be developed using test-driven development. This component
is also published on Node Package Management as an open source software project where the
bank, as well as other developers, can freely enjoy accessing and using it as a third party de-
pendency.

Keywords: TDD, common component, software development, web, Agile, finance, bank,
Nordea

	 4	

Table of contents

1 Introduction ... 8
1.1 Case organization: Nordea .. 8
1.2 Project background .. 9
1.3 Goals and objectives .. 10
1.4 Projec scope and limitations .. 10

2 Methodology ... 11
2.1 System development life cycle .. 11

2.2.1 Agile software development ... 11
2.2 Atomic design .. 10
2.3 Test-driven development (TDD) ... 10
2.4 Code coverage ... 10

3 Theory .. 18
3.1 The automated test pyramid .. 18
3.2 Common component ... 19

3.2.1 Definition ... 19
3.2.2 Benefits of common component ... 19

3.3 Web component ... 20
3.4 Repository .. 20
3.5 Software development good practices ... 20

3.5.1 Code refactoring ... 21
3.5.2 Design pattern ... 21
3.5.3 Unit testing ... 21

3.6 Tools ... 21
3.6.1 Webstorm ... 21
3.6.2 Git .. 22
3.6.3 Github ... 22
3.6.4 NPM .. 23
3.6.5 Gulp .. 24
3.6.6 Browserify .. 25
3.6.7 browserify-instanbul .. 25

3.7 Programming languages and frameworks .. 25
3.7.1 JavaScript ... 25
3.7.2 MomentJs ... 26
3.7.3 Lodash ... 26
3.7.4 NodeJs ... 26
3.7.5 AngularJs .. 26
3.7.6 CSS ... 26
3.7.7 Little Calendar CSS .. 26

4 Project implementation .. 27
4.1 Atomic design of Date picker common component 27
4.2 Moment-caledar-2 component .. 30
4.3 Moment-caledar-2 requirements .. 30
4.4 Implementation plan .. 31
4.5 Implementation process .. 31

4.5.1 Set up repository and build system ... 31
4.5.2 Build system .. 32
4.5.3 API Design and structure ... 34
4.5.4 Implementation using TDD ... 37
4.5.5 Code coverage ... 40
4.5.6 Documentations and releases .. 42

5 Evaluation .. 47
5.1 Evaluations of TDD in development .. 47
5.1 Evaluations of developing common software component using TDD 47

6 Conclusion .. 49

References ... 51
Figures .. 54

	 5	

Tables ... 55
Appendixes ... 56

	 6	

Terms and abbreviations

FinTech Financial technology, an industry composed of companies that

use new technology and innovation to compete in the market-
place of traditional financial institutions

Financial services services provided by the finance industryincluding credit unions,
banks, insurance companies, stock brokerages, investment funds
etc.

Financial institution an institution that provides financial services for its clients or
members

Compliance adherence to standards, regulations, and other requirements

Big data data sets that are so large or complex that traditional data pro-
cessing application softwares are inadequate to deal with them

UI User Interface
UI Test

tests include functional testing of the UI controls. They let you
verify that the whole application, including its user interface, is
functioning correctly

UX User experience

TDD Test driven development

HTML Hypertext Markup Language

Front-end Short for Front-end web development. Also known as client-side
development is the practice of producing HTML, CSS and JavaS-
cript for a website or Web Application so that a user can see and
interact with them directly

ECMAScript Also named ES. A trademarked scripting-language specification
standardized by the European Computer Manufacturers Associa-
tion in ECMA-262 and ISO/IEC 16262. It was created to standard-
ize JavaScript, so as to foster multiple independent implementa-
tions

NPM

the default package manager for the JavaScript runtime envi-
ronment Node.js

Customer journey the complete sum of experiences that customers go through
when interacting with your company and brand

Test case a set of conditions under which a tester will determine whether
an application, software system or one of its features is working
as it was originally intended

Stubs, mocks, fakes a piece of code used to stand in for some other programming
functionality which mimics the behavior of real objects in con-
trolled ways

Test harness Also called automated test framework. A collection of software
and test data configured to test a program unit by running it un-
der varying conditions and monitoring its behavior and outputs.
It has two main parts: the testexecution engine and
the test script repository

Nondeterministic algo-
rithm

an algorithm that, even for the same input, can exhibit different
behaviors on different runs, as opposed to a deterministic algo-
rithm. An algorithm may behave differently from run to run due
to it is a concurrent, probabilistic, time-dependent one.

Asynchronous the state of not being in synchronization.

Chronometer An instrument for measuring time, especially one designed to
keep accurate time in spite of motion or variations in tempera-
ture, humidity, and air pressure

High-level program-
ming language

a programming language with strong abstraction from the details
of the computer. It may use natural language elements, be easi-
er to use, or may automate (or even hide entirely) significant

	 7	

areas of computing systems

Dynamic programming
language

class of high-level programming languages which, at runtime,
execute many common programming behaviors that static pro-
gramming languages perform during compilation

Untyped programming
language

Languages without static type systems

Interpreted program-
ming language

a programming language for which most of its implementations
execute instructions directly, without previously compiling a
program into machine-language instructions

Service-oriented ar-
chitecture

A service-oriented architecture (SOA) is a style of software de-
sign where services are provided to the other components
by application components, through a communication proto-
col over a network.

	
	

 8	

1 Introduction

The advent of the internet has over the past decades dramatically transformed the way peo-
ple work, socialize and share information. The internet alone has contributed to the creation
of millions of jobs and billions of dollars in economic activity, which has a profound impact
considering the bleak economic outlook the economy has suffered in recent years.

Living in such an exciting landscape of the digital age, most executives from banking and fi-
nancial service are keenly aware of the fact that this can be an opportunity or a threat.
Hence, it is not about whether should they join the trend and engage their business in digital
transformation but rather how they can achieve it while maintaining their current legacy IT
infrastructure, regulations compliance, a healthy sustainable business which brings positive
impacts on society.

As one of the largest and leading banks in Europe, Nordea has already been in the game. The
bank has put tremendous efforts in leverage existing IT investments and innovate its digital
strategy. It knows too well that digital transformation is now not only a nice thing to have,
but also a matter of survival. Nordea is in the process of creating a new digital solution that
changes and enhances the way it serves customers. As a large enterprise, creating a solution
like this does not come easy for Nordea. The bank needs to think ahead of time carefully how
to build it solution as quickly as possible to shorten the time to market yet ensure its securi-
ty, scalability, and maintainability.

With the experience of working in one of Nordea's largest software development project, this
thesis covers the process of building common software component using TDD to facilitate the
development process, making sure that the project being developed, delivered on time yet
ensure its scalability and flexibility. The thesis is divided into 6 main sections. The introduc-
tion section introduces about Nordea, the goals and objectives of this thesis and describes
the development project background. It also lays out the scope and limitations of what is
written. The methodology part describes in depth the frameworks used in the research part
of the project. The theory section builds the necessary knowledge base for later ease of com-
prehension. This is where all the terms and concepts is explained more thoroughly, what tools
and dependencies the project is developed upon, as well as what programming languages and
frameworks are used in the project implementation. A development of a common component
using TDD will be demonstrated step by step in the subsequent section. Finally, the last two
sections are about the evaluation of the project and conclusion of the thesis.

1.1 Case organization: Nordea

With more than 11 million customers, 1400 branch offices and 30000 employees, financial
services Nordea (publ) is one of the leading and largest financial services company in the Nor-
dic and Baltic region. It offers a wide range of services and products for its household and
corporate customer. The organization has operations in Finland, Sweden, Denmark, Norway
and some Baltics countries. It has a good reputation in its transparency and its eagerness in
improving its current digital financial platform with the vision to become a great European
bank.

The bank is the result of the successive mergers and acquisitions of the Finnish, Danish, Nor-
wegian and Swedish banks. Therefore they had a huge fragmented legacy system including
different stacks of technologies that are needed to be modernized, unified, simplified and
maintained to make them more lean and agile. This process of unification and simplification
faces challenges especially when it comes to digital services, which is a strategic area, where
Nordea as well as other banks are striving to further enhance to provide the best customer
experience for their users.

 9	

1.2 Project background

The project that currently being developed is one of many projects that Nordea is building in
an effort to transform itself to become one of the leading banks in digital innovation who of-
fers best-in-class services for its customers.

Since the project is huge, and the demand for fast delivery is high, the development of a
common foundation framework where all the teams across business areas can reuse and im-
plement in a rapid and agile fashion is needed. This thesis will examine one of the common
components that is used by teams to implement their feature in the project’s application.
This can also be served as a proof of concept on how a common component is developed using
TDD, which is one of the strategies that is heavily concentrated by Agile methodologies. De-
velopment common component using TDD predominantly optimizes development time and
enhance the quality of the deliverables.

The mentioned component is named moment-calendar-2 which is used to build Date picker
components where end users can interact with and pick a date of their choice. Date picker is
a common UI component that is developed based on Nordea UI/UX designers. It is a large and
complicated component which includes a user interface (UI) whereas moment-date-2 can be
seen as its core engine, where all the date logic is taken charge of, without any UI. Below is
also an example of how a banking application can make use of Date pickers and moment-
calendar-2:

Figure 1: Architecture design of a general banking application where moment-calendar-2 is
used

As can be seen in the diagram, a typical banking application has its UI to offer its products
and services such as Accounts, Payments, Advisory etc., for its customers. Each product and
service is a composition of several features, and each feature is built based on templates,
modules and common components (in the Atomic design section, more information about how
this whole system model is created). Each common components can be built based on other
smaller common components. In this case, the Date picker is an UI common component which
is developed based on moment-calendar-2, the common component that will be discussed in
the project implementation section.

 10	

Figure 2: Date picker UI example

The name moment-calendar-2 comes from the fact that it is build based on MomentJs library,
a library that alleviates parsing, validating, manipulation and displaying dates in JavaScript.
‘2’ is the version number since there has been another component with the same name. The
component is a super lightweight, easy-to-use yet powerful Node module to create month
calendar where each date is a MomentJs date. Its capability can be leveraged further with
date operations as well as configuring localization through MomentJs.

The component is developed with scalability in mind and can be in another project, different
business context, and different technology stack. The demo application will give a glimpse on
how a small, non-UI piece of software can bring lots of power by demonstrating how to use
moment-calendar-2 together with angular to build a Date picker component. A screenshot of
the demo application can be found at appendix 3.

1.3 Goals and objectives

The goal of this thesis is to create a common software component using Test-driven develop-
ment that is used to build Date picker or other date/time-related component in the company
project.

With those goals in mind, the followings are objectives, which are also the major require-
ments of this common component, that this thesis strives to achieve:

• Build a demo application to illustrate how the common component is used.
• Document and publish the component to Github so that the community can further

develop and enhance the component.
• Release the component to NPM to make it available to the open-source market allow-

ing it to be used by any party or developer.

1.4 Projec scope and limitations

The thesis mentioned about Atomic design to give readers a better view of how the idea of
a common component is developed from in the project implementation part. It, however,
does not cover the design process of the component (i.e how it is designed using Photoshop
etc.) or how the component requirements are defined at Agile methodology level or at a
higher level of the development project in the system development life cycle.

 11	

2 Methodology

In this section the methods used in the research and development process of the project are
described. It first introduces about systems development life cycle (SDLC) as the development
process that the application project employed at the highest level. Fowllowing that, this sec-
tion covers the methodology of Atomic design for approaching system design and how this
leads to the development of common component. It also discusses about Test-driven devel-
opment deeper in theory which later will be implemented in practices in later section.

2.1 System development life cycle

The systems development life cycle (SDLC), also referred to as the application development
life-cycle, is a term used in systems engineering, information systems and software engineer-
ing to describe a well defined process for planning, creating, testing, and deliver a software
product. A system that is produced by SDLC can be equivalent to a product that is manufac-
tured on an assembly line. The aims is to produce high-quality systems that meet customers
expectations, based on their requirements, by delivering systems that move through each dis-
tinct work phase, within scheduled time frames and cost estimates. A number od SDLC models
have been created to manage the complexity of computer systems, especially with the recent
trend of service-oriented architecture, whose basic principles are independent of vendors,
products and technologies. Those are "waterfall"; "spiral"; "Agile software development"; "rap-
id prototyping"; "incremental"; and "synchronize and stabilize". At a higher level, the project
employes Agile as its main project development methodology.

2.1.1 Agile software development

Agile is one of the big buzzwords nowadays not only in the IT sector but also in some other
areas as well, ranging from financial services sector to marketing and designing. The word
"Agile" derives from the agile manifesto which was made by a small group of people who got
together in 2001 to exchange their awareness and concerns about the traditional ap-
proach in managing software development projects. They realized that the current way was
vulnerable too often, and there had to be a better more sustainable way. They conclude with
the agile manifesto, which describes 4 important core values that are still relevant today:

"Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan"

Ever since that time then, the use of Agile methods that support these values has become
more and more demanding.

Simply put, agile development is a different way of managing development teams and pro-
jects. In software development area, it is an approach to development that iterative builds
software in a small time frame for delivering after each development cycle instead of trying
to deliver it all at one go in the end. It works by breaking projects down into smaller features
where each of them includes user functionality or user stories, where they will be prioritized,
and then continuously delivered in short time-box cycles called iterations.

2.2 Atomic design

Atomic design is methodology, a unifying theory when it comes to designing systems and
common components and not just web pages. This is not necessarily a new approach but is a
tried and true one and definitely an interesting way of looking at systems design in general
and web design in particular. This is especially useful when it comes to massive large soft-

 12	

ware application where maintaining styles and functionalities consistent is crucial and in high
demand.

Take web design for example. There have been a lot of discussions about how to organize and
establish style sheets structure where foundations of color, typography, grids etc. are laid
out. Those aspects concentrate heavily in detail on how the UI looks. Atomic design, on the
other hand, is more about how design system is constructed in a methodical way. The name
"Atomic" is inspired by the idea that matter is composed of atoms. The atomic units combine
to form particles, which in turn bond together to become more complex molecules and ulti-
mately create all matter.

In the same manner, systems are made up of smaller individual components. This is the fun-
damental idea of Atomic design. In web development, there are five clear levels in atomic
design: Atoms, Molecules, Organisms, Templates, Pages.

Figure 3: Five levels in atomic design

Atoms: atoms are the basic building blocks of everything. In the case of web UI, they are the
native HTML tags such as button, select, input, label etc. They can also be something more
abstract like color, fonts, or even animations. As their name, atoms alone do not bring many
values at all. They are, however, good for context referencing and maintaining when a specif-
ic variable needed to be justified. In programming, atoms can be variables, constants etc.

 13	

Figure 4: Atom level in atomic design

Molecules: when atoms are combined together, they forms molecules. This is where interest-
ing things happening. These molecules can have its own properties and functionalities and
serve as the backbone of the system design. In UI case, it can be any elements ranging from a
form, a panel with question texts and confirmation buttons etc. In web programming imple-
mented by JS, molecules are components like directives, SASS functions etc. In fact, the
component that this thesis will later focus on developing is a molecule component which will
be discussed deeper in the later sections.

 14	

Figure 5: Molecules level in atomic design

Organisms: Organisms are groups of molecules bound together to established a more sophisti-
cated unique section. In this thesis, we briefly discuss Date picker component, which based
on this theory, can be considered as an organism, since Date picker contains functionalities
that it requires from molecules like date and timer formatting module, text and number
styles component, date and time calculation, navigation buttons, even possibly input fields,
etc.

Figure 6: Organisms level in atomic design – Date picker with input field

 15	

Templates: in UI design, templates are groups of organisms collaborated together to form
pages. At this stage, we no longer use chemistry terms but instead, we get into the custom-
er language. This is where a layout is formed and something concrete and visible for the end
users.

Figure 7: Template level in atomic design

Pages: pages are unique instances of templates. It can be a composition of different tem-
plates. At this stage user will be able to see the final content laid out in front of their eyes,
with real texts and images, not just a placeholder. It is the highest level of fidelity and tangi-
bility. This is where most time is spent on reviewing.

 16	

Figure 8: Page level in atomic design – Nordea front page

Atomic design facilitates a scalable and portable way of developing system application. Com-
ponents are later easier to be developed or extended if they have already a solid common
base. It is definitely a good approach that well played with Agile methodology strategy where
it is developed in close, collaborative environment including designers, developers and other
stakeholders.

Though this thesis does not have any UI implementation, Atomic design still worths mention-
ing here since this is the backbone philosophy to develop web common components in our
project. Later in the common component implementation section, we will come across Date
picker component, which is an UI component that is also developed based on this philoso-
phy.

2.3 Test-driven development

Test-driven development (TDD) is an increasingly popular, and practical, development meth-
odology in today's software industry. It heavily depends on the repetition of a succinct cycle
of each development iterations. Tests cases are converted from requirements or small broken
down pieces of functionalities/features. If further development is needed, then the software
is enhanced to pass the new tests set.

According to Ken Beck, who is considered as the father of TDD, TDD encourages simplicity and
confidence in systems design. TDD is also relevant and consistent with test-first programming
philosophies of extreme programming, which was founded in 1999, but now has gained more
popularity under its own name.

 17	

The idea of test-driven development is developer write a few tests first, make them fail, be-
fore proceeding with the implementation to make them pass. Following each test will be dis-
cussed more specifically:

First, test is written. Everything starts with a test being written. The test serves not only as a
verification step but also a step to function definitions and enhancements. Each test should
be succinct and concise to the feature it strives to cover. Doing this way, it forces the devel-
opers to keep his focus on the requirements. This step is special, which makes it stand out
from writing standard unit tests after the code is implemented.

Second, some tests are run just to fails. This step is a way to prove that the test mechanism is
working correctly, even though the tests does not pass. The new tests shall not pass just to
validate that the new feature has not been implemented. This ensures there is no possibility
that the new test is flawed and passed. The tests fail but they will bring a confidence boost
for developers who are implementing them.

Third, code is implemented. Next step is to implement the code that helps the test to
pass. The implementation can be just inelegant, even useless, as long as it can make the test
passes since it will be enhanced and fully developed later in Refactoring step.

Fourth, run tests again. The tests are later run again and should pass. If tests do not pass,
clearly the code implementation stage has not been handled correctly. This again gives a
necessary confidence boost for developers.

Fifth, code refactoring. This is where real code is implemented. During this phase, growing
code based should be cleaned up frequently to reduce wastes and duplications. All program-
ming entities (functions, variables, classes etc.) should be clearly defined and represents
their single purpose and responsibility to enhance maintainability and readability.

Continuing repeating these steps, the software implementation is enhanced incrementally
after each cycle. Continuous integration also plays a role as checkpoints during this process.
When developing with the help of external libraries, it is crucial to make small increments
and avoid testing the library itself.

When it comes to software development and writing code, TDD is unfortunately not that
ubiquitous. Many developers still do development first and probably write tests later. This
practice overrides the benefits of test-driven development. Why it is so crucial to write tests
first and why test-driven development plays a big role in Agile development? Section 5 will
strive to answer those questions.

TDD is all about changes and therefore it is expected that the code will be re-written several
times. Every time code is re-written, the developer improves the code, and improves himself
- his programming skills in a significant way. Though TDD is just one possibility of doing Agile
development, these mentioned above are hidden charms of using TDD, and why it is so well-
suited with Agile and in fact, an art of Agile development.

2.4 Code coverage

When it comes to testing, test coverage is a methodology in software programming to meas-
ure how much a software application source code has been covered by tests. It is a metric
that help determine how much thorough the tests have been excercised. There are various
kinds of test coverage:

• code coverage
• feature coverage
• scenario coverage
• screen item coverage
• model coverage

 18	

Each of these coverage has a different baseline defining the system under test. Test coverage
types, therefore, varies depending on how the system is defined. The test coverage system
that is used in the implementation part of this thesis is code coverage. It has the following
baselines or rather than questions that the code coverage will strive to answer:

has a particular statement been executed?
how many times has a statement been executed?
have all the statements in a program been executed?
have all the decision points in the code/branches been exercised?

3 Theory

This section covers theoretical concepts that are needed to build a strong knowledge base for
comprehending the upcoming sections of this thesis. It first dives deeper into the automated
test pyramid, and explains which test phase is important, as well as how it is done during the
development process. It explains some of the main concepts of the thesis, and also introduces
some best practices that are used in the process of software development.

3.1 The automated test pyramid

Despite all the differences in Agile methods, they all share the same principles as listed
above. This thesis will particularly focus on discussing deeper about principle number 9: Test-
ing is integrated throughout the project lifecycle – test early and often. This principle has a
huge impact both from technical and business point of view since it plays an extremely im-
portant role in managing the quality outcome of the final product.

In his book Succeeding with Agile, developed by Mike Cohn, the concept of test pyramid is
first introduced. The main idea of this model is the higher level of the test pyramid, the more
expensive it costs for business and more complicate it is for engineering.

Figure 9: Test pyramid model

In the test pyramid visualization above, there are 3 levels of testing: system tests, integration
tests, and unit test. A good test strategy is to focus on each type of differently, or in other
words, testing mix. A good approach would be testing mix with a majority of unit tests (70%),
some integration tests (20%), and a small number of acceptance tests (10%). The percentage
figure in brackets is just for reference. In reality, there can be many combinations of these
that should be selected appropriately since they need to be easily maintained. Here are the
reasons:

 19	

Acceptance tests are the most expensive tests to be done. This is why it is crucial to write,
run and maintain minimally these types of tests. The reason is acceptance tests consider oth-
er third parties and system to be taken into account and not mocking them. They answer a
question of "Is the System working?". Sometimes, at this level, it would be better for manual
testing in case there are so many systems being involved hand hard to coded. Acceptance test
can not be fully trusted because they tend to non-determinism problems. They are fragile,
expensive to write, and very time consuming to run at the same time. Indeed what the pyra-
mid tells is trying to say is that it is important to focus much more on automated testing
through unit tests than GUI based testing.

Integration tests are harder and complicate to maintain process compared to unit tests but
still, are far easier and manageable than Acceptance test. Integration can be something like
UI tests, where mocked backend and other service dependencies are allowed.

At the bottom, the final layer is the one is the most fine-grained, extremely fast to imple-
ment, easy to maintain, and run very quickly. For that reason, unit tests are super powerful
in Test-driven development, which will be explored more in the later section.

3.2 Common component

3.2.1 Definition

Testing is an important part of development process. However knowing what and how to de-
velop and organize software is important too, especially in large software development pro-
ject. The best strategy is striving to develop common reusable components that can be used
later in the project. Talking about common software component, first, we need to know a bit
about Component-based software engineering (CBSE), or component-based development
(CBD). It is a branch of software engineering that concentrates on the separation of concerns
principle. The idea of a component is splitting the source code into smaller reusable chunks
of code. Doing that way, not only developers can reduce complexity by limit their focus into a
smaller area at a time but also they can focus on developing and delivering solutions that are
reusable and easy to maintain.

"An individual software component is a software package, a web service, a web resource, or a
module that encapsulates a set of related functions (or data).

All system processes are placed into separate components so that all of the data and func-
tions inside each component are semantically related (just as with the contents of classes).
Because of this principle, it is often said that components are modular and cohe-
sive." (Wikipedia: Component-based software engineering)

The idea of the component is all about splitting down systems into smaller pieces which can
benefit us since it brings more unity between design and development. The next section will
say more about why this pattern is beneficial not only for developers but also for business as
it will help later when it comes to maintenance and further development.

3.2.2 Benefits of common component

Regardless of front or backend development, develop software the common component way
provides some clear major benefits:

• Consistency: implementing reusable components helps keep the consistency in soft-
ware design and make code much more clear and organized compared to non-
reusable ones.

 20	

• Maintainability: common components increase code maintainability hugely. Whenever
a piece of common component’s functionalities needed to be refactored or updated,
it will be applied wherever the component is used in the application.

• Scalability: Having a library of components can clearly speed up the development

process.
• As the project scales, making sure namespacing the components correctly will help to

avoid styles and functionality leaking into the wrong place.

3.3 Web component

Front-end web development is an area that develops extremely fast. When the web applica-
tion grows, it brings more and more complexities and challenges for developers to upgrade
and maintain. Therefore writing code in a modularized manner is very important both for the
technical and business point of view since it will drive cost down when it comes to mainte-
nance and further development. If one has been working on a large scale web application pro-
ject, he may have already created components of some kind from Angular, React, Ember etc.
even though each one “thinks” of components in its own way. If in the future, there needs to
be a change in framework, it would be extremely costly and unwise to rewrite our application
from scratch. Instead, it would be nice if what developers build are component-based, using
the same native core technologies, and reusable regardless of frameworks the web applica-
tion will depend on. Web components, therefore, make this possible. It also offers the ability
for the component to interact and communicate to each other under the same application. It
is a collection of technologies that enable developers to efficiently define the current existing
HTML implementation (Developing Web Components: IO from Jquery to Polymer). Regardless
of frameworks, one common rule though is if the component’s name has more than 1 word
then it must have a dash (-). This is important because there needs to be a way to distinguish
custom HTML component from standard ones and prevent conflicts in naming.

Having a native way to build component is the holy grail of web application development
since it helps us to achieve the following:

• Composability: ability to reuse and group components together
• Encapsulation: capability to group markup and style into isolated group
• Reusability: ability to reuse components across applications and ease of functionality

extension

Even though web components are men to be a standard of web development and have a po-
tential to be a major shift in how developer develop the web, at the time of this writing, web
component is still not widely supported. Only Chrome browser supports the components spec-
ifications. However, as said before, in web development, we can think of web common com-
ponent as strategies that are spread in various places from CSS methodologies to JavaScript
frameworks, design patterns and style guides. Developing in the component way is similar to
playing Lego. Common components can be thought as building blocks that can be combined to
form a larger, more robust structure. Those components can be detached, reattached, rear-
ranged and combined in multi different ways. Whether one is writing code in JavaScript or
adjusting some SASS/CSS styles there are common patterns of what a component is. Those
patterns are independent, clearly defined, encapsulated and reusable. In the scope of this
thesis, later we will analyze an example of how a non-UI web component is developed from
start to end using test-driven development.

3.4 Repository

In a context of software development, a repository is a location where software packages and
module are stored and can be retrieved or installed on a computer. There are many online
services that are used for hosting repositories such as Bitbucket, GitLab, Stash, Github etc.

 21	

3.5 Software development good practices

Software best practice is a technique that has been widely approved or agreed as a superior
solution as it brings many benefit as well as produces results that are better than other alter-
native methods. It has become a standard that all the developers should know and following.
This section focus on some of the best practices that were used in the project implementa-
tion of this thesis.

3.5.1 Code refactoring

Code refactoring is the technique of restructuring current computer source code in order to
enhance maintainability and the software's nonfunctional attributes without alter its external
behavior. Other advantages are code readability enhancement and complexity reduction.

3.5.2 Design pattern

Software design pattern is a reusable solution in software engineering to tackle popular recur-
ring issues within a certain software design context. Design pattern is not a complete design
that can be converted directly into code that the computer can execute. It, however, plays a
role as a template for how to resolve problems that can be utilized in various situations and
contexts. It is amongst the best practices that developer can use when it comes to design
software application.

3.5.3 Unit testing

Unit testing is a method to test software from an units level of the program source code, or
arrays of one or more modules. The purpose is to decide whether the source codes are appro-
priate for use. A unit can be considered as the smallest part of a program. In procedural pro-
gramming, a unit could be an entire module or an individual function. In OOP, a unit can be
an interface, a class, but can also be an single method. Each test case should be independent
of others. To achieve testing module in isolation, which is something makes unit test stands
out from UI test or integration test, substitute such as method stubs, mock objects, fakes,
and test harnesses are used.

Since the goal of the unit test is to test the code in isolation and validate its correctness, it
can be done in an automated fashion or manually. Regardless of how it is performed, the unit
test helps to find issues early in the development cycle. It also helps developers in refactoring
the source code or further development. Doing correctly, the unit test also serves as a living
documentation and a design of the application.

Unit test, however, has its own drawbacks too. It will not garantee catching every issue or
defect of the program. It can not be a replacement for integration testing. Writing unit test
can take time especially when it comes to an area of source code where it has to rely on a
Boolean decision, nondeterministic problems or asynchronous issues. The unit test code is
likely to be buggy as the testing code itself. In this case, unit test could be skipped somehow.
In The Mythical Man-Month, Fred Brooks wrote that: "Never go to sea with two chronometers;
take one or three." Meaning, if two chronometers contradict, it would give you more head-
aches.

3.6 Tools

During the development implementation process, several applications and tools are used to
create, build, and publish the software component. This section represents what are these
tools, and why they were chosen i.e over others.

3.6.1 Webstorm

WebStorm is a delicate, agile yet robust JavaScript integrated development environment
(IDE), which is perfectly supplied for client-side development and complex server-side devel-

 22	

opment with Node.js. It is branded as The Smartest JavaScript IDE by JetBrains, a software
development company whose tools are targeted towards software developers and project
managers.

Figure 10: Webstorm UI

The tool is selected due to its specialized capabilities for front end development using JavaS-
cript, as well as other front end technologies.It has a lean UI which creates a convenient
workflow for JavaScript developers. It also has a built-in terminal environment where com-
mand lines can be input and executed, which will greatly help developers during the devel-
opment process where they need to run tests, and build the source code in real time.

3.6.2 Git

Git is a version control system (VCS) for tracking modifications in computer files and coordi-
nating work on those files among several people. It is mainly used for software development,
but it can also be used to monitor alterations in any files.

Git was chosen due to its popularity and ease of use. Git is well-documented, available online
and the syntax is familiar to all the developers in the team.

3.6.3 Github

GitHub is a web-based Git or VCS repository as well as online hosting service. It offers all of
the distributed version control and source code management functionality of Git as well as
adding its own features. It supplies several collaborations and management features such
as bug tracking, feature requests, task management, and wikis for every project. On the same
account, GitHub provides both plans for private and free of charge repositories which are
commonly used to host software projects.

 23	

Figure 11: Github UI

Github was chosen due to its popularity and public availability, good web-based UI and cost-
effective for the open-source project. It also has a nice graph UI as well as other useful fea-
tures that help developers keep track of the project development history in an easy manner.

3.6.4 NPM

Npm is written completely in JavaScript and was developed by Isaac Z. Schlueter as a result
of having "seen module packaging done terribly" and with inspiration from the limitations of
other identical projects such as PHP (PEAR). It is the default package manager for
the JavaScript runtime environment Node.js. Unlike Bower, which is also another dependen-
cy management tool, npm can also be used for installing Node js module, whereas Bower is
only used for managing front-end components such as HTML, CSS, etc.

 24	

Figure 12: NPM UI

NPM was chosen due to its popularity as a platform where a developer can publish their Ja-
vaScript components/libraries. Moment-calendar-2 is a Node Js component and does not re-
quire any UI part. This makes it fit perfectly with NPM. Besides that, NPM also has its own
tracking system where it keeps track of how many components a developer has published as
well as how many users downloads the component gets.

3.6.5 Gulp

Gulp is a toolkit for the automated build system. Leveraged by node's streams file manipula-
tion, gulp helps developer streamline their tedious, time-consuming build process in their de-
velopment workflow. Build tools such as GNU Make is not something new to developers, how-
ever, tasks runners that are made for web-specific are still quite new experience. Grunt and
Gulp are two most popular task runners/Node's automated build tool nowadays.

Unlike Grunt, Gulp does not require a handful of plugins to achieve basic functionalities such
as file watching. Even a simple grunt task needs to be configured in a sophisticated manner
whereas gulp syntax is straight forward, and less verbose. It leverages the use of NodeJs's
stream to pass data through a series of piped plugins and, hence, processes data much faster.

3.6.6 Browserify

browserify is a development tool that allows developers to write node-
flavored CommonJs modules that compile for use in the browser. It can be used to organize
source code and third-party libraries even if these code is not written in the node way. To do
that, browserify recursively analyzes all the require() calls in the application in order to build
a bundle that can be served up to the browser in a single <script> tag.

 25	

Since moment-calendar-2 is developed using NodeJs, which is a server-side JavaScript envi-
ronment, it needs a way to make it available for the web front end if necessary. For example,
in our demo application's case, there is a demonstration of a Date picker UI component.
The dDate picker in the demo application is an AngularJs directive which is dependent on
moment-calendar-2. Therefore, moment-calendar-2 needs to be loaded first before Date
picker when the browser is opened. Browserify is a perfect tool for just that. It can also be
easily integrated with Grunt and Gulp.

3.6.7 browserify-instanbul

One of the most powerful features of Browserify is source transform. It is the capability that
allows a stream to be injected between the module source code and the final returned con-
tent. For example, if the source code is written in CoffeeScript rather than JavaScript,
the developer usually needs first to convert ConffeeScript to JavaScript before continuing
with bundling. This phase is called precompilation phase. However, with source transform,
there is no longer need for this step of the process.

Browserify-instanbul is a source transform for the istanbul code coverage tool. It helps
Browserify to generate test coverage from the source code based on its unit tests.

3.7 Programming languages and frameworks

In this section, the programming languages and frameworks used in the project are described.
Firstly, JavaScript and its libraries, MomentJs, NodeJs, AngularJs are discussed. Followed
that, the thesis walks through what makes the demo application looks visually attractive by
explaining about the use of CSS and a premade template for the calendar.

3.7.1 JavaScript

JavaScript is a high-level, dynamic, untyped, and interpreted programming language. When it
is applied to an HTML page, it can bring interactivity and functionality on the web. Together
with HTML and CSS, JavaScript is one of the most important technologies of the world wide
web. It has been standardized in the ECMAScript language specification as well as being sup-
ported by all modern web browsers without the help of any plugin.

Due to its importance and necessity in the web, JavaScript is the language used in this thesis
for the implementation of web common component.

3.7.2 MomentJs

MomentJs is a JavaScript library for parsing, validating, manipulating, and formatting dates.
It was designed to work both in the browser and in Node.js. MomentJs can be used as follow-
ing:

In NodeJs:

npm install moment
var moment = require('moment');
moment().format();

On the browser:

<script src="moment.js"></script>
<script>
 moment().format();
</script>

 26	

In the above script, the variable moment holds the moment object instance, where its API
can be accessed. MomentJs can be used in a different way, with different front-end
toolkits/plugins such as Require.js, Browserify, Typescript, etc.

MomentJs plays an important role in the project implementation since all date, time, valida-
tion, formatting logics are operated thanks to it.

3.7.3 Lodash

Lodash is a modern JavaScript library that contains a bundle of utility functions for pro-
cessing, operating calculations on arrays, objects etc.

Together with MomentJs, Lodash facilitates all data processing and calculation operations of
moment-calendar-2.

3.7.4 NodeJs

Node.js is an open-source, cross-platform JavaScript runtime environment for developing a
multiple varieties of server tools and applications. Many of NodeJs fundamental modules are
written in JavaScript, even though it is not a JavaScript framework. By using Google's V8 Ja-
vaScript engine, the runtime environment interprets JavaScript and, hence, developers can
continue to write new modules in JavaScript.

NodeJs is used in both a develop and build phase of the project. The project final output is a
NodeJs module which is packaged and published to NPM (Node Package Management)

3.7.5 AngularJs

AngularJS is one of the most popular web frontend frameworks at the time of this writing. It
lets developer extend the use of native HTML by the use of Angular directives and provided
ways to make a dynamic web application with ease using two ways binding.

AngularJS directive is a forerunner of Web Components. By default, native HTML elements are
quite primitive, with the same set of properties that applied to it. It can not keep up with the
rate of changes and demand of a dynamic web application development easily. Using Angu-
larJS directive feature, I quickly made an example calendar component to serve the purpose
of demonstrating how quick and easy moment-calendar-2 can help build a date/time-related
UI component as well as how easy the module can be integrated with other front-end frame-
works.

3.7.6 CSS

Cascading Style Sheets (CSS) is a stylesheet language used for describing the presentation of a
document written in a markup language.

Just like JavaScipt, CSS is, nowadays, a technology that a web page can not live without.
Even though moment-calendar-2 is a non-UI, and purely functional component, CSS adds
styles and defines page's elements positions to the demo application using Date picker, a
component that is built based on moment-calendar-2.

3.7.7 Little Calendar CSS

Little Calendar is an open-source project, a premade HTML template with predefined CSS
style sheets used for Date picker component by CSSFlow.

Like AngularJs, this premade template is used to quickly construct a nice-looking demo appli-
cation of Date picker showing how quick and simple it can be to use moment-calendar-2 in
order to build a complex UI component like Date picker.

 27	

4 Project implementation

This section describes the project implementation of the aforementioned theoretical con-
cepts and technologies to create moment-calendar-2, a common component that Date picker
component to consume. It first briefly describes how Date picker is designed from U/UX de-
sign phase using Atomic design. It then demonstrates how moment-calendar-2, which is the
non-UI part of Date picker component, is developed, step by step, using TDD. In addition to
that, it also covers how the component is documented, published and released to the market
so that other developers can join hands to further enhance its features and enjoy using the
component.

4.1 Atomic design of Date picker common component

In the context of banking application, Date picker is one of the most (if not the most) compli-
cated component yet very important throughout the entire application.

Figure 13: A typical UI of Date picker

One of the reason is Date picker can comes in with different shapes and functionalities. A
Date picker can be used as it is, but can also used with other components like dropdown list
or input field (where user can type in a date so that the date is selected on the Date picker
and vice versa).

 28	

Figure 14: Date picker with input field

A Date picker can also trigger backend request calls that fetch dates from the server. One use
case is a Date picker component locating in book meeting area where it executes non banking
dates service call every time user navigates to another month.

Another use case of Date picker is when user needs to filter out a list of transactions in a cer-
tain date range. Typically in this case there will either be a date range picker or two Date
pickers, one for from-date and another for to-date.

Figure 15: Date range picker

In form such as payment or issue report, Date picker is the must. This is where user must pick
a date, indicating the date that the issues are found, or, in the case of payment, Date picker
is used to specify the due date.

 29	

Date picker also needs to be available in different languages and localization. This is not only
because the week date names are different from language to language but also the order of
weekdates can be a factor that changes the calendar layout.

Figure 16: Date picker with different localizations

In addition to that, Date picker should also be flexible in colors based on theme. If the whole
page is in dark theme, the Date picker should "know" how to pick an appropriate color scheme
to make it stand out from the background. Some Date picker behaves a bit different from
others even if they all look the same from UI perspective. For example, sometimes, user only
needs to select a date and right after that Date picker will be automatically closed. Another
time, user needs to close the Date picker explitcitly. Date picker also needs to support screen
reader device, keyboard navigations, and should have some interesting animations as well.

The design of Date picker should take all those criteria into account. Using Atomic design the
Date picker can be viewed as an organism where it comprises of mocules components.

From an UI perspective, these mocules are Date picker’s opener icon, header, calendar view
(month table), confirmation buttons, input area etc.

Each of these mocules will be the composition of atomic elements like navigation button
icons, labels, texts, buttons, input field etc.

 30	

Figure 17: Date picker design with atomic design

Based on these knowledge, UI and UX designers started working on the UI of Date picker and
provided several scenarios such as how Date picker looks like when it is open, when it is
closed, when it has disabled dates, or when the user start to interact on the calendar UI etc.

After that, I as a developer started to work on how the Date picker is built. From a functional
perspective, Date picker is dependent on moment-calendar-2, the core engine that calculates
dates and months operations, date formatter, date validators etc. Along the way of this de-
velopment process, I also carried out informal queries session wit UX/UI designers and prod-
uct owners to learn more about different business scenarios that require the use of Date
picker as well as how Date picker should behave in each of those cases. In the next section of
the project implementation, the thesis will go deeper on how moment-calendar-2, the com-
mon that is employed by the aformentioned Date picker.

4.2 Moment-caledar-2 component

Date and time are complex concepts to deal with in software programming, yet they are very
crucial and sensitive in a banking application. Due to its overly huge complexity, and for secu-
rity and confidential reason, this thesis will not be about Date picker but focus more on Date
picker's sub-common component which is moment-calendar-2. As introduced in the first sec-
tion, for a quick recap, the name moment-calendar-2 is chosen because it describes how cal-
endar date logics and values are calculated based on, and since there is another component
named moment-date, '2' is just a version number added to that.

Even though moment-calendar-2 is a much smaller component and does not require an UI at
all, it plays a role as the brain of the Date picker component. Without it, Date picker can be
just simply a good looking template with static text strings, which are primitive and quite
useless from a user perspective. Moreover, being a common component means that moment-
calendar-2 can be used else where then just for Date picker. It can be used to build more
complicated date and time-related UI component. It can also be used together with other
software stacks and frameworks such as NodeJs, Jquery, AngularJS or just simply plain old
JavaScript.

4.3 Moment-calendar-2 requirements

As described above, moment-calendar-2 is a purely functional component and does not re-
quire an UI at all. The target customers, or to be exact, the consumers of this component are
developers who want to build date and time-related software programs/components (such as
Date picker). With that in mind, here is a list of general moment-calendar-2 requirements:

 31	

• The developer needs a common component where they can reuse to build date and
time-related software components/programs.

• The developer should be able to use its API to achieve the following:

• The developer can create a calendar object which can return the current date (to-

day).

• The developer can create a calendar object which can set the current date (today).
For example, he can set the value of today to a totally different date as he wishes.

• The developer can create a calendar object which can update a date object with its

new information, i.e developer can assign a value and also later update that value to
a specific date. For example, the developer can assign 8th of March 2017 a value of
"International women day".

• The developer can retrieve the value of a specific date. In the example above, the

developer can retrieve "International women day" from date 8th of March 2017.

• The developer can get a weeks table where each row will represent a week in that
current month. The current month is calculated based on the current date that the
developer can get and set as stated above. Each row cell is a specific moment date
object.

• The developer can get all the dates in a certain month. For example, the developer

can get an array of date objects representing 1 to 28 from February 2017.

• The developer can get previous month overlapping dates. Overlapping dates are un-
derstood as dates that are in the same week with other current month dates. For ex-
ample, if the current month is March 2017, then previous overlapping dates will be
27th and 28th February 2017.

• The developer can get next month overlapping dates. Same as above except that now

they are the next following month instead of previous one. For example, in the case
of March 2017, those would be 1st and 2nd April 2017.

After a draft estimation, a plan has been scheduled on taking into account how the practical
implementation of the component should be done.

4.4 Implementation plan

Considering the fact that this is a complicated component, the author divided the develop-
ment process into the following main phases:

• Set up repository and build system
• API Design and structure
• Implementation using TDD
• Test coverage
• Documentations and release

4.5 Implementation process

4.5.1 Set up repository and build system

A repository can be created by just simply click on the New repository option under Github
top menu:

 32	

Figure 18: Create a new repository

Follows along the instructions on Github, a new blank repository is created.

4.5.2 Build system

The very first step is to install dependencies. Usually, when the project starts, developers
start to install a few dependencies first. Since this project will later be packaged and pub-
lished to NPM, it is wise to install a few dependencies first such as gulp plugins (which will be
explained later). Later on, in the development phase, developers can decide on which de-
pendencies he needs to install or whether he wants to install more dependencies or not. Be-
low is the list of dependencies in this project's package.json file where all the dependencies
for this project are listed:

Development dependencies:

"angular": "^1.5.8",
"angular-mocks": "^1.5.8",
"browserify": "^13.1.0",
"browserify-istanbul": "^2.0.0",
"del": "^2.2.2",
"gulp": "^3.9.1",
"gulp-concat": "^2.6.0",
"gulp-load-plugins": "^1.2.2",
"gulp-ng-annotate": "^2.0.0",
"gulp-release-easy": "^1.0.5",
"gulp-rename": "^1.2.2",
"gulp-sass": "^2.3.2",
"gulp-sequence": "^0.4.5",
"gulp-uglify": "^2.0.0",
"gulp-webserver": "^0.9.1",

"gulp-wrap": "^0.11.0",
"http-server": "^0.9.0",
"istanbul": "^0.4.5",
"jasmine-core": "^2.4.1",
"karma": "^1.5.0",
"karma-browserify": "^5.1.0",
"karma-chrome-launcher": "^0.2.3",
"karma-coverage": "^1.1.1",
"karma-jasmine": "^0.3.8",
"karma-requirejs": "^1.0.0",
"requirejs": "^2.2.0",
"vinyl-source-stream": "^1.1.0",
"vinyl-transform": "^1.0.0",
"watchify": "^3.7.0"

Dependencies:
"moment": "^2.14.1"

The number on the left of each dependency name is the dependency’s version being used at
the time of this writing. There are two types of dependencies. The first one is dependencies
that are used for the development of the project. It includes dependencies for build process
and As can be seen in the list above, while the development dependencies list is quite exten-
sive, there is only one single dependency that this component relies on, which is MomentJs.
This is actually a very good thing because it will keep the final built package lightweight. Also

 33	

the fewer real dependencies we have, the less maintenance and upgrade follow-up needs to
be done later.

The next step is to implement a build system. The two most popular build system for front-
end development at the time of this writing are Grunt and Gulp. Gulp is the chosen option for
this project due to its simplicity, and functional way of programming.

All the gulp tasks will be put inside one file named gulp file, which can be viewed in appendix
4.

Here the build process is exposed through a set of tasks and subtasks. The most used task is
the ‘default’ task, which you can run by just simply issuing ‘gulp’ in your command prompt or
terminal window:

Figure 19: Basic gulp tasks

This code snippet describes what happens when you run the default task. The task will trigger
two preceding tasks, one is ‘server, and another is ‘watch’. A description of some of these
mentioned tasks are listed in the table below:

Task
name

Definitions

Default Run this task to start “server” and then “watch” task.

Watch Run this task to make gulp “keeps an eye on” source files changes and triggers
web browsers to reload/rerender the pages so that changes are reflected and de-
velopers can see them.

Server Run this task to initiate the local web server at a certain port. This way developer
can enter local host address with its port number to the web browser to access
the demo application.

Table 1: gulp tasks definitions

There are some other gulp sub tasks, but those tasks above are the most important ones that
one should learn in case one wants to start contributing the project.

Since later it is super important to run tests and generate coverage reports, it is also good to
refine those configurations in this stage. This project will use karma to launch a web server
which can then load our project resources for testing, building our source code and showing
our demo application. Its main goal is to create a productive testing environment for devel-
opers. Karma runs based on what it is configured. Those configurations are set in karma con-
fig file. Without this file, or if been set improperly, then there may be problems later with

 34	

steps like testing, building, coverage, continuous integration, etc. Below figure how the pro-
ject is configured.

Figure 20: Karma configuration file

Since the component in this thesis is a non-UI one, so far most of the configuration here is
testing related purposes. In a more involved project/component, it may require also some
configuration on how to bundle styles files (SASS/CSS files), inject environment variables, log-
in credentials, security level and so on.

4.5.3 API Design and structure

Even though in this thesis, the requirements (design and structure) and unit tests are pre-
sented separately but in reality, both should be developed at the same time.

Since the component has been developed and ready to be used at the time of this writing, it
is easier to just navigate to its repository and see how the structure was defined. From the
project’s github page, click on ‘src’, a list of component files will be shown. The component
is divided into files/modules:

 35	

Figure 21: moment-calendar-2 sub modules

As can be seen in the screenshot. The structure of the component is minimal. It does not con-
tain any UI related files (HTML templates and/or Stylesheets files) and is purely functional.
There are two sub-components: one is API and another is core. The suffix ‘spec’ simply means
that these files are unit tests or, in other words, specifications files.

API file plays a role as the public interface of the component, where it exposes all of its
methods for the outsider to use. Core file in the other hand acts as a helper class where all
the intricated internal logics are implemented. It is included by the API file by simply using
Node require function like this:

Figure 22: How another module is included

This code simply means a module named ‘core’ from file core.js will be assigned to a variable
name core which will later be used in the API module. There is one public method at the end
of the component which is called ‘getInstance’.

Figure 23: getInstance factory method

The idea of a getInstance function is it will create and return an instance object of Moment-
Calendar where all of its API is exposed. This snippet below shows how it is used:

 var calendar = MomentCalendarFactory.getInstance();
 calendar.getWeeksTable();

Below is a brief description of how each of the methods is used:

 36	

Methods Arguments Description

setCurrentDate a date
(eg. '2017-01-
01')

Set the current date for month calendar. If the ar-
gument is left blank or is an invalid date then cur-
rent time being will be used.

getCurrentMonthDate Get the current date of month calendar. Return will
be a moment object.

getDate a number or
date (eg. '1',
'2017-01-01'
etc.)

Get a moment object corresponding to the date you
want to get from month calendar.

updateDate (date, obj) (eg.
('2017-01-
01',{isHoliday:
true})

Extend a date object of the calendar with an object
defined by your own. This is good when you need to
attach a certain customized properties/methods that
are not defined by MomentJs. If you need to over-
ride those properties, just simply pass another ob-
ject with same property keys again. Later when you
call getDate, you can access those properties from
the returned object.

getWeeksTable boolean (false
by default if
argument is
missing)

Return an array of weeks table, the one that is simi-
lar to a month calendar view in Date picker (with
the first element is an array of weekdays ('S','M', 'T'
etc.)). Each date is a moment date. If you want a
simplified version of weeks table where each date is
an integer (eg. from 1 to 31), pass in true as the ar-
gument.

getDatePosition a number or
date (eg. '1',
'2017-01-01'
etc.)

Get back date position in the weeks' table men-
tioned above. The returned object has 2 properties
'row' and 'column' that indicate where the date is
located in the weeks' table.

Table 2: monthCalendar instance’s API

Later in phase three – unit tests, there will be a deeper look into these functions.

As mentioned before, the Core module plays a role as a helper class where all the intricated
internal logics are implemented. Below are all the helper functions and properties that Core
has to offers:

 37	

Figure 24: moment-calendar-2’s interface

Below table will show brief descriptions of how each of the method/property is used (the
only method will have arguments):

Methods Arguments Description

currentMonthDate (not applicable) Value for current month date. This is a
momenJs object, therefore it can be
formatted using ISO 8601 date string
format, which is the standard uses the
Gregorian calendar, serving as an in-
ternational standard for civil use.

extend Source object,
destination ob-
ject

Designate keyed properties of source
objects to the destination object.

isValidDate Date string, date
format, isStrict-
Mode (boolean)

Validate whether a date string is a val-
id date.

isDateInMonth Number/date
string

Validate whether a date/number is a
valid month date.

initWeeksDate Return an array of weeks days

populateWeeksTable Month (in date
string format,
e.g ’2017-06’)

Create and return an array including a
2-dimensional table where there are
weeks days as table header and other
dates in that month.

getDaysOfMonth Date/month (in
date string for-
mat, e.g ’2017-
06’)

Return an array of dates in that month.

getPreviousMonthOverlappingDays Date/month (in
date string for-
mat, e.g ’2017-
06’)

Return an array of overlapping dates
from previous month to current month.

getNextMonthOverlappingDays Date/month (in
date string for-
mat, e.g ’2017-
06’)

Return an array of overlapping dates
from next month to current month.

Table 3: moment calendar core’s API

4.5.4 Implementation using TDD

A general idea of how the component is designed and structured has been introduced in the
previous section. That would serve as API reference when needed. However, in reality, it
would be more appropriate and convenient if design, implementations and unit tests are car-
ried out all at the same time. In this section, it is time to take a few steps back and examine
how a module in moment-calendar-2 should be implemented in reality.

Take api module for example. Since it plays a role as a factory which produces instances that
expose the public interface of the application, there should be a way, a method whose name

 38	

is ’getInstance’, to produce such an instance object. For that reason, some unit tests should
be written like so:

Figure 25: Implement unit test cases for getInstance method

The code inside beforeEach means that these lines of code will be executed in each test case.
A test suite is named after a function in interested, in this case, getInstance. Each test suit
following it will specify what the function does. In this case there are three features that de-
veloper needs to focus on first: getInstance should return a monthCalendar object where its
current date is either set by default as today or set manually by developer. To verify whether
the spawn object has its current date set properly, it should have a function named getCur-
rentDate where on execution should return a value of its internal current date. Current date
can be today or a date set by developer. Because the mentioned component is built upon
MomentJs, any date value will be encapsulated by a MomentJs wrapper, therefore, it should
be first formatted/converted to a format of ‘YYYY-MM-DD’ for ease of comparison.

Figure 26: Implement unit test cases for getInstance method

The first time the test is run it will fail since there is no logic implementation at all. Base on
the first error message that is logged on the developer tool, it clearly points out that the
problem is getInstance is not a function. Switch back to the script the developer start writing
the very first function like so:

Figure 27: getInstance method

Run the test again we see now that all the tests are still failing:

 39	

Figure 28: See the tests fail

The tests are failing but the error message is different hinting that the object returned by
getInstance is undefined instead of defined (“Expected undefined to be defined”). To resolve
that developer needs to rewrite the code so that getInstance actually return an object:

Figure 29: getInstance return an object

Run the tests again and at this point it is observed that the error has been gone, instead
another error is focused on at this time:

Figure 30: See tests fail again

Now moving forward, the developer focus on how to make getCurrentDate a function. If one
still remember, this is exactly the same error message that he gets originally when first run
the test suite. With that experience in mind, the developer keeps carrying on the
implementation of the getCurrentDate in order to pass the specific unit test and continue
forward to the rest of the whole tests suite. At the end of the day, here is the final version
(of the time of this writing) of the getInstance function:

Figure 31: Completed getInstance function

 40	

At this stage, all the tests should be passed:

Figure 32: See all tests passed

In this section, an effort of showing how functions are written, developed and tested is pro-
vided in a step by step manner. Though only part of the getInstance function is examined as
an example. The same little steps should be carried on throughout the whole development
process until the component is fully developed. At the end not only the code is implemented,
the functionalities and features are done, but also tests are completed. Tests are specifica-
tions that help the developer in further development and application maintenance. “Writing
code is cheap, maintaining code is expensive” - It can not be stressed hard enough that it is
not about the code that is run as expected but it should be maintainable. Without tests, the
developer will find it way harder later on in the development process. On the hand, the de-
veloper will have confidence in further development and especially when it comes to refac-
toring code since he knows whether or not his changes will break parts of the app or not.

4.5.5 Code coverage

So far tests have been written however it is hard to say whether the tests are robust enough.
Will there be any scenario/case that is missing which may potentially expose issue in the pro-
gram? Code coverage is the answer. It is an important concept when it comes to testing in
particular and in software development in general. The developer can write a lot of tests,
those tests can be passed when run, but that does not mean that their code is secure and ro-
bust. There needed to be a metric that helps them know how much their code has been test-
ed and that is code coverage. Code coverage is a way to measure and describe how extensive
the program source code is when it is executed through test suites. Code coverage is calcu-
lated in percentage. The higher the code coverage does not mean the better, but coverage
more than 70% can be a good indicator that the program is tested thoroughly and has a lower
chance of software defects compared to one with lower code coverage.

Code coverage is generated by issuing “npm test” on the terminal/command line window.

 41	

Figure 33: moment-calendar-2’s test coverage in command line window

The command will first execute all the test cases and generate test coverage later. The
plugin (browserify-instanbul) also output a nice coverage table on the terminal. If configured
in karma’s config file, it is also possible to generate coverage file displayed in HTML:

Figure 34: moment-calendar-2’s test coverage in HTML format

The figure above shows how much code coverage has been done for our moment-calendar-2
component. The number is more than 90%, which exceeds the standard level of 70%. What
important to mentioned is the coverage criteria that the report showed us. There are a few
coverage criteria. The ones that are covered by karma-coverage, also the mains one, are:

• Statements: this help answer the questions of whether each statement in the
program had been executed.

• Branches: this can be easily explained. For example, given an if-statement, this

criterion checks whether both true and false branches have been executed.

 42	

• Functions: this criteria shows if each function in the program been called

• Lines: as its name, tracking how much lines of source code has been executed

after the tests run.

By clicking on each file, we can also have a better view on which lines have been executed,
which have not. Take api.js for example, this will be shown where the green parts indicate
that those lines have been executed and red parts mean that these have been left out from
the spec/test files.

Figure 35: code coverage analysis

In short, even though coverage, at first sight, seems not to be a vital part of the whole pro-
cess, but it does serve as a guide for developers to see how thoroughly they have been writing
their tests.

4.5.6 Documentations and releases

Documentation is a critical part of software engineering where the illustration that accompa-
nies the computer software is written in the text document to explains how the program op-
erates and can be used (Software documentation, Wikipedia). It is fortunate that Github pro-
vides an efficient and simple way to publish software documentations. The documentation, or

 43	

often called, README, can be written in a Markdown file format, which then can be rendered
as a clean documentation page as the one in this project:

Figure 36: A screenshot of moment-calendar-2’s documentation

A full documentation of this component is available here in appendix 6.

On documenting the application, a good practice is to develop also the demo application
where it serves as an example of how the component is used in reality. Not only does It prove
that this component is functional and useful but also it provides developer ways to discover
and learn more about the component itself, how it works, and how it can be used. The more
detail the demo is, with step-by-step instructional text as well as interactive application, the
easier it is for the developer to follow and get their hands on experience by playing around
and understand how the component can be used at its best.

Within the moment-calendar-2 project, the developer can run “gulp” on the termi-
nal/command line window to utilize the demo application:

 44	

Figure 37: Initialize the demo application by terminal

Figure 38: Demo application runs at localhost:8080, illustrating how moment-calendar-2 can
be used to create a Date picker component

More information about the demo application and its source code can be found at Appendix 3.

 45	

Figure 39: Demo application source code folder

The demo application source code can be a very good resource for other developers to see
how moment-calendar-2 is implemented practically since definitions and examples written in
documentations sometimes may not be intuitive enough for other developers.

Releasing is often the final stage, or at least, in the very final stage of the whole software
release cycle. It is the sum of the stages of development and maturity for a piece of comput-
er software: ranging from its original development to its final release, and including the re-
lease’s updated version to help improve software quality (Software release life cycle, Wikipe-
dia). To release a software component like moment-calendar-2, if one only use git and NPM,
the process can be tiring. Below is a typical steps of that software developer often has to do
to release a software component and publish it to NPM:

1. Making sure that the right branch is being used for releasing (often referred as re-
lease branch) and all the updates from remote branch have been pulled and resolved if
there is conflicts.
2. Bump the version of package.json.
3. Add and commit the changes.
4. Tag the version to git.
5. Push to remote (released) branch
6. Publish to NPM.

Fortunately, there are a few ways to simplify the whole process. In gulp, there are a few gulp
plugins that can help the developer to speedup the development by just simply issuing one
command. Gulp-release-easy is one of them. It is also a gulp plugin that created by the au-
thor with the hope to help others ease their releasing process and publishing to NPM. In this
project, gulp-release-easy is used.

According to that, to release a new version and publish it to NPM, instead of going through
around 6 steps as described above, one can just simply issuing ‘gulp-release’ and the whole
process will be taken care automatically:

A good part about NPM is whenever a new version of the package is released, it will also be
fetched and cloned to the component’s NPM page. In this project, the content of moment-

 46	

calendar-2 README.md is identical to the description in its NPM page. The two will be syn-
chronized whenever there is a new package being released and published to NPM.

Figure 40: moment-calendar-2 on NPM page

It is also a good practice to have a release notes or CHANGELOG to indicate what have been
changed in a specific version. Below is an example of a CHANGELOG:

Figure 41: CHANGELOG file

5 Evaluation

 47	

5.1 Evaluations of TDD in development

Using TDD has brings many benefits. As a developer who practices TDD almost daily, following
are what I observe:

The code quality is improved with development in TDD compared to non-TDD one. Creating
tests first ensures that 100% test coverage is achieved without extra cost.

TDD can be applied anywhere in the whole software development project where there are
requirements ranging from database testing to interfaces to other technologies.

Doing this way, TDD, therefore, handles requirement changes much more efficiently than
other traditional approaches. Due to Agile philosophy on changes and small incremental
development, requirements are not something carved in stone but expected to be changed
over the time. The requirements can be more and more involved and specific. There is no
argument against the fact that implementation changes may turn out to be costly. However,
with TDD, the design of the application is incrementally, and further optimized through time,
making it both robust and flexible at the same time. Without TDD, changes made especially
after production can turn into a maintenance nightmare and can lead to longer time for
releasing, higher risks, and more cost for business as might be expected.

5.2 Evaluations of developing common software component using TDD

During the process of developing moment-calendar-2, using TDD, the development went
through all the necessary stages: Tests are first written, then are run to prove that they fail.
Next real code is implemented to make the tests passed. Code refactoring was then done
when needed to make the program more lean and reusable. As a result, we have a code
coverage, created by browserify-instanbul, of 94.25% (which is an average of 96.28%
statements, 87.5% branches, 96.92% functions, and 96.28% lines), which is close to the goal of
TDD of 100% code coverage.

In addition to that, a new NPM package was released and be a part of the open source
community. The component was released with good documentations which are helpful for
other developers to learn how to use it. This is especially true when it comes to a common
component where it can be reused by different parties in different situations and contexts. In
addition to that, a demo application is implemented to facilitate developers to have a chance
to do some experiment with the component. Though a plain old textual guidance is good but
it is extremely helpful for the developers to have the ability to try out the component them-
selves, help them learn how to use the component not just by reading but also by “hacking”
around the component.

Though the current project set up on GitHub is well-organized, it would be better if it has
continuous integration to automatically run the tests whenever there are commits. In addition
to that, the demo application also needs more refinement and textual guidance instead of
just displaying a single Date picker component. This is, in fact, a location of convenience
where developers can both do research on how moment-calendar-2 is used and at the same
time learn about its API as well as its limitations. Being aware of moment-calendar-2’s short-
comings is important since it motivates developers to further develop and enhance the com-
ponent. Being an open-source project, as time goes by, with the help of the community, I am
positive that the component will gain more attentions and contributions from other develop-
ers, including the ones who have more experience than me, which make it becomes more ma-
ture, advanced and useful in the future.

With its popularity, other developers can easily find it by simply typing in Google Search key-
words “moment-calendar-2”.

 48	

Figure 42: moment-calendar-2 on google

Selecting the first result as in the screenshot leads us to moment-calendar-2 ‘s NPM page.
Here, the Stats section in the lower right corner show how active this component has been
employed by others for the past days, weeks and months. Here is what is the statistics of
moment-calendar-2 at the time of this writing:

Figure 43: moment-calendar-2 downloads statistics

The number of downloads is high at the first time when the package is published. This is due
to NPM’s mechanism to verify whether this package is compliant with NPM regulations or not.
However, after that, the number will be much lower (or higher) depends on the demand or
popularity of this package in the market.

 49	

6 Conclusion

As stated in the goals and objectives, the common component which is then be focused in
the implementation part of this thesis is a common Node module that is only limited to use on
the web platform. This component has no UI at all. It plays a role as a purely functional com-
mon component whose main goals is to facilitate the development of Date picker component.
The component, though originally, intended to be developed for Nordea, it can be used any-
where else just like any open-source project.

At the time of this writing, the digital solution that Nordea is building gets initial success us-
ing the strategy of building common components using TDD. The software has been released
and is used by a few pilot users currently. Unit tests and UI tests are parts of the develop-
ment process. With the help of Continous Integration, code coverage metrics is calculated
frequently. It leverages their benefits making development and maintenance process
much smoother, guaranteeing a high-quality software product ready for releasing and deliver-
ing. These metrics serves as an indicator showing which areas are more vulnerable to changes
and therefore needs more focus on testing.

Also even though the thesis promotes strongly the use of TDD throughout the entire software
development process, and a good strategy in Agile software development, it does not mean
that this technique has no drawback. TDD can be dangerous if applied in areas that are sensi-
tive to changes. That is why the role of software architecture, especially in a big project, is
extremely important where identifying risks and planning up-front concerns which are very
costly to mutate later.

Another situation where implement TDD can become really clumsy is when a software pro-
gram requires cooperation from many other software programs and systems. The only way to
get around this issue is to mock other systems and third-party software and only focusing on
writing tests against the software program in focus. If the process of mocking other third par-
ty software and systems sometimes is more challenging and consumes time as much as time
spent on implementing the real test, one should consider avoiding doing TDD strictly. As a
rule of thumb, whenever something can be very expensive in terms of time, money to
changed later, TDD may not be a good idea to follow strictly.

TDD alone, however, does not make software great. This thesis also shows why develop-
ing common components, from system design to real code implementation, is a crucial part of
the development process. Its benefits are profound. Not only does it bring consistency, main-
tainability, and scalability for the software project which implements it, but also doing the
right way, with good and generous intention, it can help producing a piece of software that
can be shared and contributed to the open source community. This development strategy is
especially important for a large financial application project, where hundreds of people are
involved. It allows bank to serve their customers better, keep pace with market changes, and
develop with high quality, low time to market, and with a greater return on their IT invest-
ment, which, in turn, helps them stay competitive with their peers as well as disrupting
FinTech startups.

Nordea can use the moment-calendar-2 component in the future not only for the Date picker
component, but any component that requires date/time operations. The component is devel-
oped with scalability in mind. In fact, it is so scalable that it can be used elsewhere in anoth-
er project, in a totally different business context, even maybe with different technology
stack other than front end framework, without limited to only the banking and financial ser-
vices area where it was originally built for.

During the thesis project, I have learned and had a deeper understanding of the philosophy
behind Atomic design and web common component in general. At the same time I had the
opportunity and freedom to cultivate my programming skills using TDD, which, helps me en-
hance my coding skills as a developer and, hence, be able to write better, contribute well-
maintained source codes for my company project. I was also satisfied and proud of moment-
calendar-2 being published and valuable not only to my project at hand but also to other de-

 50	

velopers, not only in Nordea, but also in the open-source community, who wants to develop
their date/time-related software features.

In "No Silver Bullet – Essence and Accident in Software Engineering", Turing Award winner
Fred Brooks wrote that "there is no single development, in either technology or management
technique, which by itself promises even one order of magnitude improvement within a dec-
ade in productivity, in reliability, in simplicity." Though he advocates that software should
"grow" organically through incremental development and points out devising, implementing
the main and subprograms should be done right at the beginning of the development project.
This thesis shares Brooks’s belief as well as aligns with his vision of subprograms development
through the development of common component in addition to using TDD methodology during
the development process in order to enhance the software design and functionality little by
little. Developing software in this fashion keeps engineers motivated by being able to learn
new things and improve themselves, provides a working system at every stage of the devel-
opment process and, in the end, helps build more scalable, more maintainable, better quality
software products.

 51	

References

Print sources

Brooks F, 1995. The Mythical Man-Month: Essays on Software Engineering . Addison-Wesley

Oversion J, Strimpel J. 2015. Developing Web Components: IO from Jquery to Polymer. Cali-
fornia: O’Reilly Media, Inc.

Online sources

Agile Adoption by the Financial Services Industry. 2012. Accessed 5 March 2017
https://www.cprime.com/2012/09/agile-adoption-financial-services-industry/

Asynchrony. 2017. Accessed 10 April 2017
https://en.wikipedia.org/wiki/Asynchrony

Chronometer. 2017. Accessed 10 March 2017
https://en.wikipedia.org/wiki/Chronometer

Code refactoring. 2015. Accessed 31 December 2016
https://en.wikipedia.org/wiki/Code_refactoring

Code refactoring. 2017. Accessed 10 April 2017
https://en.wikipedia.org/wiki/Code_refactoring

Continuous integration. 2017. Accessed 5 March 2017
https://en.wikipedia.org/wiki/Continuous_integration

Dynamic programming language. 2017. Accessed 10 March 2017
https://en.wikipedia.org/wiki/Dynamic_programming_language

Factory method pattern. 2016. Accessed 31 November 2016
https://en.wikipedia.org/wiki/Factory_method_pattern

Gherkin. Accessed 6 January 2017
https://github.com/cucumber/cucumber/wiki/Gherkin

Goerner, A. 2016. How better faster cheaper happens. Powerpoint slides. Accessed 11 March
2017
http://www.alani-
consulting.com/uploads/8/5/4/6/85469078/how_better_faster_cheaper_happens_-
_alani_version_v2.1.pdf

High-level programming language. 2017. Accessed 10 March 2017
https://en.wikipedia.org/wiki/High-level_programming_language

Internet Impact on Economy. 2009. Accessed 29 December 2016.
http://news.softpedia.com/news/Internet-Impact-on-Economy-113952.shtml

ISO 8601. 2017. Accessed 5 January 2017
https://en.wikipedia.org/wiki/ISO_8601#Dates

Jasmine – introduction.js. Accessed 5 March 2017
https://jasmine.github.io/2.0/introduction.html

JavaScript Frameworks: The Best 10 for Modern Web Apps. 2016. Accessed 31 March 2016.

 52	

http://noeticforce.com/best-JavaScript-frameworks-for-single-page-modern-web-
applications

JavaScript. 2016. Accessed 30 December 2016
https://en.wikipedia.org/wiki/JavaScript

JavaScript. 2017. Accessed 10 April 2017
https://en.wikipedia.org/wiki/JavaScript

Mocks, fakes, and stubs. 2017. Accessed 11 April 2017
https://en.wikipedia.org/wiki/Mock_object#Mocks.2C_fakes.2C_and_stubs

moment.js. 2017. Accessed 10 April 2017
https://momentjs.com

Node.js. 2017. Accessed 10 April 2017
https://en.wikipedia.org/wiki/Node.js

Nondeterministic algorithm. 2017. Accessed 10 April 2017
https://en.wikipedia.org/wiki/Nondeterministic_algorithm

Nordea. 2016. Accessed 11 February 2017
https://en.wikipedia.org/wiki/Nordea

Paper Date picker. 2016. Accessed 11 March 2017
https://github.com/bendavis78/paper-date-picker

Software design pattern. 2016. Accessed 31 December 2016
https://en.wikipedia.org/wiki/Software_design_pattern

Software design pattern. 2017. Accessed 10 April 2017
https://en.wikipedia.org/wiki/Software_design_pattern

Software documentation. 2016. Accessed 30 December 2016.
https://en.wikipedia.org/wiki/Software_documentation

Software release life cycle. 2016. Accessed 30 March 2016.
https://en.wikipedia.org/wiki/Software_release_life_cycle

Test harness. 2017. Accessed 11 April 2017
https://en.wikipedia.org/wiki/Test_harness

Testing the controller. Accessed 7 March 2017
http://gavd.github.io/step-by-step-web-apps-with-lithium-php/testing-the-controller.html

The history and legacy of agile development. Accessed 30 January 2017.
https://techbeacon.com/agility-beyond-history%E2%80%94-legacy%E2%80%94-agile-
development

Thinking in components. 2015. Accessed 5 March 2017
http://www.hedleysmith.com/posts/thinking_in_components.html

Understanding Web Components. 2016. Accessed 14 March 2017
https://medium.com/the-ui-files/understanding-web-components-d051baa66019#.iuk0m0ghl

Unit testing. 2017. Accessed 10 April 2017
https://en.wikipedia.org/wiki/Unit_testing

Unit testings. 2017. Accessed 5 March 2017

 53	

https://en.wikipedia.org/wiki/Unit_testing

Use UI Automation To Test Your Code. 2017. Accessed 5 March 2017
https://msdn.microsoft.com/en-us/library/dd286726.aspx

Version control. 2016. Accessed 31 November 2016.
https://en.wikipedia.org/wiki/Version_control

What is Agile. Accessed 7 March 2017
http://www.agilenutshell.com/

What Is Agile? (10 Key Principles of Agile). 2007. Accessed 7 March 2017
http://www.allaboutagile.com/what-is-agile-10-key-principles/
	

 54	

Figures

Figure 1: Architecture design of a general banking application where moment-calendar-2 is
used .. 9
Figure 2: Date picker UI example .. 10
Figure 3: Five levels in atomic design ... 12
Figure 4: Atom level in atomic design ... 13
Figure 5: Molecules level in atomic design ... 14
Figure 6: Organisms level in atomic design – Date picker with input field 14
Figure 7: Template level in atomic design .. 15
Figure 8: Page level in atomic design – Nordea front page 16
Figure 9: Test pyramid model ... 18
Figure 10: Webstorm UI .. 22
Figure 11: Github UI .. 23
Figure 12: NPM UI ... 24
Figure 13: A typical UI of Date picker ... 27
Figure 14: Date picker with input field .. 28
Figure 15: Date range picker .. 28
Figure 16: Date picker with different localizations ... 29
Figure 17: Date picker design with atomic design ... 30
Figure 18: Create a new repository .. 32
Figure 19: Basic gulp tasks .. 33
Figure 20: Karma configuration file .. 34
Figure 21: moment-calendar-2 sub modules .. 35
Figure 22: How another module is included .. 35
Figure 23: getInstance factory method .. 35
Figure 24: moment-calendar-2’s interface ... 37
Figure 25: Implement unit test cases for getInstance method 38
Figure 26: Implement unit test cases for getInstance method 38
Figure 27: getInstance method ... 38
Figure 28: See the tests fail ... 39
Figure 29: getInstance return an object .. 39
Figure 30: See the tests fail again ... 39
Figure 31: Completed getInstance function .. 39
Figure 32: See all tests passed .. 40
Figure 33: moment-calendar-2’s test coverage in command line window 41
Figure 34: moment-calendar-2’s test coverage in HTML format 41
Figure 35: code coverage analysis ... 42
Figure 36: A screenshot of moment-calendar-2’s documentation 43
Figure 37: Initialize the demo application by terminal ... 43
Figure 38: Demo application runs at localhost:8080, illustrating how moment-calendar-2 can
be used to create a Date picker component ... 44
Figure 39: Demo application source code folder ... 45
Figure 40: moment-calendar-2 on NPM page ... 46
Figure 41: CHANGELOG file ... 46
Figure 42: moment-calendar-2 on google ... 48
Figure 43: moment-calendar-2 downloads statistics .. 48

 55	

Tables

Table 1: gulp tasks definitions ... 33
Table 2: monthCalendar instance’s API .. 36
Table 3: moment calendar core’s API .. 37

 56	
 Appendix	

Appendixes

Appendix 1: Moment-calendar-2’s core.js module .. 57
Appendix 2: Moment-calendar-2’s api.js module .. 68
Appendix 3: Demo application .. 59
Appendix 4: Gulp file ... 60
Appendix 5: Documentation of Moment-calendar-2 ... 61

 57	
 Appendix	

Appendix 1: Moment-calendar-2’s core.js module

 58	
 Appendix	

Appendix 2: Moment-calendar-2’s api.js module

		
	 	

 59	
 Appendix	

Appendix 3: Demo application
	

	
	

• Demo application can be accessed at https://vinhnghi223.github.io/moment-
calendar-2/

• Demo application source code can be accessed at:
https://github.com/vinhnghi223/moment-calendar-2/tree/master/demo	

	 	

 60	
 Appendix	

Appendix 4: Gulp file

	
	

 61	
 Appendix	

Appendix 5: Documentation of moment-calendar-2

	

