
1

Yu Li

ARTIFICIAL INTELLIGENCE IN UNITY GAME ENGINE



2

ARTIFICIAL INTELLIGENCE IN UNITY GAME ENGINE

Yu Li
Bachelor Thesis
Spring 2017
Information Technology
Oulu University of Applied Sciences



3

ABSTRACT

Oulu University of Applied Sciences
Information Technology

Author: Yu Li
Title of Bachelor´s thesis: Artificial Intelligence in Unity Game Engine
Supervisor: Veikko Tapaninen
Term and year of completion:Spring 2017 Number of pages:38

This thesis was conducted for Oulu Game Lab. The aim of this bachelor thesis
was to develop in Oulu Game Lab a game called the feels good to be evil. The
main purpose of the project was to develop a game and learn game
development focus in the artificial intelligence area.

This thesis has explained the theory behind Artificial Intelligence. The game
was developed in Unity Game Engine with C# language, and also Panda
Behavior Tree was used in this project as an asset.

The result was the game has a finished demo build. Unity will be my first choice
for game development in the future and Behavior Tree will be the solution for
artificial intelligence.

Keywords: Unity, Game Design, Finite State Machine, Artificial Intelligence,
Behavior Tree



4

PREFACE

During the training period in Oulu Game Lab, I developed this game using Unity

Game Engine and Panda BT. After that I continued to expand this project with

my own interests. And I learned a lot about how to design and implement AI in

Unity.

I would like to thank my supervisor Veikko Tapaninen. He guided me in this

thesis and helped me a lot. I would also like to thank Kaija Posio for the

language correction.

Oulu 11.04.2017

Yu Li



5

CONTENTS

ABSTRACT 3

PREFACE 4

TABLE OF CONTENTS 5

VOCABULARY 7

1 INTRODUCTION 8

2 ARTIFICIAL INTELLIGENCE IN GAME INDUSTRY 9

2.1 Game Industry AI Progress 9

2.2 Introduction to Artificial Intelligence 10

2.2.1 Introduction to state machine 10

2.2.2 Introduction to behavior tree 11

2.3 Comparison Between different AI Model 14

2.4 Introduction to Agent Awareness 15

2.5 Introduction to Fuzzy Logic 16

3 AN INTRODUCTION TO UNITY GAME ENGINE 17

3.1 History of Unity Engine 17

3.2 Comparison of Unity and other Game Engine 17

3.3 Basic Feature of Unity Engine 18

3.3.1 Mecanim Animation 19

3.3.2 Navigation System 20

3.3.3 2D Physics 21

3.3.4 Scripting 22

3.3.5 UI 22

4 GAME MECHANICS INTRODUCTION 23

4.1 Introduction 23

4.2 Concept Statement 23

4.3 Combat 23

4.4 Summon Mechanic 24

4.5 Level Design 24

5 COLDEN DARK GAME AI DESIGN 26

5.1 Introduction 26



6

5.2 Game AI Logic Design 26

5.2.1 Introduction to PandaBT 26

5.2.2 AI design of the summoned minion 27

5.2.1 AI design of the summoned minion 29

5.2.1 AI design of the summoned minion 30

5.3 Design sensor of the game 32

5.3.1 Add colliders to each agent 32

5.3.2 Make target type based detection system 33

5.4 Choose the navigation system 34

5.4.1 Introduction to A* algorithm 34

6 GAME AI IMPLEMENTATION 36

6.1 Core task for Boss 36

6.2 Core task for minion 38

7 CONCLUSION 40

REFERENCES 41



7

VOCABULARY

Term Meaning

AI Artificial intelligence

IDE Integrated development environment

2D 2 dimensional

3D 3 dimensional

FSM Finite state machine

OGL Oulu game lab

API Application programming interface

Unity Unity 3D game engine

NavMesh Navigation Mesh



8

1 INTRODUCTION

When talking about AI in the game industry, it is a really in-depth topic. AI

includes machine learning, agent behavior, and decision making. It is really

important in modern game development.

Making a good AI can have a huge influence on game play (Wexler ,S, 2002,

p.3). The idea for this thesis came up with the development of our new game in

OGL.

The learning curve of AI is really deep, thus what is covered in this thesis will

start from the beginning to intermediate, the major topic will cover the theory

and some examples of State Machine and Behavior Tree,it also includes how AI

can influence a game and some basic concepts of the Unity game engine.

The aim of this thesis was to discover the mysterious AI and learn how to

implement a real AI in a real game with the Unity game engine.



9

2 ARTIFICIAL INTELLIGENCE IN GAME INDUSTRY

This chapter will explain how AI has been used in game industry. Also this

chapter will explain two different ways to achieve the modern AI design, and

also the long progress history of AI used in game industry. The purpose of this

chapter is to give a brief explanation on the theory behind the modern AI design.

AI has been used in game industry since the 1970s (Wikipedia, Cited

01.01.2017). A good game can sometimes be decided by a good AI. Nowadays

AI has more and more impact not only in video games but also on the fast

developing mobile game industry.

2.1 Game Industry AI Progress

During the early state of game industry, AI has mostly consisted of some simple

rules. It was not yet the core part of game development (Wikipedia, Cited

02.01.2017). The first game that introduced the public a truly advanced AI is a

game called Half Life. The enemy AI of this game uses a schedule-driven state

machine which makes the enemy show different behavior under some critical

situation(Woodcock,S. 1998, p.1).

The state machine is widely used in game industry to achieve a common AI

behavior, but there are some significant problems coming with the state

machine. First of all, although the state machine is easy to design, it became

really hard to maintain when adding more state to it, because every time when

adding a new state, all the transition linked to this state and another state had to

be considered. Nowadays developers have found a new way to implement

those behaviors. It is called the behavior tree. It has a encapsulated logic in a

hierarchy structure, From then a behavior tree has been a standard industry

form. Compared to the state machine, it provides a scalable solution for adding

logic to AI. It is definitely a better solution for a large project (Pereiro,R. 2015,

p.1),



10

2.2 Introduction to Artificial Intelligence

AI has a relatively long history and it has still been changing in recent years.

The most well known breakthrough was when the Google alpha beated the

world’s top Go player. It includes machine learning and tree search techniques

(Reese,H. Cited 12.14.2016). AI is always associated with computer science,

but the algorithms used in AI came from many other fields such as Maths, and

Physics. The aim of AI is to create a more human-like agent to help people

solve different tasks (Wikipedia, Cited 01.03.2017).

2.2.1 Introduction to state machine

FIGURE 1. State machine example



11

FIGURE 2. Hierarchical state machine example

The state machine is a model used to control the execution flow, the state

machine only needs two simple components, a state and a transition.

The state represents the currently executed flow. The transition is used to

translate into another state when it meets the condition. The state machine is

like the brain of the enemy, each state is like a task for the enemy to finish. In

Figure 1, the image shows a common example of the state machine. There are

four states: start, idle, attack, and chase, Each of them has a transition to

another state.

The state machine has an upgraded version which called hierarchical state

machine(Jorge, P. 2016. p.98), it is similar to the state machine. The difference

is that the developer can make a group of certain state, and all the group

members can share the same transition to other groups which will provide more

reusability. In Figure 2, the image shows an example of a hierarchical state

machine. There are three states in a combat group, they all share the same

transition from a chase state. It is like a looping system inside the combat group

while the condition succeed.

2.2.2 Introduction to behavior tree

The behavior tree was developed in game industry. It is purely served as an AI

model to achieve common behavior, The behavior tree is similar to the

hierarchical state machine. The main difference is that the behavior tree is



12

made with a single block of a task rather than a state (Renato,P. Cited

29.03.2017).

The behavior tree is made with different nodes. It runs the specific node from

the top to the bottom. These nodes have a different name and functionality. It

can be divided into three major categories: composite, decorator and leaf. A

common example of these nodes can be seen in Figure 3.

FIGURE 3. Common behavior tree example

 Composite node: This is the base structure of these hierarchical nodes. It

gives the identification of the node structure. It can have several child nodes,

lsuch as a sequence node, a selector node, and a parallel node. A

sequence node is a self-explanatory term. It runs child tasks one by one as

long as they all succeed, A selector node runs child tasks which return the

first succeeded task. A parallel node will run all the child tasks at the same

time. We could explain how to use a parallel node as follows. When an

agent tries to attack someone while walking, we consider attacking and

walking as two separate actions, the only way to perform both actions is to

put them in a parallel node.



13

 Leaf node: A leaf node is like a leaf in the tree. It is the most low-level node

yet it has the most function that actually performs a certain action.

 Decorator node: Sometimes referred to a not, mute, or repeat node, it

serves as a decorator as the same in the computer language which can

invert, mute, or repeat the returned status of their child. For instance, I want

to make an agent shoot four times when he encounters a target, in order to

do that, I can use a repeat decorator which will repeat the shooting four

times.

All these nodes above are used as a decision making state for a more robust

behavior purpose. These tree nodes can be really deep in a certain large

project. In Table 1, the left side is a typical selector node, it is a list of question

and it will evaluate each action in the order. If an attack task is succeeding, it

will return to the parent node, which means that the selector task has been

done. If it fails, it will go on with the second one until the last one succeeds.

TABLE 1. List of questions and actions

Player within sight? Attack

Player died Chase

Player reaches the attack range Detect

In Figure 4, the image shows the use of the sequence node. It will run each

sequence one by one. It runs like a test task. If the target in sight returns

succeed, it will run the nested test task. If it fails, it means that the whole

sequence node will fail. Thus in order to perform an attack action, these two test

tasks must succeed before it.



14

FIGURE 4. Sequence node example

2.3 Comparison Between different AI Model

In this section, I will compare some common AI design patterns. All the pros

and cons will be listed below in the Table 2.

TABLE 2. Compare State Machine, Behavior Tree and Utility AI

Name Pros Cons

State

Machine
 Easy to learn and understand

 Easy to implement

 Very old style to achieve

AI

 Logic is limited

 Can become really

complex when the

project scale goes up.

Behavior

Tree
 Provides more flexibility

 Easy to make changes when the project

 Can be hard to learn at

the beginning



15

goes on

 Custom tasks to fit different design

patterns.

 Strong reusability

 Not worth for a small

scale AI behavior

Utility AI  Ultra-high performance

 easy to extend

 Much more complex

than the Behavior Tree

 Really deep learning

curve

2.4 Introduction to Agent Awareness

An agent is anything that can perceive its environment through sensors and

acts. Sometimes it needs to perform some human-like behavior (TutorialPoints.

Cited 28.02.2017). In order to modify the human sense, I need to create

something called sensor. This sensor may include a common human sense,

such as seeing, hearing or smelling. In order to simulate this kind of sense in

Unity, a collider-based system, which is a component attached to an agent that

has a physically shaped range, is always used to simulate the sense(Jorge, P.

2016. p.154). In Figure 5 the green box outside shows the range of sight.

Anyone within the sight will be noticed by using unity’s built in physics.

.
FIGURE 5. Sensor in-game use



16

2.5 Introduction to Fuzzy Logic

Fuzzy logic is an essential part when designing more human-like AI, unlike the

true or false in the regular boolean statement, fuzzy logic uses the amount of

true or false to evaluate a fact(Wikipedia. 05.02.2016.).The Figure 6 image

shows how the fuzzy logic is used to evaluate temperature.When it comes to AI

whether it is behavior tree or state machine, a decision always has to be

made.Instead of using a boolean statement to evaluate an agent is died or alive,

fuzzy logic provides a lot more fuzzy solution like healthy, almost died, almost

healthy etc. It makes an AI agent more unpredictable and interesting.

FIGURE 6. Fuzzy Logic Image(Wikipedia, Fuzzy Logic)



17

3 AN INTRODUCTION TO UNITY GAME ENGINE

3.1 History of Unity Engine

Unity nowadays is commonly known as Unity3D. It is a game engine with IDE

for creating video games and mobile games. The first version of Unity was

published on 3 October 2008. The initial idea was to create a game engine for

junior developers with professional tools. It has an easy to use interface and

workflow (Wikipedia 2016, Cited 02.01.2017).

With years of development, Unity has became what it is now, a great game

engine for every developer.

3.2 Comparison of Unity and other Game Engine

Unity has been here for 8 years, but what makes Unity so special? What makes

it different from other game engines? Unity is free to use, for the personal

edition, it is totally free and a user can still use most of its functionality. Unity

really opens the border between game development and common students.

Table 3 contains a specific comparison between Unity and some other Game

Engines.

TABLE 3. Compare Unity3d, GameMaker, Unreal Engine, Cocos2d

Name Pros Cons

Unity3d  Unity personal edition is free

 Has an easy Assets work flow

 Uses C# which has an easier

learning curve compared to C++

 Cross platform almost available for

the most platform.

 Supports both 2D and 3D

 A lot of tutorials and a good

 Buying the assets could

take a lot of money

 No Source code

available.

 Takes a bit time to learn



18

community

GameMaker  Simple to use

 Good for small and personal project

 No need to understand the deep level

programming term such as multi-

treading.

 Only Support 2D game

 Use its own language

GML

 A little bit expensive

Unreal

Engine
 Has a blueprint visual scripting, no

writing of code is needed.

 Open source

 Completely free for universities

 Really stunning Graphics compared

to other engines

 C++ can be hard to

learn

 Less documented

 Not enough learning

material compared to

Unity

Cocos2d  Open source and free

 Lots of learning resources from the

community

 Lots of extensions

 Does not support a

console such as Xbox

 No direct graphics tools

to use

 Only Supports 2D

3.3 Basic Feature of Unity Engine

Unity contains many features that developers can use to create a game. Also it

has lots of third party integrated frameworks. In this chapter, I will cover some

basic features in Unity and also demonstrate how to use them.



19

3.3.1 Mecanim Animation

FIGURE 7. Mecanim Animation

FIGURE 8. Mecanim Animation Transition

Unity uses its own mecanim animation system. This animation system uses a

state machine system which has transitions between different animations. The

Figure 7 shows how a basic mecanim animation system looks like. Each

animation is a state in the animation system. There are lines with an arrow to

link them together in order to control the transition. The blue box named as Any

State is a default state when creating the mecanim system, It is used as a



20

default state which can transit to another state by ignoring the current state. In

the left box, it contains the parameter used as a conditional checker between

that transition. It includes Boolean, trigger, string and Int as a different input.

The Figure 8 shows how the transition works between different animation states.

By setting up the transition time between each state, the animation transition

will become much smoother.

3.3.2 Navigation System

FIGURE 9. Nav Mesh Agent

Unity has its own built-in navigation system. It only supports the 3D game.

Navigation is made with two basic components: navmesh and navmesh agent.

Navmesh is used for backing a walkable and non-walkable area, The navmesh

agent is a component attached to a game object, which will help the object lead

to the destination. Usually, a non-walkable path is some objects with colliders

that are higher than the platform surface. In Figure 9 the navmesh agent is

required to be added to the agent. The user can add it with the Add Component



21

button in the Figure 9. There are lots of parameters to adjust in the navmesh

agent in order to get a better result. When it comes a real usage, the

SetDestination() is always called whenever an agent needs to set its destination.

3.3.3 2D Physics

FIGURE 10. Rigidbody 2D

Unity also has a great built-in 2D physics with powerful API. In the Figure 10 a

rigid body 2D is a component attached to the game object. It allows this game

object to interact with other game objects by using 2D physics.

The user can set the gravity, mass and other parameters to simulate a different

physical situation.

Here are some example APIs that can be used when this two game object

collides with each other.

OnCollisionEnter2D: This is sent when an incoming collider collides with this

game object.

OnCollisionExit2D: This is sent when the collider stop collides with this game

object.

OnCollisionStay2D: Called each frame when two object collides with each

other.

Those built-in functions can be used in different situations which provides a

really flexible usage.



22

3.3.4 Scripting

Scripting is the essential part of all game engines. Unity has its own built-in

class called MonoBahavior. It is attached to a certain game object to control it.

Unity supports two different programming languages: C# and Unityscript. The

Mono class usually contains two default functions: Start() and Update(). Start()

is called when the game starts and the Update() function is called with every

frame, Update() usually contains code for each frame update.

Unity has a lot of powerful APIs which makes the development of game much

more easier than pure hand coding. All of those APIs can be checked online at

the power Unity documentation website.

3.3.5 UI

A good game also needs a good UI system, Unity provides some really cool

feature: to make the UI development process much quicker. It has a drag and

drop system to simply drag anything to the canvas, By adding a different

component to those UI objects, the functionality could never be easier to use.



23

4 GAME MECHANICS INTRODUCTION

4.1 Introduction

This chapter will be used as an introduction to the game project which I have

been working on. It will include some basic concepts and gameplay features of

the game.

4.2 Concept Statement

Colden Dark is a 2D hack-n-slash game situated in a medieval-themed fantasy

world, which explores a different perspective on the usual portrayal of the “good

guys” being the stars of every story they appear in. Colden Dark gives the

player an opportunity to embrace the evil side to the fullest, burning villages,

killing innocents, and spreading chaos and fear across the country.

The player finds themselfs in the shoes of an evil champion, who has been

summoned by the dark prophet to protect the values of evil and oppose the

egoistic and narcissistic heroes of good. His behavior in the game will directly

influence the gameplay.

4.3 Combat

 Fast paced, hack-n-slash combat.

 Main means of fighting for the main character – melee weapons, including

various abilities respecting the evil theme like sacrificing minions, fueling

abilities by killing enemies, and so on.

 Skills have cooldown. There is no need for mana.

 Summoned minions that will fight alongside and support the main character

as long as they can.

 As the player progresses in the game, they will be continuously confronted

by enemy minions and minion waves, the levels themselves will end with a

boss fight or an important event.



24

 The enemies may appear from any direction – front, behind, or the sides of

the battlefield, depending on the environment.

4.4 Summon Mechanic

 Minions will be summoned next to the player with a short animation.

Summoning doesn’t require currency, it relies on cooldown. Summoning a

certain minion might limit using others simultaneously.

 Each minion has unique abilities that either deal damage to enemies or

support the main character.

4.5 Level Design

Level design is the core part of our game, the list below contains some ideas for

the level design.

 A lot of focus is being put on the environment and fluent transitions between

environments. A parallax background and battlefield is essential to immerse

the player in the story and its progression.

 The game should support even elevation, The levels do not have to be

plainly flat.

 Various dynamic features can be supported. such as obstacles, traps,

environmental destruction animation.

 A dialogue system should be seamlessly intertwined with the game. Its

correct functionality and fluency is vital for the feel of the game (dialogue

timing, correct event handling, perhaps choice mechanic to some extent.).

 Most of the decisions are made directly by actions in the game not by

dialogue boxes (aka. Burn the village, break something, kill someone).

 Boss fights appear at the end of some levels and they are scripted to

provide a challenge for the player – their design can use e.g - the hack-n-



25

slash combat and movement, minion mechanic, rage mechanic, abilities

mechanic, or environmental obstacles.



26

5 COLDEN DARK GAME AI DESIGN

5.1 Introduction

This chapter will focus on the real AI usage in the Colden Dark game. The core

AI concept in this game will be described in this chapter. This is a heavily code

based chapter which will contain a lot of code through the entire behavior tree

implementation. This chapter serves the core part of this thesis that

demonstrates the game AI use in the Unity game engine.

5.2 Game AI Logic Design

In the project there are three specific individual needs for AI: the basic Enemy,

the Basic summoned minion and the Boss. Each of them needs a specific

design to achieve the goal.

5.2.1 Introduction to PandaBT

Building a behavior tree is a heavy task. PandaBT is a Unity free assets used to

create a behavior tree. The user can create custom tasks through code and

make hierarchical nodes use a pure text editor.



27

5.2.2 AI design of the summoned minion

FIGURE 11. Hierarchy node



28

For this one I use a Behavior tree to implement AI. The PandaBT plugin is used

in this individual object.

The summoned object uses 5 tree nodes to complete the task (Idle, Follow,

Attack, CastFirstAbility and Chase enemy)

In the Figure 11, which is the designed tree structure for the summoned minion,

at the root tree which is named the OrgeBehavior, it will run through the top to

bottom as long as one of the child nodes succeeds. All of the tree nodes are

placed based on the priority of execution.

 In the Idle tree, the while statement has the same functionality as a common

programming language, It will run the child sequence as soon as it has met

all the condition in the while statement therefore, the summoned minion will

be idle if there is no enemy around and he is in the following range, below

the while condition. The parallel node is the actual action node that will

perform a certain action. The StopMoving is used to stop the movement

whenever this node starts, and the Update EnemyTaget is used for

detection so that it will be repeating every second.

 The Follow tree is a little different from the idle tree, because the player

must not in the following range meet this condition, while the tree node is

running, First of all, it must set the destination around the player as a

following mark, and in the parallel node, the UpdateEnemyTarget node and

the MoveToDestination node will run at the same time so that the object will

move to the destination while continuing to update its target list.

 The Attack tree is more complex than others. At the top sequence of this

tree, it will check through all the conditions one by one. In the while

statement it has all the conditions that will be checked in each frame,

because the object needs to make sure that he is in the attack range and

also all the abilities are on cooldown. This is not like one time condition

therefore it has to be in a while loop.

 The last one, the Ability tree is similar to the attack tree. The difference is

that the last node is a fallback node. The fallback node is like a selector, it

will run the children until one of them is succeeded. the ability tree has a

separate cooldown so that we need that selector to choose which one to

cast at a certain condition.



29

5.2.1 AI design of the summoned minion

Considering the topics of the thesis, I chose to use a variety of AI design. For

the easy AI, such as the enemy without a further extension, a state machine

can be a good choice because it is easy to implement and understand.

FIGURE 12. State Machine Diagram

The Figure 12 shows the State Machine diagram which is used for the enemy

minion. It has totally 7 states, Each state has a transition to another state when

it meets the condition. The death state is a state that every state should have a

transition on it.This state machine is a basic design and it can also be translated

to a behavior tree. In order to use the state machine easily, I will keep the

transition as simple as possible:



30

 Idle State: From the idle state. It will be translated to a detection state when

the game starts.

 Detection State: The detection state is used to evaluate a target. When the

target is detected, it will translate to a chase state.

 Chase State: In the chase state, the minion will chase the target until it

reaches the attack range.it can be translated into to two different states,

depending on whether it reaches the attack range first or the ability cast

range first.

 Attack State: In this state, the minions will attack the target, it will translate

back to chase state when the target is out of attack range, or translate to

detection state when the current target dies, or translate to ability casting

state when the ability is not on cooldown.

 Ability Casting State: This state is similar to attack state, but it has a long

time cool down, so it will call only a few times and translate back to

previews state.

 Death State: this state is so called any state that every state has a transition

to it. It has a basic condition that the minions die, and all the other state will

translate to this state while muting all the other states.

5.2.1 AI design of the summoned minion

For the last one, it comes to the hardest part, the Boss AI design. A boss fight is

suppose to be a challenge for the player. It should be funny and well balanced.

in this particular game, our boss character is a ranger with a knife, thus the boss

should have two different attack style which depends on the distance between

the boss and the character. On the other side the boss will have the melee

ability and the ranged ability. The Figure 13 shows a boss behavior tree where

there are 7 tree nodes based on the Behavior node.

The general function of each tree:

 SummonMinions: this tree is used to handle the boss to summon minions.

It is very simple. There is only one sequence in this tree therefore it will



31

check all the conditions first and summon the minion and then wait for an

animation time to finish.

 UseBackKick: this tree is used for the boss to do a special melee attack.

 UseAbility: this tree is used for the boss to use a ranged ability. This tree

is very similar to the CastAbilityTree in OrgeBehavior but it is more

complex. In the selector node there is two sequences represents two

abilities, but inside the sequence there is another selector which is used

to check current ammo. Thus it combines the reload and the ability

together to make a more complex behavior.

 FireWithBullets: this tree is used for the boss to do a basic range shot. It

will check all the conditions one by one in the sequence node, And while

the boss is in the shooting range, it will check the ammo first and ensures

that the current ammo is more than 3, otherwise the boss will recharge

the ammo and then do the basic shooting. After the basic shooting, a

selector node with three children will be executed. Thus the boss will

either do a special attack or just continue on the melee chase.

 Attack: this tree is used to do a basic melee attack. It is very similar to

the attack tree in OrgeBehavior.

 Chase: this tree is used to Chase a character. It is very similar to the

chase tree in OrgeBehavior.

 Idle: this tree is used as idle for the boss.



32

FIGURE 13. First part of behavior tree

5.3 Design sensor of the game

In this chapter, I will use the Unity engine built in physics to simulate a sense

stimuli on a different agent. In this game every agent needs to have a sight to

decide if he can see their opponent. I will use colliders as a sight box to

simulate the length and width of the sight.

5.3.1 Add colliders to each agent

Each agent has a different sight, The melee minion should have a shorter range

compared to the ranged minion, Thus I adjusted a different sight range for them

to fit this purpose. By using the Unity built-in colliders we do not have to write



33

our own physics detection when the colliders collide with any game object. An

OnTriggerEnter() function is called to ensure that this agent is detected and

added to the target list.

5.3.2 Make target type based detection system

When the agent detects multiple targets, I want that this agent can choose the

desired target based on the distance and the target type of the opponent. I will

use a list to store all the targeted opponents. The Figure 14 shows how to fetch

the best target in the list. I use an individual number in different types of minions

by multiplying it with the current distance. The final result will be fetched in the

list by comparing the current target with the highest priority target in order to find

those targets in the same priority. And within the if function, another if function

will be used to find the closest target, which shares the same type of priority.

The result came out with the highest priority target with the closest distance.



34

Figure 14. Function to fetch targets

5.4 Choose the navigation system

In this chapter I will cover the navigation system used in Colden Dark, Unity has

its built-in 3D navigation system, but our game mainly uses 2D physics. Thus, I

needed to find a 2D navigation system which fits our game. I found that the

polynav2D is a great asset in the Unity assets store and it uses the A* algorithm

to find the closest path.

5.4.1 Introduction to A* algorithm

A* is a computer algorithm used in pathfinding. It is one of the most popular

methods used in finding the closest path (Wikipedia. Cited 07.02.2017.)

A* has an equation to determine the closest path: F = G+ H (Wikipedia, Cited

07.02.2017.). The Figure 15 shows each value of a nearby square. The result F

shows the closet to move on. The nearby square will be the original spot to

evaluate the value. By simply choosing the lowest F value a path will be drawn

and it is the closest path to the destination.In the Figure 16 the blue square

shows the final path and all the calculated squares from the start position.

 G stands for the movement cost from the starting square to the nearby

square.

 H stands for the movement cost from the nearby square to the final

destination.



35

FIGURE 15. A* pathfinding grid(A* Pathfinding for beginners)

FIGURE 16. Final path to the destination(A* Pathfinding for beginners)



36

6 GAME AI IMPLEMENTATION

In this chapter, I will demonstrate the implementation of core task for the agent to do the actual
behavior.

6.1 Core task for Boss

The Core mechanic of Boss Includes a basic attack, a special attack, a reload,

a movement and summon minions. The basic attack includes shooting with a

gun and slashing with a dagger. In the Figure 17 the code shows how to

implement a melee attack. I use a swing_progress_timer as an interval in each

attack. It will reset to 0 every time the boss attacks. In the Figure 18 the

shooting function will be called every time when the shooting animation is

played. It will create a projectile on the correct position and the projectile will

move to a certain direction where the boss is facing.

,
FIGURE 17. Code to implement a melee attack



37

FIGURE 18. Code to implement gunshot

In order to perform the special attack, I made a countdown for each special

attack. The boss will perform certain special attack when the countdown

reaches 0. In the Figure 19 the AnimatorControl is used to call the exact

animation linked to the spell. The castingSpell is a Boolean type which is used

to check if the boss is casting a spell so that it will disable another movement at

the same time. All the commands are running in a coroutine, it will be paused at

the time yield a statement is called so that the function will wait the exact time

for the animation to finish.

FIGURE 19. Code to implement a special attack

The movement function has three steps. It will follow three functions:

SetDestinationTarget, MoveToPosition, and WaitForArrival one by one. The



38

Figure 20 shows the SetDestinationTager function, where the destination is set

to the current target position while in the MoveToDestination function, it uses a

Boolean to control the walking animation and the Flipturn function is used to

ensure that the boss will always face the target position.

FIGURE 20. Function for movement

The reload and summon function is similar to the special attack, they both have

a cooldown timer, which will trigger when the boss has no ammo or the

summon cool down is 0 separately.

6.2 Core task for minion

The core task for minions shares some basic function with the boss. Some are

introduced below.

Each minion has its own attack range. In the Figure 21 I use a Boolean function

to check whether the target is in the attack range, The parameter x_distance

represents the distance between the target and the minion on the x axis. The

y_distance is calculated depending on a different type of the minion. In the end,

the if statement is used to check if the target is in the attack range, it will return

true if the target is within the range.



39

FIGURE 21. Function to check attack range

The next function is about flipping the object. In the Figure 22, this function is

used to keep flipping the object at run-time. In the beginning the if function is

used to check a valid target. If the target is not valid, it will return back, and then

I will calculate the distance between the target object and this object to get the

relative distance. By checking the relative distance with the current facing state I

can easily set this object always facing the right direction.

FIGURE 22. Function to turn on target at run-time



40

7 CONCLUSION

The main advantage of a behavior tree is the flexibility and expandability, even

the learning curve is longer than the state machine. But after I started it, it

became really easy to implement. Unity has some free behavior tree assets

thus I did not have to write my own behavior tree engine which made the

development process much quicker.

The task for the development included AI design, game design, and

programming. The whole development of the game was also a learning process

for me, I was not very familiar with the AI concept at the beginning, therefore

this thesis process gave me more understanding of the AI and Unity engine. My

overall skill with Unity has increased a significant amount.

There were some problems during the development of the game, I had to spend

a lot of time designing the behavior tree, and the logic became really complex

as the process went on.

If I want to make a game a with cross-platform in the future, Unity will clearly be

my first choice and behavior tree would be the solution for AI.



41

REFERENCES

A* Pathfinding for Begininers. 2005. Partrick Lester. Cited 31.03.2017

http://www.policyalmanac.org/games/aStarTutorial.htm

Artificial intelligence tutorial. TutorialsPoint. Cited 28.02.2017

https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_agents

_and_environments.htm

Chris, S. 2014 Behavior tree for AI: How they work. Cited 07.11.2016.

http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_tre

es_for_AI_How_they_work.php

Cocos2d. Chukong Technology. Cited 12.02.2017

http://www.cocos2d-x.org/

Game Maker. Yo Yo Games. Cited 30.03.2017

http://www.yoyogames.com/gamemaker

Hope, R. 2016. The 6 most exciting AI advances of 2016. Cited 12.10.2016.

http://www.techrepublic.com/article/the-6-most-exciting-ai-advances-of-2016/

James, W. 2002. Artificial Intelligence in Games. Cited 06.02.2017.

https://www.cs.rochester.edu/~brown/242/assts/termprojs/games.pdf

Jorge, P. 2016. Unity 5.x Game AI programming Cookbook. Mumbai: Packt

Publishing.

Panda BT. 2016. Eric Begue. Cited 01.02.2017

http://www.pandabehaviour.com/

Renato, P. 2014. An Introduction to Behavior tree. Cited 25.01.2016.

http://www.policyalmanac.org/games/aStarTutorial.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_agents_and_environments.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_agents_and_environments.htm
http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
http://www.cocos2d-x.org/
http://www.yoyogames.com/gamemaker
http://www.techrepublic.com/article/the-6-most-exciting-ai-advances-of-2016/
https://www.cs.rochester.edu/~brown/242/assts/termprojs/games.pdf
http://www.pandabehaviour.com/


42

http://guineashots.com/2014/07/25/an-introduction-to-behavior-trees-part-1/

Steven, W.1998. Game AI the state of the industry. Cited 11.10.2016.

http://www.gamasutra.com/view/feature/131705/game_ai_the_state_of_the_ind

ustry.php

Unity technology. Unity Documentation. Cited 02.02.2017

https://docs.unity3d.com/Manual/

Unreal Engine. Epic Games. Cited 31.03.2017

https://www.unrealengine.com/zh-CN

Wikipedia. 2017. Artificial intelligence. Cited 02.01.2017.

https://en.wikipedia.org/wiki/Artificial_intelligence_(video_games)

Wikipedia. 2017. Unity. Cited 02.01.2017.

https://en.wikipedia.org/wiki/Unity_(game_engine)

Wikipedia. 2017. A* search algorithm. Cited 25.01.2017.

https://en.wikipedia.org/wiki/A*_search_algorithm

Wikipedia. 2017. Fuzzy Logic. Cited 05.02.2017

https://en.wikipedia.org/wiki/Fuzzy_logic

http://guineashots.com/2014/07/25/an-introduction-to-behavior-trees-part-1/
http://www.gamasutra.com/view/feature/131705/game_ai_the_state_of_the_industry.php
http://www.gamasutra.com/view/feature/131705/game_ai_the_state_of_the_industry.php
https://docs.unity3d.com/Manual/
https://www.unrealengine.com/zh-CN
https://en.wikipedia.org/wiki/Artificial_intelligence_(video_games)
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Fuzzy_logic

	CONTENTS
	VOCABULARY
	INTRODUCTION
	ARTIFICIAL INTELLIGENCE IN GAME INDUSTRY
	Game Industry AI Progress
	Introduction to Artificial Intelligence
	Introduction to state machine
	Introduction to behavior tree

	Comparison Between different AI Model 
	Introduction to Agent Awareness
	Introduction to Fuzzy Logic

	AN INTRODUCTION TO UNITY GAME ENGINE
	History of Unity Engine
	Comparison of Unity and other Game Engine
	Basic Feature of Unity Engine
	Mecanim Animation
	Navigation System
	2D Physics
	Scripting
	UI


	GAME MECHANICS INTRODUCTION
	Introduction
	Concept Statement
	Combat
	Summon Mechanic
	Level Design

	COLDEN DARK GAME AI DESIGN
	Introduction
	Game AI Logic Design
	Introduction to PandaBT
	AI design of the summoned minion
	AI design of the summoned minion
	AI design of the summoned minion

	Design sensor of the game
	Add colliders to each agent
	Make target type based detection system

	Choose the navigation system
	Introduction to A* algorithm


	GAME AI IMPLEMENTATION
	Core task for Boss
	Core task for minion

	CONCLUSION

