

Aleksandr Romanov

Building an automation system for
customer acquisition processes

Bachelor’s thesis

Information Technology

2017

Author (authors) Degree

Time

Aleksandr Romanov Bachelor of
Engineering,
Information
Technology

May 2017

Title

Building an automation system for customer acquisition
processes

56 pages
3 pages of appendices

Commissioned by

Caterva GmbH

Supervisor

Timo Mynttinen

Abstract
CRM software has been supporting companies in their internal customer acquisition
processes for decades. However, in the field of renewable energy storage, which involves
the handling of a larger amount of customer related information, traditional CRM systems
become less effective and the need for more efficient software is required

The objective of the thesis was to implement the initial state of the automation system for
customer acquisition processes, required by the case company in order to remove the
future complexity in managing information manually.

The methods used for designing and implementing the system were influenced by a set of
predefined software requirements and the existing state of internal CRM software. The
thesis described the solutions, including the design of communication mechanism between
the external CRM system and an internal one, performing new data creation and updates,
utilizing the RESTful APIs provided by Sugar CRM system and finally the development and
testing of the automation workflow.

The outcome of the development was a functioning part of the automation system which
was performing the required tasks, supporting internal employees. Since the project was
focused on the initial important functionality, the potential improvements and extensions
were discussed in the thesis.

Keywords

Software Engineering, Sugar CRM, PHP, MySQL, REST, API, OAuth, Linux

CONTENTS

1 INTRODUCTION .. 1

2 TECHNOLOGIES ... 2

2.1 Customer relationship management ... 2

2.1.1 Customer acquisition processes ... 2

2.1.2 CRM software and types of CRM systems ... 3

2.1.3 CRM technology market ... 3

2.2 Sugar CRM software stack ... 4

2.2.1 PHP, Apache web server and MySQL database .. 5

2.2.2 HTTP protocol ... 6

2.2.3 REST architecture .. 6

2.2.4 RESTful API .. 7

2.2.5 OAuth protocol .. 7

2.3 Linux operating system and a cron job utility .. 9

3 REQUIREMENTS ... 10

3.1 SugarCRM modules ... 11

3.2 Old process overview ... 13

3.3 New process requirements ... 15

3.3.1 ARANES external CRM system .. 16

3.3.2 Data handling .. 16

3.3.3 Workflow automation .. 17

4 INTERACTION WITH EXTERNAL CRM .. 17

4.1 Reading emails with PHP ... 18

4.2 Extracting appropriate attachments .. 21

4.3 Creating CSV parser and data structure ... 25

5 SUGAR CRM API ... 30

5.1 Developer’s page and OAuth configuration .. 31

5.2 Building API URLs .. 33

5.3 Running business processes .. 35

5.3.1 Creating a lead ... 36

5.3.2 Updating the lead .. 39

5.3.3 Get the lead record ... 41

5.3.4 Linking checklist to a lead entry .. 43

6 TASK FLOW AUTOMATION .. 49

6.1 Task flow PHP logic .. 51

6.2 Linux cron jobs.. 52

7 CONCLUSION .. 53

BIBLIOGRAPHY .. 54

APPENDICES .. 56

 Appendix 1. New customer acquisition process requirement visualization

Appendix 2. Full software system structure

Appendix 3. Foundational codebase for RESTful API requests

1

1 INTRODUCTION

Nowadays, software engineering is a one of the most rapidly developing fields.

Software products are present in every single aspect of our lives, and most

importantly, they serve as a complementary part of our work, making people’s and

businesses’ tasks easier, empowering them to create even greater products and

solutions.

Caterva GmbH, a company which provided this thesis opportunity, is an innovative

startup, tackling the problems of renewable energy storage. Since the company is

relatively young, it is important to address the key problems which might potentially

constrain the company’s future growth and development. One of such problems is

the efficient management of customer acquisition processes. When the company just

entered the market, the number of customers was relatively low, which initially made

it possible to handle the processes manually. However, the most important startup

metric is the ability to grow efficiently and to scale to adjacent markets quickly, which

eventually makes a manual process extremely difficult to handle.

The main practical aim of this project is to provide a step by step overview of the core

design and engineering decisions, needed to implement the set of software

requirements, in particular, a working automation system for customer acquisition

processes, which employees can benefit from. From the theoretical perspective, the

thesis explains important business concepts such as customer relationship

management and customer acquisition. It also gives a general overview of software

tools and technologies utilized throughout the development, like the MySQL

database, PHP programming language, RESTful APIs and the Sugar CRM software.

However, the core idea of the thesis is not to go deeply into every single technology,

but to show how multiple software tools can be integrated together for achieving a set

goal. Important background, theory, introduction to technologies and systems used

are introduced in Chapter 2. Chapter 3 describes project requirements, explains the

old process details and the need for a new system design.

 In general, the implementation part is divided into three key chapters, which

altogether comprise the system’s functionality. Chapter 4 focuses on the

development of the mechanism, required for the data manipulation and the

interaction with an external CRM, which was responsible for communication with new

potential customers and provided the information in the form of CSV and zip

archives. Chapter 5 concentrates on explaining how to interact with Sugar CRM, by

using RESTful API which enables developers to programmatically manipulate

information, in this case creating and updating entries and linking necessary

documents. In Chapter 6 the implementation of the automation workflow mechanism

will be explained, which lets users easily start an acquisition process, by following a

sequence of automatically created tasks within Sugar CRM. The chapter also

2

demonstrates how the code can be run automatically with the use of Linux cron job

utility which is important for setting up an automated process. Finally, there is a

conclusion chapter, where I will summarize my work, describe system’s limitations

and the possible ways for future improvements and functionality extensions.

2 TECHNOLOGIES

This chapter introduces the reader to the main theoretical concepts, tools, and

technologies used throughout the development. It contains the description of what

the Customer Relationship Management and Customer Acquisition Processes mean

from a business perspective and then moves on explaining the technology stack

behind the chosen CRM system in the case company. It will address all the

necessary components which the system provides, in order to start the

implementation.

2.1 Customer relationship management

According to SalesForce (2016) one of the leading companies on the CRM software

market, Customer Relationship Management is a set of practices, strategies, and

technologies which help companies in managing the relationships and interactions

with their current and potential customers, which leads to improved communication,

higher profits and sales growth.

Every company establishes its unique relationships with the customers, which makes

the CRM strategies and technologies very specific and customized to the company’s

needs.

2.1.1 Customer acquisition processes

According to NGDATA website (2016) customer acquisition process is a process

which involves the persuasion of a consumer to purchase the company’s product.

The process usually includes the cycle between making the consumer aware of the

available technology (the potential customer is usually called a lead) to converting

him into the customer.

However, Caterva GmbH defined customer acquisition processes as a more complex

structure, which included the communication with the leads as well as a set of

3

required tasks needed to be done before the lead could be converted into the

customer. A more detailed overview will be given in the third chapter (Requirements).

2.1.2 CRM software and types of CRM systems

CRM software is designed to address the challenges in storing and analyzing

customer related information to enable businesses to work more efficiently. The

number of features, provided by the CRM systems, varies between different

implementations and goals which they try to accomplish. According to Wikipedia

website (2016a), CRM systems can be divided into three categories introduced

below:

 Operational refers to the CRM system which mainly focuses on automating
the sales and marketing processes, by providing a convenient user
interface for employees to track client related information, past sales and
marketing efforts.

 Analytical refers to the CRM system which focuses on analyzing and
manipulating customer gathered information in order to better understand
clients’ preferences, buying habits and eventually adjust marketing and
sales strategies, based on the studied data.

 Collaborative refers to the CRM system which is used to incorporate
external stakeholders, like vendors and suppliers into the company’s
processes and share the internal customer related data between each
other.

All businesses need customers. However, to succeed the company has to build a

reliable relationship with them. For this reason, it is required to have customer

relationship data, which is stored, automatically updated and always available for the

employees. This information comes from different communication channels, such as

emails, chats, calls, meetings and social media. By keeping customer related data

centralized, it becomes easier to learn about the customers and to successfully

address their needs.

2.1.3 CRM technology market

CRM software market is very mature. The list below shows the most popular CRM

software providers.

 Microsoft Dynamics CRM

 Oracle

4

 Salesforce

 SAP AG

 Sugar CRM

The list includes the major technology players, like Microsoft, Oracle, SAP, and

Salesforce, that offer their own implementations of CRM software. The company

which purchases the license can have several options for managing the installed

system. The options are demonstrated in a list below according to TechTarget

(2016a).

 On-premises CRM is the solution which gives the company a full control over
the system in administration, maintenance and security of the system. The
company installs the software on its own servers and controls customer
related information which gives an opportunity to extend the system’s
functionality, fulfilling more complex CRM demands.

 Cloud-based CRM is the solution which provides companies with the same
CRM tools as on-premises CRM software. However, the data is stored on
remote servers, maintained by the software provider. Therefore, many
companies are concerned about the security, since they have no physical
control over the data and hardware. In addition, extending the functionality
becomes more complicated. A great example of a cloud-based CRM provider
is Salesforce.

In the following chapters, I will focus on the capabilities and technology details of the

SugarCRM system, which was originally selected by Caterva GmbH as a primary on-

premises CRM solution.

2.2 Sugar CRM software stack

SugarCRM is a software company, based in Cupertino, California. The company’s

main business is a CRM software solution which is also known as SugarCRM

(Wikipedia website 2016b)

Figure 1. SugarCRM logo

5

SugarCRM is a full software stack which was originally based on a popular set of

technologies, known as a LAMP, which stands for Linux, Apache, MySQL and PHP.

However, nowadays, in order to deploy SugarCRM, there is no need in using Apache

as a primary server or MySQL as a database. For instance, some company might

use Microsoft Internet Information Server instead of Apache, or an Oracle database

as an alternative to MySQL. However, PHP still remains the main programming

language for the SugarCRM environment. (Wikipedia website 2016c)

Caterva GmbH utilized Linux Debian distribution with a preinstalled Apache web

server, PHP interpreter and a MySQL database for the SugarCRM deployment.

2.2.1 PHP, Apache web server and MySQL database

The Apache HTTP web server is an open source software which implements the

functionality, needed to serve web content on the Internet. It is believed to be the

most widely used web server solution nowadays, powering more than 100 million

websites. (Wikipedia website 2016i)

MySQL is an open source database management system for creating and working

with SQL databases. Since the project is open for contributions, it makes the

software very popular among top IT companies. MySQL provides a command line

interface for administrating the databases by using the SQL language. However, for

more convenient work, there is a possibility to install a graphical program, known as

MySQL Workbench, which provides the graphical user interface for managing the

data. (Wikipedia website 2016e)

Figure 2. MySQL command line interface

According to Wikipedia (2016d) PHP is a programming language which has been in

the industry of web development for more than 21 years. It was specifically designed

for the web in order to address the challenges in making the web more dynamic.

Even though the language is primarily used for building web applications, it can also

be used as a general purpose programming language.

6

In order to execute a PHP source code, it is required to install a PHP interpreter,

which makes the language interpreted, meaning that the source code is interpreted

while the program is running, without needing to compile it. Linux OS has a PHP

interpreter installed initially.

2.2.2 HTTP protocol

HTTP (Hypertext Transfer Protocol) is a fundamental protocol of the web. It defines

the rules for communication between the client and server computers. Every time a

user requests a web page in his client application, like a web browser, he utilizes

HTTP. Based on Wikipedia (2016f) the HTTP implementation defines a set of HTTP

methods, also known as HTTP verbs, which describe what action should be

performed on the requested information. The list most popular HTTP methods, which

were frequently used during the project development, is given below.

 GET returns the requested data from the server

 POST indicates that the server should accept a piece of data sent from the
client (for example web form)

 PUT the message may be used similarly to POST method, however, it can
also perform updates on data entries on the server

 DELETE tells the server to remove the resource permanently

Originally, the HTTP protocol was designed to let computers on the network request

static content like HTML documents and images from the web server software. Web

server needed to read the HTTP request and determine which content the client

requested and then the server could look up for a file in a directory which was set for

the server. In the end, the server prepared the HTTP response either containing the

data or a notification if the file was not found. Since then HTTP has evolved into a

more robust technology, allowing clients to request not only HTML pages and static

images, but also specific data formats like JSON or XML documents, which made it

possible to develop web APIs.

2.2.3 REST architecture

REST stands for Representational State Transfer and it is a software architecture

approach. A software system which is based on the REST architecture is usually

referred to as a RESTful application. Based on Service Architecture website (2016) a

software system can be characterized as RESTful if:

7

 the state of the system is divided into distributed resources

 each resource can be accessed, using a set of command, like HTTP
methods.

Nowadays, the RESTful architecture principal has become popular in designing web

services, because RESTful systems work flawlessly with the HTTP protocol. The

REST approach is a number one choice, when it comes to designing application

programming interfaces, especially for web applications. SugarCRM was built with

the RESTful architecture in mind, which makes it possible to interact with the system

programmatically, using HTTP verbs.

2.2.4 RESTful API

According to TechTarget (2016b) API (Application Programming Interface) is a

software interface that has a form of computer program, allowing multiple software

systems to interact with each other programmatically. APIs are widely used in the

field of software engineering. Whether developer needs to interact with operating

system, hardware component or another web application, an appropriate API is used

When a software engineer designs web services, he wants other developers to

access the data, using an application programming interface. By using the HTTP

protocol to retrieve the information from a web service a developer makes an API

RESTful, hence RESTful API. (TechTarget website 2016c)

Nowadays, top IT companies like Facebook, Twitter or Pinterest have their own web

services, allowing other developers to interact with the company’s data by using

RESTful APIs.

2.2.5 OAuth protocol

The web services are designed to provide developers with unique information to work

with. For example, Facebook might provide a web service for third-party developers,

allowing them to interact with Facebook’s user data, like pictures, friends or

meetings. These services empower third party applications, by letting them process

the information and present new experiences on top of the existing user base. To

make it happen Facebook built RESTful APIs.

However, there is a security concern about this workflow. What if the user does not

want to grant an access to his personal data to a third party application? How to

8

make sure that the application, requesting user’s details from Facebook is actually

what it claims to be and not a malicious piece of software, trying to steal private

information? To address the problems explained above, OAuth protocol was

developed.

OAuth protocol provides a secure mechanism to enable third-party applications to

request personal data on behalf of a user. In addition, the protocol guarantees that

the developer registered his application on service provider’s servers, by giving his

app id. When an application has been successfully registered, a service provider

gives to a client a secret key, which will be used for authenticating the app,

requesting user’s data.

The mechanism consists of multiple steps to make sure all parties confirmed their

identity. First, it is important to understand the notions, involved into the process:

(IETF tools website, 2012)

 Client is a third-party application, requesting the user-specific data from a
web service provider.

 Resource Owner is a user, who has his data stored on web service
provider’s data center (for example a Twitter user)

 Authorization server is a server, belonging to web service provider,
designed specifically for authenticating a third party application.

 Resource server is a server, belonging to web service provider, storing
user’s data (for example Facebook’s servers)

 Access Token is a piece of information (similar to a digital key) which is
granted by the Authorization server. The token is used subsequently by a
client, in order to access data on Resource server.

9

Figure 3. OAuth workflow

A diagram above (Figure 3) describes a workflow visually. First, a client (application)

asks a resource owner (user) if it can access the information stored on resource

servers (for example a Facebook server). The important thing to note is that user

does not need to give its username and password to a third party app. The only thing

step (A) does is asking if it could access a certain piece of information, which will be

limited by an API provider. In step (B) a user either accepts or declines the request. If

a user accepts the request then an application has to prove to an authorization

server, that it is indeed an app, which was registered to use an API. In this step app

id and secret key come into play, which was given by a web service provider after the

app was registered (C). If a secret key is wrong, then access token would not be

granted, resulting in a cancellation of information request. On the other hand, if an

app has successfully authenticated itself, by giving the correct credentials, an Access

token is sent to a client (D) which makes it possible for an application to request the

data from Resource servers (E, F).

In the following chapters (SugarCRM API) I will show how the protocol was utilized,

when working with SugarCRM RESTful APIs, in order to securely communicate with

the system.

2.3 Linux operating system and a cron job utility

10

Linux is an open source operating system kernel software, which has gained a large

popularity among developer’s community, bringing new software products and

companies on the market. Because of the fact that a kernel is an open source,

everyone can contribute to the development and create his own specific version of it.

Linux comes in multiple versions, which are known as Linux distributions. Different

distributions are based on Linux kernel and designed for specific purposes, for

example, Ubuntu distribution is a popular desktop OS, Android is a major mobile OS

and OpenWrt, the embedded OS, primarily used for network hardware devices. In

addition, Linux powers most servers on the Internet, as well as supercomputers,

according to Wikipedia (2016g).

In order to deploy a SugarCRM system at Caterva GmbH, Linux Debian distribution

was used. The company has two Linux servers, which are designed to host

development and testing systems separately.

Development sandbox is a Linux server, which contains a testing version of the

SugarCRM. All the development was done, using the testing server and after the

features were added and tested, they were deployed to a production system. The

separation was extremely important in keeping productive environment constantly

running. In case a new feature failed to work or broke the entire system, we could

always restore the testing environment and identify the problem, before it happens on

a real system.

Linux operating system comes with a remarkable set of tools and utilities which

perform a variety of tasks. One of such utilities is a cron job which makes it possible

to create a scheduled script executions. Such functionality becomes extremely handy

for building the automated workflow (Wikipedia website 2016h).

3 REQUIREMENTS

In this chapter I will describe the requirements for a new system design and explain

an old process, pointing out the details of why the changes were needed. Before

describing the processes, it is important to understand how SugarCRM stores the

entries about leads, linked tasks or documents and how the system is capable of

recognizing when a user makes changes to SugarCRM UI, leading to the execution

of some logic.

11

3.1 SugarCRM modules

SugarCRM stores the information about potential customers, related tasks,

documents or calls in specific sections, called modules. Below you can see an image

of the navigation bar UI, showing different modules.

Figure 4. SugarCRM Navigation UI

By clicking on one of the modules in the navigation bar will bring a user to a detailed

module view, giving us a list of existing entries.

12

Figure 5. SugarCRM Tasks module detailed view

The picture above (Figure 5) provides an overview of how different Task items are

arranged within a Tasks module. Clicking on a particular entry will bring us to a

specific Task overview.

Figure 6. Detailed Task item view

A Task item contains a status field which can be changed by a SugarCRM user

(Figure 6). The picture also demonstrates an “Assigned to” field, which specifies who

is responsible for the task.

13

Figure 7. Lead item detailed view

Using the same way we used, accessing the Task item, we can select a Lead entry,

which contains a set of information about the Lead, like name, email, phone and

status. A Status field can also be changed the same way it was done in Task item

(Figure 7).

SugarCRM provides the logical software behaviour, associated with the user’s

actions within the system. For example, it is possible to change a lead status field

which will trigger a logic, creating a couple of new tasks. Additionally, it is possible to

link documents, tasks, and notes to a module item. For instance, a Task item can

have a couple of notes or documents associated with it. The idea of linking data to

module items as well as the functionality of the logic, triggered after the user makes

an action, will be described in the following implementation chapters.

3.2 Old process overview

Before new requirements were introduced, Caterva GmbH relied on a simplified

version of a customer acquisition process in which some tasks had to be done

manually and some steps were not centralized with the SugarCRM system.

14

Figure 8. Original process workflow

A diagram of an old customer acquisition process workflow is shown in the image

above (Figure 8). The numbers I to V indicate the steps. The names in the blue

boxes specify the name of a Lead item status, and boxes with blue border indicate

the linked tasks to a Lead. The names for task statuses are in the picture below

(Figure 9).

Figure 9. Example of the task statuses

15

Based on Figure 9 we can examine the process in more detail:

 First, the information has to be entered into SugarCRM manually, in order
to create a lead entry (Figure 7). After the Lead has been created and
saved, the SugarCRM logic triggers the task creation, which is linked to a
Lead entry. A Lead status is automatically set to “New Contact”. A linked
task name is “I 10 Verify that a checklist is sent”, indicating that a task
assigned a user (Figure 8) has to process it.

 After accomplishing a task, by setting its status to ”Completed” (Figure 9),
the lead status can be changed to ”Information Request”, which
automatically creates two tasks ”II 10 Check the information inside the
checklist” and “II 20 Information approval”. This means that after checking
the data inside the checklist it has to be approved by an employee. After
two tasks are done, the lead status can be changed to “Qualification”.

 In “Qualification” status a user has to process two more tasks, the
description of which are in the (Figure 8). After tasks are successfully
closed, the lead status can be changed to “Contract Send”.

 Having done all the tasks related to “Contract Send” status, a lead can be
converted to a customer, by setting his status to “Converted”

The main disadvantage of the old process was scalability. As the number of leads

has increased, information typing manually slowed the process dramatically. In

addition, Caterva GmbH outsourced the communication with the potential customers

to an external company, which has changed the process at its root.

3.3 New process requirements

For a new process, Caterva GmbH provided a clear requirement which had to be

transformed into a software system. The requirements were defined as follows:

 Communication with leads has to be outsourced to an external company
called ARANES

 ARANES stores the information about the leads in their own CRM and
sends regular CSV data imports with lead-related data to Caterva GmbH
email address.

 ARANES provides a unique five digit lead identifier inside the CSV file.

 The system should be capable of regularly checking the email inbox,
detecting a newly delivered CSV file, and parsing it.

 The system must be able to automatically create lead entries inside
SugarCRM, based on the information in a CSV file.

 ARANES should send a checklist in the form of a zip archive to Caterva
email inbox

 The system should be able to detect the checklist presence and link it to an
appropriate lead within SugarCRM.

16

 Appropriate tasks should be created and linked to lead entries.

 Changing the task or lead statuses must trigger internal SugarCRM
process, navigating the workflow.

The general requirements were divided into groups which represent different

independent functionality parts.

3.3.1 ARANES external CRM system

ARANES has provided a web interface to their CRM system for Caterva GmbH so

that we could understand how information is stored there and how the CSV structure

was organized. Even though a new software system should not communicate with

their CRM directly, the access to the system was essential for testing, especially for

downloading CSV files, sending it to Caterva email. By having the ability to do these

steps, I could simulate the beginning of the process.

Figure 10. ARANES web interface

3.3.2 Data handling

For successful data handling it was required to build the software parts, capable of:

17

 Scanning Caterva email inbox

 Detecting email with CSV imports or checklists with zip files

 Extracting the files, parsing CSV information about the customers, and
preparing it for SugarCRM system

 After the data is prepared, it should be posted to SugarCRM, using RESTful
API, which is provided by Sugar.

 If information already exists, it has to be updated, using Sugar REST APIs

 Checklist zip files must be linked to appropriate lead entries, which were
created from CSV file, also using Sugar RESTful APIs

Data handling part of the requirements include the design of custom functions for

data processing and the implementation of a communication system which delivers

the data to SugarCRM.

3.3.3 Workflow automation

In the previous chapters, I mentioned internal SugarCRM logic many times. This is

functionality, which is provided by SugarCRM, in which it is capable of listening to

events, happening inside the system and act accordingly. For instance, when a task

status is changed, call a function, creating another task, or when a document was

linked, create a note object. The requirements for the software system included

several internal logic behaviours:

 When a lead’s status is changed, trigger a logic, creating new tasks

 When a task’s status is changed, perform validation, making sure that
some tasks are successfully closed, so that new ones could be created

Internal SugarCRM logic and real application examples are discussed in the 6th

chapter. Appendix 1 and Appendix 2 are available for a visual presentation of the

requirements and the full software system specification.

4 INTERACTION WITH EXTERNAL CRM

This is the first part of the implementation section in which I will explain how I

analyzed and implemented the part of the requirement, in particular:

 Scanning Caterva email inbox, searching for CSV and checklist.

18

 Parsing CSV data and preparing appropriate data structure for SugarCRM

4.1 Reading emails with PHP

As it was discussed in Technologies chapter, PHP is the primary programming

language for SugarCRM. PHP, like most other languages, has a very strong

community of supporters, who created a very useful set of functions, which is known

as a library.

PHP provides an IMAP library, which deals with the connection to an email inbox,

fetching emails and attachments. The library had already been installed before I

started on a project.

Figure 11. Initial structure of the software system

In the picture above (Figure 11) you can see the initial system’s structure:

 fetchMail.php is an entry point of the project, in which PHP code gets
executed, scanning email inbox and detecting if there is a checklist or a
CSV file with the leads information, sent from ARANES system.

 attachments.php is a set of functions, provided by Caterva GmbH
software developers, which was handling the extraction of CSV or zip
attachments from ARANES emails.

 csvparser.php contains the code related to parsing the CSV information
and preparing the custom data structure, which is then used for SugarCRM
lead entry creation

19

Now we can take a look at some code, explaining how the inbox is being scanned

and the basic configurations to make use of the IMAP library.

Code 1. IMAP library configuration

The code above shows (Code 1) how the connection to the inbox is made:

 First, the code receives the configuration for the email server, storing it in a
$salesConfig variable. Configuration is received from another file, which
contains passwords and username.

 Next step is to construct an inbox object, which represents the connection to
an email server. It is achieved by calling imap_open function, which receives
all configuration parameters from the configuration object. If the connection is
successful, then the code will be executed further, otherwise die function
terminates the execution, giving the error to a programmer.

 As you can see from the code, getting the number of unread emails is
relatively easy, it is sufficient to call the imap_search function with the inbox
object and UNSEEN flag, what return a number of newly arrived messages

 If the number is 0, then it indicates that the inbox is empty and the code exits
execution, otherwise the message must be processed.

20

Figure 12. Unread email example inside Caterva inbox

The picture above (Figure 12) demonstrates the highlighted message, indicating that

it is unread. This is how the software system determines, whether the message

should be processed.

Code 2. Main email scanning loop

21

From (Code 2) you can see the part of email scanner implementation. Once the

system recognized that there is an unread email (or multiple unread emails), it

attempts to go through every message, which is marked as unread, and do some

logic with it. The message object is constructed by taking the message number out of

every unseen email and call imap_fetch_overview function, which is a part of IMAP

library. As a result, a programmer can refer to the parts of an email like the subject

and from fields.

All other logic happens inside this main loop, going through unread emails, calling the

functions, defined in attachments.php and csvparser.php.

4.2 Extracting appropriate attachments

At this point, there is a built connection to Caterva email server and the working loop

which goes through every single unread email. However, looping over unread emails

is not sufficient. It is required to validate the content of every email and determine the

following points:

 If the email contains attachment or not

 Whether the attachment is CSV or not

 Whether the email contains a checklist

The feature which simplified the solution to a problem, was a well-specified email

subject, provided by ARANES. If the checklist is included into the attachment of the

email, the email must contain a subject: [CHECKLIST:XXXXX], where XXXXX is a

five digit number, representing the id of the lead in a CSV.

Now we can get back to the main loop and see how the solution was implemented.

22

Code 3. Checklist attachment handler

The picture above (Code 3) demonstrates the mechanism, in which the system

recognizes the checklist. This part of the code is placed inside the main email

scanning loop (Code 2).

 First, the system checks for the presence of the square bracket, in order to
determine if the message should be treated as a checklist.

 If the square bracket was not detected the code should proceed further. On
the other hand, if the square bracket was detected, the code uses a regular
expression to determine if the subject matches the ARANES defined
subject ([CHECKLIST:XXXXX]). It is done by calling built-in PHP function
preg_match_all. The function will return 0, stored in a $checklist_match
variable if the subject was wrongly formatted, otherwise, the execution
continues.

 If the number of matches was not zero the system tries to extract the
attachment, by calling custom function handleAttachment (Code 4).

23

Code 4. Attachment handling function

The purpose of handleAttachment function was only for simplifying the interaction

with the incoming checklists. In general, the function relied on mailAttachments

function, which was defined in attachments.php file, provided by Caterva engineers.

Since the mailAttachment function was not implemented by me and its usage was

documented, it is enough to explain what the function performs. The

mailAttachment function returned the array with all the attachments found in the

email, where each element of the array was a path to the file.

The result of the handleAttachment function is an array, containing the array with

the paths to the attachments and an id, which was specified in the subject of the

email (Figure 14). Eventually, in the main loop, when handleAttachment returns an

array, we can check is the attachments actually exist and then execute some logic.

Figure 13 demonstrates the functionality of the attachment extraction functions,

indicating that the formatting was wrong since two spaces were added to the

beginning and ending of square brackets.

24

Figure 13. Formatting error log

Figure 14. Checklist email example

Another part of the main loop is the CSV attachments handler. If the attachment is

not a checklist, then another part of the logic gets executed inside the main loop.

Code 5. Extracting CSV attachment

25

As you can see from (Code 5) $csv_path variable contains the result of the same

function, mailAttachment, which was defined in the attachments.php file. After

checking if the attachment is actually present, we can start parsing data.

4.3 Creating CSV parser and data structure

The CSV parser was one of the most important parts of the system. It has to be able

to read the data from the CSV and construct the appropriate structure, ready for

SugarCRM. There are three important components:

 Identify if the attachment is CSV and raise the error if not

 Convert the CSV data into the programmatically manageable data
structure

 Create a list of customer objects, which can be easily put into the
SugarCRM

The function is described in (Code 6). It receives the array of all found attachments

inside the email and attempts to determine if the attachments have CSV formats.

Eventually, if the attachment is indeed a CSV file, then readCSV function gets

executed, reading the data from the CSV file and populating an array with lead items,

representing CSV information.

26

Code 6. CSV parser function

27

Code 7. CSV reader

A picture above (Code 7) shows how standard file system functions were used, like

feof, fopen and fgetcsv, in order to read file’s content line by line, turning the CSV

line into an array and then putting it on the data stack.

However, the CSV contains a lot of fields, which are not necessary for SugarCRM,

for example, name2 and customer_title (Figure 15). The only data Caterva needs

was personal details and the id, given by ARANES system. For this reason, it was

required to create the data structure which only contains needed information. In order

to accomplish this task prepareData function was designed.

Figure 15. CSV example with redundant fields

28

Code 8. Prepare data function

The function showed above (Code 8) demonstrates the simple loop through the data

stack which was passed to the prepareData function (Code 7). In the scope of

prepareData, I called a variable $dirty_csv, which contains the 2D array, in which

every element contains all the information related to a lead. In order to make the data

structure appropriate for SugarCRM, I created an empty array

$customer_collection, which is supposed to contain the lead elements with only

required fields. To get the required values, I built a makeDictionary function, which

was taking only appropriate data and creating a dictionary, representing a lead.

Code 9 demonstrates the core design decision, making the reference to a lead much

easier and more expressive. Every element passed into the makeDictionary

function is turned into a dictionary, where every key is a field needed for SugarCRM

and the value is a piece of data, which was taken by a CSV parser from a CSV file.

The indexes you can see from (Code 9) are taken from a CSV file. By knowing at

which position an entry was, I could refer to it in the code. Finally, makeDictionary

returned a dictionary structure which was pushed into a $customer_collection

variable, by calling the array_push function.

Eventually, we have reached the point where the information from the CSV is stored

in a custom data structure, known as $customer_collection, in which every element

is a dictionary, containing necessary lead details for SugarCRM system (Code 9).

The next logical step is to understand how to use this data structure and populate the

CRM with the data, using RESTful APIs, provided by SugarCRM, what will be

discussed in the next chapter.

29

Code 9. Custom data structure creation function

Figure 16. CSV data handler visualization

30

5 SUGAR CRM API

This chapter is designed to provide the reader with important implementation steps,

required for safe and efficient interaction with SugarCRM. In particular, the chapter

describes:

 How to configure OAuth protocol for the safe communication with
SugarCRM

 How to build the API URLs to which the requests are sent

 How to make API calls to SugarCRM in order to create and update the
entries

 How to link the files to appropriate leads

A picture below (Figure 17) demonstrates how the initial project structure has

expanded, having two additional PHP files, designed for handling the interaction with

SugarCRM. One of the files is businessProcess.php, which defined a set of

functions, needed for creating new leads from CSV data, updating the entries and

linking the documents. The sugarAPI.php file was designed to simplify the API calls,

by dynamically constructing the URL address, to where the HTTP message was

sent.

Figure 17. Structure of the software system with API handlers

31

5.1 Developer’s page and OAuth configuration

The way how to use RESTful APIs provided by Sugar is described on the developer’s

page.

Figure 18. How to access the REST service

Sugar CRM developer page provides multiple examples on how to make the API

calls and how to configure the URL address, to where the requests are sent. The

example above (Figure 18) shows which address should be used for accessing the

data. In the example, {site url} part should be replaced with the real address of the

server where SugarCRM is deployed. V10 indicates that version 10 of the API should

be used.

In order to start sending the HTTP requests to the SugarCRM, it is required to

configure OAuth protocol, so that the code which will be requesting the information

from the system is registered within SugarCRM. In this case, SugarCRM acts as a

resource provider and an authorization server, granting the access to the application,

which is a software system, I am implementing. First of all, we will need to create the

key and a secret, in order to identify the application.

32

Figure 19. OAuth configuration

From the figure 19, you can see how SugarCRM provides the way for creating the

needed parameters, in order to authenticate the application. Having saved the

configurations, I can refer to the parameters in the code and authenticate the

software system to interact with SugaCRM (Code 10).

Code 10 also demonstrates the URL address configuration concept, shown on figure

18, the address is replaced by the IP of the testing server, where the development

version of SugarCRM was deployed.

Code 10. Oauth configuration inside PHP code

33

5.2 Building API URLs

In order to send the HTTP request to SugarCRM and perform the appropriate

operation, it is important to construct the URL address, indicating what is requested

from service. For example:

 If the creation of a new entry is needed, the HTTP message POST must be
sent to the service.

 If the update of the entry is needed, the HTTP message PUT should be sent.

 In order to request the entry’s information the GET request should be sent

 If a programmatic login to SugarCRM is needed, the POST request should be
sent

For every single case, the URL is totally different (figure 20).

Figure 20. Different URLs for API calls

Figure 20 shows the examples from the developer’s page, giving examples on how to

construct URLs, describing what each of them performs and which HTTP method

must be used. In addition, SugarCRM developer page provided the setup code for

sending the API requests to the system, which you can see in Appendix 3.

The main important implementation decision was to write a layer of abstraction on

top of the setup code, so that the future developers could easily call the high-level

functions, without having to look at the setup code. The main functions inside

sugarApi.php file (Code 11) are:

 sugarPOST is a function which is called, when the lead needs to be created

34

 sugarUPDATE is a function which is updating the lead entries

 sugarGET is a function, retrieving the specified entry

 sugarLINK is a function used for linking the documents (checklists) to the lead
entries

 sugarLOGIN is a function designed for authenticating the application,
returning the authorization token.

Now we can look at the implementation example inside the sugarLOGIN and

sugarUPDATE functions, in order to understand how the URLs were built and how

the setup code was used.

Code 11. SugarLOGIN function implementation

As you can see from the picture above (Code 11), first the code requests the

configuration, containing all the parameters for using OAuth protocol, by calling the

getConfiguration function (Code 10). After this step, the code has references to the

main URL (the IP address of the deployed test version of SugarCRM), username,

password, client id and client secret, which were set up previously. Having the

parameters, we can construct the authentication array, held in the variable

$oauth2_token_arguments. Next, I built the $url variable, appending to the main

URL a path /oauth2/token, indicating that I requested the login from the service.

Finally, I called the api_call function, the one which was provided by Sugar as the

setup code, supplying $url, POST method and authentication array as arguments.

The result of the call was the authentication token, which is returned by the function.

35

A sugarLOGIN function is now can be used to request the authentication token and

the developer does not need to know about the URL and configurations. The URL

has been constructed dynamically, by taking the main URL from the configuration

and appending the specific string, describing what is requested. In the example

described it was /oauth2/token, which is pretty much self-explanatory.

Code 12. Update function example

Code 12 demonstrates almost the same functionality, described in sugarLOGIN

function. First, the code requests the OAuth protocol details, returned by

getConfiguration. Next step is the URL building, which is different from the

sugarLOGIN function. In this example, URL consists of the base URL, which is

stored in the configuration and some custom parameters which are appended to the

base URL. The first parameter is a custom module, telling SugarCRM, what kind of

information is requested, for example, Lead, Document or Task. The second one is

the database id of the entry, needed to perform the update operation. The actual

parameters will be shown in the businessProcess.php file because it contains all

the functions, which supply data to the parameters list. In the end, the api_call is

executed, returning the response, indicating if the update was successful or not.

5.3 Running business processes

At this point, the system is capable of reading the CSV file, constructing the data

structure with lead entries and abstracting the API calls to SugarCRM system. The

following logical step would be to bring the functionality together and implement the

logic, which will actually create a lead entry, update it, when needed, or link the

checklist documents to the lead. The described functionality is implemented inside

the businessProcess.php file, which:

36

 Contains the functions, responsible for creation, update and the link
operations

 Uses the API abstraction functions, defined in sugarApi.php

Essentially every single function inside businessProcess.php follows one principle:

 Retrieve the access token, by calling the sugarLOGIN function.

 Construct the argument list, which will be sent to the SugarCRM

 Make the API call, using abstraction API functions

 Return the response from the API call

Each function in the file is responsible for a unique operation.

5.3.1 Creating a lead

37

Code 13. New Lead creation function

Code 13 shows the function, which creates a new lead entry inside SugarCRM, by

using the API abstraction functions, defined in sugarApi.php. On top of the code,

you can see an include statement, which demonstrates how the Sugar API functions

were included. The createNewLead function accepts a $data parameter,

representing the piece of data from a dictionary I built previously. To demonstrate

where the data comes from, we need to take a look back to the main email loop

(Code 14).

Code 14. A loop through dictionary elements

38

Code 14 provides a code, demonstrating where the createNewLead function is

called. This code lives inside the main email loop, meaning that after the dictionary

with CSV data was constructed, the code loops through every single element in the

dictionary and calls the API functions, providing the data, stored in the element to a

parameter list, $record_arguments array (Code 13).

In addition, code 13 demonstrates the parameters keys like cstm_module or

cstm_database_id, which are used to construct an URL inside API functions in

sugarApi.php (Code 12). Since for a new lead, there is no existing database id, the

field is left empty. However, the cstm_module field is set to Leads (Code 13).

Eventually, we can run the code and perform the creation of the lead inside the

SugarCRM. For running the test we will need to send the CSV to Caterva inbox.

Figure 21. Test CSV import

Figure 21 shows the test CSV import I sent to Caterva inbox. Now I can run

fetchMail.php to see the creation process. Code 13 shows the log output after

running the code.

Figure 22. Newly created Lead

39

Figure 23. Created Lead inside SugarCRM

Figure 23 demonstrates how the code execution created the entry inside the

SugarCRM system, assigning the status to Information Request. The status will be

important in the following chapters, describing workflow automation.

5.3.2 Updating the lead

In order to update the lead entry, let us first take a look at the code (Code 15)

40

Code 15. Update Lead function

As you can see from the code 15, the function takes the data item from the dictionary

and the database id of the existing lead. As usual, the first step is to get the

authentication token, by calling sugarLOGIN function, then constructing the

argument list, making API call and returning the response. This function differs from

lead creation function because it accepts a database id, needed for URL

construction, indicating that the lead is not a new one and it must be updated. Below

is the example of the output, when the lead gets updated after the code gets

executed.

41

Figure 24. Updated Lead

Figure 24 shows the output of the update operation. As you can see the UPDATE

URL contains the database id, making sure that the lead has been updated.

5.3.3 Get the lead record

As part of the requirement, ARANES was responsible for providing a unique id

number inside the CSV file, identifying a lead. You can see the sales given id number

in figure 24 and figure 23. The id was used to interact with SugarCRM, in order to

request the lead entries based on it. The following code demonstrates the

functionality (Code 16). The function takes the ARANES given id (sales given id) as a

parameter and performs the API call, the result of which is either the lead record,

indicating that the entry might be updated, or 0, indicating that the lead entry does

not exist. If the entry exists, the function returns the database id, supplied inside an

updateLead function, or Null, if the API call returned 0. In the case of latter, the

createNewLead function is executed (Code 17).

42

Code 16. Get Lead entry function

Code 17. Update Lead or create Lead logic

43

Whenever createNewLead or updateNewLead are called, there is always a

preceding call to the getLeadRecord function, the result of which determines

whether the entry should be updated or created from scratch (Code 17).

5.3.4 Linking checklist to a lead entry

We already know how the main email loop detects the checklist presence inside the

email. However, after detecting it there is now logic executed yet. For document

linking the software system had to perform the following actions:

 Create a document entry inside SugarCRM

 Link the document entry to the appropriate lead entry

 Attach a real zip file from the email to a document entry

 Create two linked to a lead tasks, which are assigned to a responsible
employee, needed for starting the customer acquisition process

The implementation also relies on the written Sugar API functions. The starting point

was the implementation of the createDocument function.

Code 18. Create document function

The function relies on the same structure, as the functions, creating and updating

lead entries. The result of the function is the document id, stored in the database

after the document was created. Having the id of the document we can link it to the

44

appropriate lead since we know the ARANES given id from the subject of the email,

taken by handleAttachment function (Code 19).

Code 19. Linking document to a Lead

The code above (Code 19) demonstrates the flow in which the document was linked

to a lead. Inside the body of the linkDocumentToLead function, there are calls to

the getLeadRecord function, which gets the lead database id, based on the

ARANES given id, and to createDocument function, which returned the database id

of the document. The $record_arguments variable contains the known keys,

needed to construct the URL for the API call. In this example, the cstm_relationship

key is used, which specifies the name of the relationship. Since we are linking a

document to a lead, the relationship name is leads_documents. Having called the

function, the returned result is a dictionary, containing the database id of the

document and the lead, which are needed for attaching the real checklist file from the

email to a linked document.

45

Code 20. Attaching real file to a Document entry

Code 20 shows the example, how the checklist file is attached to a document entry.

The function first makes a call to the linkDocumentToLead function, receiving the

dictionary with database ids of the lead and a document and after constructs the

argument list for an API call. In this case, the list contains the keys with the filename,

which is assigned to the path of the attachment. In addition, you can see how the

document database id is used for pointing to a newly created document. The lead

database id is supplied to createEntryTasks function, which will be linked to a lead.

The createEntryTasks function (Code 21) performs the creation of two SugarCRM

tasks, which are necessary for getting started the acquisition process. As you can

see the function constructs two argument lists, in which the database id of the lead is

added as a parent id parameter. This tells the API to link the tasks to the appropriate

lead.

46

Code 21. Tasks creation function

Now I can demonstrate how the combination of the functions described is used in

order to create an attached document inside SugarCRM, linked to a lead. The linking

process starts from the call to the attachFileToChecklist function (Code 20) within

the main email scanning loop.

First ARANES sends the email with the checklist, specifying the correctly formatted

subject, with the right sales id, which they wrote to the CSV.

47

Figure 25. Preparing checklist email

Figure 26. Received checklist email

From the figure 25 and figure 26, you can see the example of how the email is sent

to Caterva inbox with the correct subject formatting and the sales id 99999, pointing

to the lead which had already been created.

Figure 27. Checklist link log output

After executing fetchMail.php, the logic detects that the email was a formatted as a

checklist email and attempts to perform the linking of the document to a lead. From

the log output (figure 27) you can see the number of URLs printed, which

demonstrates the sequence in which the API calls happened. The list below explains

the flow in-depth.

48

 First, a GET request is sent, in order to retrieve the database id of the
lead

 Second is the POST request, which creates a document item in
SugarCRM

 Third is a LINK request, which linked the document with the lead

 Fourth is a POST request, which attaches a real attachment from the
email to a document entry

 Fifth and sixth are POST request, which created two tasks, linked to a
lead entry

Now we can see the changes, which took place in SugarCRM.

Figure 28. Linked checklist to a Lead

Figure 28 demonstrates how the attachment from the email has become available

inside the SugarCRM, linked to an appropriate lead with 99999 id.

Figure 29. Linked tasks to a Lead

Figure 29 shows how tasks have been linked to a lead which indicates to an

assigned person that he has some work to do.

49

6 TASK FLOW AUTOMATION

This chapter focuses on demonstrating how SugarCRM provides the logic, capable

of detecting if an action was triggered within the system by the user. For example:

 if the lead status was changed, more tasks must be created (Appendix
1)

 if the task status is changed, then detect the status of the another task
and execute some logic (Appendix 1)

Figure 29 demonstrates the tasks which were linked to a lead, indicating that a

responsible employee has to process them. Now we can demonstrate how changing

lead status from “Information Request” to “Qualification Process” will create two more

tasks, notifying the assigned user, that the workflow was started.

Figure 30 demonstrates how the status is changed from SugarCRM user interface

which triggers two task creations, linked to the lead.

Figure 30. Lead status changed

50

Figure 31. Newly created Tasks after Lead status is changed

Another important functionality was the ability to change the status of the task and

simultaneously detect whether another complementary task was processed. Based

on the task statuses some logic was executed, which you can see in figure 32,

demonstrating how marking the task as ”Completed” automatically posts the

information about another task into the description field. Eventually, by having this

description a responsible employee can immediately recognize what should be done

next.

Figure 32. Changed task status with updated description

51

6.1 Task flow PHP logic

Essentially, all the logic, which gets executed after a user performs an action, is

located inside the SugarCRM system, on the server where it is deployed. Every

module whether it is the Lead or the Task defines a PHP script which gets executed

when a user interacts with the SugarCRM UI. The script can be customized

according to the company’s needs by adding the properties which have to be

tracked.

Code 22 Automated Task creation script

The Code 22 demonstrates the code which gets executed behind when a user

changes a status of the Lead from New to Assigned. The same way the Task

properties can be tracked in the corresponding PHP script. Code 23 shows a simple

PHP script which checks for the Task status and if it is Completed then a new Task

object gets created and saved to the system.

52

Code 23 Automated Task status tracker

By using the functionality which SugarCRM exposes to the developer, such as

automation scripts, makes it straightforward to implement various custom workflow

mechanism based on what employees require. It gives a powerful method to trigger

any action in response to the user’s interaction inside the system. For instance, an

email can be sent from the script when a status of the Task object gets changed.

6.2 Linux cron jobs

Finally, the whole system needs to operate without the human involvement. The

scripts which perform the work have to be initiated on a regular basis, for instance

every workday in the morning. In order to implement the automated script execution,

the Linux cron job was developed.

Figure 33 Cron job implementation

Figure 33 demonstrates the text file which contains the instruction for the cron job

utility on how to execute the script which starts the whole customer acquisition

process. The code pre

53

cedes with a hash symbol which indicates a comment. I did this on purpose in order

to test the system by executing the script every minute. The code first executes the

cd command which moves to the appropriate folder in the file system and then

perform the script execution. It is worth mentioning that the final script is run on

behalf of the root user.

7 CONCLUSION

To conclude the work I did during this project, it is essential to observe the final state

of the system and discuss the capabilities of the final product. Based on the set

requirements the system performs flawlessly the following tasks:

 Scanning of the Caterva inbox dedicated for CSV files on a daily basis
which contain lead personal data.

 Performing computations in order to parse CSV files, construct a data
structure which contains the lead data and extract other file
attachments like a PDF checklist.

 Sending the network requests to the SugarCRM system using a
RESTful API interface which creates, updates and links new entries in
the system.

 Automatically detecting when certain properties like task or lead
statuses are changed in order to move the customer acquisition
process forward by using existing SugarCRM functionality.

The project is continuously maintained by Caterva and the new requirements will add

up in the future. This means that the system will be improved further and new

features will be added. For instance, the company needs to integrate battery

installation companies into the process which will require to implement a calendar

event system capable of being in sync with the rest of the process which is

implemented by me at this stage. In addition, the current state of the system does not

provide any feedback to the responsible employees which have to initiate actions

when certain parameters change. Currently, they need to be logged in the

SugarCRM and track important information. As a future feature request, it is a clever

idea to implement an automatic email notification when the action from a person is

pending.

Finally, the result of the project made crucial improvements to an existing customer

acquisition process which was handled manually by one person. When the company

grew then the demand for the automatisation increased. Currently the system

handled more than thirty new leads on one day by adding them to the CRM system

54

within seconds. It is obvious that the previous manual approach would have been

fully irrelevant and slow. In my personal opinion, I am convinced that the product I

built carries helpful features to the company which improve their business operations

and let the gain more customers over time. It is especially rewarding to witness how

maintenance of the product became a requirement for the future generation of interns

at Caterva.

BIBLIOGRAPHY

IETF Tools. The OAuth 2.0 Authorization Framework, RFC6749. WWW document.

Available at: https://tools.ietf.org/html/rfc6749 Updated 01 October 2012. Referred

20 August 2016.

NGDATA website 2016. What is customer acquisition? NGDATA USA. WWW

document. Available at: http://www.ngdata.com/what-is-customer-acquisition/

Updated 17 June 2016. Referred 20 July 2016

Service Architecture website. Representational State Transfer (REST). WWW

document. Available at: http://www.service-

architecture.com/articles/webservices/representational_state_transfer_rest.html No

Update Information. Referred 03 August 2016

Salesforce website 2016. What is CRM? Salesforce USA. WWW document.

Available at:

http://www.salesforce.com/eu/crm/what-is-crm.jsp No Update information. Referred

20 July 2016

TechTarget website 2016a. CRM. TechTarget USA. WWW document. Available at:

http://searchcrm.techtarget.com/definition/CRM No Update Information. Referred 20

July 2016

TechTarget website 2016b. Application Programming Interface. WWW document.

Available at: http://searchexchange.techtarget.com/definition/application-program-

interface Updated 01 July 2014. Referred 20 August 2016

https://tools.ietf.org/html/rfc6749
http://www.ngdata.com/what-is-customer-acquisition/
http://www.service-architecture.com/articles/webservices/representational_state_transfer_rest.html
http://www.service-architecture.com/articles/webservices/representational_state_transfer_rest.html
http://www.salesforce.com/eu/crm/what-is-crm.jsp
http://searchcrm.techtarget.com/definition/CRM
http://searchexchange.techtarget.com/definition/application-program-interface
http://searchexchange.techtarget.com/definition/application-program-interface

55

TechTarget website 2016c. RESTful API. WWW document. Available at:

http://searchcloudstorage.techtarget.com/definition/RESTful-API

Updated 01 December 2016. Referred 10 March 2017

Wikipedia website 2016a. Customer Relationship Management. Wikipedia

Foundation, Inc. WWW document. Available at:

https://en.wikipedia.org/wiki/Customer_relationship_management Updated 02 August

2016. Referred 03 August 2016

Wikipedia website 2016b. SugarCRM. Wikipedia Foundation, Inc. WWW document.

Available at: https://en.wikipedia.org/wiki/SugarCRM Updated 16 July 2016. Referred

03 August 2016

Wikipedia website 2016c. Software Stack. Wikipedia Foundation, Inc. WWW

document. Available at: https://en.wikipedia.org/wiki/Solution_stack Updated 08 June

2016. Referred 03 August 2016

Wikipedia website 2016d. PHP. Wikipedia Foundation, Inc. WWW document.

Available at: https://en.wikipedia.org/wiki/PHP / Updated 25 July 2016. Referred 03

August 2016

Wikipedia website 2016e. MySQL. Wikipedia Foundation, Inc. WWW document.

Available at: https://en.wikipedia.org/wiki/MySQL

Updated 30 July 2016. Referred 03 August 2016

Wikipedia website 2016f. HTTP. Wikipedia Foundation, Inc. WWW document.

Available at: https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol Updated 30

July 2016. Referred 03 August 2016

Wikipedia website 2016g. Linux. WWW document. Available at:

https://en.wikipedia.org/wiki/Linux Updated 30 July 2016. Referred 20 August 2016

Wikipedia website 2016h. Cron. WWW document. Available at:

https://en.wikipedia.org/wiki/Cron

 Updated 20 March 2017. Referred 03 April 2017

http://searchcloudstorage.techtarget.com/definition/RESTful-API
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/SugarCRM
https://en.wikipedia.org/wiki/Solution_stack
https://en.wikipedia.org/wiki/PHP%2520/
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Cron

56

Wikipedia website 2016i. Apache HTTP Server. WWW document. Available at:

https://en.wikipedia.org/wiki/Apache_HTTP_Server

 Updated 13 April 2017. Referred 20 April 2017

 APPENDICES

Appendix 1

New customer acquisition process requirement visualization

Appendix 2

Full software system structure

https://en.wikipedia.org/wiki/Apache_HTTP_Server

57

 Appendix 3

Foundational codebase for RESTful API requests.

58

/**

 * Generic function to make cURL request.

 * @param $url - The URL route to use.

 * @param string $oauthtoken - The oauth token.

 * @param string $type - GET, POST, PUT, DELETE. Defaults to GET.

 * @param array $arguments - Endpoint arguments.

 * @param array $encodeData - Whether or not to JSON encode the data.

 * @param array $returnHeaders - Whether or not to return the headers.

 * @return mixed

 */

function api_call(

 $url,

 $oauthtoken='',

 $type='GET',

 $arguments=array(),

 $encodeData=true,

 $returnHeaders=false

)

{

 $type = strtoupper($type);

 if ($type == 'GET')

 {

 $url .= "?" . http_build_query($arguments);

 }

 $curl_request = curl_init($url);

 if ($type == 'POST')

 {

 curl_setopt($curl_request, CURLOPT_POST, 1);

 }

 elseif ($type == 'PUT')

 {

 curl_setopt($curl_request, CURLOPT_CUSTOMREQUEST, "PUT");

 }

 elseif ($type == 'DELETE')

 {

 curl_setopt($curl_request, CURLOPT_CUSTOMREQUEST, "DELETE");

 }

 curl_setopt($curl_request, CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_1_0);

 curl_setopt($curl_request, CURLOPT_HEADER, $returnHeaders);

 curl_setopt($curl_request, CURLOPT_SSL_VERIFYPEER, 0);

 curl_setopt($curl_request, CURLOPT_RETURNTRANSFER, 1);

 curl_setopt($curl_request, CURLOPT_FOLLOWLOCATION, 0);

 if (!empty($oauthtoken))

 {

 $token = array("oauth-token: {$oauthtoken}");

 curl_setopt($curl_request, CURLOPT_HTTPHEADER, $token);

 }

 if (!empty($arguments) && $type !== 'GET')

 {

 if ($encodeData)

 {

 //encode the arguments as JSON

 $arguments = json_encode($arguments);

 }

