

Juuso Järviö

CYBERGAME SECURE APPLICATION

DELIVERY

Bachelor’s thesis

Information Technology

2017

Tekijä/Tekijät Tutkinto Aika

Juuso Järviö

Insinööri (AMK) Toukokuu 2017

Opinnäytetyön nimi

Cybergame secure application delivery

52 sivua

Toimeksiantaja

Kaakkois-Suomen ammattikorkeakoulu

Ohjaaja

Lehtori Vesa Kankare

Tiivistelmä

Projektin tavoitteena oli luoda valmis tietoturvallinen ja optimoitu runko Cybergame-nimiselle
verkkosovellukselle ottamalla käyttöön ADC-laitteen tietoturva ja optimointi ominaisuuksia.
Sovellus ei ollut valmiina projektin aikana, joten toteutuksista luodun dokumentaation tuli olla
kattava tulevaisuuden projekteja varten.

Projektissa tutkittiin tietoturva- ja optimointi -asetusten toteuttamista Cybergame-sovellukseen,
joka on pelillistetty kyberturvallisuuden opetusalusta. Projektissa hyödynnetyt ADC-
ominaisuudet toteutettiin F5 BIG-IP ADC-laitteilla, jotka olivat projektin olennaisimmat
verkkolaitteet. Koska Cybergame-sovellus ei ollut valmis projektin aikana, testauksia varten
luotiin WordPress-sovellus. Kali GNU/Linux -jakelupakettia käytettiin sen tarjoamien
penetraatiotestaustyökalujen takia. Näitä työkaluja hyödynnettiin osan toteutuksista
testaamiseen.

Tietoturvaominaisuudet, kuten application security policy, anomaliapohjainen DoS-suojaus,
brute force -esto ja muutama pienempi ominaisuus konfiguroitiin projektissa. Optimointi-osa
koostuu optimisoitujen TCP-profiilien ja TCP-multipleksoinnin, HTTP-pakkauksen ja Web
Accelerationin konfiguroinnista. Projekti sisälsi myös jonkin verran ADC:n peruskonfigurointia ja
työssä tarvittujen virtuaalikoneiden luomista.

Tietoturvallinen ja optimoitu runko luotiin Cybergamelle, mikä tarkoittaa, että projektin
tavoitteisiin päästiin. Useita ominaisuuksia käsiteltiin projektissa, mutta osaa ei voitu käsitellä
läpikotaisin. Tämä jättää tilaa mahdollisille tuleville projekteille Cybergamen ADC-laitteisiin
liittyen. Projektissa luotua dokumentaatiota voidaan hyödyntää, kun tulevaisuudessa
ominaisuuksia käyttöönotetaan valmiiseen Cybergame-sovellukseen.

Asiasanat

application delivery controller, verkkosovellusten tietoturva, verkkosovellusten optimointi,
kyberturvallisuus

Author (authors) Degree Time

Juuso Järviö

Bachelor of
Engineering

May 2017

Thesis Title

Cybergame secure application delivery 52 pages

Commissioned by

South-Eastern Finland University of Applied Sciences

Supervisor

Vesa Kankare, Senior Lecturer

Abstract

The aim of this project was to create a ready framework for a web application called
Cybergame by implementing secure and optimized application delivery features. The
application was not ready at the time of the project, so the implementations studied in the
project were to be documented well for possible future projects.

In the project, the implementation of security and optimization features for an application called
Cybergame, a cyber security teaching platform that makes use of gamification, were studied.
The features used in the project were provided by F5 BIG-IP application delivery controllers,
which were the main web devices in the project. As the Cybergame application was not ready
at the time of the project, a WordPress testing application had to be created and used. Kali
GNU/Linux distribution was also utilized for the penetration testing tools to test some of the
implementations.

The security features such as the application security policy, the anomaly based DoS
protection, the brute force block and some smaller application security features were
configured. The optimization part consisted of the configuration of optimized TCP profiles and
TCP multiplexing, HTTP Compression and Web Acceleration. The project also included the
configuration of some basic ADC features and creation of required virtual machines

The objectives for the project were accomplished as a secure and optimized framework for the
Cybergame was created. Several features were covered, but most of the features could not be
studied thoroughly. That leaves room for the possible future projects related to the Cybergame
ADCs. The documentation created in the project can be used in future when implementing the
features into the finished Cybergame application.

Keywords

application delivery controller, web application security, web application optimization, cyber
security

CONTENTS

1 INTRODUCTION ... 6

2 CYBERGAME .. 6

3 APPLICATION DELIVERY CONTROLLER .. 8

3.1 ADC features ... 9

3.2 F5 Networks ..10

3.3 F5 BIG-IP ...11

4 WEB APPLICATION SECURITY..13

4.1 Denial of Service...14

4.2 Web scraping bots..16

4.3 Brute force ...17

5 KALI GNU/LINUX ..17

6 IMPLEMENTATION ..17

6.1 Basic configuration ...18

6.2 Creating required virtual machines ..19

6.3 Configuring security..20

6.3.1 Application security policy ..20

6.3.2 Anomaly based detection...29

6.3.3 Web scraping ...32

6.3.4 Brute force ..34

6.3.5 Session tracking ..38

6.3.6 Mitigating specific attacks ..39

6.4 Configuring Optimization ...41

6.4.1 TCP multiplexing ...41

6.4.2 HTTP compression ...43

6.4.3 Web Acceleration ..44

7 CONCLUSION ...47

REFERENCES ..50

ABBREVIATIONS

AAM Application Acceleration Manager

AFM Advanced Firewall Manager

ASM Application Security Manager

ADC Application Delivery Controller

AOM Always On Management

DDoS Distributed Denial of Service

DMZ Demilitarized Zone

DoS Denial of Service

EUD End User Diagnostics

HMS Host Management Subsystem

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

LTM Local Traffic Manager

MOS Maintenance Operating System

OSI Open Systems Interconnection

SSL Secure Sockets Layer

TCL Tool Command Language

TCP Transmission Control Protocol

TMM Traffic Management Microkernel

TMOS Traffic Management Operating System

TPS Transaction Per Second

XSS Cross-site scripting

 6

1 INTRODUCTION

The objective of this project work was to study and implement the secure

application delivery features of F5 BIG-IP ADC for an application called

Cybergame, that will be explained more in detail in the next chapter. The

Cybergame application was not complete at the time of the project, but a

secure framework should be ready for the application once it is released.

Some optimization features should also be implemented to increase the

performance of the Cybergame. The features used in the project should all be

documented and tested so that they can be implemented later to the

Cybergame application.

The F5 BIG-IP devices that would provide the used features were located in

CyberLab of the South-Eastern Finland University of Applied Sciences. The

ADCs and some configurations had already been implemented into the

CyberLab in previous projects. The configurations were tested by using tools

found in Kali GNU/Linux distribution to find out the possible vulnerabilities and

mitigations. A WordPress testing site would serve as a testing application

since the Cybergame application was not available at the time of the project.

Some work related to the ADCs was already done in the CyberLab earlier.

The devices were implemented into the CyberLab and some basic settings

were configured in the thesis work of Antti Peltonen in early 2016 (Peltonen

2016). Later in 2016 Henri Kajova created a virtual laboratory, which makes

use of the virtual versions of the BIG-IP. The thesis also covers some security

configurations such as SSL offloading and DoS mitigation iRules. The virtual

lab made by Kajova was also used in this project to get to know the BIG-IP

devices. (Kajova 2016.)

2 CYBERGAME

A project called ”Cyber Security Expertise and Business Development” was

started in May of 2015 in co-operation with KyUAS, LUT and Cursor Oy. The

goal of the project was to create a hub called “CyberPros Academy” for the

development of cyber security, piloting of cyber security services and studying

of cyber threats and challenges. An innovation platform called “CyberLab” was

to be built. The operating environment of CyberPros Academy hub includes a

 7

modern data center and a cyber security training class. The data center also

known as CyberLab can be used to do penetration tests and vulnerability

scans for example. (Rouhiainen & Kettunen 2015.)

The project is an innovative way to combine data center, gamification and

cyber security expertise and research. The present deficit of skilled personnel

in these areas is meant to be covered by creating a new research, knowledge,

and innovation hub, which at the same time creates entrepreneurship and jobs

in to the area. The cyber security expertise is delivered to a large crowd via a

cyber security game. (Työ- ja elinkeinoministeriö 2014.)

The Cybergame is programmed in co-operation by the programming students

of KyUAS and GoodLife Technologies company (Rouhiainen & Kettunen

2015). The game is going to be located in the CyberLab data center. It will

consist of a virtualized KVM hypervisor platform called NEST, which contains

all the virtual machines that are used in the Cybergame. Clientless remote

desktop gateway called Guacamole is used to access the virtual machines.

The back-end server will be running game features such as game logic and

databases. The NEST and the backend are running on a VMware ESXi

hypervisor. The front-end servers work as an interface into the Internet. All the

traffic into the Cybergame network goes first through the Cybergame BIG-IP

ADC. The ADC will handle web security, Denial-of-Service protection and SSL

offloading. The second levels of network security are provided by the North-

South Firewall. The basic design of the Cybergame network can be seen in

figure 1.

 8

Figure 1. Cybergame network basic design.

3 APPLICATION DELIVERY CONTROLLER

Last decade the need for legacy load balancers to handle more advanced

application related requirements increased, which started making ADCs

popular. The purpose of an ADC is to increase the performance, security and

availability of the web delivered applications. (Citrix 2016.) The application

delivery controller is usually placed in the DMZ zone of a network, which

typically locates between the firewall or the router and the application servers.

An ADC helps sites to remove excess load from the servers by directing user

traffic from multiple servers. On top of Layer 4 load balancing, ADCs can

operate layer 7 for content switching and offload certain CPU-intensive tasks

from the servers. (KEMP 2016.) The latest generations of ADCs can handle a

large variety of additional functions such as rate shaping and serving as a web

application firewall (F5 2016b).

 9

3.1 ADC features

ADCs usually come in redundant High Availability configurations, which

means that there are two devices of which one is an active device and another

is in a standby. In case of failure in the active device, the standby device can

become the new active device without any downtime. (KEMP 2016.)

Load balancing helps server cluster to distribute traffic to optimize utilization,

and to increase the availability and responsiveness of the servers (Citrix

2016). There are many different Layer 4 IP-based methods provided by ADCs

for distributing user traffic to servers. These Layer 4 methods can include

Round Robin and Least Connection with Weighted versions of the two,

Chained Failover with Fixed Weighting, and Server-Resource-Based load

balancing. Weighting allows administrators to have better control of the traffic

distribution. For example, if a higher performance server is added to the load

balancing it can be appointed with a higher “weight”, so a larger amount of

traffic will be allowed for it to handle. Layer 4 load balancing is sufficient for

lower volumes of Internet traffic, but sometimes a more fine-tuned approach to

the traffic distribution is needed. The fine-tuned approach can only be

accomplished with Layer 7 content switching and other higher level load

balancing methods. Content switching means the ability to load balance Layer

7 payload based user requests to the servers. For example, an URL with

images may be pointed to a graphics server and shop can point to a

transaction server. This provides more application flexibility and greater

performance tuning. (KEMP 2016.) ADCs can also perform global server load

balancing, which means the redirecting of traffic to a server cluster placed in

another data center (Citrix 2016).

Application performance can be improved by many functions on an ADC,

especially over mobile and high latency networks. ADCs can offload server

intensive tasks, perform multiplexing, compression, and caching of high used

static content. (Citrix 2016.) SSL offloading, for example, can be used to

reduce the CPU usage of the application servers. By moving the SSL

termination point to the ADC, the application servers are relieved from the

CPU-heavy tasks of encrypting and decrypting traffic and setting up secured

network connections, which greatly reduces the resources required by the

application. (A10 2016.)

 10

TCP multiplexing is another good way to improve the performance of

applications. TCP multiplexing enables the device to reuse existing TCP

connections, which removes the need for servers to open and close numerous

TCP connections per second. TCP multiplexing improves the performance of

the server and increases the capacity allowing the server to open more TCP

connections for more users. (MacVittie 2008.)

HTTP compression and caching can both be used to reduce the load of the

application servers. The number of HTTP object data transferred can be

decreased with HTTP compression by utilizing GNU zip compression, which is

available in every modern browser. The network bandwidth usage can be

reduced without corruption of the content, which improves users’ overall

experience. If the task is offloaded to an ADC, it also saves the servers from

the CPU-intensive task. Caching allows ADCs to store data from the servers

in cache memory and deliver it quickly to the clients. This combined with

HTTP compression means the ability to deliver pre-compressed data form the

cache, rather than retrieving it from the servers every time. Caching can

reduce the response times and boost transaction rates while freeing the

servers to do other work. (KEMP 2016.)

Web security is an important feature of ADCs. The ADCs can recognize DDoS

attacks and implement rate limiting measures such as throttling or rejecting

the requests from a DDoS attack. They can also learn to detect malicious

requests by analyzing the traffic to determine patterns for normal behavior. As

ADCs, have converged load balancing and advanced layer 7 protection the

application firewalls can even inspect packets for suspicious or malicious

content. (Citrix 2016.) Typical network layer attacks such as flood attacks and

connections per second overloading attacks can be easily defeated with

features such as the full proxy architecture, purpose built hardware for the

mitigation of DoS. Protocol validation is also used against invalid data and

asymmetric attacks. (Holmes 2013.)

3.2 F5 Networks

F5 Networks is a US-based company headquartered in Seattle, Washington.

F5 Networks specializes in application delivery networking. Its main product is

 11

the BIG-IP application delivery controller. (Crunchbase 2016.) F5 Networks

was the market share leader in application delivery controllers with a 47%

market share of the $2 billion market in 2015. Its largest competitors are Citrix,

Radware and A10 Networks. (Lerner, Skorupa & Ciscato 2016.)

3.3 F5 BIG-IP

BIG-IP is a term for the compilation of hardware and software found in the

ADC device made by F5. There is also a virtual edition available of the BIG-IP.

The primary hardware components of the BIG-IP are Traffic Management

Microkernel, Host Management Subsystem and Always On Management. The

TMM includes several traffic processing hardware components such as a

layer 2 switch module, dedicated SSL encryption or FIPS hardware and

dedicated compression hardware. The HMS is responsible for system

management and administration functions and runs a version of CentOS

Linux. The HMS and the TMM share a single CPU and RAM memory. The

AOM provides additional management of the HMS via a management

processor and supporting functions for the TMM. The primary software

components of the BIG-IP are also known as the Traffic Management

Operating System or TMOS. Even though the TMOS name suggests that it is

an operating system, it is a collection of firmware and operating systems,

which run on BIG-IP and BIG-IP Virtual Edition. The TMOS includes TMM,

HMS, AOM, MOS, EUD and feature modules like LTM. All the hardware

components have software counterparts and have the same abbreviations.

The TMM controls communications to and from the HMS. The LTM, iRules

and other similar modules run within the TMM. The HMS runs a modified

version of CentOS operating system and provides access to various

management tools and interfaces such as the GUI configuration utility and an

advanced shell. The AOM allows “lights out” power management and console

access to the HMS. The MOS which is installed in an additional boot location

is used for disk and file system maintenance. The EUD is a program that is

used to perform BIG-IP hardware tests. (Jönsson & Iveson 2014, 21-25.)

F5 BIG-IP also includes a feature called iRules, which is based on the F5’s

exclusive TMOS architecture. An iRule is a user created TCL program or

script that is assigned to a virtual server in the BIG-IP. The scripts are run or

 12

triggered by a user or users doing events specified in the iRule. iRules can

contain any number of commands and they can be programmed to do almost

anything between the OSI layers 2 and 7, which leads to a great power and

control over the network. (Iveson 2013, 18.)

All BIG-IP versions come default with either a Local Traffic Manager module

or a BIG-IP DNS module, which has been known as Global Traffic Manager in

the past. They both provide core functionalities for BIG-IP. Other modules can

be activated on demand when a need for the feature is recognized, allowing

customization of the BIG-IP. There are total of 13 modules available of which

10 are advanced BIG-IP feature modules and 3 feature modules for service

providers. (F5 2016c.) There are two security modules available. Application

Security Manager that protects web applications from attacks and the

Advanced Firewall Manager, which is used to prevent network, SIP and DNS

attacks (F5 2014b). In regards of application optimization, there is one

important module, which is called Application Acceleration Manager (F5

2014a).

ASM is a web application firewall that secures web applications and protects

them against vulnerabilities. The ASM can be used to develop different levels

of security on layer 7. For example, The ASM can develop a security policy

automatically based on the traffic patterns of the site. The policy can also be

created manually or with a vulnerability assessment services. The security

policies can protect web applications against many application layer threats

such as SQL injection, buffer overflows, cross site scripting, cookie poisoning

and many more. The ASM module can even protect the web infrastructure

against layer 7 Denial-of-Service and zero-day threats. The ASM module also

uses attack signatures to protect applications. By default, the BIG-IP ASM

provides over two thousand signatures and more can be created manually.

The signatures can detect different types of attacks against commonly used

databases, applications and operating systems. (F5 2014b.) The ASM can

also be used to detect DoS attacks using transaction based detection or

latency based detection or both. The values of which the device uses to make

the calculations can be changed manually. In the transaction based method,

the average amount of requests per second to a certain URL or IP address is

used. The latency based method uses the time the server takes to respond to

the requests. If any of the intervals go beyond the selected percentage set in

 13

the DoS profile the ASM considers the system to be under attack. (F5 2013.)

The IP intelligence feature of the ASM module also offers the ability to block

connections based on their IP-address’ geolocations or just their reputation

around the Internet. The Data Guard can be used to block sensitive

information such as credit card or social security numbers automatically from

being displayed in a web browser. (Wagnon 2013.)

Advanced Firewall Manager, AFM is a module for F5 BIG-IP that offers

defense against threats to network layers 3 and 4. The BIG-IP AFM module is

a high-performance, stateful, full-proxy network security solution built

especially for defeating high-capacity DDoS attacks against networks and

network devices. The AFM can automatically mitigate the attacks, alert about

an attack and adjust DDoS thresholds as traffic patterns change. The AFM

includes high-volume logging controls to log the incoming traffic during a

DDoS attack without it getting overwhelmed. IP-address blacklisting can also

be enforced by reputation feeds offered by F5 networks and third parties. SSH

and SSL connections are also controlled by the AFM. It can protect the SSH

channel against data breaches and application attacks and inspect SSL

sessions to terminate the connections of encrypted attacks. As most of the F5

feature modules the AFM can be combined with iRules to extend the ability to

mitigate attacks and increase its functionality. (F5 2016a.)

Application Acceleration Manager is the main module for optimization features

in the BIG-IP. With the native TMOS architecture, AAM makes it possible that

web performance and WAN optimization can be combined with application

delivery. The integration allows the enabling of technologies such as SSL

offloading, HTTP compression, Web Acceleration and rate shaping. As other

modules, the AAM can be combined with iRules. The AAM can also be used

to optimize multitude of protocols delivered to heaps of different devices. (F5

2014a.)

4 WEB APPLICATION SECURITY

Web application security means the process of protecting websites and

services against security threats that exploit vulnerabilities in the code of the

application. Web applications are high-priority targets for attackers, because

 14

of complex source codes that increase the likelihood of vulnerabilities and

code manipulation, ”high rewards” and the ease of execution as most attacks

can be done automatically against many targets at a time. (Imperva 2017.)

Typical web application vulnerabilities include injection type attacks such as

SQL injections, cross-site scripting, remote file inclusion and cross-site

request forgery (Imperva 2017). The current trend in application security risks

can be observed from lists such as the OWASP top 10 list. The list describes

the current TOP 10 risks of application security. However, the attacks don’t

end at the top 10 and there are many more application security risks.

(OWASP 2013.)

4.1 Denial of Service

Denial of Service attacks are a powerful way to disrupt and deny availability of

web services. DoS attacks are essentially done by flooding the target of the

attack with a very large amount of legitimate traffic to render it inaccessible to

other users. DoS attacks with multiple attackers are called Distributed Denial

of Service attacks or DDoS. (Shakarian, Shakarian & Ruef 2013, 12-13.)

DoS attacks have moved up the OSI model starting from the network layer

attacks from the early 90s into session attacks and then into application layer

attacks. Network layer attacks are typically different flood type attacks.

Session and presentation layers are attacked in session attacks, which consist

of SSL and DNS attacks. Almost half of all the present attacks are done on the

application layer. The detection of attacks becomes harder as the attacks go

higher in the OSI model. (Holmes 2013.)

The network layer attacks are the traditional way of DDoS attacks. The

purpose of the network layer attacks is to consume the bandwidth of the target

and deny the service for users. These attacks include for example, ICMP

flooding, SYN flooding and UDP flooding. These kinds of attacks are easy to

mitigate nowadays and for this reason the attackers have started to move to

other types of attacks. (Balandin, Andreev & Koucheryavy 2015, 275.) Against

the most common network layer attack, the SYN flood, there are three

different types of mitigation methods. Two of them are found on the typical

 15

network devices and servers and the third option, the use of SYN cookies is

the best method and is found only on BIG-IP ADCs. (Holmes 2013.)

Session layer attacks use the OSI layers 5 and 6. They include attacks

against SSL and DNS. With common firewalls, SSL attacks cannot be

mitigated and the ability to defend against DNS attacks is limited. For both

attacks the best defense is a high-performance, full-proxy functionality that

can validate every DNS and SSL connection going through. Typical Session

layer attacks against DNS servers include attacks such as DNS query floods

and DNS NXDOMAIN floods, in which the attacker sends nonexistent records

to the server and wastes the server’s resources. Against the SSL there are

SSL floods and SSL renegotiation attacks. In the SSL flood attacks the

attacker sends malicious or empty SSL connections to the server to exhaust

its resources. The SSL renegotiation attacks exploit the asymmetric

encryption ability of SSL. The SSL handshake requires 10 times more

processing power on the server side than the client side, which means that in

the worst case only one client is needed for the denial of service. (Holmes

2013.)

Application layer DDoS attacks, also known as layer 7 DDoS attacks are

denial of service attacks where the attacker targets the application OSI layer.

The attacks over use certain features and functions on a site to disturb or

disable them. The application layer attacks are different from other types of

attacks. (Kiyuna, Conyers 2015, 24.) Application layer attacks, unlike the

network layer based DDoS attacks, can focus on draining other resources

such as Sockets, CPU, memory or disk or I/O bandwidth instead of only

exhausting the bandwidth (Balandin, Andreev & Koucheryavy 2015, 275).

They can also be performed by using legitimate protocols and legitimate

connections so signature based detection systems cannot detect them. The

application DDoS attacks may also encrypt the data of the connections in the

application layer, which makes the attackers hard to detect without violating

their privacy. Anomaly-based detection is currently the best solution for the

detection and prevention of application layer attacks. Anomaly based

detection is based on typical user behavioral patterns and also allows the

detection of, zero-day attacks. HTTP protocol attacks are the most popular on

the application layer due to the popularity of the protocol and the amount of

vulnerabilities it has. (Galinina, Balandin & Koucheryavy, 2016, 327)

 16

Typical application layer attacks types include attacks, such as simple or

recursive GET floods, POST floods, low bandwidth HTTP Attacks, Slow POST

attacks and HasHDoS attacks. GET floods, which are one of the most popular

application layer attacks request a static object or every object on a page that

can be requested. POST floods work the same way as GET floods, but

instead of a GET request, they send a POST that has a greater chance of

using up the resources on the target server. Low bandwidth HTTP attacks

such as the SlowLoris are hard to detect by regular means because they use

a very low amount of bandwidth. SlowLoris and similar tools first learn the

target’s inactivity timeout timer and start feeding HTTP headers to the target in

a very slow speed. A second before the timeout the SlowLoris sends a fake

header to the server to keep the connection open. When the server has too

many connections to open any new ones, the denial of service is achieved.

Slow POST attacks work the same way as the SlowLoris, but instead of

sending headers it starts an HTTP POST with the target and uploads data

very slowly. HashDoS attacks work by sending a single POST message,

which includes thousands of different variables to overwhelm the hashing

function of the server. A single HashDoS POST message can disable a server

for over an hour. (Holmes 2013.)

4.2 Web scraping bots

A Bot is an automated software program that runs tasks in the Internet.

Typical bots perform simple, repetitive tasks at very high speeds. Almost half

of all web traffic comes from bots and two thirds of the bot traffic is malicious.

One of the ways that bots can cause harm to a site or an application is web

scraping. Web scraping means the process of automatically collecting

information from the Internet. The most common type of scraping aims to steal

content from the web to use it elsewhere, which is called site scraping. The

web scraping bots typically crawl the website and access the source code,

parse it and remove the pieces they want and then post the content elsewhere

on the Internet. Another, more advanced type of web scraping is the database

scraping. It works like the site scraping bot, except it will ask the application to

retrieve data from the database. (Saeed 2016.)

 17

4.3 Brute force

Password-guessing attacks, also known as brute-force attacks are a common

threat against web sites that require some kind of a user authentication. Trying

every possible combination of characters systematically, until the right

combination is called a brute force attack. A password can always be

discovered by a brute force attack, but it can take a lot of time to find it out.

The time to crack a password depends on its complexity. Brute-force attacks

can also use dictionary words or slightly modified versions of dictionary words

rather than random characters, because most people use dictionary based

passwords. Brute-force attacks put user accounts into a risk and increase the

site’s traffic with unnecessary transactions. There are many tools for the brute-

force attacks and most of them can utilize wordlists and proxy servers to try

passwords from different IP-address with advanced rulesets. (OWASP 2016).

5 KALI GNU/LINUX

Kali Linux is a GNU/Linux distribution based on the Debian GNU/Linux

distribution, which was first released in 2013. Kali focuses primarily on

penetration testing and security auditing. By default, Kali contains hundreds of

different tools for various information security tasks. Kali distribution was

developed and funded by an information security company Offensive Security.

(Offensive Security 2017b.)

The minimum system requirements for Kali are 8GB of hard disk space,

512MB of RAM memory and an Internet connection. Kali Linux can be

downloaded and installed in a few different ways. The basic ISO image is

available as 32-bit and 64-bit versions which can be installed via a CD or an

USB. There is also a VM version of Kali for Virtual usage with ready installed

VMware tools. Kali can also be running as a live CD, but it is not

recommended as nothing can be saved. (Offensive Security 2017a.)

6 IMPLEMENTATION

The implementation part includes the implementation and testing of security

and optimization features offered by the BIG-IP ADC. The implementations

 18

covered in this section should all be usable with the Cybergame application

although some of the implementations need to be reconfigured or tweaked a

bit when the Cybergame application is released. Some of the implementations

were done to the test application located in www.cybergame.fi, which was at

the time not available in the public Internet. To test most of the features a

testing application with more features was required.

6.1 Basic configuration

At the start of the project, the ADCs had already been implemented into the

CyberLab and some configurations had been made in previous thesis and

project works (Kajova 2016; Peltonen 2016). The ADCs could be connected

by local IP addresses 172.18.2.25 and 172.18.2.26. The required feature

modules such as the ASM were installed and licensed. The VLANs, load

balancing pools, nodes and the virtual servers for the required servers in the

Cybergame had already been implemented so it was possible to access the

Cybergame network through the ADC. The ADCs were set to an

active/standby failover mode and the devices were in sync. The right

certificates for the Cybergame.fi domain were added to the SSL profile in the

ADC. The SSL was offloaded from the Cybergame servers into the ADC’s

HTTPS virtual server for the cybergame.fi site.

Even though the basic configuration had already been implemented into the

ADC, some changes to the base configuration needed to be made. The first

problem that appeared was that it was only possible to connect to

https://www.cybergame.fi, the non-secure http://www.cybergame.fi could not

be accessed and no automatic redirection to the HTTPS was made. This type

of implementation could cause unnecessary confusion in the future. A new

virtual server for the HTTP traffic and HTTP to HTTPS redirection had to be

created.

A new virtual server was created by going to the virtual server part of the

menu in the ADC’s web interface, which was found under the Local Traffic

module and then clicking the create new button. The settings for the virtual

server were copied from the HTTPS version of the virtual server, except of the

port number, which in this case was 80 instead of 443 and the load balancing

http://www.cybergame.fi/

 19

address pool, which was left blank. The BIG-IP system default iRule called

“_sys_https_redirect” was added to the new virtual server by going to the

virtual server tab and clicking the resources button on the newly created

virtual server. After implementing the iRule, traffic to the

http://www.cybergame.fi was automatically redirected to

https://www.cybergame.fi.

Another issue related to the basic configuration was that for some reason the

clock settings of the devices were not in sync and the logging was behaving

incorrectly. After a while it was noted that the Funet NTP servers used in the

whole Cybergame were not working. A new NTP server had to be configured

into the ADC. Luckily a new stratum 1 Symmetricom NTP server was just

implemented into the laboratory in project lessons. The Funet addresses were

replaced from the ADC’s NTP configuration tab with the address of the new

NTP server.

6.2 Creating the required virtual machines

After finding out the current state of the cybergame.fi site, it was seen that to

test some of the features a new testing application was to be created. For

example, there was no working login page on the current Cybergame site and

to test the brute force blocking feature of the ADC one was required.

WordPress was chosen for the application, because it is relatively easy to

implement and contains required features for the testing application. The

WordPress was installed into a Debian GNU/Linux operating system. As the

Cybergame network was at the time not connected to the Internet, the

installation of the operating system and the WordPress had to be done locally.

The Debian was installed on a local VMWare workstation and the required

LAMP package and updates were installed. The WordPress was also

downloaded into a directory, but not yet installed. The Virtual machine was

then uploaded in the Cybergame VMWare ESXi server and placed into the

frontend VLAN, where the cybergame.fi site was also located. After the server

was added to the frontend the WordPress was extracted and installed on the

server. A local IP-address from the frontend VLAN was added to the eth0

interface and a virtual server was created for the site from the ADC. After that,

an address from the “INTERNET” pool of the ADC was added for the site. The

 20

INTERNET address pool includes some public addresses assigned to the

CyberLab, but as the whole CyberLab was not connected to the Internet they

could be used without harm. The site was then accessible from the address

193.167.58.249.

To test the implemented security settings a Kali Linux virtual machine was

also required. The Kali Linux was installed as a local installation. The Kali was

set to use the network card of the local computer, because it needed to

connect to the Cybergame network from the “public” side and not from the

“inside”. The updates were the only change done to the Kali at this time, as

they were required to install open-vm-tools and new security testing tools. The

address of the new testing site was confirmed accessible from the Kali, which

meant that security testing could be done.

6.3 Configuring security

The Configuring of the web security settings was the main part of this thesis.

The configuration of the security part includes the configuration of security

features that could be usable with the Cybergame application. The security

settings were configured using the template site located at www.cybergame.fi

and the WordPress test site created earlier. The Application layer security

settings used were offered by the ASM module and the basic layer 3-4

protection settings were featured by the AFM module.

6.3.1 Application security policy

The ASM application security policy offered the basic defense against the

application vulnerabilities and attacks. As the application security policy uses

signatures as one of the mitigation methods the signatures had to be up to

date. The BIG-IP system comes default with many application attack

signatures and more are coming as updates every now and then. As the

signatures could be important to application security, the signature updates

were made automatic so that the device always has the newest signatures.

The update frequency settings could be found by navigating to Security >

Options > Application Security > Attack Signatures. On top of the screen,

 21

there was a selection for Scheduled or Manual update mode. The mode was

changed to Scheduled. One step below the mode selection is the update

interval menu, which could be set to daily, weekly or monthly. The update

interval was set to a daily frequency. Few steps below the interval setup was a

checkbox for auto applying new signature configurations after an update,

which was also checked. On the very bottom of the screen, the status for the

update attempts could be seen. The system would now check and apply new

updates daily. A successful update with signature details can be seen in figure

2.

Figure 2. Successful update with signature details.

Before the implementation of an application security policy, to log application

security events, a logging profile with application security logging enabled had

to be created. The logging profile was created by going to Security > Event

Logs > Logging Profiles and clicking new. All of the checkboxes, except for the

network firewall were checked. The log profile was then enabled from the

virtual server’s security policies setting menu. After the logging was enabled, a

new application security policy was created. The creation of security policy

was also required for many of the ASM application security features. By

 22

navigating to Security > Application Security > Security Policies and clicking

the create button a new policy was created. The association of a policy

required a working virtual server with basic configurations such as addressing

done. The associated virtual server had also to have an HTTP profile set and

could not be associated with a Local Traffic policy. Two security policies were

done, one for the Cybergame virtual server and one for the WordPress site for

testing. However, the policies did not differ much from each other. From the

scenario selection, Existing virtual server was chosen. On the next screen a

selection for the protocol used and the virtual server could be seen. In the

case of the Cybergame server the HTTPS only protocol was chosen, as

Cybergame only works on HTTPS and for the WordPress test site the regular

HTTP was selected. On the next page, there were four choices for building the

security policy. The choices were automatic, manual or with templates, policy

for XML and web services manually and the creation of policy by using a third-

party tool. The automatic policy creation was chosen to test the application

security policy creation. It is possible to edit the policy manually after it has

been implemented. After selecting the automatic creation more policy settings

were asked. From the Application Language list, Auto detect was selected. On

the next screen, the attack signatures could be selected. There are three

different categories of signatures ready selected which are General Database,

System Independent and Various Systems. More needed signatures can and

should be added later when more about the Cybergame system is known. As

for the WordPress site, the used services were known so MySQL, Apache and

PHP signatures could be selected. The configuration of automatic policy

building was next. There were three levels of policy building to select.

Fundamental is the most basic one, Enhanced is the middle ground and

Comprehensive is the one with most policies. The learning speed of the policy

could also be adjusted from the menu. The faster the learning speed, the

bigger the chance to add false entities. The comprehensive policy type was

selected because it gives the most features. The policy builder speed was set

to the fast level. To speed up the learning of the policy, some trusted

addresses of clients were added to the settings of the security policy, as the

policy learns faster from the trusted traffic. For the future Cybergame

application a building type should be chosen, depending on the needed

elements and the extent of the policy. According to F5 the use of the default

 23

policy building settings is suggested and the basic settings are sufficient for

most applications, as they also require less work. (F5 2014b).

Figure 3. Automatic Policy builder progression.

After all the settings were selected the policy builder went to the status page,

which is seen in figure 3, it shows the current learned policy elements and the

general progress of the policy creation. As the policy learns from the traffic of

the application, the progress bar will not go to the end until the policy has

collected enough traffic. The settings were saved by clicking the apply policy

from the top right corner. As the policy was associated with a virtual server, all

the web application traffic in the virtual server will be examined by the ASM

and used for the policy building (F5 2014b). The status page of the policy

builder could be found by going to Security > Application Security > Policy

Building > Status (Automatic). The learned elements that were chosen in the

policy building level selection could also be observed from the status page.

The page also shows the amount of traffic certain elements on the website

have gotten. For example, the parameters and the traffic for the WordPress

can be seen in figure 4.

Figure 4. Parameters and traffic in the security policy.

 24

When the policy creation has gotten enough traffic to learn all the needed

policy elements for the application, the signatures were taken out of staging

state. In the staging mode, the signatures are applied to the application traffic,

but the blocking flag is not applied to the requests that trigger the events (F5

2014b). That was done by navigating to Security > Application Security >

Attack Signatures > Attack Signature Configuration and unchecking the

Signature Staging box. The signatures and other elements that were ready to

be enforced could also be studied and enforced at Security > Application

Security > Policy Building > Enforcement Readiness, as seen on figure 5.

Figure 5. Enforcement readiness of the policy elements.

When enough traffic was given to certain objects on the site, the system listed

all the learned parameters and URLs of the site. The page could be, for

example, viewed in a tree mode to easily see what URLs and parameters the

ASM policy had learned. The tree view of the Cybergame.fi can be seen in

figure 6.

Figure 6. ASM tree view.

The ASM policy also needed to be synced into the other device in the Sync-

Failover device group as the other configurations are. By going to Security >

Options > Application Security > Synchronization and selecting the right

failover group from the list, the system synced the ASM configurations in

similar way as it did to other configurations as shown in figure 7.

 25

Figure 7. ASM sync.

When the ASM policy was set to active and started noticing violations, it would

report them to the event logs. The violations list in the policy’s “blocking”

section determined how the system would process the triggered violations.

The blocking section could be found by going to Security > Application

Security > Blocking. The enforcement mode of the Violations List could be

either set to transparent or blocking mode. In the blocking mode, the violations

would be reported to logs and blocked. In the transparent mode, the traffic

wouldn’t be blocked even if it causes violations, which is why the transparent

mode was suggested to be used when creating an application security policy.

To test the violations, the enforcement mode was set to blocking mode. The

blocking section also included a large list of different violations. There were six

different violations categories, which include RFC, Access, Length, Input,

Cookie and Negative security violations. Each violation could be configured

with three different flags. The learn flag allowed the system to log the illegal

request and create a learning suggestion of it. The alarm flag logged the

request and alarms about the request. In the blocking mode, the violation was

logged and blocked, the enforcement mode had to be set to blocking mode for

the block flag to work. The violations list gave more information about the

violations when the “i” icon next to a violation was clicked.

When the WordPress site’s policy was ready, it was tested. To test the

violations, some flags were set manually to the violations list. The violations

found by the system could be observed from Security > Application >

Requests. Both illegal and legal requests could be viewed from the logs

depending on the log configurations. Vulnerability on an application was also

needed to test ASM policy’s ability to defend against application vulnerability

 26

exploits. A program called WPScan was ran from the Kali Linux virtual

machine to determine if WordPress had any vulnerabilities to exploit. The

following command was written to the Kali terminal to scan the WordPress site

for vulnerabilities.

wpscan -u 193.167.58.249

The installed version of WordPress had a few vulnerabilities including some

XSS vulnerabilities, of which one was chosen. According to Montpas, the

vulnerability is included in the WordPress’ youtube embed shortcode and it

allowed attackers to deface posts on sites and store malicious JavaScript in

them (Montpas 2017). The following code was then entered to WordPress site

as a post from an administrator user.

[embed

src=’https://youtube.com/embed/12345\x3csvgonload=alert(1)\x3

e’][/embed]

(Montpas 2017).

When the code was posted, the results could be instantly seen form the

ADC’s logs. The policy found many violations from the HTTP request, of which

one was Attack signature detected. The blocked request is shown in figure 8.

If a client is blocked by the ASM policy, the following message as in figure 9

will appear on the web browser of the client.

 27

Figure 1. ASM request violation details.

Figure 2. ASM error message shown to the client.

When the detected Attack signature was looked closer, it was seen that there

are three signatures found on the XSS code posted to WordPress. The

signatures can be seen in figure 10. The violations and details of the attack

signatures could also be observed in more detail as can be seen from figure

11. From the outcome, it could be determined that the application security

policy could be used to mitigate application vulnerabilities and exploits, such

as XSS and other attacks that were listed in the OWASP top 10 automatically.

 28

Figure 3. Attack signatures found.

Figure 4. Details on the signatures.

The combination of BIG-IP application security policy and the guacamole

application had also to be tested, as the Guacamole will be in an important

part in the Cybergame. Cybergame’s ESXi hypervisor contained an early

version of a Kali Linux virtual machine that could be used in the NEST. The

virtual machine was chosen for the testing. The settings of the virtual machine

were configured so that its traffic would go through the ADC’s NEST virtual

server and it would appear as a public IP address as was done in the virtual

machine creation chapter earlier. As the Guacamole uses the port 8080 by

default, an iRule that redirects traffic to the port 8080 had to be added to the

NEST’s virtual server on the ADC. The virtual machine was then available

from IP-address 193.167.58.247. To access the virtual machine using

Guacamole, “/guacamole” had to be entered after the address. After entering

to the virtual machine, the machine worked well even though it was somewhat

slow. The cause of the slowness could have been the old version of the virtual

machine or because of the traffic going through the ADC. Next was the

automatic creation of application security policy using the policy builder. It was

done the same way as earlier in this chapter. When the policy builder was set

on and traffic was sent to the Guacamole, the policy started learning

elements. The learning of the Guacamole’s elements went on well except for

the parameters section, which started showing some odd values. After a few

clicks on the Guacamole virtual machine, the parameter learning logs had

large amounts of the values. Some research had to be done, because it

 29

seemed that the policy builder was not working right. The values can be seen

in figure 12.

Figure 12. Example of The Guacamole protocol values and the amounts.

After studying the Guacamole documentation, it was found that the values

were Guacamole protocol instruction messages. The messages are send from

the client to server and from server to client. (Apache s.a.a.) For example the

key values that can be seen in figure 12, are sent every time a key is pressed

or released in the Guacamole virtual machine (Apache s.a.b). At the current

state, the automatic security policy creation can’t be used with the Cybergame

Guacamole virtual machines. The combination of Guacamole and application

security policy need to be studied more.

6.3.2 Anomaly based detection

The AFM module offers automatic mitigations of layer 4 DoS attacks, however

against layer 7 DoS attacks some more advanced mitigation methods were

needed. The Anomaly based detection, which was featured by ASM could be

implemented against layer 7 attacks. The anomaly based detection is

essential against for example HTTP-GET attacks. The anomaly based

detection could be configured against TPS based anomalies and the latency

based anomalies. The TPS based anomaly was meant for the client side and

the latency based anomaly for the server side protection. The DoS protection

could be set to either transparent or blocking mode. The DoS protection

settings could be found by going to Security > DoS protection. In the DoS

protection tab, the create button was clicked and the new profile was named.

 30

Next the application security check box was selected and more options

appeared. The TPS-based anomaly was set to the blocking operation mode

and all the prevention policies were checked. The TPS values and the

prevention duration were left to default. The TPS-based anomaly configuration

is shown in figure 13.

Figure 13. TPS-based anomaly configuration.

The TPS-based detection would now calculate the average TPS values and

look for anomalies. After the TPS-based detection, the latency-based

detection was to be implemented. The operation mode was again set to the

blocking mode. The detection criteria were set to default settings and all the

prevention policies were checked. The TPS criteria and the prevention

settings were again left to default. The settings for the latency-based detection

can be observed from figure 14. The latency-based detection would now look

for anomalies in URL-latency, minutely and hourly.

 31

Figure 5. Latency based anomaly configuration.

In the settings there was also feature called Heavy URL Protection and under

that Automatic detection, which both were checked. Heavy URLs can also be

added to the protection list or a whitelist of the DoS profile manually when

some of them are known. Lastly the DoS profile was set to record traffic during

attacks by checking the checkbox form the end of the page. The DoS profile

was then saved by clicking the update button and was implemented into a

virtual server. The right virtual server settings were opened, then from the

security menu the policies tab was opened. Using the advanced configuration

mode, the DoS protection profile was enabled and the created profile was

associated with the virtual server. The statistics for the DoS protection profile

could be found by navigating to Security > Event Logs or Reporting > DoS >

Application. The anomaly based detection should now block and report

anomalies it notices in the network traffic to the logs.

To test the anomaly based detection, a layer 7 DoS tool was used. A tool

named slowhttptest was chosen for the process. The tool was downloaded for

the Kali Linux from the APT-repositories. The tool could be used by simply

 32

typing slowhttptest to the Linux terminal and then adding parameters. The

slowhttptest tool had four different attack modes to be used, which could be

changed with lettered parameters. “-H” mode is for slow headers also known

as Slowloris, “-B” mode for slow body attack, “-R” for range attack and –X for

slow read. According to F5 the ASM anomaly detection should be able to

recognize all of the above except for the Slowloris, which will be analyzed later

in the work (Holmes 2012). The three mitigatable attacks were tested by using

command:

slowhttptest –R –c 5000 –u http://193.167.58.249

The first letter after the “slowhttptest” determines the mode, the –c defines the

amount of connections used and after the –u the tested URL should be added.

Other parameters could also be added, but they were not necessary for these

tests. After doing some testing with the command a problem was noted. The

anomaly based detection did not notice the attacks, even though the site went

down with some of the modes used. Following the testing, the TPS and the

latency values for the detection of the DoS attacks had to be taken down by a

very big margin for both the TPS and latency based detection from the

settings of the DoS profile. After modifying the profiles, the tests were done

again. The results popped instantly into the application DoS logs, which show

the starting and ending times of the attacks and the detection method used.

The results can be seen in figure 15. When the anomaly based detection is

implemented into the real Cybergame application, the profiles should be tuned

again for the profiles to correspond the traffic of the site.

Figure 15. ASM anomaly detection logs.

6.3.3 Web scraping

There were a few available features offered by the ASM module to counter

malicious bots. According to F5 the caching should be disabled when

mitigating web scraping bots, as the cached content won’t be protected from

http://193.167.58.249/

 33

the bots. The clients that use the application need also to have JavaScript

enabled and support cookies for the anomaly detection to work. (F5 2014b).

At first basic bot detection was implemented by going to Security > Application

Security > Anomaly Detection > Web Scraping. The system could be set to

alarm or alarm and block the bots in case of malicious bots appearing. The

alarm setting was chosen in all cases. When the Bot Detection was enabled,

some selections appeared at the bottom of the screen. The settings were left

to default. The bot detection setting determines if the client is a human or a

bot by limiting the page changes allowed during a certain time as seen in

figure 16.

Figure 16. Bot Detection settings.

The implementation of web scraping based on session opening was next. The

session opening anomaly detection will detect sessions or IP addresses that

open too many sessions. Attacks can also be detected when inconsistencies

and session resets reach a configured threshold. (F5 2014b.) More settings

appeared on the Session Opening tab at the bottom of the screen. Session

Opening Anomaly box was checked. From the prevention policy setting below

Client Side Integrity Defence and Rate Limiting were enabled. Drop IP

Addresses with bad reputation could not be enabled, because the IP Address

intelligence module was not licensed. The Session detection criteria were left

to default, as shown in figure 17.

 34

Figure 17. Session Opening Anomaly settings.

Figure 18. Session Transaction Anomaly settings.

The last option from the top Session Transaction Anomaly looks for sessions

that request too much traffic compared to the average amount of the

application. The traffic is based on TPS. (F5 2014b.) The session transaction

anomaly settings are shown in figure 18. After the settings were set, the save

and apply policy buttons were clicked. The default criteria were left in the

settings. The detection criteria could be tuned later to decrease the chance of

false bot detections or to increase the chance of detecting bots. The web

scraping event logs could be seen by navigating to Security > Event Logs >

Application > Web Scraping Statistics. The system should now alarm in case it

detects bot activity that have not been whitelisted in the site. The web

scraping option could not be tested as the CyberLab was not connected to the

public Internet. In theory, the web scraping should work, but the percent and

transaction options should be tuned, as in other anomaly based detection

methods.

6.3.4 Brute force

The brute force attacks could also be blocked and detected on the ADC

instead of using some software blockers. To use the ASM brute force blocking

feature, a setup of a login page was required to be added to the ADC. Login

 35

page could be set to the ADC by going to Security > Application Security >

Login Pages and clicking create new. To set the login page the URL of the

login page, the authentication method and some parameters needed to be

known. At least one access validation method was also mandatory. The

authentication type in the case of the WordPress test site was “HTML Form”

and the username and the password parameters, which could be found from

the site source-code were “log” for the username and “pwd” for the password.

To find some validation settings from the responses “Response Logging” had

to be activated. After it was activated a regular login and a failed login were

sent to the site. If the application security policy and the login page were set

correctly the requests should appear into the log of the application security

policy. When the response logging was enabled, the HTTP response could be

viewed and some access validation settings were deducted from the

responses as seen in figure 19, which shows a response of a successful login.

Figure 19. HTTP Response shown by ASM.

The successful login returned a 302 response and added a

“wordpress_logged_in” cookie, which were both added to the login page

settings. From the failed login the response “ERROR” could also be seen.

This was added to the string that should not appear section as shown in. After

the login page was completed, the brute force detection could be set up. The

brute force anomaly detection setting could be found from Security >

Application Security > Brute Force Attack Prevention. The login page created

earlier was selected as the login page. The login attempt parameters on both

session-based and dynamic brute force protection were set to lower to test the

protection and block durations were also decreased. The complete settings

can be observed in figure 20.

 36

Figure 20. Brute Force Block settings.

To test whether the brute force block was working or not, a brute forcing tool

was needed. A tool called WPScan was found in the Kali Linux, which is a tool

exclusively for brute forcing into WordPress. The following command was

entered to terminal.

wpscan --url 193.167.58.249 –wordlist /usr/share/john/password.lst --

username root

The command would brute force the WordPress with the username “root”

using a wordlist called password.lst, which is an over 3000 word wordlist,

included with the Kali Linux. The command was run first without the brute

force blocking on and the whole list was brute forced without a notice in under

a minute. When the command was run with the blocking set on, WPScan

 37

started showing errors as soon as the ADC noticed the brute force attack.

Based on the settings the attack could be discovered by the Application

security policy or the Dynamic Anomaly detection method. If the attack was

discovered by the security policy, the log could be found in the application

security event logs as shown in figure 21.

Figure 21. ASM brute force request details.

If the application security policy did not detect the brute force, the anomaly

based dynamic detection would trigger if it was set on. The anomaly detection

logs could be found from the Event Logs > Application > Brute Force Attacks

and they would display more information about the attack and how it was

discovered, as shown in figure 22.

Figure 22. Brute force block logs.

 38

6.3.5 Session tracking

With the login page created in the previous chapter, a feature called session

tracking of the ASM could also be enabled. The session tracking can be used

to track, enforce and report users, sessions and IP addresses. When the

session tracking detects a violation, it will perform either logging or blocking

actions based on a user, session and IP. The session tracking could be

configured by going to Security > Application Security > Sessions and Logins

> Session tracking. From top of the menu a login page had to be selected. In

this case, the WordPress login page was used. Other settings on the top of

the page were left to default. At the bottom of the menu there were three tabs,

from which the different session tracking variations could be configured. The

different features were called block all, log all requests and delay blocking.

Only the logging setting was tested as the blocking features required other

configurations. The settings on the log all requests tab had to be re configured

as the amount of violations by default was too high. All of the violation

parameters were set to one to as seen in figure 23.

Figure 23. Session tracking log all requests.

The system should now after one violation log everything a user, session and

IP-address does during 600 seconds. After the configuration two different

WordPress users from different IP-addresses performed one violation

determined on the application security policy on the WordPress site. The

sessions should now be logged and found at Security > Reporting >

Application > Session Tracking Status. In the logs, there were two values for

usernames, sessions and IP-addresses, which confirmed the session tracking

and the login page were configured correctly. The session tracking logs can

 39

be seen in figure 24. By clicking the “View Requests” button on the logs, the

requests made by the client could be tracked.

Figure 24. Session tracking logs.

6.3.6 Mitigating specific attacks

According to Holmes most of the typical DoS attack tools in layers 2 to 7 can

be blocked with the combination of ASM and AFM. However, there are some

exceptions that have to be mitigated using other methods. The exceptions are

SSL Renegotiation attack and Slowloris. (Holmes 2012.) The two attacks

listed on the article were already tested in a related project on a virtual version

of the BIG-IP so it would be interesting to see how the attacks work against

the real BIG-IP devices.

As the Cybergame will be using HTTPS the SSL renegotiation attack should

be mitigated. To test if the SSL renegotiation attacks were still a problem

against BIG-IP and SSL, “THC SSL DOS” tool had to be used. The tool was

provided by the Kali Linux and could be easily be used from the terminal. The

following command was entered to the terminal of Kali:

 thc-ssl-dos 193.167.58.246 443 –accept

The program only needed the IP-address and HTTPS ports of the target and

asked in the end to confirm with –accept that the target was applicable to test

on. When the command was entered, the handshakes went on for some time

until errors started pouring in. The THC SSL tool progress can be seen in

figure 25.

 40

Figure 25. THC DDoS tool.

Figure 26. SSL renegotiation in security logs.

After looking into the logs of the BIG-IP it was found that the something had

spotted DoS automatically and rate limited the attack as shown in figure 26.

According to the BIG-IP system performance logs the attack from one client

only caused the system CPU usage to go up by a few percent so other

mitigation methods were not necessary. Looking around the F5 site for a

reason why the attack was mitigated automatically, only information about the

iRule mitigation was found and nothing stating an automatic mitigation was

found. After a while a F5 white paper document was found, which states that

the SSL renegotiation was added to an automatic LTM SSL stack that

provides the mitigation by default (F5 2014c).

To test the mitigation against Slowloris, a tool called slowhttptest was used.

According to F5 the attack was mitigated automatically if an HTTP profile is

used on a virtual server. The attack sends requests, which are never meant to

complete to exhaust the connections of a server. If an HTTP profile is set to

the BIG-IP, the attack will only consume connections on the BIG-IP instead of

the application servers. When the size of the sent headers exceeds the limit

set in the BIG-IP HTTP profile, the connection will reset and the device will

 41

recover TCP sockets and remove connections from the connection table,

rendering the Slowloris attack useless. (F5 2017.) When the attack was tested

on the testing site using slowhttptest tool the statistics page on the BIG-IP

showed a small increase in processor usage and an increased amount of

opened connections, but no drawbacks for the site were seen. If the attack

needs to be mitigated further for some reason, the following iRule could be

used:

when CLIENT_ACCEPTED {

setrtimer 0

after 1000 {

if { not $rtimer} {

drop

}

}

}

when HTTP_REQUEST {

setrtimer 1

}

(F5 2017).

6.4 Configuring optimization

Some traffic optimization features were also implemented to the ADC. The

optimization features are very important to reduce the load and the traffic that

goes through the ADC to the servers. If the traffic and the content were

optimized, the saved resources could be for example used to mitigate DoS

attacks or serve the application to the users. The optimization features were

featured in the AAM module.

6.4.1 TCP multiplexing

TCP multiplexing was the first optimization setting to be implemented. TCP

multiplexing feature could be found in the LTM module of the ADC by the

name of OneConnect. As stated in the F5 OneConnect tuning document, the

 42

TCP profiles of the HTTP profile that are going to be implemented with

OneConnect should be changed first to the F5 default optimized profiles (F5.

s.a.). First by navigating to Local Traffic > Virtual Servers the configured virtual

server was selected.

FIGURE 27. The optimized TCP profiles implemented.

Around the TCP section of the virtual server’s settings, the client side TCP

profile was set to “tcp-wan-optimized” and the server side was set to “tcp-lan-

optimized” as shown in figure 27. Next was the implementation of

OneConnect. New OneConnect profiles could be created from Local Traffic >

Profiles > Other > OneConnect. The IP range for reused connections could be

set from the OneConnect profile settings in the source mask section.

OneConnect profile with a mask of 0.0.0.0 reuses all the connections and

could mess up the log entries. The safest mask 255.255.255.255 was chosen,

because it only reuses the same client’s TCP connections. Other OneConnect

settings were left to default.

Figure 28. Oneconnect reused TCP connections.

After implementing the OneConnect profile into the virtual server, the reused

TCP connections could be seen from the ADCs statistics page located at

Statistics > Module statistics > Local Traffic > Profiles summary >

OneConnect. After a couple of refreshes on the www.cybergame.fi site the

statistics page showed that the TCP is multiplexed correctly as shown in figure

28.

 43

6.4.2 HTTP compression

HTTP compression is another good way to optimize the traffic and it can be

done on the ADC instead of the application servers. The profile could be

created by navigating to Local Traffic > Profiles > Services > HTTP

Compression and by clicking the create button. The content to be compressed

or never compressed could be added to the content lists. To test the

compression, text/, application/http, application/javascript were added to the

contents list. Other settings were left to default. The content list and other

settings can be seen in figure 29.

Figure 29. HTTP Compression settings.

 44

When implementing compression into the Cybergame virtual server, the

content should be changed accordingly when more about the compressible

content of the Cybergame is known. The profile was then added to the virtual

server of the testing application by navigating to the virtual server tab,

selecting the right virtual server and scrolling to the bottom of the menu to the

HTTP compression profile selection. The traffic requested from the server was

now compressed. The statistics of the compression could be found in

Statistics > Module Statistics > Local Traffic > Profiles Summary > HTTP

Compression, which confirmed that the compression was working well on the

test site as seen in figure 30.

Figure 30. HTTP Compression statistics.

6.4.3 Web Acceleration

The last optimization feature to be implemented was the Web Acceleration,

caching of static content. Combined with the HTTP compression the caching

allows the ADC to cache compressed static content, improving the

performance. The configuration of the Web Acceleration needs some extra

tweaking to be done on the device before it can be used, if a BIG-IP ASM

policy is already implemented into the device. (F5 2015). At first a new custom

Web Acceleration profile was created, by navigating to Local Traffic > Profiles

> Services and selecting web acceleration. For the parent profile of the new

profile, “optimized-caching” was selected. Only a few settings were changed

from the default. The minimum object size, which was set to 1 byte and the

maximum object size which was set to 150000 bytes. The cache size was

changed to 100 megabytes for this implementation. To save the profile, finish

was then clicked. For the ASM and the acceleration profile to work together, a

new local traffic policy had to be made. By navigating to Local Traffic >

Policies and clicking create, a new local traffic policy was created. The new

policy was named “ASM_cache_static_content”. The strategy setting selection

 45

was changed to first match. In the Requires setting option the http was moved

from available to selected and from the Controls section both, asm and

caching were moved. The changes were saved by clicking finished and the

basic settings for the policy were now in place as shown in figure 31.

Figure 31. ASM web acceleration policy general properties.

In the Rules section of the panel, the add button was clicked to create rules for

the policy. The first rule was named “Default_ASM_No_Cache”. In the Actions

section of the rule, the following settings were added:

Target: asm

Event: request

Action: enable

Value: /Common/testsite_3

The policy will enable ASM policy called testsite_3 to the virtual server it is

added. Before going any further, the policy should now be added to a virtual

server. This should also be done before building a security policy with the

policy builder or manually. Some recommended practices could also be done

to the policy at this point, like changing the file types and URLS in the policy to

wildcard and enabling blocking for certain violations. (F5 2015.) By going to

Local Traffic > Virtual Servers, selecting the configured virtual server and

clicking the resources tab the Policies section could be found. In the policies

section Manage was clicked and the recently made

“ASM_Cache_Static_Content” policy was enabled. After that the web

acceleration profile that was made first, was added to the virtual server, by

going to the settings of the virtual server. By navigating again to the policies

section and selecting the policy that was made earlier, the policy could be re-

 46

edited. The “cache_disable” rule was opened again and the following was

added:

Target: cache

Event: request

Action: disable

Add was then clicked and the rule was updated. Next the rule for the caching

to be was made. By clicking add button a new rule was added to the policy.

The new rule was named “cache_enable”. The following Conditions were

added to the rule:

Operand: http-uri

Event: request

Selector: extension

Condition: equals

The case sensitive box around the equals was also cleared. In the value

setting next to the equals, some static content to be cached, should be added.

JPG, PNG and CSS were added to the value list. The same lines to enabe the

ASM policy as in the cache disable rule were added to the action section of

the cache enabled rule. The actions for enabling the caching were then added

to the actions section by adding the following values:

Target: cache

Event: request

Action: enable

On the policies list two rules could now be seen, like shown in figure 32. One

of them disables the ASM cache and the another enables the ASM cache with

the implemented file types. To determine the state of the policy the rules could

be reordered in the rules menu of the policy. If the “cache_disable” rule was

set on the top, the ASM cache wouldn’t be enabled. According to F5 the ASM

cache should not be enabled before the application security policy building is

finished and enabled on the virtual server (F5 2015). If the configuration was

done correctly, the web acceleration profile should be able to serve ASM

validated content from the cache, allowing ASM to focus on the dynamic

content.

 47

Figure 32. Caching policy rules.

After the building of the application security policy was finished the cache was

set to the enable state from the policy list. Some static content such as images

were added to the WordPress test website. After a while, the Web

Acceleration profile statistics started showing hits. The statistics for the Web

Acceleration profile can be found by going to Statistics > Module Statistics >

Local Traffic and selecting Virtual Servers from the drop-down menu and

clicking “view…” button on the selected virtual server. From the statistics

page, it could be seen that the web acceleration found content from the web

page and cached the static content described in the policy created above. The

statistics page can be observed in figure 33.

Figure 33. Caching statistics.

7 CONCLUSION

The project was finished without any major failures or setbacks and can be

seen as a success. With the features used in the project, the Cybergame

application will have a secure and optimized framework waiting for the

application to be finished. Some of the implementations created in this project

can be used as they are, but it is still advised to re-configure the features

when the creation of the Cybergame application is finished. The

documentation included in this project should help with the process of

configuring the features.

 48

Most of the security and optimization features that could be usable in the

Cybergame application were studied in this project. However, on some of the

configured features only the basics things were scratched. That is mostly,

because an application is required to have the configurations make any

sense. For example, it is not possible to create an application security policy

for an application that doesn’t exist or by using another application.

As a result of the thesis work, lots of new things were learned. The knowledge

of F5 ADCs went from zero to some level of expertise, because of the many

hours used to configure the device and to read the F5 documentations. The

configuration of the ADC features, taught a lot of new things about features

that were never even heard of before this project. The importance and value

of the web application security and optimization in the Cybergame and in

general was noted, as they are key factors in application delivery. With some

good planning and time management the progress of the work could have

been smoother. The F5 documentation could have been used more from the

start, since some of the implementations had to be done multiple times

because of not reading the documentations well enough.

In future projects, the features studied in this work should be implemented into

the Cybergame application, when the application is ready. Most of the

features in this project could also be studied and implemented further when

the requirements set by the Cybergame application are known. Features that

include the anomaly based detection settings in the security section can be

tuned better when the typical network traffic behavior is known. The

optimization features could also be tuned to see on which kind of a setup they

provide the most optimized traffic. The combination of application security

policy and the Guacamole virtual machines needs to be researched more to

implement application security into the Guacamole.

When implementing the features into the Cybergame application the most

important setting, the application security policy should be done first as some

of the other features require the security policy to be complete. Using the

automatic policy builder, the application should be taught to the ADC by a few

clients using the trusted addresses as explained in the application security

chapter. When the policy is finished, it will need to be monitored for possible

false entities and that it is working correctly. The violation settings of the

 49

policy, mentioned in the same chapter should also be tuned to the required

settings. If the login page of the Cybergame application can be added to the

ADC, as was done in the brute force chapter, the brute force protection and

session tracking features can be used. The anomaly based DoS protection

requires some information on the traffic of the Cybergame network, which

means the application needs to be online for some time before the correct

implementation is possible. The web scraping bot protection is the least

important of the features but it could be worth to implement, if it is possible

and protection against bots is required. The F5 websites should be studied

every now and then for information and mitigation methods on new

vulnerabilities. The implemented optimization features will increase the

performance of the application. The TCP multiplexing and HTTP compression

increase the performance even on default settings. When implementing

caching with ASM set on, the application security policy should be finished

and some extra configuration is also needed as done in the web acceleration

chapter. All of the optimization features can be optimized when more about

the application and traffic is known.

 50

REFERENCES

A10. 2016. SSL Offloading. Available at:
https://www.a10networks.com/resources/glossary/ssl-offload [Accessed 9

December 2016].

Apache. s.a.a. Appendix B. Guacamole protocol reference

https://guacamole.incubator.apache.org/doc/gug/protocol-reference.html

[Accessed 27 April 2017].

Apache. s.a.b. Chapter 14. The Guacamole protocol. Available at:
https://guacamole.incubator.apache.org/doc/gug/guacamole-protocol.html

[Accessed 27 April 2017].

Balandin, S. Andreev, S.& Koucheryavy, Y. 2015. Internet of Things, Smart

Spaces, and Next Generation Networks and Systems. Springer.

Citrix. 2016 What is an Application Delivery Controller (ADC)?. Available

at:https://www.citrix.fi/products/netscaler-adc/resources/what-is-an-adc.html

[Accessed 10 December 2016].

Crunchbase. 2016. F5 Networks. Available at:
https://www.crunchbase.com/organization/f5-networks [Accessed 29

November 2016].

F5. 2013. Preventing DoS Attacks for Layer 7 traffic. Available at:

https://support.f5.com/kb/en-us/products/big-ip_asm/manuals/product/asm-

implementations-11-4-0/18.html [Accessed 1 February 2017].

F5. 2014a. BIG-IP Application Acceleration Manager. Available at:
https://www.f5.com/pdf/products/big-ip-application-acceleration-manager-

datasheet.pdf [Accessed 7 April 2017].

F5. 2014b. BIG-IP Application Security Manager: Implementations. Available

at: https://support.f5.com/content/kb/en-us/products/big-
ip_asm/manuals/product/asm-implementations-11-5-

0/_jcr_content/pdfAttach/download/file.res/BIG-
IP_Application_Security_Manager__Implementations.pdf [Accessed 8

February 2017].

F5. 2014c. The SSL Reference Architechture. Available at:

https://f5.com/resources/white-papers/the-f5-ssl-reference-architecture

[Accessed 13 April 2017].

F5. 2015. Configuring a Web Acceleration profile for use with a BIG-IP ASM-
enabled virtual server. Available at: https://support.f5.com/csp/article/K16565

[Accessed 1 February 2017].

F5. 2016a. Advanced Firewall Manager. Available at:

https://f5.com/products/big-ip/advanced-firewall-manager-afm [Accessed 9

January 2017].

F5. 2016b. Application Delivery Controller. Available at:
https://f5.com/glossary/application-delivery-controller [Accessed 29 November

2016].

https://www.a10networks.com/resources/glossary/ssl-offload
https://guacamole.incubator.apache.org/doc/gug/protocol-reference.html
https://guacamole.incubator.apache.org/doc/gug/guacamole-protocol.html
https://www.citrix.fi/products/netscaler-adc/resources/what-is-an-adc.html
https://www.crunchbase.com/organization/f5-networks
https://support.f5.com/kb/en-us/products/big-ip_asm/manuals/product/asm-implementations-11-4-0/18.html
https://support.f5.com/kb/en-us/products/big-ip_asm/manuals/product/asm-implementations-11-4-0/18.html
https://www.f5.com/pdf/products/big-ip-application-acceleration-manager-datasheet.pdf
https://www.f5.com/pdf/products/big-ip-application-acceleration-manager-datasheet.pdf
https://f5.com/resources/white-papers/the-f5-ssl-reference-architecture
https://support.f5.com/csp/article/K16565
https://f5.com/products/big-ip/advanced-firewall-manager-afm
https://f5.com/glossary/application-delivery-controller

 51

F5. 2016c. Modules. Available at: https://f5.com/products/modules [Accessed

11 December 2016].

F5. 2017. K10260: Mitigating Slowloris DoS attacks with the BIG-IP system.

Available at: https://support.f5.com/csp/article/K10260 [Accessed 22 March

2017].

F5. s.a. Tuning the OneConnect Feature on the BIG-IP Local Traffic Manager.
Available at: https://www.f5.com/pdf/deployment-guides/oneconnect-tuning-

dg.pdf [Accessed 16 January 2017].

Galinina, O. Balandin, S & Koucheryavy, Y. 2016. Internet of Things, Smart

Spaces, and Next Generation Networks and Systems. Springer.

Holmes, D. 2012. Mitigating Nuclear DDoSer, R-U-Dead-Yet, Dirt Jumper,

Keep-Dead, and Tor Hammer with F5. Available at:
https://devcentral.f5.com/articles/mitigating-nuclear-ddoser-r-u-dead-yet-dirt-

jumper-keep-dead-and-tor-hammer-with-f5 [Accessed 8 March 2017].

Holmes, D. 2013. Mitigating DDoS Attacks with F5 Technology. Available at:

https://f5.com/resources/white-papers/mitigating-ddos-attacks-with-f5-

technology [Accessed 3 January 2017].

Imperva 2017. Web Application Security. Available at:
https://www.incapsula.com/web-application-security/application-security.html

[Accessed 21 March 2017].

Iveson, S. 2013. An Introduction to F5 Networks LTM iRules. 2nd edition. Lulu

Press, Inc.

Jönsson, P. & Iveson, S. 2014. F5 Networks Application Delivery Fundamen-

tals Study Guide. 1st edition. Self-Published.

Kajova, H. 2016. Datacenter Application Delivery Virtual Laboratory. Available
at: http://theseus.fi/bitstream/handle/10024/118489/Kajova_Henri.pdf

[Accessed 24 March 2017].

KEMP. 2016. Application Delivery Controllers (ADC) and Server Load
Balancing. Available at: https://kemptechnologies.com/uk/application-delivery-

controllers [Accessed 10 December 2016].

Kiyuna, A. & Conyers, L. 2015. CYBERWARFARE SOURCEBOOK. lulu.com.

Lerner, A. Skorupa, J. & Ciscato, D. 2016. Magic Quadrant for Application
Delivery Controllers. Available at: https://www.gartner.com/doc/reprints?id=1-
3GEK4YV&ct=160830&st=sb&aliId=170803803 [Accessed 29 November

2016].

MacVittie, L. 2008. 3 Really good reasons you should use TCP multiplexing.

Avalable at: https://devcentral.f5.com/articles/3-really-good-reasons-you-

should-use-tcp-multiplexing [Accessed 9 December 2016].

Montpas, M. 2017. Stored XSS in WordPress Core. Available at:
https://blog.sucuri.net/2017/03/stored-xss-in-wordpress-core.html [Accessed

12 April 2017].

https://f5.com/products/modules
https://support.f5.com/csp/article/K10260
https://www.f5.com/pdf/deployment-guides/oneconnect-tuning-dg.pdf
https://www.f5.com/pdf/deployment-guides/oneconnect-tuning-dg.pdf
https://devcentral.f5.com/articles/mitigating-nuclear-ddoser-r-u-dead-yet-dirt-jumper-keep-dead-and-tor-hammer-with-f5
https://devcentral.f5.com/articles/mitigating-nuclear-ddoser-r-u-dead-yet-dirt-jumper-keep-dead-and-tor-hammer-with-f5
https://f5.com/resources/white-papers/mitigating-ddos-attacks-with-f5-technology
https://f5.com/resources/white-papers/mitigating-ddos-attacks-with-f5-technology
https://www.incapsula.com/web-application-security/application-security.html
http://theseus.fi/bitstream/handle/10024/118489/Kajova_Henri.pdf
https://kemptechnologies.com/uk/application-delivery-controllers
https://kemptechnologies.com/uk/application-delivery-controllers
https://www.gartner.com/doc/reprints?id=1-3GEK4YV&ct=160830&st=sb&aliId=170803803
https://www.gartner.com/doc/reprints?id=1-3GEK4YV&ct=160830&st=sb&aliId=170803803
https://devcentral.f5.com/articles/3-really-good-reasons-you-should-use-tcp-multiplexing
https://devcentral.f5.com/articles/3-really-good-reasons-you-should-use-tcp-multiplexing
https://blog.sucuri.net/2017/03/stored-xss-in-wordpress-core.html

 52

Offensive Security. 2017a. Kali Linux Hard Disk Install. Available at:
http://docs.kali.org/installation/kali-linux-hard-disk-install [Accessed 8 March

2017].

Offensive Security. 2017b. What is Kali Linux. Available at:

http://docs.kali.org/introduction/what-is-kali-linux [Accessed 16 January 2017].

OWASP. 2013. OWASP Top 10 – 2013. Available at:
https://storage.googleapis.com/google-code-archive-
downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-

%202013.pdf [Accessed 15 March 2017].

OWASP. 2016. Blocking Brute Force Attacks. Available at
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks [Accessed

21 February 2017].

Peltonen, A. 2016. Application Delivery Controller Implementation to

CyberLab Data Center. Available at:
https://www.theseus.fi/bitstream/handle/10024/110229/antti_peltonen.pdf

[Accessed: 12 January 2017].

Rouhiainen, K. & Kettunen, M. 2015. Kyberturvallisuutta kehitetään joukolla.
Available at: http://www2.kyamk.fi/Koskinen/052015/kyber.html [Accessed 17

December 2016].

Saeed, N. H. 2016. Good or Evil? What Web Scraping Bots Mean for Your
Site. Available at: https://www.incapsula.com/blog/web-scraping-bots.html

[Accessed 14 February 2017].

Shakarian, P. Shakarian, J. & Ruef, A. 2013. Introduction to Cyber-Warfare : A

Multidisciplinary Approach. Syngress.

Työ- ja elinkeinoministeriö. 2014. Euroopan aluekehitysrahaston (EAKR)

rahoittaman hankkeen kuvaus. Available at:
https://www.eura2014.fi/rrtiepa/projekti.php?projektikoodi=A70554 [Accessed

17 December 2016].

Wagnon, J. 2013. The BIG-IP Application Security Manager Part 1: What is

the ASM?. Available at: https://devcentral.f5.com/articles/the-big-ip-
application-security-manager-part-1-what-is-the-asm [Accessed 24 January

2017].

http://docs.kali.org/installation/kali-linux-hard-disk-install
http://docs.kali.org/introduction/what-is-kali-linux
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
http://www2.kyamk.fi/Koskinen/052015/kyber.html
https://www.incapsula.com/blog/web-scraping-bots.html
https://www.eura2014.fi/rrtiepa/projekti.php?projektikoodi=A70554
https://devcentral.f5.com/articles/the-big-ip-application-security-manager-part-1-what-is-the-asm
https://devcentral.f5.com/articles/the-big-ip-application-security-manager-part-1-what-is-the-asm

