

Developing a training tool prototype for IN-
ACHUS: the Smart Triage system in a game-
based approach using the Blender Game En-
gine

Çelik, Ali

2017 Laurea

Laurea University of Applied Sciences

Developing a training tool prototype for INACHUS: the Smart Triage
system in a game-based approach using the Blender Game Engine

 Ali Çelik
 Business Information Technology
 Bachelor’s Thesis
 April, 2017

Laurea University of Applied Sciences Abstract
Degree Programme in Business Information Technology
Bachelor’s Thesis

Çelik, Ali

Developing a training tool prototype for INACHUS: the Smart Triage system in a game-
based approach using the Blender Game Engine

Year 2017 Pages 30

This thesis project has been executed for the INACHUS research project. INACHUS is an EU
funded research project which aims to optimize the effectiveness of the urban search and
rescue teams. The main objective of this thesis project was to implement a training tool pro-
totype to evaluate and prioritize the medical condition of patients using Smart Triage for the
INACHUS project as a part of Laurea University of Applied Science’s contribution to the re-
search project.

The triage concept is explained and the SALT, START and the Smart Triage systems and their
efficiency are discussed in the thesis report. The Smart Triage algorithm is also explained
step-by-step. The advantages of the using a game-based approach are also discussed.

The development process that is used for this project was the incremental build model. Meet-
ings with INACHUS representatives were held according to the internal deadlines. The Blender
Game Engine, Python programming language, and the Smart Triage algorithm are used for this
thesis project’s implementation.

As an outcome of the project, a training tool prototype was created. The first part of this
training tool is a game prototype system which allows the users to interact with patient ob-
jects, observe the patient data inside of the game and let the users predict the treatment
priority for each patient and tell them if they were right with their predictions. The second
part of the project is a software system which extracts the data into a comma separated val-
ues file for each patient and then evaluates the patients’ condition based on Smart Triage al-
gorithm and allows the users to observe the patient priority based on the patient data that
were created in the game.

The prototype system works successfully and it has passed the software testing session with-
out any sign of error. The INACHUS representatives were highly satisfied with the outcome of
the prototype, however, the future development is required for the final training tool. Due to
lack of time and resources, this project could not be tested by the urban search and rescue
members, thus the effectiveness and the efficiency of this training tool prototype is unknown.
Suggestions for the further development regarding the game content, graphical user inter-
face, patient detection, automation of the patient distribution, automation of the game
scene, and the importance and the requirement for the opinions of the urban search and res-
cue members are described in the thesis report.

Keywords: INACHUS, Smart Triage, Blender Game Engine

Table of Contents

1	 Background .. 5	
1.1	 INACHUS and Laurea University of Applied Sciences 5	

2	 Theoretical framework .. 6	
2.1	 Triage and Smart Triage ... 6	
2.2	 Game-based approach and learning ... 9	
2.3	 Blender Game Engine .. 9	
2.4	 Python .. 9	

3	 Objectives .. 10	
3.1	 Limitations ... 10	

4	 Methodology ... 10	
4.1	 Software requirements ... 11	

5	 Implementation ... 13	
5.1	 Game scene .. 13	
5.2	 Player object movements .. 13	
5.3	 Dialogues ... 14	
5.4	 Patient data .. 14	
5.5	 Patient detection .. 15	
5.6	 Player and patient interaction .. 16	
5.7	 Data extraction .. 17	
5.8	 Data classification ... 18	
5.9	 User input collection and validation ... 18	

6	 Testing the software .. 20	
7	 Results .. 25	
8	 Future development .. 26	
9	 Conclusion .. 27	
References ... 28	
Figures .. 30	

 5

1 Background

Catastrophic events and emergency situations are causing an extreme number of casualties

per year. According to The Human Cost of Natural Disasters: a global perspective report,

more than 1.35 million people lost their lives because of the natural disasters between the

years 1994 and 2013 (2015). These unfortunate events are inescapable for the society; how-

ever, their damage is reducible with the right preparation techniques and the right tools

(Mathbor 2007).

Figure 1: Cyclone Debbie in Queensland Australia, March 2017.

 (CNN, 2017)

1.1 INACHUS and Laurea University of Applied Sciences

INACHUS: “Technological and Methodological Solutions for Integrated Wide Area Situation

Awareness and Survivor Localization to Support Search and Rescue (USaR) Teams” is a Euro-

pean Union funded research project which aims to improve the effectiveness of the USaR

teams and the time efficiency of the rescue operations (INACHUS Press Release 2015).

INACHUS project plans to achieve these aims with twelve work packages;

• “WP1 - Scenarios Definition, User/System Requirements

• WP2 - Framework Design and Interoperability Issues

• WP3 - Simulation Tool for Structural Damage Analysis and Casualty Estimation

• WP4 - Wide-Area Surveillance Tools for monitoring of Collapsed buildings

 6

• WP5 - Victim Localization Solutions

• WP6 - Development of the Emergency Support System

• WP7 - Secure Communications and Positioning Issues

• WP8 - System Integration

• WP9 - Piloting Activities- System Validation

• WP10 - Dissemination, Exploitation and Training Activities

• WP11 - Evaluation and Consideration of Societal Impacts, Legal/Ethical Issues and

Standards-Guidelines

• WP12 - Project Management, Quality Assurance and Reporting”

 (INACHUS Methodology nod)

Laurea University of Applied Sciences (Laurea UAS) is one of the partners of INACHUS project.

Laurea UAS contributes the INACHUS under the two work packages: WP3 and WP11 (LAUREA

and INACHUS n.d.). Laurea UAS uses the open-source Blender software to develop the WP3

simulation tool.

WP3, the simulation tool for structural damage analysis and casualty estimation will be used

to train USaR teams so that they could have a better understanding of the catastrophic

scenes. The simulation consists of two parts; the first part is the structural damage analysis

and the second part is the casualty estimation. This thesis project aims to contribute the cas-

ualty estimation part of the simulation tool.

The main aim of the casualty estimation part is to predict the approximate location of the

victims by simulating catastrophic situations. The secondary aim of the casualty estimation

part is to simulate health conditions of the injured people and train the USaR teams to decide

the treatment priority by using a triage system. A game-based approach was chosen to apply

triage system virtually for this thesis project to keep trainees interested.

2 Theoretical framework

2.1 Triage and Smart Triage

Triage is an injury and illness classification system which prioritize patients based on critical-

ness of their condition by following certain algorithms (Iserson & Moskop 2007). There are

number triage systems exists such as Simple Treatment and Rapid Transport (START), Sort,

Assess, Lifesaving interventions, Treat and Transport (SALT), and Smart Triage.

The general approaches of the triage systems are similar. Based on the patient data such as

the ability to walk, the ability to breathe, pulse and the ability to obey simple commands, tri-

age systems classifies patients for treatment priority. However, the order of the examination,

 7

label types and different strategies for classification creates the different results for the

treatment priorities.

START triage algorithm is developed by the California Fire and Marine Department (REMM

2017). START triage classifies the treatment priority by checking the walking ability, respira-

tions, existence of radial pulse, and ability to obey simple commands. START algorithm has

four different classification levels; deceased, immediate, delayed, and minor (Jenkins,

McCarthy, Sauer, Green, Stuart, Thomas and Hsu 2007). START triage has been widely used in

USA, however, its efficiency was heavily criticized. In 2003, a train accident aftermath

showed that the overall accuracy of the START triage was only 44.6% (Kahn, Schultz, Miller

and Anderson 2009).

SALT triage algorithm is developed by the US Centers for Disease Control and Prevention.

SALT triage consists of two steps; the first step is global sorting. In the global sorting USaR

members classifies injured people in three labels these are; assess first, assess second, and

assess third. If the injured people can walk, their priority label will automatically become the

“assess third”. If the injured people can wave or show any purposeful movement towards the

USaR members their label will be the “assess second” and if they cannot move or they are ob-

viously injured in a life-threatening way, their assessment label will become the “assess

first”. After this first step, the second step of the SALT algorithm begins, which is the individ-

ual assessment. In the individual assessment, injured people will be checked for bleeding,

breathing, ability to obey commands and their chance of survival with the current resources

of the USaR team members. Based on these data injured people will be classified under four

tags; expectant, immediate, minimal and delayed (Cone, Serrra and Kurland 2011). SALT tri-

age has a high accuracy rate with 80+% when compared to START triage algorithm in the same

catastrophic events (Lerner, Schwartz, Coule and Pirallo 2010).

Smart Triage is a mass casualty incident triage system developed by TSG Associates in Halifax,

Yorkshire, UK (Smart MCI n.d.). In the Smart Triage system, first, USaR team members will

check if the injured people can walk, if a person can walk, their treatment priority becomes

priority 3. Next, they will check the respirations, if a person does not breathe, they will im-

mediately position the airway and check the respiration again, if the patient still does not

breathe, they will tag this person as dead and if the patient starts breathing after positioning

the airway, the patient’s treatment priority becomes priority 1 (urgent). If a patient’s respi-

ration is positive in the first check, USaR team members will check patient’s respiration fre-

quency, if the frequency is over 30 times in a minute, the treatment priority of that patient

becomes 1. If the respiration frequency is under 30 times in a minute, USaR team members

will check the patient’s capillary refill time, if it takes more than 2 seconds, USaR team mem-

bers will look for signs of bleeding and then will tag the patient as priority 1. If the capillary

 8

refill time takes less than 2 seconds, USaR team members will check if the patient can obey

simple commands, if the patient cannot obey simple commands, USaR team members will

look for signs of bleeding and then will tag the patient as priority 1. If the patient can obey

simple commands, the priority of that patient will become priority 2. A virtual reality experi-

ment for Smart Triage and SALT comparison showed that treatment priority classification with

Smart Triage was much more fast and accurate than the SALT system (Cone et al. 2011).

Figure 2: Smart Triage algorithm.

 (Cone et al. 2011)

Due to its high accuracy comparing the other popular triage systems, Smart Triage system was

chosen for this thesis project. The classification criteria that is used in the Smart Triage algo-

rithm such as walking, respirations, respiration frequency, capillary refill and ability to obey

simple commands used as patient data in this thesis project to allow the software to perform

the Smart Triage algorithm and show users to priority assigning based on the patient data.

The main aim of implementing this triage system into training prototype was to allow USaR

members to practice Smart Triage’s classification system. However, the “position airway”

step in the Smart Triage algorithm was an intervention method rather than classification.

 9

Thus, in this training tool prototype, positioning the airway was not calculated, if an injured

person’s respiration is negative, their priority will automatically become priority 1.

2.2 Game-based approach and learning

The popularity and the availability of the video games are constantly increasing over time.

Different genres and different game modes exist in today’s world and each of these different

genres and modes targeting people with different characteristics, ages, and genders

(McGonigal 2011, 20-21).

Video games are used in education since the early 1980s. Some of the most popular video

games of that era selected by some of the educators and used in the classrooms. Video games

such as Pac-Man and Super Mario Brothers 2 showed a clear structure to educators about key

points of the game design essentials and how they could be adapted for educational purposes

(Squire 2003).

Game-based approach has successfully used for educational purposes for the health field. In

2007, 33 surgeons participated a program showed that surgeons who played video games more

than 3 hours a week put a better performance in the Rosser Top Gun Laparoscopic Skills and

Suturing Program when compared to their non-gamer colleagues (Rosser, Lynch, Cuddihy,

Gentile, Klonsky and Merrel 2007).

Additionally, a game based training simulation called Sidh was used for firefighters’ training

in Sweden and collected positive feedbacks from firefighters regarding the game’s ability to

teach learning objectives (Backlund, Engström, Hammar, Johannesson and Lebram 2007).

2.3 Blender Game Engine

Blender Game Engine (BGE) is a part of the Blender, an open-source 3D computer graphics

production software (About Blender n.d.). The main purpose of the BGE is to create game-

based environments for real-time projects (Game Engine n.d.).

Blender Game Engine was used for this project to have a better collaboration with Laurea

UAS’ simulation tool.

2.4 Python

Python is a high-level multi-paradigm-type programming language (Rossum 2007). Python is

used for this project due to BGE’s support to Python language (Game Engine n.d.).

 10

3 Objectives

The main objective of this project is to develop a training tool prototype to evaluate and pri-

oritize the medical condition of patients using Smart Triage system in a virtual environment

which is created with using Blender Game Engine and get the user input regarding the priori-

tizing order and compare it with the software’s result and show the users the accuracy of

their prediction.

The secondary objective is to adapt this virtual environment to a maze-like structure to illus-

trate three-dimensional structures in two-dimension.

3.1 Limitations

Requirements for this project were set according to available resources. These resources

were not enough to create a complete training tool or develop an advanced training tool pro-

totype; however, they were enough to complete the first version of the prototype. Some ap-

proaches regarding technical complexity were not the most optimal ones. Additionally, ana-

lyzing the software outcome and its efficiency were not possible. Thus, overall quality and ef-

fectiveness of the software system is debatable.

4 Methodology

Incremental build model is used as software development method to gain a clear understand-

ing of the BGE and other technical requirements of the project. Meetings with project repre-

sentatives held according to the internal deadlines.

 11

Figure 3: Incremental build model

 (Tilloo 2016)

The first increment of the project was to build the game scene and once this was done the

next increments were with order; implementing player movements, creating dialogues, creat-

ing patient data, implementing a patient detection system, enabling player-patient interac-

tion, extracting the data, classifying the data and finally getting the user input for classifica-

tion predictions and analyzing the accuracy of their prediction. Each of these increments had

their own internal deadlines.

The project required familiarity with the BGE’s user interface and its Python programming

language support as well as the Smart Triage algorithm.

4.1 Software requirements

Software requirements of the project determined by analyzing the Smart Triage algorithm

and discussing the potential project requirements with the INACHUS representatives.

Since the software implementation method was the incremental build model, increments

mentioned above formed the overall software requirements.

Requirements for the game scene were the building a maze-like structure and creating one

player object and three injured person objects for the game part of the software. Injured

person objects would later carry certain data to share with the player object for triage train-

ing purposes.

 12

Requirements for the player object movements were to implement a keyboard directed

movement system for the player object so that during the software usage players would be

able to walk around the maze and search for injured person objects. W, A, S, D keys were

chosen for player object movements due to their popularity in the gaming industry (Wilde

2016).

Dialogue requirements were to implement a small dialogue between player and injured per-

son objects and show the Smart Triage related data to the player so that they would know

which type of data are processing by the software.

Patient data requirement was to build an algorithm that would produce new patient data in

each game session. Patient data types are adopted from Smart Triage algorithm.

The requirement for the patient detection was to build a patient detection system in the

maze-like structure so that player would have an idea where to look for the injured person

object. In real life, there are number of detection systems exist to detect people in collapsed

structures. However, in this thesis project, an arrow shaped detection system which would

work like a compass decided as the detection system to cover different types of detection

strategies under the one feature.

Player-patient interaction requirement was to start to dialogue between player and patient

objects when there are no obstacles between objects and the distance is reasonable. The re-

turn key has chosen for the starting the interaction between the player and the patient ob-

jects. Space key has chosen to continue the dialogue and complete the interaction at the end

of the dialogue.

The requirement for data extraction was to extract the patient data which is created inside

of the game part of the software system in a spreadsheet file format so that after the game

session users would have a chance to see the patient data and their treatment priority level.

Comma-Separated Values (CSV) file format chosen due to its popularity as a data file format

(Shafranovich 2005).

Data classification requirements were to classify patient priority based on Smart Triage algo-

rithm and show this classification in the extracted data file.

The requirement for the user input collection and validation was to collect the user’s predic-

tion regarding the treatment prioritization via keyboard input and compare their prediction

with the computer’s result and show them about the accuracy of their guesses inside of the

game.

 13

5 Implementation

5.1 Game scene

Game scene was created in a maze-like structure to illustrate three-dimensional structures in

two-dimension. The scene includes one floor, number of walls, three injured person objects,

and one player object.

Figure 4: Game Scene

5.2 Player object movements

The player object can be moved by pressing W, S, A, D key from the keyboard. W and S keys

used for moving forward and backward, A and D keys are used for moving left and right.

Movements are implemented by using Blender’s own Python library BGE.

 14

Figure 5: Player movements with Python

5.3 Dialogues

In game dialogues implemented to illustrate a sample dialogue between player and injured

person objects and show the player the patient data of the injured person object. Dialogues

include a small introductory conversation between player and injured person objects and then

shows the patient data to the player.

5.4 Patient data

Patient data consist of the ability of the walking, respirations, respirations per minute, capil-

lary refill, and ability to obey simple commands. The data types and their values are based on

Smart Triage algorithm.

The text data and dialogue files for all the patients were created at random in the beginning

of each game session by using Python’s Random library. The algorithm works in a way that it

will run only once in each session with overriding the previous session’s data files. If there are

no previous session’s data files exists, the software will create them.

 15

Figure 6: Random data and dialogue algorithm

5.5 Patient detection

Based on a discussion with the project representatives, an arrow object which is detecting

patients in the maze based on their distance to the player object, was implemented to cover

different types of detection techniques. The arrow object detects patients by using Blender’s

Near sensor and Track To actuator with the help of a Python file called trackNearest.py.

First, the Near sensor detects the patient objects based on their distances to the player, then

trackNearest.py activates and calls the Track To actuator and finally the arrow object

changes its direction towards detected patient and shows the player the direction of the pa-

tient object.

 16

Figure 7: The arrow object, Near sensor, trackNearest.py and Track To actuator

The arrow object is a child object of the player object, which means it will always stick to

the player object.

5.6 Player and patient interaction

Player and patient interaction occur when the player encounters with a patient object. By us-

ing Blender’s Ray sensor, a small red line occurs if there are no obstacles exists between pa-

tient. This red line represents the vision, so in other words, when the red line occurs player

can see the injured people. After player sees the injured person, an interact sign is shown to

the player to tell that the dialogue and the observation can start now.

 17

Figure 8: Interact sign and red ray between player and patient objects

After interact sign comes up, the player can start the dialogue by pressing the return key and

continue the dialogue by pressing the space key. Once the dialogue is over, the player can

look for other patient objects.

5.7 Data extraction

After data values are created and displayed to the player, the software creates a Comma-

Separated Values file and extract the data with the help of Python’s CSV library. During the

extraction process, by using UUID library functionality of Python, a unique ID was created for

each injured person and added to the CSV file.

 18

Figure 9: Sample CSV file

5.8 Data classification

Data classification process begins after the extraction process. Based on the Smart Triage al-

gorithm and the random values are created by the Python, the software classifies the injured

person data and decides the priority. Based on the values, software changes the CSV file

names according to their priority. The format of the file name is; “Priority Order”_“Object

number”.csv.

Figure 10: Classification process with Python

5.9 User input collection and validation

After the software’s classification process, user input collection and validation begins. The

software will ask the user about their prediction of a patient’s treatment priority and will

 19

compare the user’s prediction with its own classification. The users can give their prediction

by pressing the 1, 2 and 3 keys from the keyboard. Each key represents a priority. If the user

is right with their prediction, the game will show the user a “Correct!” sign and if the user is

wrong, the game will show a “Wrong!” sign. The user input collection was implemented via

BGE’s keyboard sensor, message sensor and message actuator. The validation was

implemented via Python by analyzing the user’s keyboard input and comparing the software’s

own classification result.

Figure 11: User input validation

 20

6 Testing the software

After the implementation, software system was tested to observe the overall performance

and the accuracy of the prototype.

As the first step of testing, a game session started and the patients were detected in the

maze by the guidance of the arrow object;

Figure 12: Detecting a patient with the arrow object

After detecting the patients successfully, the player-patient interaction was tested and in-

game version of the dialogue data observed for each patient;

 21

Figure 13: The dialogue scene

After the successful interaction and the in-game dialogues, the text version of the dialogue

data was observed for each patient. The in-game dialogue and text dialogue data were

matching successfully for each case;

Figure 14: The dialogue data of the first patient object

 22

Figure 15: The dialogue data of the second patient object

Figure 16: The dialogue data of the third patient object

Then the patient text data and CSV data were compared to each other to see if the data were

matching. No errors observed.

And then, the CSV data extracted and classified by using the Smart Triage algorithm;

 23

Figure 17: The data file of the first patient with priority classification

Figure 18: The data file of the second patient with priority classification

 24

Figure 19: The data file of the third patient with priority classification

All the classifications of the test session were correct. Classifications of the cases were done

accurately and CSV file names were changed according to them. In addition, unique ID’s were

successfully created for each CSV file.

After the data classification, user input collection and validation started;

Figure 20: Collecting the user input

 25

Figure 21: Validation of the prediction

7 Results

At the end of the project, a training tool prototype was created. The structure of the proto-

type system is the following; the player enters the game, dialogues and patient data are cre-

ated automatically, based on that data the software extracts the data and creates CSV files

and then the software classifies patient priority based on the Smart Triage algorithm changes

the name of the CSV files according to their priorities so that the player can see the data and

the priority of patients, then software asks users about their prediction regarding treatment

priority of patient objects and then compares users’ result with its own result and show the

users if they were right or not.

The testing completed successfully with a complete accuracy and without any signs of error

based on the Smart Triage algorithm.

 26

Figure 22: Software system

8 Future development

Future development is necessary to complete the prototype. Game scene, user interface,

game content, and the patient detection system needs further development, new systems

such as automation of the patient distribution and automation of the game scene can be im-

plemented and getting opinions of USaR team members regarding the software system and its

efficiency can be used to evaluate and develop the overall approach of the software system.

The game scene needs more detailed content and different types of maze structures to in-

crease the diversity of the scenarios. Three-dimensional approach can be applied to the game

scene instead of two-dimensional approach for better user experience.

The user interface needs better graphical representations of the real-life objects and the

people. Realistic approaches regarding the user interface can increase the user experience

and give USaR team members a better understanding of the catastrophic scenes in real life.

The game content can be improved by adding more features to the game. For example, a

level-based system where each level includes more difficult scenarios for the player can be

implemented. In this way, players can encounter with different types of scenarios this could

improve the user experience and satisfaction. In addition, a score system can also be imple-

mented. The current version of the game does not have any evaluation system other than the

telling the users if they were right with their priority predictions or not. With the implemen-

tation of a scoring system, users can collect points for each correct prediction and after every

game session, a high score table can be shown to keep the player interested and possibly cre-

ate a competition feeling.

 27

The patient detection system can be improved by implementing different detection choices.

The current version of the software has only one type of detection system. Implementing dif-

ferent types of patient detection systems realistically can improve the overall user experi-

ence.

Automation of the patient distribution can be an important development to increase the qual-

ity of the software system. In the current version, there are only three patients and their lo-

cations are fixed. With the automation of the patient distribution, game diversity can be in-

creased and different scenarios for users can be created.

Automation of the game scene can also be an important development for the software sys-

tem. Using artificial intelligence techniques such as artificial neural networks or Qlearning, a

smart level system can be implemented to the game. In this way, every level would have a

unique content based on each player’s weaknesses and strengths. In this way, players can ob-

serve and improve their theoretical knowledge regarding the triage and rescuing subjects.

Opinions of the USaR team members can be used to evaluate and improve the software sys-

tem. The current version has not been tested by the professionals therefore, its effectiveness

in training USaR members is unknown. Letting rescue professionals to use the software and

collecting their feedback regarding its efficiency can be crucial for the final version of the

training tool.

9 Conclusion

In conclusion, a training tool prototype was created. Due to project’s complexity and time

and resource limitations prototype could not be perfected and the future development is re-

quired for stability and reliability. However, INACHUS representatives were satisfied with the

overall prototype. The current version of the training tool prototype executes Smart Triage

algorithm and classifies the patient objects without any failure. The software extracts the

data and stores it in CSV format and compares the computer’s classification with user’s pre-

diction. All the software requirements were executed successfully.

 28

References

About Blender. No date. Introduction. Accessed 2 April 2017. https://docs.blender.org/man-
ual/ko/dev/getting_started/about/introduction.html

Backlund, P. Engström, H. Hammar, C. Johannesson, M. & Lebram, M. 2007. Sidh – a Game
Based Firefighter Training Simulation. In: 11th International Conference of IEEE July 2007. In-
formation Visualization. Accessed 21 April 2017. http://ieeexplore.ieee.org/abstract/docu-
ment/4272085/

CNN. Cyclone Debbie prompts evacuations. 2017. Accessed 1 April 2017. http://edi-
tion.cnn.com/videos/weather/2017/03/27/australia-queensland-cyclone-debbie-latest-gray-
sot-cnni.cnn

Cone, D., Serrra, J. & Kurland, L. 2011. Comparison of the SALT and Smart triage systems
using a virtual reality simulator with paramedic students. European Journal of Emergency
Medicine, 18(6), 3.

Game Engine. No date. Introduction. Accessed 2 April 2017. https://docs.blender.org/man-
ual/ko/dev/game_engine/introduction.html

INACHUS Methodology. No date. Accessed 2 April 2017. https://www.inachus.eu/methodology

INACHUS Press Release. 2015. Accessed 1 April 2017.
https://drive.google.com/file/d/0BzgAgXQ5LS6IYmFjYTlmQjRDcXM/view

Iserson K. & Moskop, J. 2007. Triage in Medicine, Part I: Concept, History, and Types. Annals
of Emergency Medicine, 49 (3), 275-276.

Jenkins, J. McCarthy, M. Sauer, L. Green, G. Stuart, S. Thomas T. & Hsu, E. 2007. Mass-Casu-
alty Triage: Time for an Evidence- Based Approach. Prehospital and disaster medicine, 23(01),
3-8.

Kahn, C., Schultz, C., Miller, K. & Anderson, C. 2009. Does START triage work? An outcomes
assessment after a disaster. Annals of emergency medicine, 54(3), 424-430.

LAUREA and INACHUS. No date. About. Accessed 13 April 2017. https://inachuslaurea.word-
press.com/about/

Lerner, B., Schwartz, B., Coule, L. and Pirallo, G. 2010. Use of SALT triage in a simulated
mass-casualty incident. Prehospital emergency care, 14(1), 21-25.

Mathbor, G. 2007. Enhancement of community preparedness for natural disasters. Interna-
tional Social Work, 50 (3), 358.

McGonigal, J. 2011. Reality is broken: Why games make us better and how they can change
the world. New York: Penguin Press.

REMM. 2017. START Adult Triage Algorithm. Accessed on 27 April 2017.
https://www.remm.nlm.gov/startadult.htm

Rosser, J., Lynch, P., Cuddihy, L., Gentile, D., Klonsky, J. & Merrel, R. 2007. The Impact of
Video Games on Training Surgeons in the 21st Century. Archives of surgery, 142 (2), 181-182.

Rossum, G. 2007. Python Programming Language. In: USENIX Annual Technical Conference
June 2007. Accessed 21 April 2017. http://colenak.ptkpt.net/_lain.php?_lain=3721

 29

Shafranovich, Y. 2005. Common Format and MIME Type for Comma-Separated Values (CSV)
Files. Accessed 13 April 2017. https://www.ietf.org/rfc/rfc4180.txt

Smart MCI. No date. About Us. Accessed 2 April 2017. http://www.smart-
mci.com/about_us.php

Squire, K. 2003. Video games in education. International journal of intelligent simulations and
gaming, 2003 (2), 49-62.

The Human Cost of Natural Disasters: A global perspective. 2015. Centre for Research on the
Epidemiology of Disasters CRED, 7. Accessed 1 April 2017. http://reliefweb.int/sites/re-
liefweb.int/files/resources/PAND_report.pdf

Tilloo, R. 2016. What Is Incremental Model In Software Engineering? Accessed 2 April 2017.
http://www.technotrice.com/incremental-model-in-software-engineering/

Wilde, T. 2016. How WASD became the standard PC control scheme. Accessed 13 April 2017.
http://www.pcgamer.com/how-wasd-became-the-standard-pc-control-scheme/

 30

Figures

Figure 1: Cyclone Debbie in Queensland Australia, March 2017. 5	
Figure 2: Smart Triage algorithm. ... 8	
Figure 3: Incremental build model ... 11	
Figure 4: Game Scene .. 13	
Figure 5: Player movements with Python ... 14	
Figure 6: Random data and dialogue algorithm .. 15	
Figure 7: The arrow object, Near sensor, trackNearest.py and Track To actuator 16	
Figure 8: Interact sign and red ray between player and patient objects 17	
Figure 9: Sample CSV file .. 18	
Figure 10: Classification process with Python .. 18	
Figure 11: User input validation .. 19	
Figure 12: Detecting a patient with the arrow object .. 20	
Figure 13: The dialogue scene .. 21	
Figure 14: The dialogue data of the first patient object ... 21	
Figure 15: The dialogue data of the second patient object 22	
Figure 16: The dialogue data of the third patient object .. 22	
Figure 17: The data file of the first patient with priority classification 23	
Figure 18: The data file of the second patient with priority classification 23	
Figure 19: The data file of the third patient with priority classification 24	
Figure 20: Collecting the user input ... 24	
Figure 21: Validation of the prediction .. 25	
Figure 22: Software system ... 26	

