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1 Introduction 

 

Water plays a major role in the environment and in the society, it supports life, it enables 

recreational activities, it provides pleasant surroundings and enables economic activities. 

Water can be used in numerous ways, such as fishing, scuba diving, drinking and irriga-

tion. The presence of a clean lake allows fishing activities, increases property values and 

provides a pleasant environment. It is therefore essential to protect and monitor this re-

source. The Village Waters project aims to improve the wastewater treatment solutions 

in villages across the Baltic sea region to reduce their environmental impact. A monitor-

ing program is essential to be implemented to measure the evolution of the impact of the 

wastewater treatment solutions from those villages. In Finland, the association Länsi 

Uudenmaan Vesi ja Ypäristö ry is responsible to monitor the water quality in the 

Gennarby village, built around Lake Gennarbyträsket. The association has chosen to 

deploy an EXO2 water sonde to monitor 7 parameters from the lake: pH, conductivity, 

turbidity, dissolved oxygen, temperature, chlorophyll-a (referred in the rest of this docu-

ment as chlorophyll) and cyanobacteria. These parameters help to assess the water 

quality of the lake. The trophic level of a lake is a key indicator of the health of the lake 

ecosystem. Chlorophyll allows to estimate the lake’s trophic level. Unfortunately, the 

chlorophyll-a sensor cost is among the highest in an EXO2 setup. Therefore, it can be 

economically interesting to find ways to assess the levels of chlorophyll based on 

cheaper commodity sensors. 

 

The goal of this thesis is to perform statistical analysis of data recorded by the EXO2 

water sonde, and to establish a methodology to create models to estimate levels of chlo-

rophyll from pH, conductivity, turbidity, dissolved oxygen and temperature observations. 

R is used to perform the statistical analysis and to generate the models. 

 

In the next section, the background will be presented. This will be followed by Section 3, 

the theoretical background covers concepts of limnology. The Section 4, presenting the 

methodology that has been used for this thesis. Section 5 and 6 present respectively the 

results and discussions. Finally, I conclude this thesis in Section 7. 
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2 Background 
 

This thesis has been possible thanks to the collaboration between different entities. This 

section presents the context in which this thesis has been developed and basic infor-

mation on the EXO 2 probe and its sensors. The final part of this section presents argu-

ments supporting the relevance of this thesis. 

2.1 Länsi Uudenmaan Vesi ja Ympäristö ry 
 

Founded in 1975, Länsi Uudenmaan Vesi ja Ympäristö ry (referred in the rest of this 

document as LUVY) is an association specialized in research related to water such as 

sampling, analysis and monitoring, wastewater treatment consulting and microbial as-

sessment (Länsi-Uudenmaan Vesi ja Ympäristö ry, 2016). LUVY provides services in-

cluding consulting, research-based studies and laboratory analysis. LUVY’s accredited 

testing laboratory is authorized by the FINAS - Finnish accreditation services (T147 ac-

creditation requirement SFS-EN ISO/IEC 17025:2005). Based in Lohja (Finland), the as-

sociation covers the western area of the Uusimaa region (Figure 1). LUVY also has of-

fices in Tvärminne Zoological Station (near Hanko, Finland) and in Raasepori (Finland). 
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Figure 1. Operating area of Länsi-Uudenmaan vesi ja ympäristö ry (Länsi-Uudenmaan Vesi ja Ympäristö ry, 

2013) 

LUVY’s research-based projects cover a wide range of research topics, such as water 

ecology, fish stocks, benthic animals, aquatic vegetation and wastewater purification. 

The Scattered wastewater project (LINKKI) is one of LUVY’s ongoing projects. Launched 

in 2009, the project’s goal is to assess waste water treatment systems which are not 

connected to the municipal wastewater network (Länsi-Uudenmaan Vesi ja Ympäristö 

ry, 2016). The LINKKI project is mainly funded by the participating municipalities and the 

Finnish Environmental Ministry. 

The LINKKI project also participates to the European Union funded Village Waters pro-

ject. The aim of Village Waters is to provide insights on the best possible solution for 

wastewater treatment for scattered settlements in villages around the Baltic Sea and to 

reduce nutrient load into the Baltic Sea. The project aims to find cost effective solutions 

that are financially viable (Village Waters, 2017a). 
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Figure 2. Hierarchy model of the thesis project. 

 

This thesis is made in collaboration with LUVY, LINKKI and Village Waters, as seen in 

Figure 2. 

 

LUVY and LINKKI selected the Gennarby to participate in the Village Waters project. 

More specifically, the area chosen includes approximately 10 properties around Lake 

Gennarbyträsket (Village Waters, 2017b). A view to Lake Gennarbyträsket is visible in 

Figure 3. 

 

 

Figure 3. View to Lake Gennarbyträsket. 

 

This thesis

Village Waters 
(funded by EU 

Interreg, Baltic Sea 
region)

LINKKILUVY

Village Waters 
project partners

Metropolia
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The properties around Lake Gennarbyträsket are over 100 years old, none is connected 

to a municipal sewage system, the wastewater treatment solutions are often outdated 

septic tanks and their drinking water comes from private wells. As a result, water quality 

varies. The village has a project to connect to the municipal wastewater and water sys-

tem using pipelines. The goal is to improve both lake and drinking water quality. Addi-

tionally, power lines and optical cables will be installed underground for the houses. In 

order to optimize financial resources, the excavation work is done at the same time. 

Originally, a section of the sewage pipe was going to be installed in the bottom of the 

lake as described in Figure 33 (that can be found in Appendix 2). The construction work 

is not financed by Village Waters, it is financed by an organized cooperation between 

the villagers. 

An inspection dive in the lake has been made before construction work started. The dive 

was performed on the 6th of October 2016, by Anu Suonpää (LUVY) and myself, it had 

a duration of 36min and a maximum depth of 7.9m (note that we were 1 to 1.5m away 

from the top of the sediment layer). 

 

 

Figure 4. Diver ready for the inspection dive. 

 

The dive profile can be seen in the Figure 5 bellow. According to the dive computer, the 

water temperature was about 10°C during the entire dive. We followed the planned route 

for the sewage pipe and documented it by recording a video. The length of the dive line 
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was about 300m. During the dive, we had a visibility of 6 meters by the surface and 

nearly null in the bottom. Around 20 meters away from the north-east shore, we have 

spotted old milk containers that reveal the history of the site. After further investigating 

with locals, we found out that there used to be a milk farm in the area. Plants were pre-

sent on depth of less than 3 meters on both shores.  

 

 

Figure 5 Dive depth profile following the planned route for the sewage pipeline. 

 

Plans for applying the pipeline have then changed, the entire length of the pipeline has 

now been buried on the land and does not pass through the lake. 

In order to monitor the evolution of the water quality in Lake Gennarbyträsket, three sam-

ples were taken from each sampling point on the map found in Figure 34 (on Appendix 

2). Additionally, LUVY has installed an EXO2 water sonde to have an online continuous 

monitoring of water parameters in Lake Gennarbyträsket, which will be discussed in de-

tail in this thesis. 

 

The results of the field samples can be found in Table 5 and Table 6 (available in Ap-

pendix 1). The original idea of this thesis was to model levels of phosphorus. Unfortu-

nately, the data cannot be used for statistical analysis as there are not enough replicates 

and not enough data points with significant variation. These samples have been used by 

LUVY for other purposes beyond the scope of this thesis. 

It has required by LUVY to obfuscate of the exact location of the EXO2, this information 

will therefore not be shared in this document. The probe is about a meter away from the 

bottom and is attached to a wooden floating pier that is about 3 meters long. 
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Figure 6. Lake Gennarbyträsket underwater. 

 

Part of my duties in LUVY, were biweekly maintenance visits, as showed in Figure 7 , 

ensuring that the probe was in good conditions and that there was no fouling built up on 

the sensors (and in the rest of the probe). 
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Figure 7. Maintenance work on the EXO2 sonde (image credit: LUVY) 

 

These visits were also the opportunity to change the battery when this was required. 

2.2 The EXO2 water station 
 

The EXO2 is a digital multiparameter sonde with applications for water quality monitoring 

(YSI Inc./Xylem Inc., 2017). It is developed and produced by YSI Inc., part of the Xylem 

group. Thanks to a wide choice of probes, it is possible to follow different parameters, as 

we can see in Figure 8. 
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Figure 8. EXO2: a digital multiparameter sonde (image credit: LUVY) 

The EXO2 has an availability of 7 ports where probes and accessories can be attached. 

The central port can be used to attach a scraper which slows down the fouling process 

on the sensors. 

LUVY has chosen to equip the EXO2 with the probes described in Table 1 (YSI Inc. / 

WTW GmbH / Xylem Inc., 2017), together with a central scraper. For project-related rea-

sons, one port remains unused. 
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Table 1. EXO2 probes used in Lake Gennarbyträsket. 

 

 

The cost of our setup is around 20 000€ (including the different probes, options and 

calibration). The cheapest probe is the pH, costing around 600€; and the most expensive 

is the Total Algae, costing around 3450€ (representing over 17% of the total cost for the 

system). Luode Consulting Oy (referred in the rest of this document as Luode), is the 

contractor that is responsible for the sonde calibration and onsite deployment. They also 

provide services such as backend maintenance and support. 

 

Probe Parameter Range Accuracy Resolution

Conductivity 0 to 200 mS/cm

0 to 100: ±0.5% of reading

or 0.001 mS/cm,

whichever is greater (w.i.g.);

100 to 200: ±1% of reading

0.0001 to 0.01 mS/cm

(range dependent)

-5 to 35°C ±0.01°C

35 to 50°C ±0.05°C

Dissolved

Oxygen
Dissolved Oxygen 0 to 50 mg/L

0 to 20 mg/L: ±0.1 mg/L

or 1% of reading, w.i.g.;

20 to 50 mg/L: ±5% of reading

(Relative to calibration gases)

0.01 mg/L

±0.1 pH units

within ±10˚C of calibration temp;

±0.2 pH units for entire temp range

(within the environmental pH range

of pH 4 to pH 10).

Blue-green Algae,

Phycocyanin
0 to 100 μg BGA-PC/L

Linearity: R² >0.999 for serial dilution

of Rhodamine WT solution

from 0 to 100 μg BGA-PC/mL 

equivalents

0.01 μg BGA-PC/L

Chlorophyll a 0 to 400 μg Chl a/L

Linearity: R² >0.999 for serial dilution

of Rhodamine WT solution

from 0 to 400 μg  Chl a/L equivalents

0.01 μg Chl a/L

Turbidity Turbidity 0 to 4000 FNU

0 to 999 FNU: 0.3 FNU

or ±2% of reading, w.i.g.;

1000 to 4000 FNU: ±5% of reading

(values are automatically calculated

from conductivity according

to algorithms found in

Standard Methods for the

Examination of Water

and Wastewater (Ed. 1989))

0 to 999 FNU = 0.01 FNU;

1000 to 4000 FNU = 0.1 FNU

Total Algae

Conductivity

Temperature

Temperature 0.001 °C

0 to 14 unitspHpH 0.01 units
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Figure 9. EXO2 underwater in Lake Gennarbyträsket (image credit: LUVY). 

 

The probe was connected to a datalogger (acting as a backup) and a GSM modem that 

was sending the measurements to a server controlled by Luode. The whole system was 

powered by a 12V, 33Ah battery, with an autonomy of about a month. 

2.3 Origin of the data 
 

The data has been gracefully given by LUVY and by the Finnish Meteorological Institute 

(FMI). The data was provided as CSV files from LUVY and as excel files from FMI. 

 

2.3.1 Water data 
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The data comes from the measurements taken by the EXO2 sonde in Lake Gennar-

byträsket. The sampling period went from 21.07.2016 13:30, when the sonde has been 

deployed by Luode to 07.11.2016 12:00, when Lake Gennarbyträsket started to have an 

ice cover. A sample of the raw data can be found on Table 7 in the appendices. 

Following the advice given by Luode, it is assumed that the standard deviation of the 

measurements to be the accuracy for each probe described in the Table 1. An estimation 

of the standard deviation has not been made by Luode during the calibration process. 

Additional background data about the general morphology and characteristics of the lake 

has been given by LUVY. 

 

2.3.2 Weather data 
 

Weather data is a courtesy given by the Finnish Meteorological Institute (FMI). They are 

the observations from the 4 closest weather stations (located in Tvärminne, Kemiönsaari, 

Salo and Lohja). The dataset includes observations on temperature, dew point, relative 

humidity, wind direction average wind speed (in the last 10 min), maximum wind gust (in 

the last 10 min) and rain accumulation (from the last hour). A sample of the raw of each 

dataset can be found on Table 8 and Table 9 in the appendices. 

Unfortunately, the weather data was not significant to use during this thesis. This will be 

further developed in the discussion section (page 44). 

 

2.4 Modelling and statistical analysis 
 

Modelling is the process of using mathematical tools to analyse, describe and/or predict 

the behaviour of a phenomenon. The first step of modelling is abstraction: defining vari-

ables in a mathematical way. This is typically done by setting up metrics for different 

parameters which can be followed (for instance pH, temperature and turbidity). When 

building up a model, reality is simplified and details are left out. There are two main 

groups of models: empirical and mechanistic. The first model type, empirical, simply de-

scribes the behaviour of a data set. Whereas the second type, mechanistic, is based on 

fundamental science, such as Einstein’s Theory of Relativity (Berthouex & Brown, 2002). 

 

Statistical analysis is the process of analysing a set of data using statistical tools to 

achieve a higher level of understanding on the dataset. This is done by interpreting the 

statistics calculated from the dataset in question (SAS Institute Inc., 2016). For instance, 
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analysing the performance of students from the same class in an exam. One can calcu-

late the average and the median to evaluate the student’s performance in the test with 

respect to the other students. 

 

This thesis focuses on empirical modelling and statistical analysis of the data collected 

in Lake Gennarbyträsket. The assumptions are that chlorophyll depends on pH, turbidity, 

dissolved oxygen, conductivity and temperature; that errors are random; and that pH, 

turbidity, dissolved oxygen, conductivity and temperature are independent. 

 

2.5 Relevance of this thesis 
 

As discussed in The EXO2 water station, the Total Algae, costing around 3450€ (repre-

senting over 17% of the total cost for the system). This is a significant cost in a setup. 

Finding a model that can describe algae and cyanobacteria growth from parameters us-

ing cheaper probes allows to reduce costs and releases an additional port that can be 

used for monitoring other parameters.  

Algae and cyanobacteria monitoring are of great interest for both research and for the 

public. In a research point of view, this can be used to assess eutrophication and water 

quality. The public, on the other hand, is interested in algae bloom as this might affect 

leisure activities such as swimming and scuba diving or water use for sauna (very pop-

ular in Finland). Finally, the model might have predictive capacities that can emit early 

warnings for authorities, researchers and for the public. 

It is therefore profitable to search for possibilities to establish such a model. 

LUVY uses chlorophyll data to assess the trophic level of lakes. The usual resolution of 

such a data is 3 to 15 data points per open water season. Additionally, these data points 

are limited by working hours and by the weather. Using the EXO2, the resolution be-

comes 1 data point every half an hour, independent of working hours and weather. The 

increase in resolution can also lead to a more precise estimation of the lake’s trophic 

level. This thesis is also aiming to producing a tool for LUVY to use to assess the lake’s 

trophic level from the data generated by the EXO2 algae sensor.  

 

3 Theoretical background 
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Limnology is the study of lake biology, and of its physical and chemical characteristics. 

This thesis’ focus is closely related to limnology studies. It is therefore essential to get 

familiarized with basic concepts of limnology, which are presented in this section. 

3.1 Lake nutrient levels and eutrophication 
 

The trophic level of a water body is the amount of nutrients present in this water body. 

Different water bodies have different natural trophic levels. This is especially the case of 

freshwater lakes. The natural trophic level depends on the lake’s and its catchment’s 

area’s characteristics. Some lakes might be naturally eutrophic, for instance lakes in a 

clay soil area (which is typical in the South of Finland). Lake Gennarbyträsket is currently 

oligotrophic (having low levels of nutrients). Eutrophication (from the ancient Greek: well 

nourished) is the consequence of an excessive increase in nutrients concentrations in a 

water body. Consequently, algae biomass increases (and therefore levels of chlorophyll), 

which can cause blooms (Suonpää, 2015). 

When the nitrogen-based nutrients are consumed (usually by the end of the summer), 

algae cannot continue to reproduce in the same rate. Cyanobacteria, which can capture 

atmospheric nitrogen, start dominating the phytoplankton biomass (composed by plank-

tonic algae and cyanobacteria). Cyanobacteria might release toxins into the water body 

that can be harmful for human and animals as it is decomposed at the end of its lifecycle. 

The final decomposition of the phytoplankton is usually made by bacteria in the bottom 

of the lake. This process is aerobic, and therefore consumes dissolved oxygen. For lakes 

in an advanced eutrophication state over a long period of time, oxygen deprivation might 

occur, leading to the leaching (releasing of nutrients from the sediment layer) in an anoxic 

environment. In addition, the low oxygen levels might lead to the disappearance of ben-

thic fauna in the area. The entire lake ecosystem is affected which can alter the distribu-

tions of species (Wetzel, 1983). 

3.2 Chlorophyll-a 
 

Chlorophyll is a light-absorbing pigment that can be found on every photosynthetic or-

ganism, including cyanobacteria (Miller, 2004). Activated by light, chlorophyll acts as a 

catalyst to a reaction between water and carbon dioxide that produces glucose an oxy-

gen. 

 

Equation 1.. Photosynthesis reaction 

6𝐶𝑂2 + 6𝐻2𝑂
𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙+𝑙𝑖𝑔ℎ𝑡
→              𝐶6𝐻12𝑂6 + 6𝑂2 
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Chlorophyll levels in lake water are good indicators to estimate the lake’s eutrophication 

levels as these are strongly correlated (Oravainen, 1999). Chlorophyll is usually esti-

mated by taking water samples within the first 2 meters of the water column. The con-

centration of chlorophyll is weather dependent, as wind and rain might interfere in the 

distribution of chlorophyll in the water column. Therefore, it is common practice to take 

several samples during the open water (ice-free) season. The measurements are then 

averaged to estimate the average chlorophyll level in the lake for the entire open water 

season. To assess the eutrophication levels, both the average and the general evolution 

of the chlorophyll levels need to be studied. This method is prone to error as weather 

can skew the measurements (if the sampler goes on days that are rainy or windy, the 

measured concentration of chlorophyll will be less important as the lake water is being 

mixed). HELCOM recommends 15 observations to be made to evaluate the chlorophyll 

levels in the water (HELCOM, 2017). 

 

Table 2. Eutrophication level guideline according to the concentration of chlorophyll-a in surface freshwater 
bodies. 

 

 

The Table 2 is a guideline proposed by SYKE to assess the eutrophication level of sur-

face freshwater bodies (Mitikka, 2015). The chlorophyll concentration is an average of 

the observations from the open water season samples. Another approach can be taken 

to evaluate the lake’s eutrophication level: analysing both the average and the individual 

measurements. The assessment considers the different levels of eutrophication as an 

average but also the frequency distribution with weather data. This not only gives a better 

estimate of the real eutrophication state of the lake, but also helps to understand the 

lake’s behaviour over the open water season (Suonpää, 2017). 

 

3.3 Factors that influence the levels of chlorophyll-a and its measurements 
 

External factors might affect the measured levels of chlorophyll in two ways (Wetzel, 

1983). The first is related to the distribution of chlorophyll in the water body, in our case 

Lake Gennarbyträsket. This is related to the mixing of the water and can be triggered by 

rain and wind. Additionally, turbulent flow and retention times influence in the mixing of 

Water quality Excellent Good Satisfactory Passable Poor

Eutrophication level I II III IV V

Chlorophyll-a (µg/l) <4 <10 <20 ≤50 >50
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the water. Chlorophyll concentration is typically more elevated on the first meter of the 

water column than in its bottom. When the water is mixed, the chlorophyll is no longer 

concentrated on the surface layer. Consequently, measuring mixed water at the surface 

layer will result in lower concentrations. 

Some species of phytoplankton can form colonies by aggregation. The size of these 

aggregates can influence the measurement of chlorophyll. This is mainly due to the num-

ber of cells present in front of the sensor and their retention time. The reading is then 

larger than the real concentration of chlorophyll in the lake in question. According to 

LUVY, there are phytoplankton species present in Lake Gennarbyträsket which are 

known to form aggregates. For instance, LUVY’s study reveals that the phytoplankton 

was dominated by the species number and by the biomass by Chroococcales, which is 

an order of cyanobacteria, known to form aggregates. These aggregates can be visible 

at bare eye when a water sample is taken in a glass container against the light. 

 

 

Figure 10. Underwater view to the EXO2 sonde 

 

Particles in the water can also affect the measurements if their surface react to the light 

in the same way chlorophyll reacts (in the sensor’s point of view). On Figure 10, we can 

see some suspended particles (blurry dots circled in red in the picture), some of these 

could be algae aggregates or particles that could interfere in the chlorophyll and turbidity 

measurements.  
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Additionally, the sensor is about one meter away from the bottom (distance varies ac-

cording to the lake surface level), turbulence induced by aquatic life, pier and water 

movements could lead to a disturbance of the sediment layer’s surface which could tem-

porarily increase the suspend particles, leading to higher measurements than the lake’s 

average levels. Finally, there is filamentous algae visible on the plants near the water 

monitoring station which could be released in the water and potentially lead to peaks in 

the readings of chlorophyll and turbidity levels. These are visible on Figure 11. 

 

 

Figure 11. Filamentous algae growing on an aquatic plant, the EXO 2 sonde can be seen in the background. 

 

The second factors are related to the growth of phytoplankton. They are mainly nutrients, 

dissolved carbon dioxide, water temperature and solar irradiance. Nutrients are divided 

into three groups: silica, nitrogen and phosphorus. Each nutrient group can be a limiting 

factor for the growth of phytoplankton. Weather factors can also influence in phytoplank-

ton growth, for instance, the amount of light available decreases as cloudiness increases, 

leading to an inhibition of phytoplankton growth. Phytoplankton growth is known to have 

diurnal changes. Phytoplankton grows more in the morning, less in midday and more 

actively in the evening and at night the light availability limits the growth (Wetzel, 1983). 
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Seasonal changes also affect chlorophyll measurements. Summer has longer and typi-

cally warmer days, exposing the phytoplankton to more light and warmer temperatures, 

which promotes growth; while winter has short and typically colder days, inhibiting 

growth. The fall is also typically marked by storm episodes, which mix the water column, 

and spring has typically ice melting, increasing the inflow of water that can carry extra 

nutrient loads. 

Environmental factors might also influence in the growth of phytoplankton. Fertilizers 

used in agriculture and emissions from transportation can increase the levels of nutrients 

when these are carried by the runoff. Additionally, wastewater that is not properly treated 

can also be a source of nutrients. 

 

4 Methodology 
 

This section will present the different tools and approaches used during this thesis. It will 

first present some data loading and pre-treatment methods. Followed by statistical anal-

ysis and modelling methods. 

4.1 Making data compatible with R 
 

The first step to be performed on the raw data is to make sure its structure is compatible 

with R. The data comes from different sources with different formatting and this could be 

problematic when using R. The ideal is to have the whole dataset in the same format. 

There is a wide variety of format available, I chose to use CSV following the RFC 4180 

standard (Internet Engineering Task Force, 2005) as default format. This standardization 

process allows me to have consistency over the data and to facilitate the work with the 

data. 

The time format in the datasets is formatted differently and is incompatible with R. The 

next step is to make the time R-friendly using strptime. This function returns a timestamp 

in the POSIXlt format, that is the number of seconds since the beginning of 1970 in the 

UTC time zone (R Reference, 2001). This means that 0 in POSIX represents the 1st of 

January 1970 at 00:00:00 in the UTC time zone. This is not practical as 0 in POSIX time 

represents the 1st of January 1970 at 02:00:00 in the Finnish time zone, and the first 

sampling date is the 21st of July 2016 at 13:30 in the Finnish time zone with Daylight 

Saving Time, which is in POSTIX 1469097000. To simplify date calculations, we set the 

origin to the first sampling date. This is done by subtracting 1469097000 to the POSTIX 

time. The result is the number of seconds since the first sample has been taken. Finally, 
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we calculate the amount of days elapsed since that original date (by dividing the number 

of seconds by 86400, which is the number of seconds in a day). The result is a decimal 

figure that represents how many days have elapsed since the first sample. Note that the 

sampling rate is 30min for the water station and that the origin of our time is not the 

starting point of a day. The time information is then added to the data frame so that we 

can use it later. 

 

4.2 Time series 
 

Time series are composed of data points that are ordered with respect of time. They 

reveal the behaviour of the data over time. It is important to first plot the timed data as a 

time series to get the feeling of how the data behaves over time (Mac Berthouex & Brown, 

2002). Plotting the time series might also reveal outliers in our data, these might be seen 

as jumps for individual values. Nevertheless, one needs to be careful when assuming a 

jump is an outlier. A jump can be considered as an outlier if it exceeds the expected 

variation of the data. Let us set up a scenario as an example. Let’s suppose that the pH 

of a lake is measured every minute. Let’s suppose that plotting the data we get the Figure 

12 with values fluctuating around 7.6, except for one: 13.8. It is very unlikely that the pH 

of a lake can go from 7.6 to 13.8 and back to 7.6 in a couple of minutes. The measure-

ment indicating 13.8 is most likely an outlier. The outlier can also be a lower value, such 

as 1.6 in the graph of the example. 

 

Figure 12. Lake pH example. 
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Overlapping time series can reveals periodical behaviour. It also helps to determine the 

periodicity of a phenomena. 

 

4.3 Correlation matrix 
 

Correlation is an estimation of the linear relationships of a group of variables. A correla-

tion matrix is a representation method to show pair-wise correlations in a group of varia-

bles. There are different approaches to estimate correlation coefficients Depending on 

the approach, the output can be statistically more or less robust to outliers. The Pearson 

correlation coefficient is most used method to estimate correlation. This method requires 

normally distributed data and is very sensitive to outliers and therefore not so robust. A 

more robust approach would be to use the Spearman correlation, which first calculates 

the ranks of each variable and then the Pearson correlation coefficient of these ranks. 

This approach estimates how the two variables follow each-other in continuous intervals. 

Because of the random nature of the data and taking into consideration all the possible 

interferences described in the previous chapter, a more robust approach is preferable. 

This thesis is therefore using the Spearman correlation to estimate relationships in the 

data. 

 

4.4 Variable standardization 
 

Variable standardization is applied to all the independent variables before processing 

with regression models to make them unite-less and comparable (Albers, 2017 (to be 

published)). This standardization process also eases computer calculations (Sokal & 

Rohlf, 1995). There are different approaches for variable standardization. In R, there is 

a function called scaling that can be used for variable standardization. 

The formula R uses for its scale function is: 

Equation 2 

𝑋𝑖 =
𝑥𝑖 − 𝑥̅

𝜎
 

This equation corresponds to a standardization using the Z-scores (Comprehensive R 

Archive Network, 2017).  

• 𝑥 is the set of measurements 

• 𝑋𝑖 is the standardized, dimensionless, value (corresponding to the Z-score) of the 

ith value of 𝑥 

• 𝑥𝑖 is the ith value in physical unit of 𝑥 



21 

 

• 𝑥̅ is the mean of all measurements of 𝑥 

• 𝜎 is the standard deviation of all the measurements of 𝑥 

This R function allows us to choose to centre and scale the data. 

A more robust standardization method uses the median and the median absolute devia-

tion (MAD). 

Equation 3 

𝑋𝑖 =
𝑥𝑖 − 𝑥̃

𝑀𝐴𝐷(𝑥)
 

Where: 

• 𝑥 is the set of measurements, 

• 𝑋𝑖 is the standardized, dimensionless, value (corresponding to the Z-score) of the 

ith value of 𝑥, 

• 𝑥𝑖 is the ith value in physical unit of 𝑥, 

• 𝑥̃ is the median of all measurements of 𝑥 

• 𝑀𝐴𝐷(𝑥) is the median absolute derivation of all the measurements of 𝑥 

In R, this can be achieved with the formula: 

# x is a dataframe 

X <- scale(x, 

center = apply(x, 2, median), 

scale = apply(x, 2, mad) 

) 

 

# x is a vector, for instance c(1,2,3,4,5,6,7,8,9,2,2) 

X <- scale(x, 

center = median(x), 

scale = mad(x) 

) 

 

This approach is advised for data containing possible outliers (Varmuza & Filzmoser, 

2009b). 

4.4.1 Centering 
 

In the approach used in Equation 2, centring is done by subtracting the mean of the set 

from each value. This sets the mean of the independent variables to be 0, making the 

intercept of the model to be the expected value when the independent variables are set 
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to their mean. The median becomes 0 after centering when using the approach in Equa-

tion 3. Both scenarios make sure that the intercept represents a realistic scenario, within 

the boundaries of each independent variable (assuming they are independent to each-

other). 

 

4.4.2 Scaling 
 

Scaling following the approach of Equation 2 is done by dividing the (centred) values by 

the standard deviation of the original set. Because of scaling, the standard deviation of 

the scaled variables is 1 and the units are cancelled, leaving the output unite-less. The 

approach of Equation 3, sets the MAD to be 1. In both cases, this is done to make data 

with different magnitudes comparable. 

 

4.4.3 Effects of standardization on graphs 
 

Standardization does not change the shape of the curve/surface (Mortenson, 1985). Ob-

serving scaled data therefore give us insights on how the data behaves (its trends). 

When comparing the graphs of two standardized variables, we can see if they are cor-

related or not. Graphs that look alike are correlated. 

Let us have an example. Two data series A and B. 

Plotting each series individually, we get a feeling that Figure 13. Plot of series A and 

Figure 14. Plot of series B. Plotting both series in the same plot (Figure 15), we realise 

that they have different scales. We can clearly see the behaviour of B but A looks like a 

straight line (which is not true). With closer attention on the individual plots, the reason 

get clear. The data from A vary within the interval [-1, 1] while the data from B varies in 

the interval [-106, 106]. Standardizing the data of both datasets and plotting it again (Fig-

ure 16) makes it easier to compare, it is now clear that A and B are strongly correlated 

(as they behave mostly similarly).  
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Figure 13. Plot of series A 

 

 

Figure 14. Plot of series B 
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Figure 15. A and B not standardized 

 

 

Figure 16. A and B standardized using scale 

For verification, making a correlation test between the dataset A and B estimates the 

correlation coefficient of 0.995 (the closer to 1, the stronger is the correlation). But these 

are off the scope of this thesis. 

 

4.5 Smoothing 
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Smoothing is done to reduce the local variations in the data while keeping the overall 

tendencies. When smoothing variations are flattened, making the data look smoother, 

with less peaks. This also reduces the impact of outliers, as these are diluted in the 

overall tendency of the data. Note that smoothing operations introduce lag to the data. 

 

Local polynomial regression fitting (loess) is a local regression method that makes local 

fits of a polynomial surface (or line) based on the weighted distance to their neighbours, 

the neighbour region and the weights are defined in the loess function parameters 

(Sawitzki, 2009a). 

 

 

Figure 17. Example of smoothing data using loess 

 

The example in shows data with noise (black line) and two smooth curves using loess 

(red and blue). The smoothing level is dependent on the objective of the smoothing op-

eration. If it is to reduce noise, the blue curve describes the data behaviour better than 

the red curve. If the variations are not to be taken into consideration, the red curve might 

lead to a better smoothing.  

This thesis uses loess to smooth the data. 

 

4.6 Wilkinson-Rogers notation 
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R uses the Wilkinson Rogers notation for model formulas (Sawitzki, 2009b). This notation 

omits by default the intercept and the residual error. The notation also omits variable 

coefficients. 

 

Here are the main Wilkinson Rogers notation rules: 

The ‘~’ sign means “the left side depends on the right side”. 

Example: 

Y ~ X (Wilkinson Rogers notation) is equivalent to Y = b0 + b1 X + e 

Here, X is the independent variable and Y is the dependent variable. 

If there is more than one dependent variable, we can separate them using a coma: 

For instance: Ya, Yb, Yc ~X 

 

To exclude the intercept from the formula we can either write a 0 or -1.  

Example: 

Y~X-1 (Wilkinson Rogers notation) is equivalent to Y = b1 X + e 

 

Terms are added by using the ’+’ sign. 

Example: 

Y ~Xa + Xb – 1 Wilkinson Rogers notation) is equivalent to Y = b1Xa + b2Xb + e 

 

The ’*’ sign is not a multiplication, but rather a short hand notation for the sum of the 

variables plus the term-wise interactions.  

Example: 

Y ~Xa * Xb – 1 Wilkinson Rogers notation) is equivalent to 

Y = b1Xa + b2Xb + b1,2Xa*Xb + e 

 

To exclude a term we use the ’-’ sign. 

Example: 

Y ~Xa * Xb – Xb Wilkinson Rogers notation) is equivalent to  

Y = b0 + b1Xa + b1,2Xa*Xb + e 

 

Use ’:’ (colon symbol) to represent term-wise interactions. 

Example: 

Y ~ Xa : Xb – 1 Wilkinson Rogers notation) is equivalent to Y = b1,2Xa*Xb + e 

 

To specify that the expression should be assessed as it is we use I(expression). 
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Example: 

Y ~I(X^2) Wilkinson Rogers notation) is equivalent to Y = b0 + b1X2 + e 

 

4.7 Multivariate data 
 

Multivariate data is a set of data containing multiple columns and rows (Varmuza & 

Filzmoser, 2009c). The columns typically represent different objects classes, for instance 

pH, turbidity, conductivity and so on. And each row represents a set of values. The col-

umns become mathematical dimension, and a point in the space of the dataset can be 

defined by coordinates having the point’s row values in the table. Each column is a var-

iate, that is a quantity that is represented by values, because there are multiple columns, 

the data is classified as multivariate. 

Example: 

 pH Turbidity (NTU) Conductivity (mS/cm) Colour 

Point 1 7.3 3.6 53 White 

Point 2 12.6 174.9 128 Red 

 

The colour can be coded as follow White = -1 and Red =1. 

 

Point1 can be defined as follow: [7.3 3.6 53 -1]. 

And point2 can be defined as [12.6 174.9 128 1] 

 

Visual representations of multivariate data with more than 3 dimensions is very challeng-

ing. Instead, mathematical tools and analogies are used to represent multivariate data. 

 

4.8 Multiple Linear Regression 
 

Linear regression consists on fitting linear models in a cloud of points while minimizing 

the distance (error) between the points and the line (Varmuza & Filzmoser, 2009a). 

Simple linear regression the response of the model depends on a single independent 

variable and an intercept: 

𝑦~𝑏0 + 𝑏1𝑥 + 𝑒 

𝑏0 is the intercept and 𝑏1 is a regression coefficient, both are unknown. 

𝑥 is the independent variable and 𝑦 is the response. 

𝑒 is the residual 
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A dataset measurements of 𝑥 and 𝑦 becomes a system of equations with two unknowns. 

The solution of this system of equations is the model that describes an approximation of 

y with respect to x. 

The general form for regressions is: 

𝑦~𝑓(𝑥) + 𝑒 

Where 𝑓(𝑥) can be linear or nonlinear. 

Multiple regression lays in the same principles, except that there is more than one inde-

pendent variable. 

The formula for multiple regression analysis is then: 

𝑦~𝑏0 +∑𝑏𝑖𝑥𝑖

𝑚

𝑖=1

+ 𝑒 

Pair-wise interactions and quadratic terms can be added to the model: 

𝑦~𝑏0 + 𝑏1𝑥1 +⋯+ 𝑏𝑚𝑥𝑚 + 𝑏1,2𝑥1𝑥2 +⋯+ 𝑏𝑚,𝑚−1𝑥𝑚𝑥𝑚−1 + 𝑏1,1𝑥1
2 +⋯+ 𝑏𝑚,𝑚𝑥𝑚

2 + 𝑒 

Where 𝑏0 is the intercept, 𝑏1…𝑏𝑚,𝑚 are the regression coefficients, 𝑥1…𝑥𝑚 are the inde-

pendent variables, 𝑚 is the number of independent variables, 𝑒 is the residual and 𝑦 is 

the response. The Wilkison Rogers notation is : 𝑦~𝑥1 ∗ 𝑥2 ∗ …∗ 𝑥𝑚 + 𝐼(𝑥1)
2 +⋯+ 𝐼(𝑥𝑚)

2 

This thesis focuses on multiple linear regression.  

 

4.9 Training and testing sets 
 

The dataset is divided in two parts, one for training and one for testing the model. The 

division has been made by splitting the data into two datasets: one containing 10% of 

the full data, points chosen randomly, used to test the model; another containing the rest 

of the data (90%), used to train the model. 

This is one strategy to implement assisted learning (Varmuza & Filzmoser, 2009a). 

4.10 Cross validation 
 

Correlated variables influence the behaviour of a model’s p-values. Because of this, it is 

necessary to choose another strategy to select the variables that will be used in the 

model. Because of that it is important to use cross validation to assess the model fit 

(Taavitsainen, 2017). 

Cross validation consists on slicing the data in segments of equal sizes that are going to 

be used for model training and validation (Varmuza & Filzmoser, 2009a). This guaran-

tees that the model complexity is taken into consideration during training. When using 

cross validation, multiple models are tested, the optimal model is then selected. 
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4.11 Variable selection 
 

Variable selection consists on reducing the number of variables to obtain a model that 

has a good fit while optimizing prediction qualities (Varmuza & Filzmoser, 2009a). Vari-

able selection decreases the fitness of the model (R2), but increases the level of signifi-

cance of each variable. Variable selection also helps to reduce the needs in computing 

power as models get more concise. Additionally, model complexity is reduced making 

the model easier to interpret. 

The objective of variable selection is to keep only variables with high significance levels 

(coefficient p-values < 0.1). 

For this thesis, the variables were first selected using a cross validation forward selection 

followed by manual backwards elimination. 

4.12 Principal Component Analysis 
 

The basic principle behind Principal Component Analysis (PCA) is dimension reduction 

of multivariate data using projections (Varmuza & Filzmoser, 2009c). Data is projected 

from the data space onto lines, reducing the number of dimensions. The strategy behind 

PCA is to find directions that maximize the variance of the points in the projection line. 

Each direction is called Principal Component (PC) and there are as many PCs as there 

are variables. The components are ordered from the one representing the most variation 

to the one representing the least variation of the data. The components are also orthog-

onal to each-other. The idea is to first find the Principal Component 1 (PC1) to then find 

the Principal Component 2 (PC2), the direction which is orthogonal to PC1 where the 

projection of the data represents the most variance. We repeat the process until all the 

possible directions are covered. This yields to principal components denoted as PCn, 

where n is the number of the principal component. We can imagine the PCs to be camera 

angles where we can gasp part of the shape of the data. The direction that the camera 

is set is called rotation. Each PC is associated to a rotation. 

 

One could make an analogy of PCA with hand shadow games (see Figure 18). The 

subject’s hand has a 3-dimensional shape which is projected onto a wall. With the correct 

alignment between the hand and the light source, the shadow reveals a shape. The au-

dience is then able to associate the shadow with a well-known image. If the subject 

changes the angle of the hands, the shape becomes meaningless. To perform this ex-
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periment one needs an object (for instance hands), a projector (light source) and a pro-

jection surface (for instance a wall). In PCA one needs an object (the data “plotted” in 

the dataset’s space), a direction (the rotations from each PC) and something to receive 

the projection (the PC themselves). 

 

 

 

Figure 18. Example of hand shadow game 

 

This process enables analysis of the data from different perspectives. Each perspective 

might explain some characteristics of the data. Each PC represents a part of the total 

variation of the data, and each variable has stronger or weaker influences on the data’s 

variation in that component. 
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4.13 Process diagram 
 

A process diagram for the production of the overlapping time series and Multiple Linear 

Regressions can be found in Figure 35, available in the appendices. 

5 Results 
 

The results of this thesis are divided in 5 sub-sections. The first one presents the results 

and interpretations from the time series and smoothed series. Then the tool built for eval-

uating the trophic level of lakes will be presented, this is accompanied with the estimation 

of the trophic level of Lake Gennarbyträsket. The findings from the covariance matrices 

are presented in the sub-section, followed by the principal component analysis results. 

Finally, the multiple linear regressions will have their outcome presented. 

 

5.1 Time series and smoothed series 
 

In this section, we will be analysing the data using the graphs from Figure 36 to Figure 

63 in the appendix. A smaller version of the relevant plots has been added to the text. 

5.1.1 pH 
 

During the first 70 days, the pH oscillates around 7.4, the peak amplitude of the oscilla-

tion is about 0.6 units. 

Between day 70 and day 80, the pH and the oscillation peak amplitude decrease. From 

day 80, onwards, the peak amplitude is rather small, around 0.2 and the pH stabilizes 

around 7.0. This is most likely related to the seasonal change, as fall starts around day 

75. At fall the temperature and sun light decrease, this leads to a decrease of the biolog-

ical activity in the lake water. The reduced biological activity limits the variation of dis-

solved carbon dioxide, which is one of the driving factors of lake water pH (Wetzel, 1983). 

The weekly overlapping time series clearly shows a difference on the behaviour of pH 

during the summer compared to its behaviour during the fall. During the summer, the pH 

evolves together with the daylight, around noon the pH is at its highest values and during 

the night time it is at its lowest. During the day, CO2 is utilized in photosynthesis which 

increases pH levels, and at night, CO2 increases due to respiration and pH decreases 

(Wetzel, 1983). 
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Figure 19. Smoothing of pH (more detailed view available in the Appendix) 

At the bottom of the graph we can see the behaviour of pH during fall. As stated before, 

it is rather flat with minimal variation. 

5.1.2 Conductivity 
The conductivity time series shows little variation in the observations in the summer sea-

son. The values fluctuate around 59.5µS/cm with a peak amplitude of about 1µS/cm. 

The conductivity clearly changes at day 80 to stabilize around 61.5µS/cm. 

 

Figure 20. Smoothing of conductivity (more detailed view available in the Appendix) 

These changes in conductivity are most likely not significant to affect the water quality, 

nevertheless there must be a reason for the seasonal changes that have been observed. 
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Conductivity is linked to temperature and salt dissolution constant. When the tempera-

ture decreases, the solubility of the salts also decreases (University of California, Davis, 

2016). 

5.1.3 Temperature 
 

There is a clear outlier in the temperature reading around the day 12.5 (which might 

correspond to a maintenance operation of the sonde). Water temperature follows a daily 

variation. The amplitude of the variation seems to decrease when the water temperature 

is below 10°C. 

 

Figure 21. Smoothing of temperature (more detailed view available in the Appendix) 

Temperature is related to other parameters described in the following sections. 

5.1.4 Dissolved Oxygen 
 

Dissolved oxygen also varies over the day. This is most likely due to the biological activity 

in the lake. By day 80 the behaviour seems to change and the average level of dissolved 

oxygen seems to increase. 
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Figure 22. Smoothing of dissolved oxygen (more detailed view available in the Appendix) 

This is related to a decrease in biological activity coupled with an increase in the oxygen 

storage capacity of the lake, colder temperatures facilitate the dissolution of oxygen in 

water (University of California, Davis, 2016; Wetzel, 1983). 

5.1.5 Chlorophyll-a and Turbidity 
 

Chlorophyll and turbidity seem to have a similar behaviour. Both have peaks that might 

be outliers. The reason for these peaks is most likely related to the size of the aggregates 

certain algae species might form. 

 

Figure 23. Turbidity and Chlorophyll-a smoothed (more detailed view available in the Appendix) 
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When comparing the chlorophyll and the turbidity (standardized and smoothed), we can 

suspect that these might be strongly correlated. 

 

Again, seasonal change induces in a change in the behaviour of the chlorophyll-a 

(Wetzel, 1983). At fall the turbidity is no longer strongly correlated with the chlorophyll. 

Summertime the turbidity value most likely represents the biogenic turbidity caused but 

phytoplankton biomass (seen in chlorophyll). During the fall the biological activity de-

creases. Then turbidity values might be related to water mixing and weather patterns. 

During the fall, it is typical to have storm episodes that might increase the particle load 

from the surface runoff (Oravainen, 1999; Wetzel, 1983). 

5.2 Evaluation of Lake Gennarbyträsket trophic level 
 

A tool to evaluate the trophic levels in lakes has been developed in R following the guide-

lines provided by LUVY during an interview with a water specialist and in accordance to 

SYKE’s trophic levels definition presented in Table 2. 

 

The tool takes chlorophyll data as an input (from raw data or model predictions) and 

calculates the percentage of the time in which the lake was within a specific trophic level.  

 

The evaluations are done for the full data collection period. The tool yields a graph with 

useful information, a series of boxplots that show the distribution of the data for each 

level, a plot displaying the time series and a plot displaying the same time series where 

the points are colour-coded according to the SYKE classification.  
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Figure 24. Bar plot output from the water quality evaluation tool. 
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The output of the tool using the data from Lake Gennarbyträsket can be seen in Figure 

24. Based on this graph it can be said that the lake’s trophic quality level from the 

21.07.2016 14:00 to 07.10.2016 12:00 has been excellent 63% of the time, good 34% of 

the time and satisfactory and below satisfactory for 3% of the time. Therefore, the lake’s 

water quality with respect to the trophic levels can be considered very good over the 

monitoring period. 

 

 

Figure 25. Box plot output from the assessment tool 

 

On Figure 25, we can see how the data varies for the different water quality classifica-

tions. We can see from this graph that the data has tendency to be in the lower end of 

each classification group. This can give a more detailed reading of the scale proposed 

by SYKE. One could see that the lake is for instance in the mostly in the lower end of the 

satisfactory level whereas in the SYKE classification the level would just be satisfactory. 

Note that the size of the boxes is not related to the number of observations that they 

describe. Instead they are related to the minimum and maximum values of each classi-

fication. To avoid any confusion a text describing the number of observations has been 

added to the plot. 
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Figure 26. Chlorophyll-a levels over time from the assessment tool 

 

Figure 27. Colour-coded plot output from the assessment tool 

The Figure 26 and Figure 27 show the chlorophyll level with respect to time. The Figure 

27 lets us believe that most of the passable and poor points of the data might be outliers, 

as the variation of chlorophyll cannot happen this fast from a production point of view 

(Wetzel, 1983). This variation might be explained by the factors discussed in section 3.3 

Factors that influence the levels of chlorophyll-a and its measurements. 

5.3 Covariance matrix 
 

Two covariance matrices have been estimated, one calculating the Pearson correlation 

coefficients and the second one using the Spearman methodology. 
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Table 3. Pearson Correlation Matrix 

 

 

Table 4. Spearman Correlation Matrix 

 

 

Absolute values of correlation coefficients below 0.3 show that the correlation between 

the variables is poor or non-existing (Varmuza & Filzmoser, 2009c). Surprisingly, with a 

correlation coefficient bellow 0.3 in both correlation matrices, the correlation between the 

chlorophyll and the temperature is practically non-existing. Limnology sources describe 

temperature as one of the key drivers of the phytoplankton growth, which is the main 

source of chlorophyll in the water column. Chlorophyll seems to correlate mainly with 

turbidity, which is understandable as chlorophyll is one of the components of turbidity, 

therefore if the concentration of chlorophyll increases, the turbidity increases. Neverthe-

less, an increase in turbidity does not necessarily mean that the chlorophyll level has 

increased. 

 

The analysis of this table might help to understand some of the mechanisms in the lake, 

which could be useful to understand and explain variations in chlorophyll. 

 

Dissolved oxygen and temperature are also clearly correlated. This can be explained by 

the effects of temperature on gas solubility. Lower temperatures lead to an increased 

solubility for gases in a liquid (University of California, Davis, 2016). Carbon dioxide is 

highly soluble in water. When the temperature decreases, the concentration of CO2 in-

creases. The dissolved carbon dioxide contributes with the decrease in pH (acidification), 

which is why temperature and pH are correlated. 

temperature conductivity pH turbidity DO a.chlorophyll

temperature 1 -0.808 0.78 -0.558 -0.718 0.007

conductivity -0.808 1 -0.756 0.556 0.456 -0.131

pH 0.78 -0.756 1 -0.58 -0.21 0.089

turbidity -0.558 0.556 -0.58 1 0.233 0.333

DO -0.718 0.456 -0.21 0.233 1 0.044

a.chlorophyll 0.007 -0.131 0.089 0.333 0.044 1

temperature conductivity pH turbidity DO a.chlorophyll

temperature 1 -0.506 0.699 -0.486 -0.71 -0.011

conductivity -0.506 1 -0.694 0.466 0.16 -0.103

pH 0.699 -0.694 1 -0.603 -0.136 -0.019

turbidity -0.486 0.466 -0.603 1 0.261 0.37

DO -0.71 0.16 -0.136 0.261 1 0.027

a.chlorophyll -0.011 -0.103 -0.019 0.37 0.027 1
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On the other hand, the solubility of solids is increased as the temperature of the liquid 

increases. As the conductivity is caused by dissolved salts, a lower temperature will re-

sult in the precipitation of the dissolved elements, and therefore in a decrease in conduc-

tivity. 

 

The relationship between turbidity and temperature is not clear. Nevertheless, these 

might correlate because of seasonal changes. As temperature decreases, by the end of 

summer, stormy event frequency might increase. Runoff intake, water mixing and turbu-

lence induced by the movement of the pier which the sensor is attached to increases 

with has consequences on the turbidity of the lake. Nevertheless, this is an intuitive ap-

proximation and requires further investigation to establish a formal relationship. 

 

These results support the analysis done for the time series. 

 

5.4 Principal Component Analysis 
 

The PCA plot in Figure 28 shows clustering according to the water temperature. Addi-

tionally, in the left part of the plot (between -2 and -0.5 from PC1) we can see the time 

line go around the same area, which indicates that there might be a consistent behaviour 

of the lake in that time frame. The arm moving towards the right of the graph (from -0.5 

onwards on PC1), probably shows the seasonal change from summer to winter. 

 

Figure 28. PC1 and PC2 (more detailed view available in the Appendix) 
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The eigenvectors indicate positive correlations between dissolved oxygen and conduc-

tivity; temperature and pH; and negative correlation between the first two with the last 

two. These correlations are in accordance to the correlation matrix in Table 3 and Table 

4. Chlorophyll appears to be independent from pH, temperature, dissolved oxygen and 

conductivity.  

 

Figure 29. Chlorophyll-a and turbidity smoothed (more detailed view available in the Appendix) 

The chlorophyll and turbidity complex relationship can also be seen on Figure 29. Both 

seem to correlate during the warmer period. As temperatures go down their behaviour is 

no longer explicitly correlated. This probably happens because of the autumn storms that 

participates to the turbidity levels but do not affect the production of chlorophyll. 
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Figure 30. PC3 and PC4 (more detailed view available in the Appendix) 

Additionally, looking at the Figure 30, we can see that turbidity and chlorophyll are neg-

atively correlated. This might reflect the turbidity negative effect on chlorophyll produc-

tion, as the increased turbidity limits the penetrability of light into the lake water. With 

less light, phytoplankton cannot reproduce as fast, therefore the level of chlorophyll de-

creases. 

 

5.5 Multiple Linear Regression 
 

Two methodologies have used to created using Multiple Linear Regression models: 

MLR1 and MLR2. The difference is in the formula used to standardize the data. MLR1 

uses Equation 2, while MLR2 uses Equation 3, supposed to be more robust and better 

for data with outliers. 

Both methods follow the process diagram presented in Figure 35 (available in the ap-

pendices). First the data goes through pre-processing (standardization). Then two sets 

are created. The first one is to be used as a verification set, containing 20% of the original 

data. The rest of the original data is assigned to the training, which is then used to train 

the model using a cross validation with forward variable selection strategy. The best 

model is then returned for a second stage of variable selection. The most insignificant 

terms are removed on a one by one basis until all the remaining terms are significant. 

Once this process is completed, the verification set is used to assess the quality of the 

model. 
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Three runs have been made from each methodology to guarantee the reproducibility of 

the results. 

Both MRL1 and MRL2 seem to be giving models that yield an R2 around 0.45. The Re-

sidual Standard Error (RSE) is always within the same magnitude order of the root mean 

square of the residuals (RMS). This would lead to believe that the model does not fully 

represent the variation of the data, but nevertheless it provides a decent fit to the data. 

This might be misleading as the verification set is composed by a sample of points from 

the original data. These points might follow the variations of the original data which 

makes this methodology potentially bias. The ideal would be to have random subsets of 

sequential data. 

 

Figure 31. Modelled chlorophyll-a vs measured chlorophyll-a for MLR1 (more detailed view available in the 
Appendix) 

 

Figure 32. Modelled chlorophyll-a vs measured chlorophyll-a for MLR2 (more detailed view available in the 
Appendix) 
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Looking at the graphs (in Figure 31 and Figure 32) comparing the prediction (in green) 

to the measurements (in black) we can see differences in the regions where there are 

peaks. The prediction sometimes also produces peaks that do not exist in the measured 

data.  

Nevertheless, the three runs seem to represent fairly to the overall tendency of the chlo-

rophyll. These models could potentially be used to estimate daily averages (or lower 

resolution), but most likely not hourly levels of chlorophyll. The average of the predictions 

from the model (using the test set) are quite close to the average of the test set. The 

relative error between these two is always quite small (way below 5%) for both MLR1 

and MLR2 in each run. This is potentially a good tool to estimate the average chlorophyll 

in a lake from the independent variables used during this thesis. Nevertheless, this needs 

to be confirmed with new data, that will be collected during the next summer (in 2017). 

6 Discussion 
 

The discussion chapter presents some of the issues and thoughts gathered during the 

making of this thesis. Additionally, it also gives some ideas for further development. 

Firstly, the current setup of the EXO2 sonde is discussed, followed by the different needs 

that could help to improve the significance and quality of the data generated by the probe. 

Finally, possibilities that are created by the deployment of such a solution are presented 

followed by thoughts on good practices in writing programming code. 

 

6.1 Current setup of the EXO2 sonde 
 

The setup is now collecting one data point every half an hour. There are no replicates 

made to reduce the effect of outliers. It could be wise to make at least one replicate for 

each measurement. Additionally, it can be valuable to make a measurement every 10 

minute. This could allow to detect fast changes in chlorophyll, for instance due to water 

mixing. The extra data points can also improve the model generation and testing. 

 

6.2 Needs for weather data 
 

There was a very limited access to weather data. There is no weather station close to 

the monitoring area. The closest is at an approximated distance of 23.5km, which is over 

10km, the best resolution available from the Finnish Meteorological Institute (Finnish 

Meteorological Institute, 2017). 
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As weather variables also influence on algal and cyanobacterial growth, it is very im-

portant to include such observations in the modelling process. Unfortunately, during the 

research we did not have time and resources to get access to weather data with enough 

significance and precision.  

The ideal scenario would be to deploy at least one weather station that measures wind 

speed and direction, air temperature, solar irradiance and precipitation. Such observa-

tions would be valuable for a model that considers weather factors to predict or estimate 

levels of chlorophyll. 

 

6.3 Needs for a working methodology with online sondes, field sampling and data treat-
ment 

 

To successfully complete a monitoring campaign, there is a need to develop a method-

ology that covers digital and manual sampling that considers database requirements and 

that enables to use the data in statistical studies. Field sampling should be taken near 

the sonde, and should match at least some of the parameters measured by the sensors. 

If possible, there should be at least one manual sample that measures all the parameters 

followed by the EXO2. In the case of this thesis, water samples were taken near the 

sensor but none of the samples covers all the parameters, making it impossible to incor-

porate them in the statistical analysis process. 

Additionally, the format of the information should be standardized. This is particularly 

valid for choices such as date and time format, file format, separators and parameter 

units. This eases the data pre-processing and allows the re-use of the R scripts with new 

data. 

 

6.4 Needs for nutrient monitoring 
 

The original objective of the thesis was to model the nutrient levels depending on the 

same data that has been used for this thesis. Unfortunately, resources did not allow to 

establish a monitoring program for nutrient loads. The lack of data suitable for modelling 

purposes made this project impossible. 

Because of the significant influence of nutrients in phytoplankton growth, it is essential 

to estimate the nutrient load present in the lake. 

Additionally, an estimation of the nutrient load capacity can be made taking into consid-

eration the environment in the lake’s catchment area (agricultural and road activities). 
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6.5 Needs to estimate lake retention time 
 

The lake retention time is an estimation of the time that water stays in the lake. For Lake 

Gennarbyträsket, the precise lake retention time is currently unknown. Nevertheless, 

based on a single observation (the only sample available was from 1989, it is assumed 

that this observation was done in the same time) using SYKE’s VEMALA model 

(Huttunen, 2017), the lake retention time is estimated to be over 1000 days. 

 

6.6 Needs for additional data points 
 

Ideally, the data should be continuously collected for an extent of at least 2 to 3 years 

(including winter). This could be used to study the change of parameter behaviours over 

the years. Additionally, the new data can verify the model and eventually participate in 

the model training to improve model significance. 

Measurements should be taken in series of replicates. This could help to assess possible 

outliers and make the data more robust. 

There is a second dataset available with measurements from Lake Hiidenvesi with an 

EXO water station, but there are unfortunately no turbidity measurements. Therefore, 

this dataset cannot be used for this thesis. 

 

6.7 Further development 
 

The models could be further tested with the data that is going to be collected in 2017. 

This would allow to assess whether these models can be used to estimate daily and 

yearly averages of chlorophyll based on pH, turbidity, conductivity, temperature and dis-

solved oxygen. 

Unfortunately, time and resources limited the scope of statistical tools that could be ap-

plied to the data to extract potential information from it. Experimenting with these tools 

could be done to have different viewpoints on the data. Additionally, it could make more 

sense to build the models using training and testing sets that are composed of randomly 

selected sequential series of data points from the original data. This might reduce the 

bias of the models as the actual methodology uses random points, which might implicitly 

inherit the overall variance of the original data set. 

Finally, experiments could be designed to best assess the reliability of the EXO2 data 

and to optimize the modelling process of the data. Such experiments could be for in-

stance monitoring the production of chlorophyll in a controlled environment. 
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6.8 Online service possibilities 
 

The setup deployed in Lake Gennarbyträsket allows to collect data in a digital form. This 

data can be directly sent to a server to be stored in a database (which is already the 

case). This creates an opportunity for designing new services around the collected infor-

mation. Such services could be, for instance, a web portal where citizens can follow the 

water quality in a monitoring site with an online sonde, such as the EXO2. 

The online data could also be used for collaborative research. Different institute could 

deploy sensor arrays in water bodies and collect data that could be used for research 

purposes. 

 

6.9 Programming good practices 
 

Following programming good practices could potentially save a lot of time both in devel-

opment and debugging. As the goal of programming in R is to perform mathematical 

calculations, a good programming practice would be to develop code following the func-

tional programming paradigm. Unfortunately, this has not been done when working in 

this thesis, which lead to lengthy, repetitive and complicated source code. This paradigm 

has come to my knowledge by the end of the thesis, when time was no longer available 

and most of the programming was done. Functional programming could increase the 

readability of the code, reduce debugging time, increases code portability and improve 

code stability. It is therefore strongly advised to implement such practices for future 

source code. 

 

7 Conclusion 
 

The data from the EXO2 sonde provide us with information on the lake state. The mod-

elling of chlorophyll has revealed more challenging than expected. No clear relation has 

been established between chlorophyll and pH, conductivity, turbidity, dissolved oxygen 

and temperature. The two multiple linear regressions modelling method outputs do not 

fully explain the hourly evolution of the data. Nevertheless, they might provide a good 

estimation of the average levels of chlorophyll, useful to determine the trophic state of 

the lake. This needs to be verified with new data that will unfortunately be available only 

from the summer onwards, too late for this thesis. 
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The statistical analysis of the data might reveal underlying mechanisms in the lake, such 

as the relationship with dissolved oxygen and temperature. The use of statistical meth-

ods to study the behaviour of the lake could lead to a deeper understanding of the rela-

tionships between the different elements of the lake. The resolution that the EXO2 offers 

to such an analysis is exceptional. It reveals patterns over time and allows an analysis 

that goes beyond the traditional sampling technique, bias because of the working time 

hours and limitations with the weather conditions and limited in number of observations 

over time. 
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Appendix 1 

1 (1) 

 

 

Field data from LUVY for the Gennarbyträsket lake 

 

Table 5. Field measurements. 

 

 

Table 6. Laboratory analysis results. 

 

 

Date Place Name Time Temp Appearence Smell Flow Tot depth

Month/day/year hh:mm (UTC+3) °C m3/s m

4/19/2016 1 Gennarbyträsket tulo 11:15 5 YEB H 0.003

4/19/2016 2 Gennarbyträsket NE 9:25 6.8 CB L

4/19/2016 3 Gennarbyträsket N 9:40 6.7 CB L

4/19/2016 4 Gennarbyträsket NW 10:00 6.7 CB H

4/19/2016 5 Gennarbyträsket lasku 10:40 6.7 CB H 0.0075

4/19/2016 6 Gennarbyträsket syvänne 10:20 5.4 CB H 10.6

7/21/2016 1 Gennarbyträsket tulo 9:48 13.4 WF H 0.001

7/21/2016 2 Gennarbyträsket NE 9:58 20.5 CB H

7/21/2016 3 Gennarbyträsket N 9:05 20.4 CB H

7/21/2016 4 Gennarbyträsket NW 8:47 20.6 CB H

7/21/2016 4 Gennarbyträsket NW P

7/21/2016 5 Gennarbyträsket lasku 10:08 20.2 CB H 0.003

7/21/2016 6 Gennarbyträsket syvänne 9:26 7.1 CB LRV 10

8/18/2016 1 Gennarbyträsket tulo 11:30 13.3 CB H 0.0005

8/18/2016 2 Gennarbyträsket NE 11:45 18 CB H

8/18/2016 3 Gennarbyträsket N 11:55 18.1 CB H

8/18/2016 4 Gennarbyträsket NW 10:55 17.7 CB H

8/18/2016 5 Gennarbyträsket lasku 12:32 14.5 CB H 0.0002

8/18/2016 6 Gennarbyträsket syvänne 11:15 6.8 CB SRV 11

Date Place Depth *solids.GFC *O2 *pH conductivity *BOD7 Tot.N *NH4-N Tot.P *a-chlorofy *Ecoli Enterokok. *koliler

Month/day/year m mg/l mg/l mS/m mg/l µg/l µg/l µg/l µg/l pmy/100 ml pmy/100 ml pmy/100 ml

4/19/2016 1 0.1 6.1 5.8 <1,5 1100 15 40 0 1 43

4/19/2016 2 0.5 1.6 <1,5 600 15 15 0 0 3

4/19/2016 3 0.5 1.5 5.9 <1,5 580 15 14 0 1 1

4/19/2016 4 0.5 1.7 5.9 <1,5 590 15 15 0 0 2

4/19/2016 5 0.1 1.5 5.9 <1,5 620 16 15 3 2 8

4/19/2016 6 bottom-1m 8.9 7.1 620 27 16 1 0 1

7/21/2016 1 0.1 4.7 7.2 <1,5 1300 28 28 37 88 980

7/21/2016 2 0.5 1.4 <1,5 350 5.8 11 0 1 91

7/21/2016 3 0.5 1.5 6.1 <1,5 350 5.6 11 3 4 120

7/21/2016 4 0.5 2 6.1 <1,5 360 6 13 1 4 150

7/21/2016 4 0-1m kokooma 5.7

7/21/2016 5 0.1 1.4 6.2 <1,5 380 21 25 15 12 1100

7/21/2016 6 pohja-1m 0.7 6.7 970 540 48 2 0 66

8/18/2016 1 0.1 5.3 9 <1,5 470 43 40 4 34 2400

8/18/2016 2 0.5 1.4 <1,5 380 5.5 12 0 3 1000

8/18/2016 3 0.5 1.7 6.4 <1,5 390 5.7 15 2 3 190

8/18/2016 4 0.5 <1 6.2 <1,5 330 5.9 11 3 4 180

8/18/2016 5 0.1 2 10 1.6 660 87 230 490 150 >2400

8/18/2016 6 bottom-1m 0.2 6.9 1400 990 110 2 0 79
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Maps 

 

 

Figure 33. Original routing of the sewer pipe through Lake Gennarbyträsket (image credit: LUVY 
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Figure 34. Sampling locations 
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Raw data 

 

Table 7. head of the EXO2 raw data 

 

Table 8. selection from the rain accumulation raw data 

 

Date and time Lämpötila [°C] Johtokyky [µS/cm] pH [ ] Sameus [FTU] Happi [mg/l] A-klorofylli [µg/l] Sinilevien osuus [µg/l] Akku [V]

21.07.2016 12:38 20,97 59,5 7,54 0,7 9,10 5,0 0,1 12,95

21.07.2016 13:00 9,05 12,97

21.07.2016 13:30 21,04 59,8 7,53 0,7 9,05 5,4 0,1 12,97

21.07.2016 14:00 21,08 59,5 7,49 0,7 9,00 6,2 0,1 12,99

21.07.2016 14:30 21,09 59,5 7,31 0,7 8,76 4,8 0,1 12,99

21.07.2016 15:00 21,12 59,5 7,28 0,7 8,70 4,4 0,1 13,01

21.07.2016 15:30 21,13 59,5 7,29 0,9 8,72 3,5 0,1 12,99

21.07.2016 16:00 21,19 59,5 7,30 0,6 8,79 5,8 0,1 13,01

21.07.2016 16:30 21,18 59,5 7,25 0,8 8,65 4,7 0,1 13,01

21.07.2016 17:00 21,21 59,5 7,26 0,7 8,70 5,4 0,1 13,01

21.07.2016 17:30 21,26 59,5 7,35 0,8 8,91 8,7 0,2 13,01

21.07.2016 18:00 21,34 59,5 7,37 0,7 8,91 5,7 0,1 13,01

21.07.2016 18:30 21,41 59,5 7,33 0,8 8,88 6,1 0,1 12,99

21.07.2016 19:00 21,41 59,5 7,62 0,8 9,20 5,1 0,1 12,98

21.07.2016 19:30 21,40 59,5 7,81 0,6 9,33 5,1 0,1 12,98

21.07.2016 20:00 21,35 59,5 7,73 0,6 9,27 4,1 0,1 12,98

21.07.2016 20:30 21,31 59,5 7,63 0,7 9,14 6,3 0,1 12,98

21.07.2016 21:00 21,28 59,8 7,56 0,7 9,09 5,7 0,1 12,97

21.07.2016 21:30 21,26 59,5 7,46 0,6 8,94 4,8 0,1 12,95

21.07.2016 22:00 21,21 59,8 7,41 0,8 8,88 6,1 0,1 12,94

21.07.2016 22:30 21,16 59,8 7,41 0,7 8,88 10,5 0,2 12,93

21.07.2016 23:00 21,13 59,8 7,39 0,8 8,82 4,6 0,1 12,93

Row # Lyhyt_nimi Year Month Day Hour Minute Rain accumulation

1 HANKO TVÄRMINNE 2016 7 1 0 0 -1

2 HANKO TVÄRMINNE 2016 7 1 1 0 -1

3 HANKO TVÄRMINNE 2016 7 1 2 0 -1

4 HANKO TVÄRMINNE 2016 7 1 3 0 -1

12 HANKO TVÄRMINNE 2016 7 1 11 0 -1

13 HANKO TVÄRMINNE 2016 7 1 12 0 -1

14 HANKO TVÄRMINNE 2016 7 1 13 0 -1

15 HANKO TVÄRMINNE 2016 7 1 14 0 -1

16 HANKO TVÄRMINNE 2016 7 1 15 0 -1

17 HANKO TVÄRMINNE 2016 7 1 16 0 -1

18 HANKO TVÄRMINNE 2016 7 1 17 0 -1

19 HANKO TVÄRMINNE 2016 7 1 18 0 -1

20 HANKO TVÄRMINNE 2016 7 1 19 0 -1

21 HANKO TVÄRMINNE 2016 7 1 20 0 -1

22 HANKO TVÄRMINNE 2016 7 1 21 0 -1

23 HANKO TVÄRMINNE 2016 7 1 22 0 -1

24 HANKO TVÄRMINNE 2016 7 1 23 0 -1

25 HANKO TVÄRMINNE 2016 7 2 0 0 -1

26 HANKO TVÄRMINNE 2016 7 2 1 0 -1

27 HANKO TVÄRMINNE 2016 7 2 2 0 -1

28 HANKO TVÄRMINNE 2016 7 2 3 0 -1

40 HANKO TVÄRMINNE 2016 7 2 15 0 -1

41 HANKO TVÄRMINNE 2016 7 2 16 0 -1

42 HANKO TVÄRMINNE 2016 7 2 17 0 -1

43 HANKO TVÄRMINNE 2016 7 2 18 0 -1

44 HANKO TVÄRMINNE 2016 7 2 19 0 -1

45 HANKO TVÄRMINNE 2016 7 2 20 0 -1

46 HANKO TVÄRMINNE 2016 7 2 21 0 0.8

47 HANKO TVÄRMINNE 2016 7 2 22 0 0.3

48 HANKO TVÄRMINNE 2016 7 2 23 0 0.5

49 HANKO TVÄRMINNE 2016 7 3 0 0 3.4

50 HANKO TVÄRMINNE 2016 7 3 1 0 7.2
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Table 9. Selection of weather raw data. 
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The modelling process 

 

 

Figure 35. Process diagram for the data pre-treatment, smoothing and model construction.
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R code for examples 

 

# Graph example for paragraph 4.2 - Time series. 
temp <- rnorm(60,7.6,0.23) 
temp[34] <- 13.8 
temp[13] <- 1.6 
plot(temp, type = 'l', xlab='time (m)', ylab='pH', main='lake pH examp
le')  
 
# Example for paragraph 22 - Effects of standardization on graphs. 
temp <- rnorm(60,10,5) 
A <- sin(temp) 
B <- rnorm(60,1,0.1) 
B <- (A * B)*1e6 
plot(B, xlab = 'time (min)', ylab='Something', main='B series', type='
l', col='black') 
plot(A, xlab = 'time (min)', ylab='Something else', main='A series', t
ype='l', col='red') 
# A and B are similar but have different scales 
par(mar = c(5,5,2,5)) 
plot(B, type= 'l', xlab = "time (min)", ylab="Something (B)", ylim=c(m
in(B),max(B)), main='A and B are not standardized') 
par(new = T) 
plot(A, type= 'l', axes=F, ylim=c(min(B),max(B)),col='red', xlab=NA, y
lab=NA) 
axis(side = 4, ylab="bar", col = 'red') 
mtext(side = 4, line = 3, 'Something else (A)', col='red') 
# the series A is looks like a straight line 
A <- scale(A,T,T) 
B <- scale (B,T,T) 
par(mar = c(5,5,2,5)) 
plot(B, type= 'l', xlab = "time (min)", ylab="Scaled units", ylim=c(mi
n(A,B),max(A,B)), main='A and B are standardized using scale') 
lines(A, type= 'l', col= 'red') 
 
#Loess example 
cor.test(A,B)  
 
x <- c(0:100) 
noise <- rnorm(n = 101, mean = 0, sd = 50) 
y <- sin(x*pi/100) 
y <- y+noise 
 
plot(x,y,type='l', main='Loess smoothing example') 
 
DF <- data.frame(x=x, y=y) 
model <- loess(y~x, DF) 
lines(x, predict(model),col='red', lwd=2) 
 
model <- loess(y~x, DF, span=.1) 
lines(x, predict(model),col='blue', lwd=2) 
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Time series (pH) 
 

 

Figure 36. pH time series 
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Figure 37. pH monthly (30 days) overlapping time series 
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Figure 38. pH weekly overlapping time series 
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Time series (conductivity) 
 

 

Figure 39. Conductivity time series 
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Figure 40. Conductivity monthly (30 days) overlapping time series 
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Figure 41. Conductivity weekly overlapping time series 
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Time series (temperature) 
 

 

Figure 42. Temperature time series 
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Figure 43. Temperature monthly (30 days) overlapping time series 
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Figure 44. Temperature weekly overlapping time series 
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Time series (turbidity) 
 

 

Figure 45. Turbidity time series 
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Figure 46. Turbidity monthly (30 days) overlapping time series 
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Figure 47. Turbidity weekly overlapping time series 
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Time series (dissolved oxygen) 
 

 

Figure 48. Dissolved oxygen time series 
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Figure 49. Dissolved oxygen monthly (30 days) overlapping time series 

 



Appendix 10 

3 (3) 

 

 

 

Figure 50. Dissolved oxygen weekly overlapping time series 

 

 



Appendix 11 

1 (3) 

 

 

Time series (chlorophyll-a) 
 

 

Figure 51. Chlorophyll-a time series 
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Figure 52. Chlorophyll-a monthly (30 days) overlapping time series 
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Figure 53. Chlorophyll-a weekly overlapping time series 
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Comparison of the turbidity and chlorophyll-a (standardized using Equatio
n 2) 
 

 
Figure 54. Turbidity and Chlorophyll-a comparison (standardized using Equation 2) 
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Comparison of the turbidity and chlorophyll-a (standardized using Equatio

n 3) 
 

 
Figure 55. Turbidity and chlorophyll comparison standardized using Equation 3 
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Smoothing 
 

 
Figure 56. Chlorophyll-a smoothed curve 
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Figure 57, Chlorophyll-a strongly smoothed curve 
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Figure 58. Turbidity smoothed curve 
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Figure 59. Conductivity smoothed curve 
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Figure 60. pH smoothed curve 
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Figure 61. Dissolved Oxygen smoothed curve 
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Figure 62. Temperature smoothed curve 
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Figure 63. Comparison of turbidity and chlorophyll-a from smooth fits 
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Results for MLR1 (using standardization defined in Equation 2) – Run #1 
 

Formula: 

y ~ turbidity + I(conductivity * turbidity) + I(pH^2) + conductivity +  
    temperature + I(pH * DO) + I(conductivity^2) + I(temperature *  
    conductivity) + I(temperature * turbidity) + I(pH * turbidity) +  
    I(conductivity * DO) + I(temperature^2) + I(DO^2) + pH +  
    DO + I(temperature * DO) + I(temperature * pH) 

 

Model summary: 

 
Residuals: 
     Min       1Q   Median       3Q      Max  
-19.3356  -0.7823  -0.1999   0.5633  24.8196  
 
Coefficients: 
                              Estimate Std. Error t value Pr(>|t|)     
(Intercept)                    4.13701    0.14449  28.632  < 2e-16 *** 
turbidity                      1.28710    0.06827  18.853  < 2e-16 *** 
I(conductivity * turbidity)   -1.11034    0.12491  -8.889  < 2e-16 *** 
I(pH^2)                        1.25007    0.22228   5.624 2.12e-08 *** 
conductivity                  -0.99252    0.15712  -6.317 3.25e-10 *** 
temperature                   -1.96088    0.35897  -5.462 5.26e-08 *** 
I(pH * DO)                    -1.13590    0.45851  -2.477  0.01331 *   
I(conductivity^2)              0.83974    0.11490   7.308 3.84e-13 *** 
I(temperature * conductivity)  2.45924    0.27057   9.089  < 2e-16 *** 
I(temperature * turbidity)    -1.16853    0.10513 -11.116  < 2e-16 *** 
I(pH * turbidity)              0.71648    0.07425   9.649  < 2e-16 *** 
I(conductivity * DO)           1.03079    0.14695   7.015 3.11e-12 *** 
I(temperature^2)               3.53728    0.52685   6.714 2.44e-11 *** 
I(DO^2)                        0.64239    0.20049   3.204  0.00138 **  
pH                             1.12805    0.22335   5.051 4.79e-07 *** 
DO                            -0.55543    0.19967  -2.782  0.00546 **  
I(temperature * DO)            3.20040    0.63498   5.040 5.05e-07 *** 
I(temperature * pH)           -2.94243    0.67665  -4.349 1.44e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
s: 1.852 on 2075 degrees of freedom 
Multiple R-squared: 0.4832, 
Adjusted R-squared: 0.4789  
F-statistic: 114.1 on 17 and 2075 DF,  p-value: < 2.2e-16 

 

Root mean square of the residuals: 1.96315 

Relative error of the means (model response and test set) : -1.604589 % 

 

  



Appendix 15 

2 (2) 

 

 

 

Figure 64. Comparison of measured Chlorophyll-a to model estimations for MLR1, Run #1 

 

 

Figure 65. Boxplot of the measured Chlorophyll-a and model estimations for MLR1, Run #1 
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Results for MLR1 (using standardization defined in Equation 2) – Run #2 

 

Formula: 

y ~ turbidity + I(conductivity * turbidity) + I(pH^2) + conductivity +  
    temperature + I(temperature * turbidity) + I(pH * turbidity) +  
    I(conductivity^2) + I(temperature * conductivity) + pH +  
    I(temperature^2) + I(DO^2) + I(conductivity * DO) +  
    I(temperature * DO) + I(temperature * pH) 

 

Model summary: 

 
Residuals: 
     Min       1Q   Median       3Q      Max  
-18.7044  -0.8604  -0.2253   0.5386  24.8751  
 
Coefficients: 
                              Estimate Std. Error t value Pr(>|t|)     
(Intercept)                    4.12201    0.15288  26.963  < 2e-16 *** 
turbidity                      1.28305    0.07556  16.982  < 2e-16 *** 
I(conductivity * turbidity)   -1.06573    0.13261  -8.036 1.54e-15 *** 
I(pH^2)                        0.73299    0.09565   7.663 2.76e-14 *** 
conductivity                  -1.01048    0.15545  -6.500 1.00e-10 *** 
temperature                   -1.13948    0.16545  -6.887 7.51e-12 *** 
I(temperature * turbidity)    -1.17804    0.11715 -10.056  < 2e-16 *** 
I(pH * turbidity)              0.68805    0.07883   8.728  < 2e-16 *** 
I(conductivity^2)              0.82194    0.13049   6.299 3.65e-10 *** 
I(temperature * conductivity)  2.36759    0.28715   8.245 2.89e-16 *** 
pH                             0.62354    0.14091   4.425 1.01e-05 *** 
I(temperature^2)               2.44970    0.34814   7.037 2.67e-12 *** 
I(DO^2)                        0.21346    0.08456   2.524   0.0117 *   
I(conductivity * DO)           1.03997    0.15123   6.877 8.07e-12 *** 
I(temperature * DO)            1.88690    0.26895   7.016 3.08e-12 *** 
I(temperature * pH)           -1.34256    0.26918  -4.988 6.62e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
s: 1.978 on 2077 degrees of freedom 
Multiple R-squared: 0.4502, 
Adjusted R-squared: 0.4462  
F-statistic: 113.4 on 15 and 2077 DF,  p-value: < 2.2e-16 

 

 

Root mean square of the residuals: 1.392982 

Relative error of the means (model response and test set): -2.935319 % 
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Figure 66. Comparison of measured Chlorophyll-a to model estimations for MLR1, Run #2 

 

 

Figure 67. Boxplot of the measured Chlorophyll-a and model estimations for MLR1, Run #2 
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Results for MLR1 (using standardization defined in Equation 2) – Run #3 

 

Formula: 

y ~ turbidity + I(conductivity * turbidity) + I(pH^2) + conductivity +  
    I(turbidity * DO) + temperature + I(conductivity^2) +  
    I(temperature * conductivity) + pH + I(temperature * pH) + 
    I(pH * turbidity) + I(temperature * turbidity) +  
    I(temperature^2) + I(DO^2) + I(conductivity * DO) +  
    I(temperature * DO) 

 

Model summary: 

Residuals: 
     Min       1Q   Median       3Q      Max  
-19.1414  -0.8467  -0.2289   0.5398  24.9140  
 
Coefficients: 
                              Estimate Std. Error t value Pr(>|t|)     
(Intercept)                    4.26166    0.14977  28.455  < 2e-16 *** 
turbidity                      1.26866    0.07533  16.841  < 2e-16 *** 
I(conductivity * turbidity)   -0.89494    0.13282  -6.738 2.07e-11 *** 
I(pH^2)                        0.67805    0.09656   7.022 2.95e-12 *** 
conductivity                  -0.86466    0.15309  -5.648 1.85e-08 *** 
I(turbidity * DO)             -0.31413    0.15514  -2.025   0.0430 *   
temperature                   -1.07119    0.16303  -6.571 6.31e-11 *** 
I(conductivity^2)              0.66565    0.12770   5.213 2.05e-07 *** 
I(temperature * conductivity)  2.27657    0.28853   7.890 4.84e-15 *** 
pH                             0.61430    0.14101   4.356 1.39e-05 *** 
I(temperature * pH)           -1.06739    0.26790  -3.984 7.00e-05 *** 
I(pH * turbidity)              0.99857    0.12849   7.772 1.21e-14 *** 
I(temperature * turbidity)    -1.36365    0.20970  -6.503 9.85e-11 *** 
I(temperature^2)               2.15230    0.35789   6.014 2.13e-09 *** 
I(DO^2)                        0.21270    0.09247   2.300   0.0215 *   
I(conductivity * DO)           1.05032    0.15312   6.859 9.10e-12 *** 
I(temperature * DO)            1.70713    0.30169   5.659 1.74e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
s: 1.966 on 2076 degrees of freedom 
Multiple R-squared: 0.4411, 
Adjusted R-squared: 0.4368  
F-statistic: 102.4 on 16 and 2076 DF,  p-value: < 2.2e-16 

 

 

Root mean square of the residuals: 1.460119 

Relative error of the means (model response and test set): -2.641434 % 
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Figure 68. Comparison of measured Chlorophyll-a to model estimations for MLR1, Run #3 

 

 

 

Figure 69. Boxplot of the measured Chlorophyll-a and model estimations for MLR1, Run #3 
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Results for MLR2 (using standardization defined in Equation 3) – Run #1 

 

Model formula: 

y ~ turbidity + I(conductivity * turbidity) + I(pH^2) + conductivity +  
    temperature + I(pH * DO) + I(conductivity^2) + I(conductivity *  
    DO) + I(temperature^2) + I(pH * turbidity) + I(temperature *  
    turbidity) + I(temperature * conductivity) + I(DO^2) + pH +  
    I(temperature * pH) + I(temperature * DO) 

 

Model summary: 

Residuals: 
     Min       1Q   Median       3Q      Max  
-18.6179  -0.8121  -0.1966   0.5387  24.9032  
 
Coefficients: 
                              Estimate Std. Error t value Pr(>|t|)     
(Intercept)                    3.92620    0.08669  45.288  < 2e-16 *** 
turbidity                      1.46482    0.06574  22.281  < 2e-16 *** 
I(conductivity * turbidity)   -0.50402    0.06133  -8.218 3.37e-16 *** 
I(pH^2)                        1.59587    0.28762   5.549 3.21e-08 *** 
conductivity                  -0.36065    0.07880  -4.577 4.96e-06 *** 
temperature                   -0.83003    0.10826  -7.667 2.56e-14 *** 
I(pH * DO)                    -0.91831    0.45284  -2.028  0.04268 *   
I(conductivity^2)              0.19126    0.02727   7.013 3.05e-12 *** 
I(conductivity * DO)           0.44715    0.06164   7.254 5.46e-13 *** 
I(temperature^2)               2.97984    0.46384   6.424 1.60e-10 *** 
I(pH * turbidity)              0.87215    0.08616  10.122  < 2e-16 *** 
I(temperature * turbidity)    -1.05474    0.10269 -10.271  < 2e-16 *** 
I(temperature * conductivity)  1.15060    0.12488   9.214  < 2e-16 *** 
I(DO^2)                        0.41331    0.14669   2.818  0.00488 **  
pH                             0.31079    0.13334   2.331  0.01985 *   
I(temperature * pH)           -2.82072    0.71970  -3.919 9.14e-05 *** 
I(temperature * DO)            2.42218    0.49464   4.897 1.04e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
s: 1.884 on 2337 degrees of freedom 
Multiple R-squared: 0.4569, 
Adjusted R-squared: 0.4531  
F-statistic: 122.9 on 16 and 2337 DF,  p-value: < 2.2e-16 

 

 

Root mean square of the residuals: 1.774387 

Relative error of the means (model response and test set): -0.8808585 % 
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Figure 70. Comparison of measured Chlorophyll-a to model estimations for MLR2, Run #1 

 

 

Figure 71. Boxplot of the measured Chlorophyll-a and model estimations for MLR2, Run #1 
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Results for MLR2 (using standardization defined in Equation 3) – Run #2 

 

Model formula: 

y ~ turbidity + I(conductivity * turbidity) + I(pH^2) + conductivity +  
    I(turbidity * DO) + temperature + I(pH * DO) + I(conductivity^2) +  
    I(conductivity * pH) + I(conductivity * DO) + I(temperature^2) +  
    I(DO^2) + I(temperature * conductivity) + I(pH * turbidity) +  
    I(temperature * turbidity) 

 

Model summary: 

Residuals: 
     Min       1Q   Median       3Q      Max  
-17.8714  -0.8440  -0.2038   0.5510  24.8179  
 
Coefficients: 
                              Estimate Std. Error t value Pr(>|t|)     
(Intercept)                    4.01711    0.08881  45.233  < 2e-16 *** 
turbidity                      1.26884    0.07440  17.055  < 2e-16 *** 
I(conductivity * turbidity)   -0.46928    0.06469  -7.254 5.47e-13 *** 
I(pH^2)                        0.90312    0.10748   8.402  < 2e-16 *** 
conductivity                  -0.51706    0.07393  -6.994 3.48e-12 *** 
I(turbidity * DO)             -0.44693    0.13235  -3.377 0.000745 *** 
temperature                   -0.77215    0.08359  -9.237  < 2e-16 *** 
I(pH * DO)                     0.65991    0.15708   4.201 2.76e-05 *** 
I(conductivity^2)              0.19445    0.02751   7.068 2.07e-12 *** 
I(conductivity * pH)           0.38797    0.15141   2.562 0.010460 *   
I(conductivity * DO)           0.23425    0.07934   2.952 0.003185 **  
I(temperature^2)               0.78959    0.17128   4.610 4.24e-06 *** 
I(DO^2)                       -0.19981    0.05584  -3.578 0.000353 *** 
I(temperature * conductivity)  0.71563    0.15407   4.645 3.59e-06 *** 
I(pH * turbidity)              1.25242    0.14072   8.900  < 2e-16 *** 
I(temperature * turbidity)    -1.57205    0.18727  -8.395  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
s: 1.906 on 2338 degrees of freedom 
Multiple R-squared: 0.4313, 
Adjusted R-squared: 0.4276  
F-statistic: 118.2 on 15 and 2338 DF,  p-value: < 2.2e-16 

 

 

Root mean square of the residuals: 1.611111 

Relative error of the means (model response and test set): -1.018662 % 
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Figure 72. Comparison of measured Chlorophyll-a to model estimations for MLR2, Run #2 

 

 

Figure 73. Boxplot of the measured Chlorophyll-a and model estimations for MLR2, Run #2 
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Results for MLR2 (using standardization defined in Equation 3) – Run #3 

 

Model formula: 

y ~ turbidity + I(conductivity * turbidity) + I(pH^2) + conductivity +  
    I(turbidity * DO) + temperature + I(pH * DO) + I(conductivity^2) +  
    I(conductivity * pH) + I(conductivity * DO) + I(temperature *  
    turbidity) + I(pH * turbidity) + I(temperature * conductivity) +  
    I(temperature^2) + I(DO^2) 

 

Model summary: 

Residuals: 
     Min       1Q   Median       3Q      Max  
-17.9141  -0.8414  -0.2015   0.5653  24.9150  
 
Coefficients: 
                              Estimate Std. Error t value Pr(>|t|)     
(Intercept)                    4.03505    0.08603  46.904  < 2e-16 *** 
turbidity                      1.37088    0.07204  19.030  < 2e-16 *** 
I(conductivity * turbidity)   -0.51498    0.06508  -7.912 3.86e-15 *** 
I(pH^2)                        0.85539    0.10708   7.988 2.13e-15 *** 
conductivity                  -0.56863    0.07233  -7.861 5.76e-15 *** 
I(turbidity * DO)             -0.24163    0.12608  -1.916 0.055427 .   
temperature                   -0.72716    0.08121  -8.954  < 2e-16 *** 
I(pH * DO)                     0.64303    0.14958   4.299 1.79e-05 *** 
I(conductivity^2)              0.19578    0.02804   6.981 3.80e-12 *** 
I(conductivity * pH)           0.47730    0.14908   3.202 0.001385 **  
I(conductivity * DO)           0.15898    0.07679   2.070 0.038538 *   
I(temperature * turbidity)    -1.38492    0.18248  -7.589 4.61e-14 *** 
I(pH * turbidity)              1.01632    0.13611   7.467 1.15e-13 *** 
I(temperature * conductivity)  0.54919    0.15041   3.651 0.000267 *** 
I(temperature^2)               0.70800    0.16637   4.255 2.17e-05 *** 
I(DO^2)                       -0.18850    0.05408  -3.485 0.000501 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
s: 1.842 on 2338 degrees of freedom 
Multiple R-squared: 0.4425, 
Adjusted R-squared: 0.4389  
F-statistic: 123.7 on 15 and 2338 DF,  p-value: < 2.2e-16 

 

 

Root mean square of the residuals: 2.178123 

Relative error of the means (model response and test set): 2.117905 % 
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Figure 74. Comparison of measured Chlorophyll-a to model estimations for MLR2, Run #3 

 

 

Figure 75. Boxplot of the measured Chlorophyll-a and model estimations for MLR2, Run #3 
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Principal Component Analysis 

 

Figure 76. PCA variance with respect to the principal components 

 

Summary of the PCA: 

Importance of components: 
                          PC1    PC2    PC3     PC4     PC5     PC6 
Standard deviation     1.8249 1.0948 0.9536 0.55957 0.45918 0.19402 
Proportion of Variance 0.5551 0.1998 0.1516 0.05219 0.03514 0.00627 
Cumulative Proportion  0.5551 0.7548 0.9064 0.95858 0.99373 1.00000 

 

Rotations of the PCA: 

                 PC1    PC2    PC3    PC4    PC5    PC6 
temperature   -0.524  0.073  0.187 -0.208  0.237  0.765 
conductivity   0.491 -0.167  0.118  0.012  0.844  0.065 
pH            -0.463  0.101 -0.427 -0.467  0.392 -0.471 
turbidity      0.394  0.435  0.303 -0.730 -0.176  0.009 
DO             0.339 -0.053 -0.810 -0.149 -0.126  0.434 
a.chlorophyll  0.016  0.874 -0.144  0.428  0.175  0.024 
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Figure 77. PCA biplot of PC1 and PC2, hot temperatures are red and cold ones are blue, black line repre-

sents time 
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Figure 78. PCA biplot of PC3 and PC4, hot temperatures are red and cold ones are blue, black line repre-

sents time 
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Source code (Lake quality assessment tool) 

 

library(ggplot2) 
 
#load data from CSV file 
myData <- read.csv2("data_en.CSV") 
 
#remove useless column 
myData <- myData[,c(1:9)] 
 
#add ellapsed time to the data 
times <- strptime(myData$Date.and.time, format = "%d.%m.%Y %H:%M", tz=
"EET") #create POSIX time 
initialTime <- as.numeric(times[4]) #first valid record 
times <- (as.numeric(times) - initialTime) #set the time = 0 
#times <- times/(24*60*60) #convert into days 
times <- times/(24)/150 #convert into hours 
myData$ellapsedTime <- times #add to the dataframe 
myData <- myData[myData$ellapsedTime>=0,] #keep only valid samples 
myData <- myData[complete.cases(myData),] #remove any row with at leas
t one NA 
 
rm(initialTime) 
rm(times) 
 
 
names(myData)<-c("Date.and.time" , "temperature", "conductivity", "pH"
, "turbidity", "DO", "a.chlorophyll", "cyanobacteria", "battery", "ell
apsedTime") 
 
colors <- c("darkblue", "lightskyblue", "seagreen2", "orange", "red") 
thresholds <- c(4,10,20,50, Inf) 
condition <- c("Excellent", "Good", "Satisfactory", "Passable", "Poor"
) 
 
getAverage <- function(x,t){ 
  y <- data.frame(temperature=NA, conductivity=NA, pH=NA, turbidity=NA
, DO=NA, a.chlorophyll=NA, cyanobacteria=NA, ellapsedTime=NA, dt =NA)[
numeric(0), ] 
  for(i in 0:max(floor(x$ellapsedTime/t))){ 
    values <- which(floor(x$ellapsedTime/t) >= i & floor(x$ellapsedTim
e/t) < i+1) 
    for( j in 1:7){ 
      y[i+1,j] <- mean(x[values,j+1]) 
      y[i+1,j+1] <- i 
      y[i+1,j+2] <- max(x$ellapsedTime[values])-min(x$ellapsedTime[val
ues]) 
    } 
  } 
  return(y) 
} 
 
getCondition <- function (x){ 
  temp <- character() 
  for(i in 1:length(x$a.chlorophyll)){ 
    temp[i] <- colors[min(which(x$a.chlorophyll[i] < thresholds))] 
  } 
  x$color <- temp 
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  for(i in 1:length(x$a.chlorophyll)){ 
    temp[i] <- condition[min(which(x$a.chlorophyll[i] < thresholds))] 
  } 
  x$condition <- temp 
  return(x) 
} 
 
getStats <- function(x, w = TRUE){ 
   
  temp <- numeric() 
  weight <- numeric() 
  for(i in 1:length(colors)){ 
    temp[i] <- length(which(x$color==colors[i])) 
    weight[i]<-sum(x$dt[which(x$color==colors[i])]) 
  } 
  ifelse(w,weight,1) 
 if(w)  temp <- data.frame(time.percentage = round(100*(temp*weight)/s
um((temp*weight)),3), color = colors, condition = condition) 
          else  temp <- data.frame(time.percentage = round(100*temp/su
m(temp),3), color = colors, condition = condition) 
  temp$label <- paste(temp$time.percentage, "%", sep="") 
  temp$label.color <- ifelse(temp$time.percentage>0,"black","black") 
  temp$label.vjust <- ifelse(temp$time.percentage>0,-0.2,0) 
  temp$index <- 1:5 
  temp$weight <- weight 
  return(temp) 
} 
 
makePlot <- function(x1, x2, dp=''){ 
  dp <- ifelse(dp=='','',paste(" from ", dp, sep='')) 
  my.Subtitle <- paste("Chlorophyll-a mean: ", round(mean(x1$a.chlorop
hyll), 2), " ; ",length(x1$a.chlorophyll), " data points", dp, sep='') 
  my.Title <- paste("Trophic levels for Lake Gennarbyträsket for the s
ampling season (", myData$Date.and.time[which.min(myData$ellapsedTime)
], 
                    " - ", myData$Date.and.time[which.max(myData$ellap
sedTime)], ")", sep = '') 
   
   
  p <- ggplot(x2, aes(x=index, y=time.percentage, fill=color)) +  
    geom_bar(stat="identity", fill=colors)+ 
    geom_text(aes(label=label), vjust=x2$label.vjust, color=x2$label.c
olor, size=3.5)+ 
    labs( 
      title=my.Title, 
      subtitle=my.Subtitle, 
      x = "Trophic condition",  
      y="Time (%) spent in the trophic condition")+ 
    scale_x_discrete(limits=x2$condition) 
   
  print(p) 
} 
 
monthly.Average <- getCondition(getAverage(myData, 730)) 
 
daily.Average <- getCondition(getAverage(myData, 24)) 
 
daily.Levels<-getStats(daily.Average, F) 
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monthly.Levels<-getStats(monthly.Average) 
 
myData <- getCondition(myData) 
myData$dt <- rep(1, each=length(myData[[1]])) 
data.levels <- getStats(myData, F) 
 
makePlot(myData, data.levels, "raw data") 
#makePlot(monthly.Average, monthly.Levels, "monthly averages") 
#makePlot(daily.Average,daily.Levels, "daily averages") 
 
myData$condition <- factor(myData$condition, condition) 
 
myBox<-boxplot(myData$a.chlorophyll ~ myData$condition, main="Do not u
se this graph") 
text(1:5, (1:5)*10, rep("not for use",25), col = "red") 
 
cond.n <- character() 
for(i in 1:length(condition)){ 
  cond.n[i] <- paste("(", myBox$n[i], " observations)", sep='') 
} 
 
 
boxplot(myData$a.chlorophyll ~ myData$condition, main="Boxplots of the 
chlorophyll-a distribution according to the lake's trophic level") 
 
text(1:5, c(7,13,7,17, 50),cond.n) 
 
plot(myData$ellapsedTime/24, myData$a.chlorophyll,  
     col="black", 
     xlab = "Time (days)", ylab="Chlorophyll-a (µg/l)", 
     main="Chlorophyll-a with respect to time", 
     type = 'l') 
 
plot(myData$ellapsedTime/24, myData$a.chlorophyll,  
     col=myData$color, 
     xlab = "Time (days)", ylab="Chlorophyll-a (µg/l)", 
     main="Chlorophyll-a with respect to time color coded with SYKE's 
water quality levels", 
     sub="Dark blue = excellent, blue = good, green = satisfactory, or
ange = passable, red = poor", 
     pch=19,lwd=2)
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Source code (MLR1 and smoothing) 

 

source("http://users.metropolia.fi/~velimt/R/DOE_functions_v5.r") 
if (!require("RColorBrewer")) { 
  install.packages("RColorBrewer") 
  library(RColorBrewer) 
} 
 
rms <- function(x) sqrt(mean(x^2)) 
 
#load data from CSV file 
myData <- read.csv2("data_en.CSV") 
 
#remove useless column 
myData <- myData[,c(1:9)] 
 
#add ellapsed time to the data 
times <- strptime(myData$Date.and.time, format = "%d.%m.%Y %H:%M", tz=
"EET") #create POSIX time 
initialTime <- as.numeric(times[4]) #first valid record 
times <- (as.numeric(times) - initialTime) #set the time = 0 
#times <- times/(24*60*60) #convert into days 
times <- times/(24)/150 #convert into hours 
myData$ellapsedTime <- times #add to the dataframe 
myData <- myData[myData$ellapsedTime>=0,] #keep only valid samples 
myData <- myData[complete.cases(myData),] #remove any row with at leas
t one NA 
 
create_average <- function(DF, column_name_value, column_name_time, a, 
b, column_name = 'mean.value'){ 
  mean.value <- numeric() 
  time_mean <- numeric() 
  for(i in a:b){ 
    time_mean <- append(time_mean, i) 
    mean.value <- append( 
      mean.value, 
      mean( 
        DF[[column_name_value]][ 
          DF[[column_name_time]]<=i& 
            DF[[column_name_time]]>(i-1) 
          ] 
      ) 
    ) 
  } 
  DF <- data.frame(time_mean=time_mean ,mean.value=mean.value) 
  colnames(DF)<-c('time_mean', column_name) 
  return(DF) 
} 
 
my.Data.Av <- create_average(myData,'Lämpötila...C.' , 'ellapsedTime', 
0, 2615, 'temperature') 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Johtokyky..µS.cm.' , 'ellapsedTime', 0, 2615, 
'conductivity'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
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my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'pH....' , 'ellapsedTime', 0, 2615, 'pH'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Sameus..FTU.' , 'ellapsedTime', 0, 2615, 'tur
bidity'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Happi..mg.l.' , 'ellapsedTime', 0, 2615, 'DO'
), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'A.klorofylli..µg.l.' , 'ellapsedTime', 0, 261
5, 'a.chlorophyll'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Sinilevien.osuus..µg.l.' , 'ellapsedTime', 0, 
2615, 'cyanobacteria'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
 
 
my.Data.Av.Scaled <- my.Data.Av 
for(i in 2:6)my.Data.Av.Scaled[[i]] <- scale(my.Data.Av.Scaled[[i]],T,
T) 
 
maxX <- max(my.Data.Av.Scaled[[2]]) 
minX <- min(my.Data.Av.Scaled[[2]]) 
for(i in 3:6){ 
  maxX<-max(maxX, my.Data.Av.Scaled[[i]]) 
  minX<-min(minX, my.Data.Av.Scaled[[i]]) 
} 
 
 
colors <- brewer.pal(7, "Dark2") 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$temperature, type=
'l', xlab='time (hours)', ylab = 'Scaled values', ylim=c(floor(minX), 
ceiling(maxX)), col=colors[1]) 
 
 
for(i in 3:6){ 
  lines(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled[[i]], col=color
s[i]) 
} 
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my.Data.Av.Scaled.Smoothed <- my.Data.Av.Scaled 
 
chlo.smooth.model <- loess(a.chlorophyll~time_mean, data=myDF<-data.fr
ame(time_mean=my.Data.Av.Scaled$time_mean,a.chlorophyll=my.Data.Av.Sca
led[[7]]), 
                           span=.005) 
myDF$pred <- predict(chlo.smooth.model, data=myDF) 
 
my.Data.Av.Scaled.Smoothed$a.chlorophyll <- predict(chlo.smooth.model, 
data=myDF) 
 
plot(myDF$time_mean,myDF$a.chlorophyll, col='green', type='b', xlab="t
ime(days)", ylab="Chlorophyll-a(µg/l)", main = "Smoothing of Chlorophy
ll-a") 
lines(myDF$time_mean,myDF$pred) 
legend(2000,45, # places a legend at the appropriate place 
       c("Chlorophyll-a","Smoothed line"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("green","black")) # gives the legend lines the correct co
lor and width 
 
plot(myDF$time_mean/24,myDF$a.chlorophyll, col='green', type='b',xlim=
c(1000,1200)/24, xlab="time(days)", ylab="Chlorophyll-a(µg/l)", main = 
"Smoothing of Chlorophyll-a (detailed view)") 
lines(myDF$time_mean/24,myDF$pred) 
legend(48,45, # places a legend at the appropriate place 
       c("Chlorophyll-a","Smoothed line"), # puts text in the legend 
       cex = 0.8, 
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("green","black")) # gives the legend lines the correct co
lor and width 
 
plot(myDF$time_mean/24,myDF$a.chlorophyll, col='green', type='b',xlim=
c(1500,1850)/24, xlab="time(days)", ylab="Chlorophyll-a(µg/l)", main = 
"Smoothing of Chlorophyll-a (detailed view)") 
lines(myDF$time_mean/24,myDF$pred) 
legend(62,45, # places a legend at the appropriate place 
       c("Chlorophyll-a","Smoothed line"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("green","black")) # gives the legend lines the correct co
lor and width 
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plot(myDF$time_mean,scale(myDF$a.chlorophyll,T,T), col='green', type='
b', xlab="time(h)", ylab="Scaled units") 
lines(myDF$time_mean,scale(myDF$pred,T,T)) 
lines(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$turbidity, col='r
ed') 
 
plot(myDF$time_mean,scale(myDF$a.chlorophyll,T,T), col='green', type='
b', xlab="time(h)", ylab="Scaled units",xlim=c(1000,1200)) 
lines(myDF$time_mean,scale(myDF$pred,T,T)) 
lines(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$turbidity, col='r
ed') 
 
 
turb.smooth.model <- loess(turbidity~time_mean, data=myDF.turbidity<-d
ata.frame(time_mean=my.Data.Av.Scaled$time_mean,turbidity=my.Data.Av.S
caled$turbidity), 
                           span=.005) 
myDF.turbidity$pred <- predict(turb.smooth.model, data=myDF.turbidity) 
my.Data.Av.Scaled.Smoothed$turbidity <- predict(turb.smooth.model, dat
a=myDF) 
 
 
plot(myDF.turbidity$time_mean,myDF.turbidity$turbidity,type='l') 
lines(myDF.turbidity$time_mean,myDF.turbidity$pred,col='red') 
 
plot(myDF.turbidity$time_mean,myDF.turbidity$turbidity,type='l',xlim=c
(1000,1200)) 
lines(myDF.turbidity$time_mean,myDF.turbidity$pred,col='red') 
 
 
conductivity.smooth.model <- loess(conductivity~time_mean,  
                                   data=myDF.conductivity<-data.frame(
time_mean=my.Data.Av.Scaled$time_mean,conductivity=my.Data.Av.Scaled$c
onductivity), 
                                   span=.03) 
 
my.Data.Av.Scaled.Smoothed$conductivity <- predict(conductivity.smooth
.model, data=my.Data.Av.Scaled) 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$conductivity,type 
= 'l', xlab="time(h)", ylab="Conductivity (scaled units)") 
lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$conductivity, col='blue') 
legend(2000,1.5, # places a legend at the appropriate place 
       c("Conductivity","Smoothed line"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","blue")) # gives the legend lines the correct col
or and width 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$conductivity,type 
= 'l', xlab="time(h)", ylab="Conductivity (scaled units)", xlim=c(600,
700)) 
lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$conductivity, col='blue') 
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legend(675,4, # places a legend at the appropriate place 
       c("Conductivity","Smoothed line"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
       cex = .75, 
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","blue")) # gives the legend lines the correct col
or and width 
 
pH.smooth.model <- loess(pH~time_mean,  
                         data=myDF.pH<-data.frame(time_mean=my.Data.Av
.Scaled$time_mean,pH=my.Data.Av.Scaled$pH), 
                         span=.01) 
 
my.Data.Av.Scaled.Smoothed$pH <- predict(pH.smooth.model, data=my.Data
.Av.Scaled) 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$pH,type = 'l', xla
b="time(h)", ylab="pH (scaled units)") 
lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$pH, col='green') 
legend(2000,1.5, # places a legend at the appropriate place 
       c("pH","Smoothed line"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","green")) # gives the legend lines the correct co
lor and width 
 
 
plot(my.Data.Av.Scaled$time_mean/24, my.Data.Av.Scaled$pH,type = 'l', 
xlab="time(h)", ylab="pH (scaled units)", xlim=c(500,688)/24) 
lines(my.Data.Av.Scaled.Smoothed$time_mean/24, my.Data.Av.Scaled.Smoot
hed$pH, col='green') 
 
 
DO.smooth.model <- loess(DO~time_mean,  
                         data=myDF.DO<-data.frame(time_mean=my.Data.Av
.Scaled$time_mean,DO=my.Data.Av.Scaled$DO), 
                         span=.04) 
 
my.Data.Av.Scaled.Smoothed$DO <- predict(DO.smooth.model, data=my.Data
.Av.Scaled) 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$DO,type = 'l', xla
b="time(h)", ylab="Dissolved Oxygen (scaled units)") 
lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$DO, col='blue') 
legend(00,4, # places a legend at the appropriate place 
       c("Dissolved Oxygen","Smoothed line"), # puts text in the legen
d 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
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       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","blue")) # gives the legend lines the correct col
or and width 
 
 
temperature.smooth.model <- loess(temperature~time_mean,  
                                  data=myDF.temperature<-data.frame(ti
me_mean=my.Data.Av.Scaled$time_mean,temperature=my.Data.Av.Scaled$temp
erature), 
                                  span=.03) 
 
my.Data.Av.Scaled.Smoothed$temperature <- predict(temperature.smooth.m
odel, data=my.Data.Av.Scaled) 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$temperature,type = 
'l', xlab="time(h)", ylab="Temperature (scaled units)") 
lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$temperature, col='red') 
legend(2000,1.5, # places a legend at the appropriate place 
       c("Temperature","Smoothed line"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","red")) # gives the legend lines the correct colo
r and width 
 
 
plot(myDF$time_mean/24,scale(myDF$pred,T,T), col='green', type='l', xl
ab="time(days)", ylab="Scaled units",  
     main="Turbidity and Chlorophyll-a (smoothed and standardized)") 
lines(myDF.turbidity$time_mean/24, myDF.turbidity$pred, col='brown') 
legend("topright", # places a legend at the appropriate place 
       c("Chlorophyll-a","Turbidity"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("green","brown")) # gives the legend lines the correct co
lor and width 
 
 
plot(myDF$time_mean/24,myDF$a.chlorophyll, col='green',xlim=c(1500,185
0)/24, xlab="time(h)", ylab="Chlorophyll-a(µg/l)") 
 
 
temp <- sample(nrow(my.Data.Av.Scaled),round(nrow(my.Data.Av.Scaled)*.
2)) #take 10% of the data to check the model and 90% to train it 
check <- my.Data.Av.Scaled[temp,] 
check <- check[order(check$time_mean),] 
 
train <- my.Data.Av.Scaled[-temp,] 
train <- train[order(train$time_mean),] 
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rm(temp) 
 
X=train[,2:6] 
Y=train[,7] 
 
models<-quad.CV.fwd(X,Y,20,2) 
which.max(models$Q2) 
fmla <- models$formulas[[which.max(models$Q2)]] 
print(summary(model1<-lm(fmla,data=train))) 
plot(check$time_mean, check$a.chlorophyll, type='l') 
lines(check$time_mean, predict(model1, newdata = check), col='green') 
 
continue = TRUE 
model2 <- model1 
fmla2 <- fmla 
 
while(continue){ 
  least.significant <- names(summary(model2)$coefficients[,4])[which.m
ax(summary(model2)$coefficients[,4])] 
  least.significant.p.value <- summary(model2)$coefficients[,4][which.
max(summary(model2)$coefficients[,4])] 
  cat(paste("The least significant therm is: ", least.significant, " p
-value: ", least.significant.p.value)) 
  ans <- readline('Do you want to remove the least significant therm (
answer y or n): ') 
  if(tolower(ans)=='y') continue = TRUE else{ 
    continue = FALSE 
    break 
  }  
  print(continue) 
  fmla2 <- update(fmla2, paste(".~.-", least.significant)) 
  print(summary(model2<-lm(fmla2,data=train))) 
} 
print(fmla2) 
print("RSM: ") 
print(myRMS <- rms(predict(model2, newdata = check)-check$a.chlorophyl
l)) 
 
 
 
y.predict <- predict(model2, newdata = check) 
cat("rel error of the means ", (1-(mean(y.predict)/mean(check$a.chloro
phyll)))*100, "%") 
 
 
run.nb <- readline('What is the run number?: ') 
png(file=paste("MLR1_Run_", run.nb, "_Chl_vs_model.png", sep=''), bg="
white", width = 1280, height = 720) 
 
plot(check$time_mean/24,check$a.chlorophyll, type='l', 
     xlab="time(days)", 
     ylab="Chlorophyll-a (µg/l)", 
     main="Comparason of measured Chlorophyll-a to model estimations" 
) 
lines(check$time_mean/24, y.predict,col='green') 
legend("topleft", # places a legend at the appropriate place 
       c("Chlorophyll-a","Model estimates"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
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       bty = 'n', 
       #lwd=c(2.5,2.5), 
       col=c("black","green")) 
grid() 
dev.off() 
 
 
myDF <- check 
myDF$predict <- y.predict 
myDF$time_mean <- myDF$time_mean/24 
 
 
daily.predict <- merge( 
  create_average(myDF, "a.chlorophyll", "time_mean", 1,floor(max(myDF$
time_mean)), "mean.chl" ), 
  create_average(myDF, "predict", "time_mean", 1,floor(max(myDF$time_m
ean)), "mean.chl.pred" ), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
daily.predict$diff <- daily.predict$mean.chl - daily.predict$mean.chl.
pred 
 
png(file=paste("MLR1_Run_", run.nb, "_Boxplot.png", sep=''), bg="white
", width = 1280, height = 720) 
boxplot(data.frame(mean.chl=daily.predict$mean.chl, mean.chl.pred = da
ily.predict$mean.chl.pred), 
        main="Chlorophyll-a verification set measurements compared to 
hourly model estimates\n(daily means of the measurements and estimates
)", 
        ylab="Chlorophyll-a (µg/l)", 
        names=c("Verification set measurements", "Model estimates")) 
grid() 
dev.off() 
run.nb <- readline('What is the run number?: ') 
png(file=paste("MLRA_Run_", run.nb, "_Chl_vs_model.png", sep=''), bg="
white", width = 1280, height = 720) 
 
plot(check$time_mean/24,check$a.chlorophyll, type='l', 
     xlab="time(days)", 
     ylab="Chlorophyll-a (µg/l)", 
     main="Comparason of measured Chlorophyll-a to model estimations" 
) 
lines(check$time_mean/24, y.predict,col='green') 
legend("topleft", # places a legend at the appropriate place 
       c("Chlorophyll-a","Model estimates"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
       #lwd=c(2.5,2.5), 
       col=c("black","green")) 
grid() 
dev.off() 
 
png(file=paste("MLRA_Run_", run.nb, "_Boxplot.png", sep=''), bg="white
", width = 1280, height = 720) 



Appendix 23 

9 (9) 

 

 

boxplot(data.frame(mean.chl=daily.predict$mean.chl, mean.chl.pred = da
ily.predict$mean.chl.pred), 
        main="Chlorophyll-a verification set measurements compared to 
hourly model estimates\n(daily means of the measurements and estimates
)", 
        ylab="Chlorophyll-a (µg/l)", 
        names=c("Verification set measurements", "Model estimates")) 
grid() 
dev.off() 
 
 
 
print(paste("check", sd(check$a.chlorophyll))) 
print(summary(check$a.chlorophyll)) 
print(paste("predict", sd(y.predict))) 
print(summary(y.predict))
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Source code (MLR2 and smoothing) 

 

source("http://users.metropolia.fi/~velimt/R/DOE_functions_v5.r") 
if (!require("RColorBrewer")) { 
  install.packages("RColorBrewer") 
  library(RColorBrewer) 
} 
 
rms <- function(x) sqrt(mean(x^2)) 
 
#load data from CSV file 
myData <- read.csv2("data_en.CSV") 
 
#remove useless column 
myData <- myData[,c(1:9)] 
 
#add ellapsed time to the data 
times <- strptime(myData$Date.and.time, format = "%d.%m.%Y %H:%M", tz=
"EET") #create POSIX time 
initialTime <- as.numeric(times[4]) #first valid record 
times <- (as.numeric(times) - initialTime) #set the time = 0 
#times <- times/(24*60*60) #convert into days 
times <- times/(24)/150 #convert into hours 
myData$ellapsedTime <- times #add to the dataframe 
myData <- myData[myData$ellapsedTime>=0,] #keep only valid samples 
myData <- myData[complete.cases(myData),] #remove any row with at leas
t one NA 
 
scale.robust<- function(x){ 
  return (scale(x, 
  center = median(x), 
  scale = mad(x))) 
   
} 
 
create_average <- function(DF, column_name_value, column_name_time, a, 
b, column_name = 'mean.value'){ 
  mean.value <- numeric() 
  time_mean <- numeric() 
  for(i in a:b){ 
    time_mean <- append(time_mean, i) 
    mean.value <- append( 
      mean.value, 
      mean( 
        DF[[column_name_value]][ 
          DF[[column_name_time]]<=i& 
            DF[[column_name_time]]>(i-1) 
          ] 
      ) 
    ) 
  } 
  DF <- data.frame(time_mean=time_mean ,mean.value=mean.value) 
  colnames(DF)<-c('time_mean', column_name) 
  return(DF) 
} 
 
my.Data.Av <- create_average(myData,'Lämpötila...C.' , 'ellapsedTime', 
0, 2615, 'temperature') 
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my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Johtokyky..µS.cm.' , 'ellapsedTime', 0, 2615, 
'conductivity'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'pH....' , 'ellapsedTime', 0, 2615, 'pH'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Sameus..FTU.' , 'ellapsedTime', 0, 2615, 'tur
bidity'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Happi..mg.l.' , 'ellapsedTime', 0, 2615, 'DO'
), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'A.klorofylli..µg.l.' , 'ellapsedTime', 0, 261
5, 'a.chlorophyll'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Sinilevien.osuus..µg.l.' , 'ellapsedTime', 0, 
2615, 'cyanobacteria'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av.Scaled <- my.Data.Av 
for(i in 2:6)my.Data.Av.Scaled[[i]] <- scale.robust(my.Data.Av.Scaled[
[i]]) 
 
maxX <- max(my.Data.Av.Scaled[[2]]) 
minX <- min(my.Data.Av.Scaled[[2]]) 
for(i in 3:6){ 
  maxX<-max(maxX, my.Data.Av.Scaled[[i]]) 
  minX<-min(minX, my.Data.Av.Scaled[[i]]) 
} 
 
 
colors <- brewer.pal(7, "Dark2") 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$temperature, type=
'l', xlab='time (hours)', ylab = 'Scaled values', ylim=c(floor(minX), 
ceiling(maxX)), col=colors[1]) 
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for(i in 3:6){ 
  lines(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled[[i]], col=color
s[i]) 
} 
 
 
my.Data.Av.Scaled.Smoothed <- my.Data.Av.Scaled 
 
chlo.smooth.model <- loess(a.chlorophyll~time_mean, data=myDF<-data.fr
ame(time_mean=my.Data.Av.Scaled$time_mean,a.chlorophyll=my.Data.Av.Sca
led[[7]]), 
                           span=.025) 
myDF$pred <- predict(chlo.smooth.model, data=myDF) 
 
my.Data.Av.Scaled.Smoothed$a.chlorophyll <- predict(chlo.smooth.model, 
data=myDF) 
 
plot(myDF$time_mean,myDF$a.chlorophyll, col='green', type='b', xlab="t
ime(days)", ylab="Chlorophyll-a(µg/l)", main = "Smoothing of Chlorophy
ll-a") 
lines(myDF$time_mean,myDF$pred) 
legend(2000,45, # places a legend at the appropriate place 
       c("Chlorophyll-a","Smoothed fit"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("green","black")) # gives the legend lines the correct co
lor and width 
 
plot(myDF$time_mean/24,myDF$a.chlorophyll, col='green', type='b',xlim=
c(1000,1200)/24, xlab="time(days)", ylab="Chlorophyll-a(µg/l)", main = 
"Smoothing of Chlorophyll-a (detailed view)") 
lines(myDF$time_mean/24,myDF$pred) 
legend(48,45, # places a legend at the appropriate place 
       c("Chlorophyll-a","Smoothed fit"), # puts text in the legend 
       cex = 0.8, 
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("green","black")) # gives the legend lines the correct co
lor and width 
 
plot(myDF$time_mean/24,myDF$a.chlorophyll, col='green', type='b',xlim=
c(1500,1850)/24, xlab="time(days)", ylab="Chlorophyll-a(µg/l)", main = 
"Smoothing of Chlorophyll-a (detailed view)") 
lines(myDF$time_mean/24,myDF$pred) 
legend(62,45, # places a legend at the appropriate place 
       c("Chlorophyll-a","Smoothed fit"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
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       #lwd=c(2.5,2.5), 
       col=c("green","black")) # gives the legend lines the correct co
lor and width 
 
plot(myDF$time_mean,scale.robust(myDF$a.chlorophyll), col='green', typ
e='b', xlab="time(h)", ylab="Scaled units") 
lines(myDF$time_mean,scale.robust(myDF$pred)) 
lines(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$turbidity, col='r
ed') 
 
plot(myDF$time_mean,scale.robust(myDF$a.chlorophyll), col='green', typ
e='b', xlab="time(h)", ylab="Scaled units",xlim=c(1000,1200)) 
lines(myDF$time_mean,scale.robust(myDF$pred)) 
lines(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$turbidity, col='r
ed') 
 
 
turb.smooth.model <- loess(turbidity~time_mean, data=myDF.turbidity<-d
ata.frame(time_mean=my.Data.Av.Scaled$time_mean,turbidity=my.Data.Av.S
caled$turbidity), 
                           span=.025) 
myDF.turbidity$pred <- predict(turb.smooth.model, data=myDF.turbidity) 
my.Data.Av.Scaled.Smoothed$turbidity <- predict(turb.smooth.model, dat
a=myDF) 
 
 
plot(myDF.turbidity$time_mean,myDF.turbidity$turbidity,type='l', 
     xlab="time(h)",ylab="Scaled units", 
     main = "Smoothing of turbidity" 
     ) 
lines(myDF.turbidity$time_mean,myDF.turbidity$pred,col='red', lwd=3) 
legend('topright', # places a legend at the appropriate place 
       c("Turbidity","Smoothed fit"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","red")) # gives the legend lines the correct colo
r and width 
 
plot(myDF.turbidity$time_mean,myDF.turbidity$turbidity,type='l',xlim=c
(1000,1200)) 
lines(myDF.turbidity$time_mean,myDF.turbidity$pred,col='red') 
 
 
conductivity.smooth.model <- loess(conductivity~time_mean,  
                                   data=myDF.conductivity<-data.frame(
time_mean=my.Data.Av.Scaled$time_mean,conductivity=my.Data.Av.Scaled$c
onductivity), 
                                   span=.03) 
 
my.Data.Av.Scaled.Smoothed$conductivity <- predict(conductivity.smooth
.model, data=my.Data.Av.Scaled) 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$conductivity,type 
= 'l', xlab="time(h)", ylab="Scaled units", 
     main = "Smoothing of conductivity") 
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lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$conductivity, col='blue') 
legend('bottomright', # places a legend at the appropriate place 
       c("Conductivity","Smoothed fit"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","blue")) # gives the legend lines the correct col
or and width 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$conductivity,type 
= 'l', xlab="time(h)", ylab="Scaled units", xlim=c(600,700)) 
lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$conductivity, col='blue') 
legend(675,4, # places a legend at the appropriate place 
       c("Conductivity","Smoothed fit"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
       cex = .75, 
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","blue")) # gives the legend lines the correct col
or and width 
 
pH.smooth.model <- loess(pH~time_mean,  
                         data=myDF.pH<-data.frame(time_mean=my.Data.Av
.Scaled$time_mean,pH=my.Data.Av.Scaled$pH), 
                         span=.05) 
 
my.Data.Av.Scaled.Smoothed$pH <- predict(pH.smooth.model, data=my.Data
.Av.Scaled) 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$pH,type = 'l', xla
b="time(h)", ylab="Scaled units", 
     main = "Smoothing of pH") 
lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$pH, col='orange', lwd=2) 
legend("topright", # places a legend at the appropriate place 
       c("pH","Smoothed fit"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","green")) # gives the legend lines the correct co
lor and width 
 
 
plot(my.Data.Av.Scaled$time_mean/24, my.Data.Av.Scaled$pH,type = 'l', 
xlab="time(h)", ylab="pH (scaled units)", xlim=c(500,688)/24) 
lines(my.Data.Av.Scaled.Smoothed$time_mean/24, my.Data.Av.Scaled.Smoot
hed$pH, col='green') 
legend("topleft", # places a legend at the appropriate place 
       c("Dissolved Oxygen","Smoothed fit"), # puts text in the legend 
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       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","blue")) # gives the legend lines the correct col
or and width 
 
 
DO.smooth.model <- loess(DO~time_mean,  
                         data=myDF.DO<-data.frame(time_mean=my.Data.Av
.Scaled$time_mean,DO=my.Data.Av.Scaled$DO), 
                         span=.04) 
 
my.Data.Av.Scaled.Smoothed$DO <- predict(DO.smooth.model, data=my.Data
.Av.Scaled) 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$DO,type = 'l', xla
b="time(h)", ylab="Scaled units", 
     main = "Smoothing of Dissolved Oxygen") 
lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$DO, col='blue') 
legend("topleft", # places a legend at the appropriate place 
       c("Dissolved Oxygen","Smoothed fit"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","blue")) # gives the legend lines the correct col
or and width 
 
 
temperature.smooth.model <- loess(temperature~time_mean,  
                                  data=myDF.temperature<-data.frame(ti
me_mean=my.Data.Av.Scaled$time_mean,temperature=my.Data.Av.Scaled$temp
erature), 
                                  span=.03) 
 
my.Data.Av.Scaled.Smoothed$temperature <- predict(temperature.smooth.m
odel, data=my.Data.Av.Scaled) 
 
plot(my.Data.Av.Scaled$time_mean, my.Data.Av.Scaled$temperature,type = 
'l', xlab="time(h)", ylab="Scaled units", 
     main = "Smoothing of temperature") 
lines(my.Data.Av.Scaled.Smoothed$time_mean, my.Data.Av.Scaled.Smoothed
$temperature, col='red') 
legend("topright", # places a legend at the appropriate place 
       c("Temperature","Smoothed fit"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("black","red")) # gives the legend lines the correct colo
r and width 
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plot(myDF$time_mean/24,scale.robust(myDF$pred), col='green', type='l', 
xlab="time(days)", ylab="Scaled units",  
     main="Turbidity and Chlorophyll-a (smoothed and standardized)") 
lines(myDF.turbidity$time_mean/24, myDF.turbidity$pred, col='brown') 
legend("topright", # places a legend at the appropriate place 
       c("Chlorophyll-a","Turbidity"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
        
       #lwd=c(2.5,2.5), 
       col=c("green","brown")) # gives the legend lines the correct co
lor and width 
 
 
plot(myDF$time_mean/24,myDF$a.chlorophyll, col='green',xlim=c(1500,185
0)/24, xlab="time(h)", ylab="Chlorophyll-a(µg/l)") 
 
 
temp <- sample(nrow(my.Data.Av.Scaled),round(nrow(my.Data.Av.Scaled)*.
1)) #take 10% of the data to check the model and 90% to train it 
check <- my.Data.Av.Scaled[temp,] 
check <- check[order(check$time_mean),] 
 
train <- my.Data.Av.Scaled[-temp,] 
train <- train[order(train$time_mean),] 
rm(temp) 
 
X=train[,2:6] 
Y=train[,7] 
 
models<-quad.CV.fwd(X,Y,20,2) 
which.max(models$Q2) 
fmla <- models$formulas[[which.max(models$Q2)]] 
print(summary(model1<-lm(fmla,data=train))) 
 
 
continue = TRUE 
model2 <- model1 
fmla2 <- fmla 
 
while(continue){ 
  least.significant <- names(summary(model2)$coefficients[,4])[which.m
ax(summary(model2)$coefficients[,4])] 
  least.significant.p.value <- summary(model2)$coefficients[,4][which.
max(summary(model2)$coefficients[,4])] 
  cat(paste("The least significant therm is: ", least.significant, " p
-value: ", least.significant.p.value)) 
  ans <- readline('Do you want to remove the least significant therm (
answer y or n): ') 
  if(tolower(ans)=='y') continue = TRUE else{ 
    continue = FALSE 
    break 
  }  
  print(continue) 
  fmla2 <- update(fmla2, paste(".~.-", least.significant)) 
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  print(summary(model2<-lm(fmla2,data=train))) 
} 
 
y.predict <- predict(model2, newdata = check) 
plot(check$time_mean ,y.predict, type='l') 
lines(check$time_mean, check$a.chlorophyll,col='green') 
plot(check$time_mean,check$a.chlorophyll, type='l', 
     xlab="time(days)", 
     ylab="Chlorophyll-a (µg/l)", 
     main="Comparason of measured Chlorophyll-a to model estimations" 
     ) 
lines(check$time_mean, y.predict,col='green') 
legend("topleft", # places a legend at the appropriate place 
       c("Chlorophyll-a","Model estimates"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
       cex=.75, 
       #lwd=c(2.5,2.5), 
       col=c("black","green")) 
 
plot(check$time_mean ,y.predict-check$a.chlorophyll, type = 'l') 
print(paste("predict", sd(y.predict))) 
print(summary(y.predict)) 
print(paste("cehck", sd(check$a.chlorophyll))) 
print(summary(check$a.chlorophyll)) 
 
boxplot(y.predict-check$a.chlorophyll, outline=FALSE) 
boxplot(check$a.chlorophyll, outline=FALSE) 
 
plot(check$time_mean ,check$a.chlorophyll, type='l') 
lines(check$time_mean, y.predict,col='green') 
 
myDF <- check 
myDF$predict <- y.predict 
myDF$time_mean <- myDF$time_mean/732 
 
#(DF, column_name_value, column_name_time, a, b, column_name = 'mean.v
alue') 
monthly.predict <- merge( 
  create_average(myDF, "a.chlorophyll", "time_mean", 1,3, "mean.chl" )
, 
  create_average(myDF, "predict", "time_mean", 1,3, "mean.chl.pred" ), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
monthly.predict$diff <- monthly.predict$mean.chl - monthly.predict$mea
n.chl.pred 
boxplot(data.frame(mean.chl=monthly.predict$mean.chl, mean.chl.pred = 
monthly.predict$mean.chl.pred)) 
 
 
myDF <- check 
myDF$predict <- y.predict 
myDF$time_mean <- myDF$time_mean/24 
 
daily.predict <- merge( 
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  create_average(myDF, "a.chlorophyll", "time_mean", 1,floor(max(myDF$
time_mean)), "mean.chl" ), 
  create_average(myDF, "predict", "time_mean", 1,floor(max(myDF$time_m
ean)), "mean.chl.pred" ), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
daily.predict$diff <- daily.predict$mean.chl - daily.predict$mean.chl.
pred 
boxplot(daily.predict[complete.cases(daily.predict),]$diff) 
boxplot(data.frame(mean.chl=daily.predict$mean.chl, mean.chl.pred = da
ily.predict$mean.chl.pred), 
        main="Chlorophyll-a verification set measurements compared to 
hourly model estimates\n(daily means of the measurements and estimates
)", 
        ylab="Chlorophyll-a (µg/l)", 
        names=c("Verification set measurements", "Model estimates")) 
grid() 
print(summary(daily.predict[complete.cases(daily.predict),]$diff)) 
 
 
run.nb <- readline('What is the run number?: ') 
png(file=paste("MLR2_Run_", run.nb, "_Chl_vs_model.png", sep=''), bg="
white", width = 1280, height = 720) 
 
plot(check$time_mean/24,check$a.chlorophyll, type='l', 
     xlab="time(days)", 
     ylab="Chlorophyll-a (µg/l)", 
     main="Comparason of measured Chlorophyll-a to model estimations" 
) 
lines(check$time_mean/24, y.predict,col='green') 
legend("topleft", # places a legend at the appropriate place 
       c("Chlorophyll-a","Model estimates"), # puts text in the legend 
        
       lty=c(1,1), # gives the legend appropriate symbols (lines) 
        
       bty = 'n', 
       #lwd=c(2.5,2.5), 
       col=c("black","green")) 
grid() 
dev.off() 
 
png(file=paste("MLR2_Run_", run.nb, "_Boxplot.png", sep=''), bg="white
", width = 1280, height = 720) 
boxplot(data.frame(mean.chl=daily.predict$mean.chl, mean.chl.pred = da
ily.predict$mean.chl.pred), 
        main="Chlorophyll-a verification set measurements compared to 
hourly model estimates\n(daily means of the measurements and estimates
)", 
        ylab="Chlorophyll-a (µg/l)", 
        names=c("Verification set measurements", "Model estimates")) 
grid() 
dev.off() 
 
print(paste("cehck", sd(check$a.chlorophyll))) 
print(summary(check$a.chlorophyll)) 
print(paste("predict", sd(y.predict))) 
print(summary(y.predict)) 
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print("RMS") 
print(rms(y.predict-check$a.chlorophyll)) 
 
 
cat("rel error of the means ", (1-(mean(y.predict)/mean(check$a.chloro
phyll)))*100)
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setwd("C:/Users/Benoit/Dropbox/Thesis/Data/R") 
#source("http://users.metropolia.fi/~velimt/R/DOE_functions_v5.r") 
 
#something <- sys.frame(1) 
 
#script.dir <- dirname(something$fileName) 
T<-TRUE 
if (!require("RColorBrewer")) { 
  install.packages("RColorBrewer") 
  library(RColorBrewer) 
} 
 
#load data from CSV file 
myData <- read.csv2("data_en.CSV") 
 
#remove useless column 
myData <- myData[,c(1:9)] 
 
#add ellapsed time to the data 
times <- strptime(myData$Date.and.time, format = "%d.%m.%Y %H:%M", tz=
"EET") #create POSIX time 
initialTime <- as.numeric(times[4]) #first valid record 
times <- (as.numeric(times) - initialTime) #set the time = 0 
#times <- times/(24*60*60) #convert into days 
times <- times/(24)/150 #convert into hours 
myData$ellapsedTime <- times #add to the dataframe 
myData <- myData[myData$ellapsedTime>=0,] #keep only valid samples 
myData <- myData[complete.cases(myData),] #remove any row with at leas
t one NA 
 
create_average <- function(DF, column_name_value, column_name_time, a, 
b, column_name = 'mean.value'){ 
  mean.value <- numeric() 
  time_mean <- numeric() 
  for(i in a:b){ 
    time_mean <- append(time_mean, i) 
    mean.value <- append( 
      mean.value, 
      mean( 
        DF[[column_name_value]][ 
          DF[[column_name_time]]<=i& 
            DF[[column_name_time]]>(i-1) 
          ] 
      ) 
    ) 
  } 
  DF <- data.frame(time_mean=time_mean ,mean.value=mean.value) 
  colnames(DF)<-c('time_mean', column_name) 
  return(DF) 
} 
 
my.Data.Av <- create_average(myData,'Lämpötila...C.' , 'ellapsedTime', 
0, 2615, 'temperature') 
my.Data.Av <- merge( 
  my.Data.Av, 
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  create_average(myData,'Johtokyky..µS.cm.' , 'ellapsedTime', 0, 2615, 
'conductivity'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'pH....' , 'ellapsedTime', 0, 2615, 'pH'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Sameus..FTU.' , 'ellapsedTime', 0, 2615, 'tur
bidity'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Happi..mg.l.' , 'ellapsedTime', 0, 2615, 'DO'
), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'A.klorofylli..µg.l.' , 'ellapsedTime', 0, 261
5, 'a.chlorophyll'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av <- merge( 
  my.Data.Av, 
  create_average(myData,'Sinilevien.osuus..µg.l.' , 'ellapsedTime', 0, 
2615, 'cyanobacteria'), 
  by.x = 'time_mean', by.y='time_mean' 
) 
 
my.Data.Av.Scaled <- my.Data.Av 
for(i in 2:6)my.Data.Av.Scaled[[i]] <- scale(my.Data.Av.Scaled[[i]],T,
T) 
 
maxX <- max(my.Data.Av.Scaled[[2]]) 
minX <- min(my.Data.Av.Scaled[[2]]) 
for(i in 3:6){ 
  maxX<-max(maxX, my.Data.Av.Scaled[[i]]) 
  minX<-min(minX, my.Data.Av.Scaled[[i]]) 
} 
 
 
my.Data.Av.Scaled.Smoothed <- my.Data.Av.Scaled 
 
chlo.smooth.model <- loess(a.chlorophyll~time_mean, data=myDF<-data.fr
ame(time_mean=my.Data.Av.Scaled$time_mean,a.chlorophyll=my.Data.Av.Sca
led[[7]]), 
                           span=.005) 
myDF$pred <- predict(chlo.smooth.model, data=myDF) 
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my.Data.Av.Scaled.Smoothed$a.chlorophyll <- predict(chlo.smooth.model, 
data=myDF) 
 
turb.smooth.model <- loess(turbidity~time_mean, data=myDF.turbidity<-d
ata.frame(time_mean=my.Data.Av.Scaled$time_mean,turbidity=my.Data.Av.S
caled$turbidity), 
                           span=.005) 
myDF.turbidity$pred <- predict(turb.smooth.model, data=myDF.turbidity) 
my.Data.Av.Scaled.Smoothed$turbidity <- predict(turb.smooth.model, dat
a=myDF) 
 
 
conductivity.smooth.model <- loess(conductivity~time_mean,  
                                   data=myDF.conductivity<-data.frame(
time_mean=my.Data.Av.Scaled$time_mean,conductivity=my.Data.Av.Scaled$c
onductivity), 
                                   span=.03) 
 
my.Data.Av.Scaled.Smoothed$conductivity <- predict(conductivity.smooth
.model, data=my.Data.Av.Scaled) 
 
 
pH.smooth.model <- loess(pH~time_mean,  
                         data=myDF.pH<-data.frame(time_mean=my.Data.Av
.Scaled$time_mean,pH=my.Data.Av.Scaled$pH), 
                         span=.01) 
 
my.Data.Av.Scaled.Smoothed$pH <- predict(pH.smooth.model, data=my.Data
.Av.Scaled) 
 
DO.smooth.model <- loess(DO~time_mean,  
                         data=myDF.DO<-data.frame(time_mean=my.Data.Av
.Scaled$time_mean,DO=my.Data.Av.Scaled$DO), 
                         span=.04) 
 
my.Data.Av.Scaled.Smoothed$DO <- predict(DO.smooth.model, data=my.Data
.Av.Scaled) 
temperature.smooth.model <- loess(temperature~time_mean,  
                                  data=myDF.temperature<-data.frame(ti
me_mean=my.Data.Av.Scaled$time_mean,temperature=my.Data.Av.Scaled$temp
erature), 
                                  span=.03) 
 
my.Data.Av.Scaled.Smoothed$temperature <- predict(temperature.smooth.m
odel, data=my.Data.Av.Scaled) 
 
T <- TRUE 
 
my.pca <- prcomp(my.Data.Av[2:7], center= T, scale = T) 
 
plot(my.pca, type='l') 
 
T <- my.pca$x 
P <- my.pca$rotation 
 
plot(T[,1],T[,2], pch='.', cex=5) 
 
biplot(T,P) 
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biplot(T,P, xlabs = rep('.',length(T)/6), col=c('blue'), xlim = c(-5,1
0), ylim=c(-5,10)) 
 
lower.lim <- 10 
upper.lim <- 14 
points(T[my.Data.Av$temperature<lower.lim,1], T[my.Data.Av$temperature
<lower.lim,2], pch='.', cex = 2, col='red') 
points(T[my.Data.Av$temperature>upper.lim,1], T[my.Data.Av$temperature
>upper.lim,2], pch='.', cex = 2, col='blue') 
points(T[my.Data.Av$temperature<upper.lim&my.Data.Av$temperature>lower
.lim,1], T[my.Data.Av$temperature<upper.lim&my.Data.Av$temperature>low
er.lim,2], pch='.', cex = 2, col='darkgreen') 
 
plot(T[,1],T[,3], pch='.') 
plot(T[,1],T[,4], pch='.') 
 
points(T[my.Data.Av$temperature<lower.lim,1], T[my.Data.Av$temperature
<lower.lim,4], pch='.', cex = 2, col='red') 
points(T[my.Data.Av$temperature>upper.lim,1], T[my.Data.Av$temperature
>upper.lim,4], pch='.', cex = 2, col='blue') 
points(T[my.Data.Av$temperature<upper.lim&my.Data.Av$temperature>lower
.lim,1], T[my.Data.Av$temperature<upper.lim&my.Data.Av$temperature>low
er.lim,4], pch='.', cex = 2, col='darkgreen') 
 
 
plot(T[,1],T[,5], pch='.') 
plot(T[,1],T[,6], pch='.') 
 
plot(T[,2],T[,3], pch='.') 
plot(T[,2],T[,4], pch='.') 
plot(T[,2],T[,5], pch='.') 
plot(T[,2],T[,6], pch='.') 
 
 
plot(T[,3],T[,4], pch='.') 
plot(T[,3],T[,5], pch='.') 
plot(T[,3],T[,6], pch='.') 
 
plot(T[,4],T[,5], pch='.') 
plot(T[,4],T[,6], pch='.') 
 
 
plot(T[,5],T[,6], pch='.') 
 
 
 
#### 
 
plot(T[,1],T[,2], pch='.') 
 
lower.lim <- 1 
upper.lim <- 16 
points(T[my.Data.Av$a.chlorophyll<upper.lim&my.Data.Av$a.chlorophyll>l
ower.lim,1], T[my.Data.Av$a.chlorophyll<upper.lim&my.Data.Av$a.chlorop
hyll>lower.lim,2], pch='.', cex = 5, col='darkgreen') 
points(T[my.Data.Av$a.chlorophyll<lower.lim,1], T[my.Data.Av$a.chlorop
hyll<lower.lim,2], pch='.', cex = 5, col='red') 
points(T[my.Data.Av$a.chlorophyll>upper.lim,1], T[my.Data.Av$a.chlorop
hyll>upper.lim,2], pch='.', cex = 5, col='blue') 
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lower.lim <- 0 
upper.lim <- 0.8 
points(T[my.Data.Av$turbidity<upper.lim&my.Data.Av$turbidity>lower.lim
,1], T[my.Data.Av$turbidity<upper.lim&my.Data.Av$turbidity>lower.lim,2
], pch='.', cex = 5, col='green') 
points(T[my.Data.Av$turbidity<lower.lim,1], T[my.Data.Av$turbidity<low
er.lim,2], pch='.', cex = 5, col='pink') 
points(T[my.Data.Av$turbidity>upper.lim,1], T[my.Data.Av$turbidity>upp
er.lim,2], pch='.', cex = 5, col='brown') 
 
 
 
### 
 
T<-TRUE  
 
TempCol <- rev(colorRampPalette(brewer.pal(11,"RdBu"))(100)) 
 
Temp_0_to_100 <- round(100*((scale(my.Data.Av$temperature,T,T)-min(sca
le(my.Data.Av$temperature,T,T)))/(max(scale(my.Data.Av$temperature,T,T
)-min(scale(my.Data.Av$temperature,T,T)))))) 
 
my.pca <- prcomp(my.Data.Av[2:7], center= T, scale = T) 
plot(my.pca, type='l', main="PCA variance with respect to the principa
l components") 
 
 
T <- my.pca$x 
P <- my.pca$rotation 
 
 
#Rd|Bu 
 
 
smoothed.pc1 = lowess(T[,1],f=.01) 
smoothed.pc2 = lowess(T[,2],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T[,1],T[,2], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-1,16),xlim=c(-3,5), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='black',lwd=2) 
par(new=TRUE) 
biplot(T[,1:2],P[,1:2], xlabs = rep('.',length(T[,1])), 
       col=c('black','darkgreen'),ylim=c(-1,16),xlim=c(-3,5)) 
 
T<-TRUE  
 
TempCol <- rev(colorRampPalette(brewer.pal(11,"RdBu"))(100)) 
 
Temp_0_to_100 <- round(100*((scale(my.Data.Av$temperature,T,T)-min(sca
le(my.Data.Av$temperature,T,T)))/(max(scale(my.Data.Av$temperature,T,T
)-min(scale(my.Data.Av$temperature,T,T)))))) 
 
my.pca <- prcomp(my.Data.Av[2:7], center= T, scale = T) 
plot(my.pca, type='l', main="PCA variance with respect to the principa
l components") 
 
 
T <- my.pca$x 
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P <- my.pca$rotation 
 
 
#Rd|Bu 
 
 
smoothed.pc1 = lowess(T[,1],f=.01) 
smoothed.pc2 = lowess(T[,3],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T[,1],T[,3], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-5,5),xlim=c(-3,5), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='black',lwd=2) 
par(new=TRUE) 
biplot(T[,c(1,3)],P[,c(1,3)], xlabs = rep('.',length(T[,1])), 
       col=c('black','darkgreen'),ylim=c(-5,5),xlim=c(-3,5)) 
 
 
T<-TRUE  
 
TempCol <- rev(colorRampPalette(brewer.pal(11,"RdBu"))(100)) 
 
Temp_0_to_100 <- round(100*((scale(my.Data.Av$temperature,T,T)-min(sca
le(my.Data.Av$temperature,T,T)))/(max(scale(my.Data.Av$temperature,T,T
)-min(scale(my.Data.Av$temperature,T,T)))))) 
 
my.pca <- prcomp(my.Data.Av[2:7], center= T, scale = T) 
plot(my.pca, type='l', main="PCA variance with respect to the principa
l components") 
 
 
T <- my.pca$x 
P <- my.pca$rotation 
 
 
#Rd|Bu 
 
 
smoothed.pc1 = lowess(T[,2],f=.01) 
smoothed.pc2 = lowess(T[,3],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T[,2],T[,3], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-5,5),xlim=c(-2,13), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='black',lwd=2) 
par(new=TRUE) 
biplot(T[,c(2,3)],P[,2:3], xlabs = rep('.',length(T[,1])), 
       col=c('black','darkgreen'),ylim=c(-5,5),xlim=c(-2,13)) 
 
##### 
 
 
T<-TRUE  
 
TempCol <- rev(colorRampPalette(brewer.pal(11,"RdBu"))(100)) 
 
Temp_0_to_100 <- round(100*((scale(my.Data.Av$a.chlorophyll,T,T)-min(s
cale(my.Data.Av$a.chlorophyll,T,T)))/(max(scale(my.Data.Av$a.chlorophy
ll,T,T)-min(scale(my.Data.Av$a.chlorophyll,T,T)))))) 
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my.pca <- prcomp(my.Data.Av[2:7], center= T, scale = T) 
plot(my.pca, type='l', main="PCA variance with respect to the principa
l components") 
 
 
T <- my.pca$x 
P <- my.pca$rotation 
 
 
#Rd|Bu 
 
 
smoothed.pc1 = lowess(T[,1],f=.01) 
smoothed.pc2 = lowess(T[,2],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T[,1],T[,2], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-1,16),xlim=c(-3,5), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='black',lwd=1) 
par(new=TRUE) 
biplot(T[,1:2],P[,1:2], xlabs = rep('.',length(T[,1])), 
       col=c('black','darkgreen'),ylim=c(-1,16),xlim=c(-3,5)) 
 
 
smoothed.pc1 = lowess(T[,2],f=.01) 
smoothed.pc2 = lowess(T[,3],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T[,2],T[,3], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-4,4),xlim=c(-1,11), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='black',lwd=1) 
par(new=TRUE) 
biplot(T[,2:3],P[,2:3], xlabs = rep('.',length(T[,1])), 
       col=c('black','darkgreen'),ylim=c(-4,4),xlim=c(-1,11)) 
 
 
 
T<-TRUE  
 
TempCol <- rev(colorRampPalette(brewer.pal(11,"RdBu"))(100)) 
 
Temp_0_to_100 <- round(100*((scale(my.Data.Av$pH,T,T)-min(scale(my.Dat
a.Av$pH,T,T)))/(max(scale(my.Data.Av$pH,T,T)-min(scale(my.Data.Av$pH,T
,T)))))) 
 
my.pca <- prcomp(my.Data.Av[2:7], center= T, scale = T) 
plot(my.pca, type='l', main="PCA variance with respect to the principa
l components") 
 
 
T <- my.pca$x 
P <- my.pca$rotation 
 
 
#Rd|Bu 
 
 
smoothed.pc1 = lowess(T[,1],f=.01) 
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smoothed.pc2 = lowess(T[,2],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T[,1],T[,2], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-1,16),xlim=c(-3,5), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='black',lwd=1) 
par(new=TRUE) 
biplot(T[,1:2],P[,1:2], xlabs = rep('.',length(T[,1])), 
       col=c('black','darkgreen'),ylim=c(-1,16),xlim=c(-3,5)) 
 
 
 
smoothed.pc1 = lowess(T[,3],f=.01) 
smoothed.pc2 = lowess(T[,4],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T[,3],T[,4], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-5,5),xlim=c(-3,3), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='black',lwd=1) 
par(new=TRUE) 
biplot(T[,3:4],P[,3:4], xlabs = rep('.',length(T[,1])), 
       col=c('black','darkgreen'),ylim=c(-5,5),xlim=c(-3,3)) 
 
 
smoothed.pc1 = lowess(T[,5],f=.01) 
smoothed.pc2 = lowess(T[,6],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T[,5],T[,6], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-1,1),xlim=c(-2,2), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='black',lwd=1) 
par(new=TRUE) 
biplot(T[,5:6],P[,5:6], xlabs = rep('.',length(T[,1])), 
       col=c('black','darkgreen'),ylim=c(-1,1),xlim=c(-2,2)) 
 
 
 
smoothed.pc1 = lowess(T[,1],f=.01) 
smoothed.pc2 = lowess(T[,6],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T[,1],T[,6], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-1,1),xlim=c(-2,2), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='black',lwd=1) 
par(new=TRUE) 
biplot(T[,c(1,6)],P[,c(1,6)], xlabs = rep('.',length(T[,1])), 
       col=c('black','darkgreen'),ylim=c(-1,1),xlim=c(-2,2)) 
 
 
 
plot(T[,1],T[,2], pch='.') 
 
lower.lim <- 10 
upper.lim <- 14 
points(T[my.Data.Av$temperature<=lower.lim,1], T[my.Data.Av$temperatur
e<=lower.lim,2], pch='.', cex = 5, col='blue') 
points(T[my.Data.Av$temperature>=upper.lim,1], T[my.Data.Av$temperatur
e>=upper.lim,2], pch='.', cex = 5, col='red') 
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points(T[my.Data.Av$temperature<upper.lim&my.Data.Av$temperature>lower
.lim,1], T[my.Data.Av$temperature<upper.lim&my.Data.Av$temperature>low
er.lim,5], pch='.', cex = 5, col='darkgreen') 
 
plot(T[,1],T[,2], pch='.') 
lower.lim <- summary(my.Data.Av$conductivity)[5] 
upper.lim <- summary(my.Data.Av$conductivity)[5] 
points(T[my.Data.Av$conductivity<=lower.lim,1], T[my.Data.Av$conductiv
ity<=lower.lim,2], pch='.', cex = 5, col='blue') 
points(T[my.Data.Av$conductivity>=upper.lim,1], T[my.Data.Av$conductiv
ity>=upper.lim,2], pch='.', cex = 5, col='red') 
points(T[my.Data.Av$conductivity<upper.lim&my.Data.Av$conductivity>low
er.lim,1], T[my.Data.Av$conductivity<upper.lim&my.Data.Av$conductivity
>lower.lim,5], pch='.', cex = 5, col='darkgreen') 
 
 
plot(T[,1],T[,2], pch='.') 
lower.lim <- summary(my.Data.Av$pH)[3] 
upper.lim <- summary(my.Data.Av$pH)[3] 
points(T[my.Data.Av$pH<=lower.lim,1], T[my.Data.Av$pH<=lower.lim,2], p
ch='.', cex = 5, col='blue') 
points(T[my.Data.Av$pH>=upper.lim,1], T[my.Data.Av$pH>=upper.lim,2], p
ch='.', cex = 5, col='red') 
points(T[my.Data.Av$pH<upper.lim&my.Data.Av$pH>lower.lim,1], T[my.Data
.Av$pH<upper.lim&my.Data.Av$pH>lower.lim,5], pch='.', cex = 5, col='da
rkgreen') 
 
 
plot(T[,1],T[,2], pch='.') 
lower.lim <- summary(my.Data.Av$turbidity)[2] 
upper.lim <- summary(my.Data.Av$turbidity)[5] 
points(T[my.Data.Av$turbidity<=lower.lim,1], T[my.Data.Av$turbidity<=l
ower.lim,2], pch='.', cex = 5, col='blue') 
points(T[my.Data.Av$turbidity>=upper.lim,1], T[my.Data.Av$turbidity>=u
pper.lim,2], pch='.', cex = 5, col='red') 
points(T[my.Data.Av$turbidity<upper.lim&my.Data.Av$turbidity>lower.lim
,1], T[my.Data.Av$turbidity<upper.lim&my.Data.Av$turbidity>lower.lim,5
], pch='.', cex = 5, col='darkgreen') 
 
plot(T[,1],T[,2], pch='.', cex=5) 
lower.lim <- summary(my.Data.Av$a.chlorophyll)[2] 
upper.lim <- summary(my.Data.Av$a.chlorophyll)[5] 
points(T[my.Data.Av$a.chlorophyll<=lower.lim,1], T[my.Data.Av$a.chloro
phyll<=lower.lim,2], pch='.', cex = 5, col='blue') 
points(T[my.Data.Av$a.chlorophyll>=upper.lim,1], T[my.Data.Av$a.chloro
phyll>=upper.lim,2], pch='.', cex = 5, col='red') 
points(T[my.Data.Av$a.chlorophyll<upper.lim&my.Data.Av$a.chlorophyll>l
ower.lim,1], T[my.Data.Av$a.chlorophyll<upper.lim&my.Data.Av$a.chlorop
hyll>lower.lim,5], pch='.', cex = 5, col='darkgreen') 
 
plot(T[,1],T[,2], pch='.', cex=5) 
lower.lim <- summary(my.Data.Av$DO)[2] 
upper.lim <- summary(my.Data.Av$DO)[5] 
points(T[my.Data.Av$DO<=lower.lim,1], T[my.Data.Av$DO<=lower.lim,2], p
ch='.', cex = 5, col='blue') 
points(T[my.Data.Av$DO>=upper.lim,1], T[my.Data.Av$DO>=upper.lim,2], p
ch='.', cex = 5, col='red') 
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points(T[my.Data.Av$DO<upper.lim&my.Data.Av$DO>lower.lim,1], T[my.Data
.Av$DO<upper.lim&my.Data.Av$DO>lower.lim,5], pch='.', cex = 5, col='da
rkgreen') 
 
 
 
plot(T[,1],T[,3], pch='.') 
plot(T[,1],T[,4], pch='.') 
 
points(T[myData$temperature<lower.lim,1], T[myData$temperature<lower.l
im,4], pch='.', cex = 2, col='red') 
points(T[myData$temperature>upper.lim,1], T[myData$temperature>upper.l
im,4], pch='.', cex = 2, col='blue') 
points(T[myData$temperature<upper.lim&myData$temperature>lower.lim,1], 
T[myData$temperature<upper.lim&myData$temperature>lower.lim,4], pch='.
', cex = 2, col='darkgreen') 
 
 
plot(T[,1],T[,5], pch='.') 
plot(T[,1],T[,6], pch='.') 
 
plot(T[,2],T[,3], pch='.') 
plot(T[,2],T[,4], pch='.') 
plot(T[,2],T[,5], pch='.') 
plot(T[,2],T[,6], pch='.') 
 
 
plot(T[,3],T[,4], pch='.') 
plot(T[,3],T[,5], pch='.') 
plot(T[,3],T[,6], pch='.') 
 
plot(T[,4],T[,5], pch='.') 
plot(T[,4],T[,6], pch='.') 
 
 
plot(T[,5],T[,6], pch='.') 
 
 
 
#### 
 
plot(T[,1],T[,2], pch='.') 
 
lower.lim <- 1 
upper.lim <- 16 
points(T[myData$A.klorofylli..µg.l.<upper.lim&myData$A.klorofylli..µg.
l.>lower.lim,1], T[myData$A.klorofylli..µg.l.<upper.lim&myData$A.kloro
fylli..µg.l.>lower.lim,2], pch='.', cex = 7, col='darkgreen') 
points(T[myData$A.klorofylli..µg.l.<lower.lim,1], T[myData$A.klorofyll
i..µg.l.<lower.lim,2], pch='.', cex = 7, col='red') 
points(T[myData$A.klorofylli..µg.l.>upper.lim,1], T[myData$A.klorofyll
i..µg.l.>upper.lim,2], pch='.', cex = 7, col='blue') 
lower.lim <- 0 
upper.lim <- 0.8 
points(T[myData$Sameus..FTU.<upper.lim&myData$Sameus..FTU.>lower.lim,1
], T[myData$Sameus..FTU.<upper.lim&myData$Sameus..FTU.>lower.lim,2], p
ch='x', cex = 1, col='green') 
points(T[myData$Sameus..FTU.<lower.lim,1], T[myData$Sameus..FTU.<lower
.lim,2], pch='x', cex = 1, col='pink') 
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points(T[myData$Sameus..FTU.>upper.lim,1], T[myData$Sameus..FTU.>upper
.lim,2], pch='x', cex = 1, col='brown') 
 
 
plot(T[,1],T[,2], pch='.') 
 
lower.lim <- 4.75 
upper.lim <- 16 
points(T[myData$Lämpötila...C.<upper.lim&myData$Lämpötila...C.>lower.l
im,1], T[myData$Lämpötila...C.<upper.lim&myData$Lämpötila...C.>lower.l
im,2], pch='.', cex = 7, col='darkgreen') 
points(T[myData$Lämpötila...C.<lower.lim,1], T[myData$Lämpötila...C.<l
ower.lim,2], pch='.', cex = 7, col='red') 
points(T[myData$Lämpötila...C.>upper.lim,1], T[myData$Lämpötila...C.>u
pper.lim,2], pch='.', cex = 7, col='blue') 
points(T[,1],T[,2], pch='.') 
 
plot(T[,1],T[,2], pch='.') 
 
lower.lim <- 4.7 
upper.lim <- 16 
points(T[myData$Lämpötila...C.<upper.lim&myData$Lämpötila...C.>lower.l
im,1], T[myData$Lämpötila...C.<upper.lim&myData$Lämpötila...C.>lower.l
im,2], pch='.', cex = 7, col=rgb(0,1,0,.5)) 
points(T[myData$Lämpötila...C.<lower.lim,1], T[myData$Lämpötila...C.<l
ower.lim,2], pch='.', cex = 7, col=rgb(0,0,1,.5)) 
points(T[myData$Lämpötila...C.>upper.lim,1], T[myData$Lämpötila...C.>u
pper.lim,2], pch='.', cex = 7, col=rgb(1,0,0,.5)) 
points(T[,1],T[,2], pch='.') 
 
plot(T[,1],T[,2], pch='.') 
 
lower.lim <- summary(myData$Lämpötila...C.)[2] 
upper.lim <- summary(myData$Lämpötila...C.)[5] 
points(T[myData$Lämpötila...C.<upper.lim&myData$Lämpötila...C.>lower.l
im,1], T[myData$Lämpötila...C.<upper.lim&myData$Lämpötila...C.>lower.l
im,2], pch='.', cex = 7, col=rgb(0,1,0,.5)) 
points(T[myData$Lämpötila...C.<lower.lim,1], T[myData$Lämpötila...C.<l
ower.lim,2], pch='.', cex = 7, col=rgb(0,0,1,.5)) 
points(T[myData$Lämpötila...C.>upper.lim,1], T[myData$Lämpötila...C.>u
pper.lim,2], pch='.', cex = 7, col=rgb(1,0,0,.5)) 
points(T[,1],T[,2], pch='.') 
 
plot(T[,1],T[,2], pch='.') 
 
lower.lim <- summary(myData$pH....)[2] 
upper.lim <- summary(myData$pH....)[5] 
points(T[myData$pH....<upper.lim&myData$pH....>lower.lim,1], T[myData$
pH....<upper.lim&myData$pH....>lower.lim,2], pch='.', cex = 7, col=rgb
(0,1,0,.5)) 
points(T[myData$pH....<lower.lim,1], T[myData$pH....<lower.lim,2], pch
='.', cex = 7, col=rgb(0,0,1,.5)) 
points(T[myData$pH....>upper.lim,1], T[myData$pH....>upper.lim,2], pch
='.', cex = 7, col=rgb(1,0,0,.5)) 
points(T[,1],T[,2], pch='.') 
summary(myData$pH....)[5] 
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plot(T[,1],T[,2], pch='.') 
 
lower.lim <- summary(myData$Johtokyky..µS.cm.)[2] 
upper.lim <- summary(myData$Johtokyky..µS.cm.)[5] 
points(T[myData$Johtokyky..µS.cm.<upper.lim&myData$Johtokyky..µS.cm.>l
ower.lim,1], T[myData$Johtokyky..µS.cm.<upper.lim&myData$Johtokyky..µS
.cm.>lower.lim,2], pch='.', cex = 7, col=rgb(0,1,0,.5)) 
points(T[myData$Johtokyky..µS.cm.<lower.lim,1], T[myData$Johtokyky..µS
.cm.<lower.lim,2], pch='.', cex = 7, col=rgb(0,0,1,.5)) 
points(T[myData$Johtokyky..µS.cm.>upper.lim,1], T[myData$Johtokyky..µS
.cm.>upper.lim,2], pch='.', cex = 7, col=rgb(1,0,0,.5)) 
points(T[,1],T[,2], pch='.') 
 
library(chemometrics) 
library(mvoutlier) 
library(robustbase) 
 
C_MCD <- covMcd(my.Data.Av[2:7], cor=TRUE) 
X.rpc <- princomp(my.Data.Av[2:7],covmat = C_MCD,cor=TRUE) 
#res <- pcaDiagplot(my.Data.Av[2:7], X.rpc, a=2) 
 
T.rob <- X.rpc$scores 
P.rob <- X.rpc$loadings 
T.rob.df <- as.data.frame(T.rob) 
#frame() 
 
plot(T.rob.df$Comp.1 ,T.rob.df$Comp.2, pch='.') 
 
 
smoothed.pc1 = lowess(T.rob[,1],f=.01) 
smoothed.pc2 = lowess(T.rob[,2],f=.01) 
#lines(smoothed.pc1,col='red') 
plot(T.rob[,1],T.rob[,2], pch=16,cex=1,  
     col=TempCol[Temp_0_to_100], ylim=c(-26,16),xlim=c(-5,3), 
     xaxt='n', ann=FALSE,yaxt='n') 
lines(smoothed.pc1$y,smoothed.pc2$y, col='yellow',lwd=2) 
par(new=TRUE) 
biplot(T.rob[,1:2],P.rob[,1:2], xlabs = rep('.',length(T[,1])), 
       col=c('black','yellow4'),ylim=c(-26,16),xlim=c(-5,3)) 
 
x = c(0, 10, 10, 0) 
y = c(0, 10, 10, 0) 
legend.gradient(pnts=cbind(x = x - 150, y = y - 30),  
                cols = TempCol, title = "Temperature", limits = "") 
 
plot(T[,1],T[,2], pch='.') 
 
 
lower.lim <- summary(my.Data.Av$pH....)[2] 
upper.lim <- summary(my.Data.Av$pH....)[5] 
points(T.rob.df[my.Data.Av$pH....<upper.lim&my.Data.Av$pH....>lower.li
m,1], T.rob.df[my.Data.Av$pH....<upper.lim&my.Data.Av$pH....>lower.lim
,2], pch='.', cex = 7, col=rgb(0,1,0,.5)) 
points(T.rob.df[my.Data.Av$pH....<lower.lim,1], T.rob.df[my.Data.Av$pH
....<lower.lim,2], pch='.', cex = 7, col=rgb(0,0,1,.5)) 
points(T.rob.df[my.Data.Av$pH....>upper.lim,1], T.rob.df[my.Data.Av$pH
....>upper.lim,2], pch='.', cex = 7, col=rgb(1,0,0,.5)) 
points(T.rob.df[,1],T.rob.df[,2], pch='.') 
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res <- pcaCV(my.Data.Av[2:7], segments = 4, repl = 100) 
res2 <- pcaVarexpl(my.Data.Av[2:7], a=2) 
X_fa <- factanal(my.Data.Av[2:7],factors = 2,rotation = "varimax", sco
res="regression") 
 
P_fa <- X_fa$loadings 
T_fa <- X_fa$scores 
 
X_dist <- dist(my.Data.Av[2:7]) 
X_cluster <- hclust(X_dist) 
plot(X_cluster) 
 
library(som) 
Xs <- scale(my.Data.Av[2:7]) 
Xn <- Xs/sqrt(apply(Xs^2,1,sum)) 
X_SOM <- som(Xn,xdim = 4,ydim = 4) 
#plotsom(X_SOM,grp,type = "num") 
#plotsom(X_SOM,grp,type = "bar") 
 
library(MASS) 
X_dist <- dist(scale(my.Data.Av[2:7])) 
sam1 <- isoMDS(X_dist, p=1) 
plot(sam1$points) 
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Source code (Time Series) 

 

#set working directory 
setwd("~/Thesis") 
library("TTR") 
#load data from CSV file 
myData <- read.csv2("data_en.CSV") 
 
## Function to clean the column names 
cleanColumnName <- function(columnName){ 
  columnName <- gsub("\\s", " ", trimws(gsub("."," ",columnName,fixed 
= TRUE))) 
  return(columnName) 
} 
 
## Fuunction to extract data over a time frame (in days) 
extractDataOverDate <- function(dataFrame, start, end, include.start=T
RUE, include.end=TRUE){ 
  if(include.start){ 
    dataFrame <- dataFrame[dataFrame$ellapsedTime>=start,] 
  } else { 
    dataFrame <- dataFrame[dataFrame$ellapsedTime>start,] 
  } 
  if(include.end){ 
    dataFrame <- dataFrame[dataFrame$ellapsedTime<=end,] 
  } else{ 
    dataFrame <- dataFrame[dataFrame$ellapsedTime<end,] 
  } 
  return(dataFrame) 
} 
 
timeWindow <- function(dataFrame, columnName, startingTime = 0, period 
= 5,  
                       color = 'black', linewdt = 1, gtype='l',  
                       new.name = NA, loess.coef = NA){ 
   
   
  #convert entry times to R time objects  
  #format is %d.%m.%Y %H:%M 
  times <- strptime(dataFrame$Date.and.time, format = "%d.%m.%Y %H:%M"
, tz="EET") 
   
  #convert into unix time (aka. POSIXct) 
  #and chose the starting point (in this case 3 because the first read
ing making sense is #3) 
  initialTime <- as.numeric(times[3]) 
  print("initial time") 
  print(initialTime) 
   
  #convert all times into relative times from the starting time 
  #this is equivalent to seconds ellapsed since beginning of the sampl
ing 
  times <- (as.numeric(times) - initialTime) 
   
  #times converted in days 
  times <- times/(24*60*60) 
   
  #add an ellapsedTime column to the dataframe 
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  dataFrame$ellapsedTime <- times 
  #remove any entries before the starting point 
  tempData <<- dataFrame[dataFrame$ellapsedTime>=startingTime,] 
   
  #remove 'na' values 
  tempData <<- tempData[!is.na(tempData[[columnName]]),] 
   
  print(summary(tempData)) 
   
  upperLimit <- max(tempData[[columnName]])+0.1*(max(tempData[[columnN
ame]])-min(tempData[[columnName]])) 
  lowerLimit <- min(tempData[[columnName]])-0.1*(max(tempData[[columnN
ame]])-min(tempData[[columnName]])) 
   
  print(columnName) 
  print(upperLimit) 
  print(lowerLimit) 
   
  tempData <<- extractDataOverDate(tempData, startingTime,period, TRUE
, FALSE) 
   
  yaxisname = cleanColumnName(columnName) 
   
  if(is.na(new.name)) new.name<-yaxisname 
   
  plot(tempData$ellapsedTime, tempData[[columnName]],  
       lwd=linewdt, type = gtype, col=color, 
       xlab="Days", ylab=new.name, 
       #xlim=c(50,55), 
       ylim=c(lowerLimit, upperLimit)) 
   
  if(!is.na(loess.coef)){ 
    #emperature.smooth.model <- loess(temperature~time_mean,  
    #                                 data=myDF.temperature<-data.fram
e(time_mean=my.Data.Av.Scaled$time_mean, 
    #                                                                   
temperature=my.Data.Av.Scaled$temperature), 
    #                                 span=.03) 
     
    my.Data.Av.Scaled.Smoothed$temperature <- predict(temperature.smoo
th.model, data=my.Data.Av.Scaled) 
     
  } 
   
  i <- period 
  j<- i+period 
  k <- max(dataFrame$ellapsedTime) 
  while(j<k){ 
    tempData <<- extractDataOverDate(dataFrame, i,j, TRUE, FALSE) 
    if(gtype == 'l') lines(tempData$ellapsedTime-i, tempData[[columnNa
me]], col=color,lwd=linewdt) 
    else if(gtype == 'p')points(tempData$ellapsedTime-i, tempData[[col
umnName]], col=color,lwd=linewdt) 
    i<-j 
    j<-i+period 
  } 
} 
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timeWindow(myData, "pH....", 0, 7,rgb(0,0,0,0.25), 1.5, new.name = 'pH
') 
timeWindow(myData, "Lämpötila...C.", 0, 7, rgb(0,0,0,0.25), 1.5, 'l', 
new.name = 'Temperature (°C)') 
#myData$Happi..mg.l. 
timeWindow(myData, "Sameus..FTU.", 0, 1e20,rgb(0,0,0,0.5), 1.5, 'l', n
ew.name = 'Turbidity (FTU)') 
timeWindow(myData, "Happi..mg.l.", 0, 7,rgb(0,0,0,0.25), 1.5, 'l', new
.name = 'Dissolved Oxygen (mg/l)') 
timeWindow(myData, "Happi..mg.l.", 0, 2,rgb(0,0,0,0.25), 1.5, 'l', new
.name = 'Dissolved Oxygen (mg/l)') 
 
timeWindow(myData, "pH....", 0, 30.5,rgb(0,0,0,0.25), 1.5, new.name = 
'pH') 
 
#timeWindow(myData, , 0, 30.5,rgb(0,0,0,0.25), 1.5, new.name = 'pH') 
 
 
 
tempData <<- myData[ , !(names(myData) %in% c("X", "Date.and.time", "A
kku..V."))] 
for(index in c(1:length(colnames(tempData))))colnames(tempData)[index] 
<- cleanColumnName(colnames(tempData)[index]) 
 
tempData<-tempData[complete.cases(tempData),] #remove NA's 
tempData<-tempData[tempData[[7]]!=0,] #remove zeros (generates -inf) -
- bad idea? 
tempData<-tempData[tempData[[4]]!=0,] 
 


