

Trung Le Dang

Level Designing in Game Engine

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineer

Bachelor’s Thesis

23.04.2017

 Abstract

Author(s)
Title

Number of Pages
Date

Trung Le Dang
Level designing in game engine

52 pages
23.04.2017

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option Digital Media

Instructor(s)

Antti Laiho, Senior Lecturer
Petteri Kolehmainen, CEO Make Helsinki
Joonas Turunen, COO Make Helsinki

Level designer is an important position in game development process. However, it requires
expertise, which only can be adopted through work experience. The goal of this project is to
create a quality product using Unreal Engine.

The project is divided into two parts. The first part focuses on the core requirements of cre-
ating a quality level game map. The second part focuses on the research project. The task
was given by the customer who ordered a scene trailer. The study describes the process
step by step from the beginning to the final product. The final product can also be previewed
at an online address provided in this thesis.

The project was carried out by using Unreal Engine 4.13 version, Autodesk 3D max and
Adobe Premiere CSS 5.5. Epic Games, which is a software company, provides Unreal En-
gine 4 which is free of charge. There are also various assets provided by Unreal Engine and
the author’s personal projects. The final product was rendered as images and imported into
Adobe Premiere for future use.

As the result of this thesis, a complete level with animations was created by using Unreal
Engine 4 in three and half weeks. Most of the time was spent on creating the map as well
as rendering the product.

Keywords Level Design, Sculpting, Foliage, UE4, Adobe Premiere, Blue-
prints, Game engine

Contents

Abstract

Abbreviation and Terms

1. Introduction 5

2. Level Design in theoretical framework 6

2.1. History of Level Design 6

2.2. 2D and 3D Level Design in Game Engine 7

2.3. Game Engine and setting up 13

3. Essential requirements in Level Design 15

3.1. The good ways of Level Design 15

3.2. Important aspects in Level Design 25

3.3. First Person Shooters/ 3rd person/ Top-down level designing 29

4. Actual Level Design Workflow in trailer creation 32

4.1. Storyline scripting 32

4.2. Map Creating 33

4.3. Modelling and Importing 41

4.4. Camera workflow 44

4.5. Post process 47

4.6. Final and Future work 50

5. Conclusion 52

References 53

Abbreviation and Terms

Sculpting Designing an object by using mouse or pen as

sculpting tools.

Blueprint A system which supports users to use pro-

gramming skills in the easiest way in order to

running various effect which are not able to do

in other 3D software. For example, creating

particle effect, creating water flowing anima-

tion, wind, etc.

RAM Random Access Memory.

GPU Graphic Process Unit.

HLM High Level Map.

LLM Low Level Map.

Foliage A combination of objective models which could

be placed on map via painting mode.

P a g e | 5

1. Introduction

Nowadays, competition between game companies is hard everywhere.

Therefore, new products benefit the owner. Game engines have been around for over

fifteen years but because the industry is growing rapidly, developers must expand their

knowledge in order to stay in business.

Level designers, in particular, have an important role inside the game industry, since

they are responsible for creating game rules as well as game concepts.

However, designing a product is a complicated process. There are steps which should

be followed in order to maximize the outcome and minimize the time spent. One pur-

pose of this study is to describe how I learned about level design during my internship

in a project called Make Helsinki in October 2015.

P a g e | 6

2. Level Design in theoretical framework.

2.1. History of Level Design

In game develop, the person responsible for constructing the game spaces land let-

ting the players to compete, is called a level designer, or a map designer. The level

designer is mainly responsible for implementing the game play.

The term level designer is somewhat misleading. Originally the word level stood for

some perks and traits one could gain during playing. A game consists of different lev-

els of difficulty, starting from level one. Step by step, each level becomes more diffi-

cult than the previous one.

In 1970’s and early 1980’s, level designing stages were no doubt simpler than nowa-

days (Figure 1). The game Breakout was created for arcade game machines and it was

one of the first two dimensional games with rectangle shapes. At the first level, a player

was provided certain amount of color bricks to eliminate by hitting a ball. After reaching

the goal, players advanced to the next level, which was more challenging; more color

bricks appeared when there was an improvement in the ball’s speed. The game map

was two dimensional. See Figure 1.

Figure 1. The first level of old school Breakout 1970’s – 1980’s [8.]

In later game versions, when a player advanced into a higher level of gameplay, the

screen would be reset or words such as level two, level three on the screen.

However, game developers were not satisfied with that formula because it was too sim-

ple. They decided to improve the game with subtle changes and transitions to a new

P a g e | 7

level were seamless. As the result, individual levels could be very complex, with a

storyline blended in. Also, the player’s choices could affect the outcome of end game.

The transition from two dimensions into three-dimensions was an important improve-

ment in game developing industry. In 1983, a release of a three dimensions computer

game-Battlezone, turned the history of level designing onto a new page of achievement

(Figure 2). Although models and environments were made from rectangle shapes, they

also displayed the movement in 3D. Battlezone became successful because it repre-

sented the first use of polygonal environments and obstacles in computers, along with

providing players the ability to move through gameplay space, accordingly to X and Y

axis [13]. (See Figure 2)

Figure 2. Battlezone gameplay in 1983. One of the first 3D games, which was created for Atari [13.]

The game provided not only basic of polygon environments but also all sides of a po-

lygonal object, which were visible all the time. This made the game to look more futur-

istic.

2.2. 2D and 3D Level Design in Game Engine

Two dimensional games has been frequently one of the favourite styles for game de-

velopers ever since 1970’s (Figure 3, Figure 4). Game Engine (Unity, Cry Engine, Un-

real Engine) offered new ways to develop two dimensional games.

P a g e | 8

Figure 3. Battle City Tanks game in 1990’s [14.]

Battle City was a two dimensional strategy top down view game for NES game con-

sole. In the game, players took role as alliance forces who were defending their base

from the invasion of an enemy army. The User interface indicator was placed on the

right side of the screen, showing to player the amount of enemies as well as player’s

scores [14].

There were several ways to make two dimensional games. Two of the most popular

styles were the Top Down view (Figure 4) and the Side view (Figure 5).

In The Top Down view, a camera would be placed on the top and pointed down straight

90 degrees, capturing player’s gameplay or even following an in-game specific charac-

ter appointed to be a player. In the Side view game, however, a camera was at one

spot or moving only with X’s axis coordinates.

The Super Mario World, made by Nintendo was one of the best two dimensional side

view games. Nintendo had made an effort to design the map, game play concepts and

game logics as well as possible. The result was a very successful and many players

became attracted to this new genre [16]. Even today many games are inspired by Su-

per Mario World.

P a g e | 9

Figure 4. Super Mario World game in 1990’s [16].

In game developing industry, those designing two dimensional games often aim at a

mobile platform release because two dimension games require less power resources.

Recently, developers prefer to use a free style camera with special algorithms to detect

and follow all actions of players. The Angry Birds game is an example of this (Figure 5)

[17].

Figure 5. Angry Birds gameplay. The most downloaded mobile game ever, made by Rovio [9.]

Inside game play, the camera stays in focus on the slingshot. The player can zoom in

and out or calculate the distance between the slingshots to targets. When players

P a g e | 10

give the command to shoot the birds, the camera is automatically attached and fol-

lows the flying birds. Then the camera is reset back to the slingshot so players can

continue to aim and shoot.

When designing a level in two dimension games, designers can use two and three di-

mension objects, models and assets to create the map. After that, they can apply two

dimension physics which only effect the X and Y axis. Modelling characters, objects

and assets for two dimension games is usually less complex compared with three di-

mensional games because the game view is only from one perspective. For example,

in a three dimensional game, a simple box is modelled from six sides. Textures are

modelled on each side which increases the usage of computer memory when import-

ing the box in the Game Engine.

In a two dimensional game, the box would only need to be modelled and textures ap-

plied on three sides (for Top Down view) or one side (Side view). This can cut the costs

even by 50 percent. Figures 6 and 7 show how a city environment has been created for

a two dimensional game. If the game was based on Side view, it would be simple be-

cause texture is added on one side only.

Figure 6. Two dimension Side view game back ground. Created by Mohit Kumar Rao [10.]

Figure 7. A plane was used for re-creating back ground for two dimension game in Autodesk 3D max.

P a g e | 11

Three dimension games require more complex models, characters and assets as well

as skills to create. Based on the game’s genres (such as RPG, MMORPG, Turn-base

and MOBA), models are created to fit the demand.

3D level design as well as playing the games requires a lot of computer memory. De-

velopers usually try to limit the polygons count in models and environments. Often they

make different options for a specific model. When a main human character is created

for a game, the details must be of high quality. As a result, one model can consist of

600 000 to over one or two millions polygons when finished. As illustrated in Figure 8,

the enormous amount of polygons consists mostly of details such as hair, scars or de-

tails in uniform [12]. The cowboy model was modelled very complex in the beginning

but at the end, the polygon count was significantly lower. Those two options, high and

low polygon, could be used as close-ups or seen from the distance in a game.

Figure 8. High polygons versus low polygons [12.]

To make sure that millions moving polygons do not ruin the player’s fun, developers

must retopology that model down to less than one hundred thousand polygons, plus,

divide textures into usually three options, called Level of Detail (LOD, such as LOD 0,

LOD 1, LOD 2). See Figure 9.

At zero LOD, the object in Figure 9 provided the best quality and texture resolution.

This first option was mainly used to render the game trailer, make game cut scenes

P a g e | 12

cinematic and provide various close-up cameras. The first LOD could be skipped due

to poor efficiency.

The second LOD provided the lowest resolution of quality both of model and texture, so

this LOD would be used for far distance view since the human eye can not recognize

the difference between a million-polygon model with 2000 resolution textures and a

100 000-polygon model with high quality resolution texture at certain far distance of

view [18].

Figure 9. Level of Detail in difference. Another example of close and far distance view between complex

and simple level of detail [18].

P a g e | 13

These levels of detail systems are important for level designers because. If they can

master this workflow, the outcome will be of good quality without consuming the hard-

ware too much [20].

2.3. Game Engine and setting up

There are numbers of game engines such as Cry Engine and Unity which provide

fully professional functions for game development [1]. However, Unreal Engine in

general and Unreal Engine 4 in particular were selected as the main game engine for

this thesis.

In 1998 the company Epic Games, released the game Unreal. This marked the birth

of one of biggest game engines (Figure 10). So far, there have been four iterations of

the Unreal Engine [23].

Unreal Engine one provided the basic functions of making games, such as integrated

rendering, collision detection, artificial intelligence and networking. This engine ver-

sion relied on simple collision detection to achieve good frame rates 1998 hardware

[24].

Figure 10. The Unreal’s game level map was created in full combination between surprises plus scary ele-

ments which constantly provided to players the feeling of loneliness surviving in alien world [13.]

Unreal Engine two introduced a vast improvement in the rendering engine. This ver-

sion also included the Karma physics SDK, known as ragdoll effects. The engine sup-

ported also current consoles such as Playstation 2, GameCube and Xbox [24].

P a g e | 14

Unreal Engine three introduced new functions for developers since it had incorpo-

rated a wide variety of technology such as Scripting, Physics, Editors, Animation and

particle system. Written in C++, using the OpenGL and Direct X Graphics API, the

third Unreal Engine featured an object-oriented design. Furthermore, one of the en-

gine’s goals was to make content creation and programming as easy as possible. As

a result, the engine helped artists to develop assets with minimal programming assis-

tance and give the programmers an extensible framework to create graphic games

with [24].

Unreal Engine 4, the latest version of the engine, supports DirectX 9, 10, 11 PCs,

Xbox360, Playstation 3 and Playstation 4 along with Virtual Reality such as Google

cardboard and Samsung Gear VR. Most of the tools available in the engine, are based

on previous tools but with upgrades in graphics, rendering and especially in light reflec-

tion as well as other physical systems [24]. The game Unreal Tournament was made

using latest Unreal Engine version (Figure 11). With modern technology such as com-

plex particles (smoke, explosion, electric effect), the game brought to players a fast

paced first-person-shooting duel style. The level map was created in detail and it indi-

cated directions clearly, because players did not have enough time to figure out which

way they should run [14].

Figure 11. Unreal Tournament developed by Unreal Engine four nowadays. [14].

In order to develop a specific game, developers in general and level designers in par-

ticular would need to install Unreal Engine 4 via the official Unreal Engine website. At

the main menu of Unreal Engine 4 editor client, users can choose the best version for

their needs. So far, there have been 14 versions of Unreal Engine 4, the latest ones

are 4.0 to 4.13. [25].

P a g e | 15

3. Essential requirements in Level Design

Even a veteran level designer must follow all the requirements to create one specific

map or environment. A good level designer is also an environment artist be who cre-

ates all the assets included when making the game map.

A bad game map can ruin the whole game. To create a flawless map there can be no

wrong twitches of light or placement of objectives. To sum up, setting up a blueprint

sketch, building up assets, and designing right lighting during post process are all nec-

essary steps in creating a game map.

3.1. Good Level Design

Good level design has many different approaches, although the basic elements are the

same. There can be a robotic constructing level approach, or a fantasy and unrealistic

approach. Sometimes even ideas that make no sense are included to satisfy the gam-

ers. Each approach has its advantages, but when it comes to algorithm, they all follow

the core elements of good level. Those core elements are presented below [5].

The good level design must be fun to navigate

In most cases, the player’s core expectation and judgment are based on interacting

with the map through navigation. Mastery layout, a touch of lighting, blinking signage

and other visual cues create a natural flow to the level, which leads the player instinc-

tively to follow it (Figure 12). From an aesthetic aspect view, a game’s map should be

stitched and worked all together to provide a consistent visual language by the use of

colour and forms, so the player could learn, experience and be able to achieve their

own progress intuitively through the level [2].

P a g e | 16

Figure 12. Mirror Edge, the game had brought to players the feeling of constantly keep moving in order to

survive [15].

Contrary of those obvious guideline for path finding, various level designers also apply

twitches of trickery to add depths, or create areas and hideouts. These cause players

to feel lost and confused, bringing a sense of dramatic tension.

The good level design must not rely on words to tell stories

Solving puzzles or completing a broken circle are good ways of level design. A level

designers can create a circle, but leave a broken gap for the players to fill in them-

selves. However, if the gap is too small, the players will not notice it; too big and it

causes losing the players, who are not able to connect the circle [2;5].

There are three aspects to create the circle and the gap in a game level.

 The Explicit way; it is cleared and sent straight forwards to players by text or

speech such as mission objectives or cut scenes.

 The Implicit way; it is told via the environments through gameplay. It must be

carefully place at obvious area where players can notice it (Figure 13).

P a g e | 17

 The Emergent way; it is the player’s own experience as they go through each

level.

The aspects above tend to stimulate and trigger the player’s intelligence. They also al-

low players to fill in the gap with their own actions and imagination as shown in Figure

14. [5].

Figure 13. A message was delivered to players whilst their exploration in gameplay [26].

Figure 14. Hitman, the game provided free-style game rules for players. Either players could go gun-blaz-

ing like Rambo or sneak around like a ninja to assassinate the target [27.]

P a g e | 18

The good level design informs the player what to do, but not how to do it

Offering players the power to experience and explore their own story through game-

play is one of main targets of developers. This is typically created by simple, explicit,

text- based objectives, waypoint markers or any other navigation aids in order to pre-

vent the players to stumble into any doubts [4].

Those level objectives must be visually distinct, using any forms, lighting, animations

or locations to clearly stand out from other surrounding environments. The key to

make players fully excited each step is to create more open-end objectives. In other

words, there must not only be an ultimate objective such as a destroyed place or

eliminated target, but also a free choice of how to complete those objectives. (Figure

15)

These requirements are the key, because in one scene of game play players can use

all arsenals of items and environments to complete the mission. [2.]

Figure 15. Skyrim, the innovated game which let players fully to select the ways to complete the objectives

[28].

P a g e | 19

The good level design, teaches players something new while they play

There are various games that provide real life knowledge to players. When players ac-

tively play their game, they also learn new things. Sometime, the learning part in game-

play can be hard in order to process. If players understand the patterns and master the

mechanics too easily, they will quickly become bored and stop playing. Therefore, level

designers can put in various challenging missions which only can be completed by us-

ing specific items. Those items can be acquired via applying real life knowledge [2;6].

For example, a player needs to escape an underground cave where the main door is

covered by unpassable trees and vines. By applying real life knowledge, the player

should recognize that vines and trees would be destroyed by fire and search for items

to burn vines in order to escape.

On the other hand, if the player does not know that, they would struggle to find out so-

lutions by themselves, even throwing rocks or mashing their body to vines and trees

hopelessly, until they discovered how fire was useful in that case. Thus, they learn new

things through game play. In the future, whenever they encounter vines and trees, the

word “fire” could first come in their mind.

Good level design empowers the players

Virtual world in general and video games in particular are made to escape the limited

power in real life. Good level designers must not make players do things that they

could do easily in real life, but encourage them to experience new things, which they

would not or definitely could not do in their real life. A mission objective of a well-de-

signed game should eliminate boring repetitive chores, and create interesting and ex-

citing ones. [4].

In order to grant players true empowerment, their actions must have noticeable ef-

fects on the game world. For example, in a magical game world, if players choose

“fire” element instead of “ice”, their path is bound to destruction. If players encounter

lakes or liquid areas, where they might be frozen by using ice power, they must find

another way to cross the path.

P a g e | 20

In various historical series games such as Medal of Honor, Company of Heroes, Call of

Duty, there are also secondary objectives that sometimes provide more fun and breath

taking than the main mission. Blending objectives could grant players the feeling of be-

ing a powerful hero [29].

Good level design supports the player to control the difficulty

Controlling the difficulty, sounds like a responsibility of programmers since this is one of

the game system mechanics. However, a good level designer knows that blending the

game’s map, which runs parallel with the difficulty adjustment, would boost players ex-

perience highly up.

There are various mechanics to show players the difference of difficulty. By implement-

ing a dynamic difficulty, most players notice the changes of areas, where enemies be-

come more powerful and treasure more valuable. That kind of dynamic difficulty is ap-

plied by Massive Multiplayer Online Role Playing Game (MMORPG) since those me-

chanics turn different locations on one map into a seamless world [5].

However, the mentioned mechanics above were not always available. A well designed

level must also let players manage difficulty themselves, through clever usage of risk

and reward. The basic path through game missions should be properly paced for a

player of moderate ability, with the appropriate peaks and troughs of challenge, but

there should be specific areas off the main path, with clear opportunities for veteran

players (Figure 16). As the result, whenever players make a path choice, they would

feel the heat and responsibility of their choice. Therefore, big rewards come with moun-

tains of risk.

For example, in the Skyrim game, player would often encounter various treasure

chests which are located in visible but unreachable areas. Therefore, players need to

have certain skills such as teleportation in order to claim the chest. A good level design

map would content a chain link reactions which is triggered once players entered.

The following chart explains the relationship between link and chain reaction. Once

player receives mission objective, they need to complete the puzzle and challenges in

order to receive the standard rewards. Therefore, they must be able to unlock side mis-

sions with extra rewards. Those elements could be linked together in game play and

once, one of them is triggered, the rest would follow.

P a g e | 21

Chart 1. Chain link reaction during game play.

Figure 16. Need for speed, during game playing, players could access various shortcuts where they would

face many obstacles or even zigzag roads [31].

Good level design constantly entertains players

No matter what modern technology is like, there is a limited amount of resources for a

game to draw from, ranging from hardware limitations (like RAM= Random access

memory) to graphical system (such as graphic memory). Clearly it is the level de-

signer’s responsibility to maximize the usage of those resources and create efficiency

by good design.

Modular design is very important here. Veteran designers would not design a level/

map, instead they rather design a series of modular, mechanic-driven encounters,

which could be linked and blended together to create a whole level/map and so on.

Mission

Rewards

Puzzle Challenges

Monster Challenges

Skill Trait Challenges

Extra Rewards

Side Mission

P a g e | 22

By following and applying simple modifiers to those modules, one could create varia-

tion, provide more levels with less efforts and less risks. This technique not only create

series of familiar encounters but also keeps them fresh by applying constantly increas-

ing challenges and surprises. Thus, the player can use to learn and master game me-

chanics via game play [2].

After developing two of the enormous open world maps and games of the year –

Skyrim and Fallout, the Bethesda studio had proven how a relatively small team was

able to create a lot of contents. Although a high level of modularity might not suit for

every game, it could certainly be applied to any game in varying degrees. For example,

Call of Duty brings to players “adrenaline rush battle moment” – sections of intensity

combat gameplay, even approximately thirty seconds to five minutes, which players

could quickly prototype and iterate on, then stitching them together in various different

contexts in order to make a chain of exciting levels. These mechanics could help the

level designers to build significant amounts of more contents in tremendous less time,

yet still keep it interesting [29].

To make the levels and maps look flawless is time consuming. The point of re-using ar-

eas of the levels/maps is not only to save investment money, but also to alleviate the

amount of level geometries which would be stored in memory. These tricks could

sometime be referred as back tracking. As a level designer, one shall be careful to se-

cure such spaces, were designed for bi-directional gameplay, as a key modifier on the

second pass [30].

Good level design surprises players when they do not expect it

This approach mechanic has varied in many forms such as curve of high versus low in-

tensity, exploration versus combats, rest versus action, etc. Those contrary actions

serve as a good base line for level design, and are important for maintaining player en-

gagement. In fact, constant repetition could quickly turn de rigueur. However, even

great pacing levels would face trouble of being memorable without sudden spike in in-

tensity which might come from surprise.

Surprise in particular does not need to be a big shock or a plot twisting but at its core,

surprise could be considered as a rapid, constantly surge in uncertainly game

play/story lines, which was the extreme essence of fun and joy.

P a g e | 23

In term of level design, surprise could disguise in form of a unique setting, a moment

that teaches players something new and unpredictable. A mechanic, that has already

been used for a while to create a beautiful vista or a radical change in pacing, can

cause an adrenaline rush, satisfaction and be enjoyable (Figure 17) [5].

Figure 17. Resident Evil Series game, one of the horror survival games which constantly blended the sur-

prise elements [19].

As fans of Resident Evil game series have experienced, once players enter from one

location to another, there is a door opening scene. Cleverly, the game level designers

have placed surprising concepts after players have entered a new location. For exam-

ple, from the beginning, players can get acquainted with a so-called peaceful feeling

when they see the door opening cut scene because, in fact it is a game mechanic that

obviously keeps players not encountering any monsters, after entering a new location.

The moment players are lowering their intense focus to enjoy a drop of peace as they

should expect, monsters (sometime even a mini boss) would jump out from window/

drop down from ceiling or fully charge ahead to player’s position. That surprise element

can cause a panic reaction and drag player’s intentional focus back in no time. Never

let players predict what can happen next, is one of essential core keys of success [32].

Level designers must not be afraid of taking risks with their design. In fact, they should

not just replicate a level from another game. There are millions of games in the same

genre chart, so by trying something unusual and truly innovative could make an out-

standing unique sparkle from the crowd (Figure 18). Visioning and managing the risks

P a g e | 24

– designing on paper – picturing the final product – creating a playable prototype

should be done as early as possible.

Figure 18. Urban Chaos, the game which created by London’s Rocksteady Studio by implemented vast of

innovated elements. [33].

Creative ideas show to player another perspective of being a good police and a bad

police. The studio developers broke the line of hero always being on the good side.

There were consequences which effected by player’s decisions.

After completing the game, and checking the credits, the game suddenly bring the

player back to an extra mission – Some of the gangs, who were busted by player in

game, had tracked down player’s home and seek for vengeance. Therefore, the player

must scramble through home, grab a sidearm from under the table, and put the end to

the criminal mobs once and for all.

This post credit surprise mechanic was skillfully executed by level designers, providing

a truly emotional end game for players, who were patient enough to watch credit from

developers. And for those, who were skipping the credit part – it was obviously a mis-

take.

P a g e | 25

3.2. Important aspects in Level Design

Besides those success keys mentioned above, there were also important aspects in

level design, which bound up with graphical parts became a product of it own.

Music

Music is one of the most underrated parts of a game. A touching soundtrack could

doubtlessly effect a gameplay. Indeed, music guides the players in the right frame of

mind for incoming challenges. Thus, an epic boss battle could become even more spe-

cial and unforgettable when accompanied by appropriate music. Practically, music is

not the task for level designers as they are not responsible for composing a sound-

track, but if one take it away from a game, and it would feel naked.

Final Fantasy series in general and Final Fantasy VII in particular are members of hall

of fames, due to their outstanding soundtrack as well as story line.

Movement constraints

Movement constraints may sound like a basic thing but this basic mechanic could be a

headache for level designers if they do not carefully keep eyes on it. Most of game

glitches nowadays is caused by movement constraints. Certain areas/ structures on the

map were not set up at their right scale/ position as well as the movement limitation

called Boundary. Therefore, if some lucky players find out and used it as advantages

over others, they ruin the game’s competitive experience. These kind of glitches occurs

mostly in first person shooter online games – imagine a machine gunner who jumps out

the map, drops under the ground and starts fire up to other player’s foot. Indeed, it

could be even more disasterous if that gunner had shown to his entire teammates the

glitches.

In order to create a more interesting movement space, level designers must create

more complicated level geometries. For example, staircases could behave like hall-

ways – they have a start and an end, which provides a sense of path direction in the

map – and they could be part of a room as well [2].

One of the best examples for movement constraints in level designing was The Legend

of Zelda: Breath of the Wild (Figure 19). The game had been flawlessly designed from

the story line to map geometries and game play, it was simply a combination between

the best bits of the franchise’s long history with the best bits of the rest of the gaming

P a g e | 26

world. The game was well designed in every single corner of the map, it gave to the

player multiple choices so they would not feel like following the game default concepts.

Indeed, it let player dived in and explored the game as their real life – each player had

unique approaches – therefore, unique items accordingly rewarded.

In another smart design concept, there were four core boss monster placed at four cor-

ners of the map. Hence, in order to complete the story line, the player should explore

almost all the map. That was a creative approach from the designers since they could

place puzzles, side quests, unique NPCs on the way to the bosses.

Moreover, the weapon and item system in the game were also new. There was abso-

lutely no durability in items – meaning, they would be shattered after certain time of us-

age. Those concepts made the player carefully to plan their strategy and tactics while

encountering monsters through game play [35].

Figure 19. The Legend of Zelda: Breath of the Wild, one of four boss monsters combat scene. The game

was created by Nintendo and it became one of top rated game by player choices [34].

In multiplayer first person shooter genre games, the sense of directions could be more

subtle, and could offer more gameplay variety. One direction path or even dead end

are dangerous because they obviously signal narrow and limited player options to es-

cape. If there were an item or objective on the path, it could encourage the player to

take this risk, these designs act like traps. A subtler form of this directional design cre-

ated variation between offensive and defensive areas. However, if there are no rea-

sons behind the direction design, or it had no role in the map, then it is a bad design.

P a g e | 27

For example, from the high ground (Figure 20), a player could decide, either jumping

down or taking the stairs, to claim the treasure chest. However, a player who ap-

proaches the chest from the low ground must turn around because of the high ground

is too tall to jump onto from the low ground. Therefore, stairs would be the only choice

to reach the high ground. This geometry leaves one side vulnerable, and also provides

a subtle sense of direction between defensive and vulnerable positions.

Figure 20. No complex directional level design.

Occlusion (Visible or hidden objectives for player, close sightlines and movement

through the space open).

Besides constraining the path movement possibilities, map geometries also occluded

sightlines. For example, a puzzle maze would be a heavily occluded space area, where

P a g e | 28

players could observe only their immediate location. Thus, their decisions would be in-

formed about where to go and what to do. An enormous, open room could be almost

as bad design because players could observe many objectives at once – if there is too

much to see, then result is overwhelming, or if there is nothing to see, then result is

boring.

The occlusion of space indeed strongly required the player to move and look around in

order to observe everything. Thus, an interesting level should be expected to balance

between these extremes which suited with the game’s style, and evoked the feeling of

player’s demand.

Another important mechanics in occluding spaces is through doorways and other

threshold usage. These frames, as the player crossed the threshold – slowly introduce

it. This framing mechanic could also focus on the most important part of the next area,

which provides the player a sense of priority to plan around once inside the room – the

plan is a kind of gestalt, where the player observes and understand their local situation

within better, bigger layout.

In addition, a space which is easy to adopt and interesting to explore, would be in-

cluded in various global organizations or patterns, as well as local variation or noise.

There should be a variety of closed and opened, difficult and easy spaces. These sort

of variations shall create the pace of level.

A multiplayer first person shooter game is taken as an example, if all of the weapons

are projectile based, then players are secured when distanced from their enemies, they

can even see each other. If the weapons are auto-detect, then anything inside the

crosshair would take damage when the player is shot. Therefore, it is more crucial for

players to cover between themselves and their attackers via obstacles, and avoid open

spaces.

Lighting resources

In fact, applying the right choice of light could improve the quality of a game and make

it appear more realistic to players. In some games, light can be advantage or disad-

vantage during gameplay. A scene, where light is carefully and logically placed can af-

fect player’s emotion as well as playing style (Figure 21) [2]. Moreover, a good logically

P a g e | 29

placed lighting resource could bring liveliness into scene and provide the feeling of

magnanimous or cozy to the players (shadows, illumination, light-shaft, emission).

For example, in first person shooting games, if a player had stood facing the sunlight

source, the vision would definitely be blurred, narrowed and unable to observe move-

ment from enemies – On the other hand, enemies could clearly observe if their back

was facing the light source.

Figure 21. The magically works of lighting from Rostislav Nikolayev [21.]

3.3. First Person Shooters/ 3rd person/ Top-down level designing

Besides other game’s categories, first person shooters and Third person and Top down,

were often choices in developing [7.] There were reasons for developers to pick top three

due of massive benefits, indeed at first person shooters and third person game genre, it

P a g e | 30

would be obvious opportunities to show off to players the outstanding and flawless well

designed environment through game world.

For level designers in particular, there are not much differences between creating an

environment level/ map for first person shooters and third person game genre. The only

difference is to be able to tell the genre. On other words, there can be same map,

same objectives, same items, same obstacles and even the same main model of char-

acters, but there would be two cameras, detached and attached to the main character.

One is placed in the main character’s head – rendering according to human eye angle

(Figure 22); one is placed behind main character, not so distantly – capturing charac-

ter’s movement and actions.

Figure 22. Human eyes angle of view. The camera’s angle of view would use exactly same perspective

view as human eyes [22].

In addition, there are various games such as Fallout 4, Company of Heroes 2,

Skyrim… which provide the choice of switching from first person view to third person

view and reverse. These mechanics would bring another new experience as well as

challenges for both developers and players. If players chose the first person view, they

could gain advantages in aiming, tracking movement in focused area since first person

view allowed players observed in narrower view (Figure 23). However, they would pay

P a g e | 31

the price of tracking other players who would come from left or right sides and it could

make them easier targets to be flanked, compared to third person view [36].

Figure 23. Third person view perspective versus First person view in Star Wars –Battlefront [37].

Those pictures explain viewers the advantages and disadvantages of perspective

views in third person camera and first person camera. Within the first person camera,

players could gain better vision in a specific area but pay the price of observing wider

view from left and right side

The Top down perspective games could be a heavyweight competitor, compared to

First and Third person games due to the blooming and renovation of graphical technol-

ogy. Indeed, they could be parallel to each other – the more advances in graphic, the

better top down games would be developed. Practically, the top down perspective

games are not different from two other neighbors. They share the same game mechan-

ics, same blueprints, even same models except cameras. A camera is placed on top

and pointed down to track player’s movements and actions as well as capture the

gameplay. Also, the top down has a unique mechanic, which allows players to be ob-

served through kinds of houses while entering inside. Due to its enormous capturing

screen, the top down perspective would be mostly focused on developing Strategy

genre games, Online Role Playing Game games, and new comer, trendy genre Multi-

player Online Battle Arena games.

P a g e | 32

4. Level Design Workflow in trailer creation

During internship, there were opportunities to participate in various projects such as;

small games, interior designs, trailer creation, etc. With real life experiences, there

were different techniques and tricks which could be helpful for a level designer. This

project had typical goals for a level designer. During the workflow of creating a trailer

by using Unreal Engine 4, various models and objectives were created from other pro-

jects, and they were re-used in order to avoid time consumption. Furthermore, there

were also Autodesk 3D max and Adobe Premiere CSS5.5 which would be used for

supporting the workflow.

After receiving an order from a customer, the product would be delivered to customer

as a trailer video as soon as possible. The customer demanded to have a scene,

where viewers could feel a peaceful nature environment and the trailer should be lively.

In order to satisfy the customer demands, the workflow was divided into separated

parts which helps author to control the workflow. Those parts were not only important

to the author but also for any level designers since it helped tracking all the process.

4.1. Storyline Scripting

Mission

 Creating a peaceful natural environment.

Demands

 No game play, only background/ trailer style.

 Animations in order to provide liveliness to the scene.

 Location is unbound but prefer places with lakes.

 Trailer could be maximum at 1 minutes and minimum at 30 seconds.

Story scripting

Based on the requirements, an environment which took place in a forest would be suit-

able and satisfy the customer.

Assuming viewers take a walk in a forest in the morning, enjoy their freedom and

merge themselves into nature. There would also be a small waterfall and a slowly flow-

ing river.

P a g e | 33

4.2. Map Creating

In order to create a scene mentioned above, a landscape in Unreal Engine 4 was cre-

ated. There were two possibilities to create a map.

In the first method, the map could be created in 3D software such as Autodesk 3Dmax,

Blender, Maya, then the map would be imported to Unreal Engine to continue decorat-

ing.

In the second method, level designers could create a map straight from Unreal Engine

by using the engine landscape tool as well as other supporting tools. Due to the pur-

poses of this thesis, the author chose the second method to demonstrate the workflow.

Unreal Engine 4.13 was selected to create this project. In the beginning, users could

select the blueprints of the project such Third person, First person, Vehicle, Virtual Re-

ality, Top down, etc. All the blueprints could be modified within the workflow. However,

the best suitable blueprint was Blank, because the project only needed one camera to

render at the end. Therefore, add-on blueprints would be unnecessary.

After opening the blueprint, users could delete unnecessary default models and select

the Landscape option tab (Figure 24). This Landscape option provides to the user the

ability to create the open world map.

Inside Landscape option, there were three different types of hierarchy children options -

Manage, Sculpt and Paint option – those options had their own specification functions

to support users in map creation. However, at this stage, the Sculpt and Paint option

were disabled since the user needed to finish the first Manage layout in order to pro-

cess further.

P a g e | 34

Figure 24. First step of creating a map, using Manage option under Landscape.

The map Section size was selected as 7x7 Quads size, since the scene would not

need to be very big. The size could be adjusted from Section Size. Users should avoid

the Fill world option on the left side at the end, because it would consume a vast

amount of hardware usage to fill the world map, which was totally not fit for the purpose

of the project (Figure 24).

The next step was selecting the suitable ground material for the scene. Due to the de-

mand from customer, the scene would be a jungle theme so users could choose

grasses and soils for the ground. There were various materials, some were provided by

Unreal Engine from basic contents (red highlighted area – Figure 25). On the other

hand, users could also create their own materials and import them into the engine.

P a g e | 35

Figure 25. The ground material (grasses and soils) was selected and applied to the project.

After creating the basic layout for the map, under the Paint option tab users were al-

lowed to apply materials by using painting brush mode. There were four defaults op-

tions which would be matched with the material name (red highlighted area - Figure

26). Those layout material options must be chosen in order to continue. As from top to

bottom, there would be:

 First option, grass material – it was only basic grasses material.

 Second option, grass and soil material – it was mixed together.

 Third option, only soil material.

 Fourth option, water material.

P a g e | 36

Figure 26. Paint option material layout.

At first sight after creating the map as well as setting up the materials, users could see

the layout was covered in black color. Hence, users should use the paint brush to make

the materials appear into the map. This process could take a short or a long time de-

pending on the size of the brush.

The last option in Landscape is the Sculpt tool. A decent quality layout map could not

appear in flat surface. Therefore, after covering the map by materials, users needed to

modify the height of the map using a sculpting tool. Basically, the sculpt tool functioned

like a paint tool but it defied how to raise on or fall off the area. According to the envi-

ronment, which would be an inside jungle, fall off areas were created in order to adjust

as a river afterwards. By using enough amount of brush falloff strength, the river area

was modified while holding Shift and pressing left mouse button (Figure 27).

The appearances could be frustrating in the beginning but as a level designing job,

there must be step by step approach to fix problems which usually occurred while using

sculpt tool.

P a g e | 37

Figure 27. Sculpting the layout map, workflow of making river area and height map.

At this stage, there would be a basic level designed map, where all the materials were

applied and the heights were adjusted. Foliage option was the next phase for the map.

There were models of grasses, small trees, small rocks, etc (Foliage models could be

used in massive amounts and they were automatically grouped together into batches

that are rendered, using hardware instancing, meaning that many instances could be

rendered with only a single draw call). Users could add the foliage models that were in-

tended to use by “+ Add Foliage Type +” (Figure 28). There was no limitation for adding

foliage. However, every foliage counted as RAM usage, so a good designed map

should be calculated by the amount of models in used.

In addition, depending on users, painting the foliage would be different. For example,

users could increase the Paint density to maximum 1 value in order to paint grass, and

decrease to nearly minimum 0,1 for painting trees. Therefore, the result would be more

legit looking (red highlighted area).

After that, the grass models were placed on the map by using paint tool. Moreover, all

types of foliage models could be selected at once and placed on the map. Users had to

be careful since it could easily become overwhelming.

P a g e | 38

Figure 28. Placing and painting foliage grass models.

The next phase would be importing static models such as rocks and trees. This was

the main job of level designer – placing and creating the scenes, based on models pro-

vided (Figure 29). The scale of rock model was modified by using scaling option (R –

short key) or manually adjusting through XYZ axis (red highlighted circle) as well as the

rock’s position by rotating (E – short key) and moving (W – short key), even though

those rocks would intersect with the ground but it would not be a problem. In additional,

the model type should be Static selected (red highlighted box) because the rocks would

not be able to move or be interacted, therefore Static option definitely improved the

lighting effect later on.

The difference between Static, Stationary and Movable could be explained as:

 Static – used mostly to un-movable objects on which the light never changed.

For example, grass, trees, rocks.

 Stationary – used mostly to objects which would not need to be moved around

but still needed animation like changing color when receiving light.

 Movable – used mostly to character objects which constantly changed position

or were moving around.

Sometimes, all of them would be twisted, depending on purpose. For example, rock

models or tree models could be selected as stationary objects when the designer

wanted to close up rendering light effect on that specific object. After all, the level de-

signer will do what is best to achieve the goals.

P a g e | 39

Figure 29. Importation and modification of rock models on the map in Unreal Engine.

In this step, a pipeline river was used by blueprint, it displayed as a simple plane with

water material and flow animation (Figure 30). The plane could be extended by picking

at the end point and extruding (Alt + drag to desired direction). Moreover, the position

of each point could affect the flow animation.

For example, based on XY-axis coordinate, if the third point was lower than the second

point at X-axis, the flow animation would change into flow down animation accordingly.

Therefore, the lower the points, the more waterfall the flow animation would have.

P a g e | 40

Figure 30. The creation of waterfall, based on adjusting points after points. The lower each points after

points, the heavier waterfall effect occurred.

When the river flow was done, another blueprint was used to create pipeline trees. The

blueprint functioned like the river pipeline but with different materials of course. In this

blueprint, the starting point would be the root of a tree, then by extruding the connec-

tion points, users could create a full grown tree (Figure 31).

Those points could also be bent to achieve even more realistic branches. After separat-

ing tree’s body and tree’s branches, the final step was attaching the branches into the

body.

Users could also adjust or modify how many branches they desired (red highlighted

area). There was a ticked box “add branches” option (red highlighted area) but it only

focused on decorating small branches.

To achieve a realistic looking tree, level designers should manually create other tree

(smaller than the original one) by using the method above. They attached the tree to

the original one and transform it into branches (small trees were attached into bigger

trees to become big tree’s branches). The result would be a huge tree with different

size of branches pointing out at all directions.

P a g e | 41

Figure 31. The process of creating a huge realistic looking tree, using blueprint pipeline and placement of

other smaller trees.

4.3. Modelling and Importing

In order to create the props for this project, various amounts of ready-made models

from the author’s previous projects were used. Also, AutoDesk 3D max was used to

create the rocks, trees and materials for the ground.

Models could be made and imported from another software into Unreal Engine 4.

However, the easiest and most common way was just to drag-drop those supported file

formats (.OBJ, .FBX) of desired models into the destination folders.

P a g e | 42

The modelling process began as the rock models were created in AutoDesk 3Dmax.

At first, a cube was created and modified in editable mesh mode with turbo smooth

effect (Figure32). In the final stage before exportation, the rock model was approximate

five thousand and three hundred polygons.

The rock model was then imported into Unreal Engine by drag-drop method (Figure

33). In the red highlighted area, there were important options which users must pay

attention to in order to avoid encountering the importation problems.

For example, for non-moving objects, users must not tick on the “skeletal mesh” since it

was meant to be used for humanoid characters only (because those models have their

skeleton animation within). Also users must always tick on “auto generate collision” and

“import materials” as well as “import texture” unless they only wanted to use original

non-materials or textures models.

Usually, if users intended to use models with seperated parts, the Combine meshes

option should not be ticked because the engine would wrap up all parts into one big

mesh. That process would destroy the animations which were placed within those

separeted parts.

Figure 32. The rock model at final stage in AutoDesk 3D max.

P a g e | 43

Figure 33. The important options when imported models into Unreal Engine.

After importing the rock models, the “auto generated UV map” option was selected to

generate the rock’s UV map (Figure 34). Inside the red highlighted area, those options

were set as default but the “destination lightmap index” value should be at 1 in order to

apply the UV. On the left side of the picture, there was a UV map which was built after

applying the generating process.

This method demonstrated the process of using Unreal Engine in order to generate an

overlap UV map, which can sometimes occurr after importing model. When objects are

made from another 3D software with UV map layout ready, this method is not

neccesary.

P a g e | 44

Figure 34. Generating UV map process after importing the rock model inside Unreal Engine.

4.4. Camera workflow

In Unreal Engine 4, camera workflow is one of an important features which can heavily

effect the quality of the final product.

A good level designer must be able to controll the camera in order to maximize the

benefit from it. In some cases, if the map has some problems and there is not enough

time to fix it, then the camera can be very important to save the project.

Objects and models or even bad locations inside the map, can be hidden away by

using camera workflow. Once the level designer understands what the camera can

provide, the quality of project can improve.

This camera workflow process requires specific skill in cinematic observing. The

process is described in details at below.

In Unreal Engine 4, users could choose “Add matinee” under “Cinematic” option tab

(Figure 35). Then, after the engine had created the matinee actor, the “play on Level

Load” under Play section must be ticked on, otherwise the camera would not be able to

work. Next, by clicking the ”Open Matinee”, users could configure the workflow of the

camera.

P a g e | 45

Figure 35. Setting up the first step for camera workflow process.

Once the Matinee actor was opened, there were two groups that should be created; Di-

rector Group and Camera Group (Figure 36). The Director Group acted as a director

who controls all the functions or workflow executed by users and the Camera Group.

Meanwhile, the Camera Group was the place where users could input and adjust all

camera workflows.

There were also two types of dots (red circle area). From the left to right side, the red

dots stood for the total length of the video (at 0:00 as the beginning of camera workflow

to 45:00 second as the ending) and the green dots stood for actual length of the video

(in this case, amount of total and actual time was same value).

P a g e | 46

Last but not least, there was also a black strip under a green dot on the left side, which

stood for event camera position.

Figure 36. Setting up the duration of camera for the project rendering.

After adjusting the starting position of the camera at 0:00, users could press “Enter” to

mark into the system. Indicators would appear as dark red arrow icons (inside and on

top of green area; Figure 37).

There were six marks representing six locations of the camera.

During each movement of the camera, users should carefully place a reasonable

amount of time in order to avoid the sudden changing angle of view causing an

uncomfortable motion for viewers.

For example, from 0:00 to 10:00 second, the camera should have ten seconds to move

from position at 0:00 to position at 10:00 and so on. This process required the actual

experience from level designers to adjust since it totally depended on the purpose of

the scene.

P a g e | 47

Figure 37. The process of placing and marking each camera position during the workflow.

4.5. Post Process

In this section, Adobe Premiere Pro CS5.5 was used in order to create the after effect

for final product. The project was exported as rendered images (.PNG) and combined

into video. The engine provided three options for outcome results such as Video

format, Images format and sequence formats.

Rendering by image format was recommended as safer than a video format. If there

would be problems which during the rendering time, users could always resume the

process if they had chosen image rendering. Otherwise, they would lose all if video

rendering selected.

When all the images were rendered, a new sequence was created in Adobe Premiere

Pro CS5.5 (Figure 38). Then, a whole full images package was combined to become a

video clip.

Furthermore, the “Level” option under “Effect” tab was selected in order to twitch the

post process effect. Basically, users could select, drag and drop the “Level” icon into

the video to activate the effect controls.

After activating the “Level” effect, “Effect Controls” tab was used for modifying the

effect. By adjusting the “(RGB) Black” values from 0 to 20, the scene was put in a

blurring foggy effect which was suitable for the purpose. In level designing, there were

definitely no limitations on creating speciall effects for projects. With imagination, level

P a g e | 48

designers can twist, bend the values of White Balance, RGB coloring, or even reverse

the camera workflow to achieve various special effects.

Figure 38. Adding effect and creating fog environment inside Adobe Premiere CSS5.5.

After polishing all effects, a music soundtrack was imported into the sequence (green

area below the video, Figure 39) and adjusted to fit with the video length. As mentioned

in the theoretical part, music brings users mental pleasure when observing the product.

P a g e | 49

Therefore, based on the genre and the scene, the sound track of Morning Mood by

Edvard Grieg was purchased to be used in this project.

Usually, the music part has a longer duration than the video clip. However, users

should not shorten the duration by compressing it. This causes the fast forward speed

effect while playing. Instead, users could trim or cut the un neccesary parts out, so the

soundtrack could play at its normal speed.

When all images were rendered in full high defination resolution (1920p x 1080p), the

final product matched to the same export resolution.

Figure 39. The final step, the final video was exported in 1920p x1080p (16:9 resolution).

P a g e | 50

4.6. Final and Future work

Even though the project was successfully deployed, there are still dozens of problems

which could be improved in the future (Figure 40). For example, the Frame per second

(Fps) of the project was dropped below ten frames per second, which was very effect

the user view. Inside the red circle area, the system indicated the frame per second

warning.

The reason of that suddent frame drop was not only due to low Graphic Proccesing

Unit (GPU) as well as the Random Access Memory (RAM) from the computer, but also

the numbers of props, models and foliage also increased the usage of computer’s

resources (Figure 40). In addition, those blueprints which were used to create water

flow animation and wind effect were one of the main problems causing frame drop due

to ”Event tick” function [3,55].

There are many solutions to those problems. Users could either improve their

computer’s hardware (GPU,RAM) or reduce the number of props and models used

inside Unreal Engine. In addition, when developing games, users should be

recommended not to use the unneccesary ”Event tick” function since it had an effect on

frame per second.

P a g e | 51

Figure 40. Frame per second dropped problem and the System Information of the computer which was

used to build this project.

In this particular project, the purpose of the final product was meant to be a trailer so

the frame per second was not a disadvantage. Because, as a video format, the frame

would always stay at standard value twenty five frame per second.

To sum up, this project required:

 three weeks full time of work (Modelling, camera workflow and map creating

included).

 Three hours of rendering time when the system boosted with 1075 images.

 Four hours of post process time.

The project can be reviewed at:

https://www.youtube.com/watch?v=vxq5xYbHwHE&feature=youtu.be.

https://www.youtube.com/watch?v=vxq5xYbHwHE&feature=youtu.be

P a g e | 52

5. Conclusion

Game Engine in general and Unreal Engine in particular not only plays an important

role in game industry, but also in other related fields such as 3D advertisements, real

estate advertisement and movie industry. It reduces the amount of time spent on

game development and project costs. Moreover, the engine also connects program-

mers to graphic designers so they could both easily develop the same project by us-

ing the same engine.

The game engine cannot totally replace all other software. The users must also have

knowledge in other software such as Adobe Photoshop, Autodesk 3d max, Autodesk

Mudbox, Zbrush and Lightwave in order to maximize the benefit of the engine.

This thesis focuses on multiple ways to create different game levels. When creating

3D models for game levels, the creators need to practice 3D modeling to achieve

enough knowledge to create playable levels. Finally, the Unreal Engine will certainly

develop in the future because there is a need to create more complex games.

P a g e | 53

References

1. 23 recommended and available 3D game engines (updated); Category: Level

design, Game environment design ; December 12, 2012 (Updated: July 28, 2016).

URL:http://www.worldofleveldesign.com/categories/level_design_tutorials/recommende

d-game-engines.php Accessed in 22 January 2017.

2. Pete Ellis. Clever Level Design: More than Meets the Eye; 31 March 2016.

URL: https://80.lv/articles/how-to-build-good-levels-for-games/ Accessed in 22 January

2017.

3. Unreal Engine 4 blueprints documents.

URL:https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Events/#ev

enttick Accessed in 28 March 2017.

4. Pluralsight. Keeping your player engaged-Tips for Great Game Level Design;

Febuary 6, 2014.

URL: https://www.pluralsight.com/blog/film-games/keeping-players-engaged-tips-great-

game-level-design Accessed in 3 Febuary 2017.

5. Jesse Schell. The Art of Game Design: A book of lenses; Chapter 9 to chapter 13.

URL: http://www.sg4adults.eu/files/art-game-design.pdf Accessed in 14 Febuary 2017.

6. New York Film Academy. Four Tips For Captivating Level Design; September 22,

2015

URL: https://www.nyfa.edu/student-resources/four-tips-for-captivating-level-design/

Accessed in 18 Febuary 2017.

7. Goohan. Top 10 Greatest Video Game Genres.

URL: https://www.thetoptens.com/video-game-genres/ Accessed in 5 March 2017.

8. Breakout Picture source.

URL: https://learnopengl.com/#!In-Practice/2D-Game/Breakout Accessed in 10 January

2017.

9. Nick Tylwalk. Top 20 Mobile Game Of All Time; 2014.

P a g e | 54

URL: http://gamesided.com/2013/08/24/top-20-mobile-games-of-all-time/ Accessed in

10 January 2017.

10. Mohit Kumar Rao. 2D City Background game art; 2016.

URL: http://mohitkumarrao.deviantart.com/art/city-2d-game-background-design-by-

mohit-kumar-rao-623290321 Accessed in 10 January 2017.

11. Benji Edwards. Super Breakout ’s Rainbow – Smashing Astronaut; October 16,

2006.

URL: http://www.vintagecomputing.com/index.php/archives/212 Accesed in 10 January

2017.

12. Potter1992. Level of Detail; September 26, 2013.

URL: https://potter1992.wordpress.com/2013/09/26/level-of-detail/ Accesed in 10

January 2017.

13. Retro Gamer Team. BattleZone; May 19, 2009.

URL: https://www.retrogamer.net/retro_games80/battlezone/ Accessed in 11 January

2017.

14. Rushabhgamedesign. Battle City (1990); January 7, 2013.

URL: http://rushabhgamedesign.blogspot.fi/2013/01/battle-city-tank-1990.html

Accessed in 20 March 2017.

15. Felix Movie Thoughts. Mirror Edge Review.

URL: https://felixmoviethoughts.wordpress.com/2016/05/05/mirrors-edge-review/

Accessed in 20 January 2017.

16. Danny Biven & Bryan Rose. Super Mario Word Review Revisit; April 2, 2016

URL: http://www.nintendoworldreport.com/feature/42441/super-mario-world-review-

revisit Accesed in 20 January 2017.

17. The Angry Bird picture source.

URL: http://angrybirdsbfm.weebly.com/transmedia-analysis-of-angry-birds.html

https://iamyourtargetdemographic.files.wordpress.com/2012/03/angry-birds-22.jpg

Accesed in 20 January 2017.

P a g e | 55

18. Jordan NewMan. Level of Detail; September, 2013.

URL: https://jnewman96.wordpress.com/year-2/oo-design/level-of-detail/ Accessed in

20 January 2017.

19. Mike Williams. Resident Evil 7 E3 Demo: in Reality, It’s Virtually P.T.

URL: http://www.usgamer.net/articles/resident-evil-7-e3-2016 Accesed in 21 January

2017.

20. Ernest Adams. Fundamentals of Game Design: Game Worlds; October 8, 2009.

URL: http://www.peachpit.com/articles/article.aspx?p=1398008&seqNum=3 Accessed

in 21 January 2017.

21. Rostislav Nikolayev. Making An Award Winning in UE4; November 24, 2015.

URL: https://80.lv/articles/making-an-award-winning-scene-in-ue4-with-no-experience/

Accesed in 21 January 2017.

22. Pinterest. Explore vertical field, vertical space, and more!

URL: https://www.pinterest.com/pin/354869645610339224/ Accesed in 22 January

2017.

23. Cliff Bleszinski. History of Unreal Engine; Febuary 23, 2010.

URL: http://www.ign.com/articles/2010/02/23/history-of-the-unreal-engine?page=4

Accessed in 22 January 2017.

24. Classes.soe.ucsc.edu. History of Unreal Engine.

URL:https://classes.soe.ucsc.edu/cmps164/Spring09/ass1/btkachef/Unreal_Engine/His

tory.html Accessed in 23 March 2017.

25. Unreal Engine. Patches released support.

URL: https://docs.unrealengine.com/latest/INT/Support/Builds/index.html

Accessed in 22 March 2017.

26. Joy Bossardet. The best and the worst of androids free zombie games; 2013.

URL: http://unrealitymag.com/video-games/the-best-and-the-worst-of-androids-free-

zombie-games/ Accessed in 22 March 2017.

P a g e | 56

27. Simon Miller. Hitman Review; Febuary 2, 2017.

URL: http://www.trustedreviews.com/hitman-review Accessed in 22 March 2017.

28. Charles Onyett. The Elder Scrolls V: Skyrim Review; November 10, 2011.

URL: http://www.ign.com/articles/2011/11/10/the-elder-scrolls-v-skyrim-review

Accessed in 22 March 2017.

29. Matthew Rorie. Call of Duty 2 Review; January 18, 2006.

URL: https://www.gamespot.com/articles/call-of-duty-2-walkthrough/1100-6136916/

Accessed in 23 March 2017.

30. Chris Plante. Need For Speed: Most Wanted Review; October 30, 2012.

URL: http://www.polygon.com/2012/10/30/3575034/need-for-speed-most-wanted-

review Accessed in 22 March 2017.

31. Jeff Gerstmann. Need For Speed: Most Wanted Review; October 30, 2012.

URL: https://www.giantbomb.com/reviews/need-for-speed-most-wanted-review/1900-

537/ Accessed in 23 March 2017.

32. Chris Plante. Resident Evel 7 Boss Fight Director Koshi Nakanishi Interview;

Febuary 20, 2017

URL: http://www.theverge.com/2017/2/20/14668330/resident-evil-7-boss-fight-director-

koshi-nakanishi-interview Accessed in 23 March 2017.

33. Rosh Kelly. Urban Chaos: Most relevant police video game; October 17, 2016.

URL: https://www.vice.com/sv/article/why-2006s-urban-chaos-riot-response-is-2016s-

most-relevant-police-video-game Accessed in 23 March 2017.

34. Metascore. The Legend of Zelda: Breath of the Wild game score rating.

URL: http://www.metacritic.com/game/switch/the-legend-of-zelda-breath-of-the-wild

Accessed in 23 March 2017.

35. Alex Hern. The Legend of Zelda: Breath of the Wild review; March 2, 2017

URL: https://www.theguardian.com/technology/2017/mar/02/the-legend-of-zelda-

breath-of-the-wild-review-link-nintendo-switch Accessed in 23 March 2017.

P a g e | 57

36. Reddit. StarWar Battlefront First person vs Third Person threads.

URL:https://www.reddit.com/r/StarWarsBattlefront/comments/3ta0gz/first_person_vs_th

ird_person/ Accessed in 15 April 2017.

37. StarWar Battlefront picture source.

URL: http://www.gamepur.com/news/18826-new-star-wars-battlefront-1080p-

screenshot-shows-difference-between-first.html Accessed in 23 March 2017.

