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1 Introduction

This thesis is based on data mining the Theseus dataset. This dataset is maintained by

Arene Ry [1], the Rector’s Conference of Finnish Universities of Applied Sciences and

is  publicly  available  [2].  The  Theseus  dataset  contains  over  100,000  theses  and

publications  written  by  graduates  from 27  Finnish  universities  of  applied  sciences.

Focus was put  on exploring and exploiting the information contained on the thesis

topics.  A thesis  record contains information about  its  topics by manually  annotated

keywords by the author and curated subjects by the librarians.

Therefore, the goal of this thesis was to build a web application that allows to explore

thesis topics. The application allows the user to discover the most popular topics in a

university or degree programme and the most popular degree programmes for a series

of selected topics. Moreover, different clustering techniques were applied to provide a

better  user  experience,  allowing  similar  degrees  to  be  visualized  together  and

compared. 

The data mining techniques used in this project are general enough to be applicable to

other domains that generate big amounts of documents such as legal documents or

medical documents. The work presented serves also as a foundation for future study

regarding  the  evolution  of  the  popularity  of  topics  over  time  and  the  detection  of

trending topics.
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2 Theoretical background

2.1 Use of Open Academic Datasets

Over the last few years loads of attention have been paid to the data industry. The first

reason  for  this  is  the  increasing  amount  of  data  that  the  world  is  continuously

producing. The decrease in the cost of data storage has made it possible to store all

the data that is produced. Some of this data has been made accessible to the world

through the umbrella  of  Open Data.  For  example,  in  Finland,  through the platform

Avoindata,  there  are  more  than  1,500  open  datasets  available  to  the  public  to

download [3].

Based on a report from AMKIT from 2014, the Theseus repository is the biggest open

repository on full text in Finland [4]. The Finnish tertiary education system is divided

into traditional research universities (yliopisto,  universitet) and universities of applied

sciences (ammattikorkeakoulu abbreviated as AMK, yrkeshögskola abbreviated as YH)

[5]. The Theseus repository concerns only the universities of applied sciences. A similar

work based on publications from research universities would have been much harder

as there is no central repository and a considerable effort should have been put into

integrating the different repositories.

Figure 1. Screenshot of Theseus browse by collections interface [2].

The Theseus web application allows to browse, search and consult theses organized

by collections. Collections are made of a hierarchy of universities of applied sciences
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that contain degree programmes as it can be seen in figure 1. The interface includes

statistics about  the number of theses and publications for each collection. Figure 2

shows the Theseus interface that allows to search theses by typing one or more words

that will be searched on the theses metadata [6].

Figure 2. Screenshot of Theseus search interface [2].

The Theseus web application works well for finding theses when the search criteria is

known. For example, Theseus allows to find the most recent publications for a degree

programme. However, as Robbert van der Pluijm argues in his essay, general search

often fails to deliver meaningful results when the user does not know exactly how to

state what he/she is looking for [7]. Theseus does not provide an interface to explore

related topics or related degrees that could help a user expand his/her search criteria

to discover relevant topics or degrees that he/she may have not think of first.

Techniques  to  better  discover,  compare  and  visualize  the  information  available  at

Theseus can be applied for different purposes. In Finland there are a lot  of degree

programmes  and  a  person  looking  to  choose  a  degree  and  university  may  find

inspiration from open data. Finding a degree that has several written theses about a

topic is a good indicator that there is such a specialization during the studies. University

students may also benefit from being able to explore thesis topics to draw inspiration to

choose a topic and write their own thesis. Academic planners may also benefit from

being  able  to  compare  their  curricula  to  other  universities  and  degrees.  Finally,
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employers  may  also  benefit  from  identifying  degree  programs  with  specific

specializations to contact and create partnerships.

A comparable global open repository known as arXiv contains over one million papers

mostly  in  the  fields  of  Physics,  Mathematics  and  Computer  Science.  The  arXiv

repository  has  been  operating  since  1991  and  it  adds  on  average  around  300

publications per day [8]. More recently, the addition of an average of 50 thesis per day

since 2009 in a single country indicates that there is a lot of information in the Theseus

repository.

An  example  of  a  discovery  tool  is  the  Paperscape  project  that  visualizes,  in  an

interactive  map,  the  arXiv  papers  grouped  by  area  of  knowledge  based  on  the

references of the papers. In figure 3 each paper is represented by a circle, with its area

proportional to the number of citations. Paper positions are based on references so that

a paper is attracted by all other papers that reference it. The blue area in the centre of

figure 3 contains papers in the high energy theory category. [9]

Figure 3. Screenshot of Parperscape academic papers map [9].

More recently, a French start-up named Impala has developed a platform to help high

school students discover the different professions and degrees in France [10]. For that,

they  use  a  map  of  professions  created  from  the  description  of  those  professions

provided by Onisep, a public editor that gathers information about study programmes
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and professions in France [11]. In figure 4 professions are represented by circles that

are grouped and coloured based on the domain area. Clicking on a circle allows to

access the degrees that lead to that profession and other relevant information.

Figure 4. Screenshot of Impala professions map [10].

The  Theseus  repository  is  unique  in  itself  because  of  its  completeness  and  the

richness of theses metadata which contains already annotated topics by the authors

and librarians. The Theseus data is also continuously updated with new theses so that

information regarding degree topics stays up to date.

2.2 Data Mining Overview

Data mining is the process of discovering patterns and relationships in large volumes of

data by  using methods from the areas of  computer  science,  statistics and artificial

intelligence [12]. Data mining is a general term and it can often be confusing. Moreover,

since  the  data  mining  term first  appeared  in  the  1990s,  its  meaning  has  evolved

together with the appearance of new data challenges and methods. In the early days,

data mining was often linked to Business Intelligence (BI) applications, where patterns

were discovered by the computation of formulas and aggregations over big commercial

datasets to create operational dashboards and reports consumed by humans. Later on,

the development of more heterogeneous datasets, such as those generated by the

Internet  where data is  often of  less quality than the data governed by a company,

required the application of machine learning techniques to extract knowledge.
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Machine  learning  algorithms  can  be  divided  into  supervised,  unsupervised  and

reinforcement learning. In supervised learning the algorithm is trained on some input

data to predict an expected output. Once the algorithm is trained, it is expected that it

will  be able to predict  an output for new data in which the output is not previously

known. An example of supervised learning is the problem of learning to recognize cats

and dogs in pictures by providing a set of already classified pictures. In unsupervised

learning the algorithm allows to discover patterns to better understand and represent

the data. An example of unsupervised learning is the detection of groups of users that

have a similar shopping behaviour in an e-commerce platform. Unsupervised learning

algorithms are harder to evaluate because the correct answer is not known and thus

unsupervised learning is often evaluated based on its utility to better understand the

data, detect patterns and improve the results from other techniques. In reinforcement

learning the algorithm allows an agent to learn some behaviour on the data based on

feedback from the environment. An example of reinforcement learning is a program

learning  to  play  a  game  by  adjusting  its  actions  by  playing  several  games  and

observing the final score. [13]

In this thesis, unsupervised learning techniques such as dimensionality reduction and

clustering will be applied. Dimensionality reduction techniques such as PCA and t-SNE

transform the data to a representation with fewer variables in order to select features,

improve the results of other machine learning algorithms or allow visualizing the data in

two or three dimensions. Applied clustering techniques such us k-means, DBSCAN and

hierarchical  clustering  are  used  to  discover  groups  of  similar  elements  to  better

understand and represent the data.

Together  with  the  evolution  of  applied  methods  in  data  mining,  there  has  been  a

development of the data mining process. Based on a poll by KDnuggets in 2014 the

most used data mining process was the Cross Industry Standard Process for Data

Mining  (CRISP-DM)  [14].  The  CRISP-DM  process  was  conceived  in  1996  and

structures the data mining process in six phases that are illustrated in figure 5.
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Figure 5. Relationship between the different phases of CRISP-DM. [15]

Surprisingly, the second most commonly used process found by the poll was labelled

as “My own”,  suggesting  that  several  data analysts,  engineers and scientists  have

developed their own methodologies. For example, Benjamin Bengfort (2015) criticizes

the so called traditional “data science” pipeline as it does not meet the requirements for

building modern data products based on machine learning [16]. He argues that those

new products should be able to incorporate new data generated by having the user

interact  with the product.  Those new systems able to generate new data are often

referred as data products.

To  describe  the  process  of  building  data  products,  Bengfort  introduces  a  new

classification of a data pipeline in two phases:  the build phase and the operational

phase; and four stages shown in figure 6: interaction, data, storage and computation.

Bengfort considers this pipeline to be more suited for building data products because

human feedback can be introduced back to the system to improve it. This feedback

allows  to  create  systems  that  automatically  improve  over  time,  by  exploiting  user

generated data. This data is generated by having the user interact with the product, for

example, annotating data, gathering clicks or user actions.
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Figure 6. Relationship between the different phases of the Bengfort data product pipeline. [16]

As previously stated, the most popular data mining process dates back from 1996. This

has  led  many  professionals  and  companies  to  develop  their  custom  or  in-house

methodologies. Little has been written regarding formal data mining process compared

to the extensive bibliography that deals with specific algorithms or techniques. For that

reason, this thesis presents the results of all phases of a data mining project and their

relationships instead of focusing on only one.

Over  the last  few years,  a  new series  of  data  mining techniques known as  Deep

Learning have rapidly developed. Those techniques have improved the performance of

algorithms to annotate text [17], images [18] and sound data [19]. It is expected that in

the following years, those new deep learning techniques will also reflect on new data

mining methodologies that will be used to create AI products.
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3 Methodology and Tools

In order to create the final application the work was performed and will be presented in

six different phases:

1. Collecting the Data.

2. Exploring the Data.

3. Cleaning the Data.

4. Analysing the Data.

5. Modelling the Data.

6. Visualizing the Data.

In theory, the phases above are performed sequentially in order.  For example, it is first

required to have some data to be able to explore it. In practice, the data process is

iterative in nature, that is, after going through one phase it is possible, and advisable, to

go back to improve on the previous phases. For example, after allowing the user to

interact with the data, data inconsistencies may be found that require further cleaning

of the data. Another example is that after analysing the data it may be discovered that

there is not enough collected data and it is required to evaluate other sources to collect

more data to improve the results.

Multiple iterations are needed, and each builds up a more complex and better suited

model at each phase. The work presented here, includes the compiled results from all

iterations. The six different phases can be divided into three subgroups that are very

interdependent with different goals: collecting data to be able to explore it,  cleaning

data to be able  to analyse it  and modelling  data to be able  to visualize  it.   First,

exploration generates information that  is  used to better  understand the data.  Then,

analysis generates new data, clusters for example, that is used to better represent the

data. Finally, interactive visualizations generate a user experience that allows to get

user feedback over how to improve the product in the next iteration.

Several languages, frameworks and tools exist for working with data. For this thesis,

Python was  chosen  as  the main  programming  language to  collect,  explore,  clean,

analyse and model  the  data  for  its  popularity  and extent  of  available  libraries  and
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frameworks to work with data. JavaScript was chosen as the programming language to

build an interactive web data visualization. The different tools, libraries and frameworks

are gathered in table 1.

Table 1. Tools used to handle data.

Phase Language Libraries and frameworks

Collect Python Scrapy

Explore Python Jupyter Notebook, Pandas, Matplotlib

Clean Python Pandas, Pymongo

Analyse Python Scikit-learn, Scipy, Numpy

Model Python Pymongo, Flask

Visualize JavaScript AngularJS 1.6, Angular Material, D3.js

During the different phases, data was transformed between different representations.

Those representations include the initial  XML format in  the Theseus repository,  the

JSON format for storage, Numpy arrays and Pandas DataFrames for exploration and

analysis.  Moreover,  at  the  API  level  data  was  deserialized  to  Python  objects  from

database cursors.

Furthermore, the application was deployed on an AWS EC2 instance with a MongoDB

database, a Flask API and a Nginx HTTP Server. Other used tools include Gunicorn as

a Python WSGI HTTP Server.
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4 Building Ammattiko

The results in this section are based on the data collected by 6 April 2017. All the code

is open source and available on Github [20].

4.1 Collecting the Data

Theseus  uses  the  DSpace  [21]  open  source  software  to  create  an  open  access

repository. Theses metadata can be harvested using the OAI-PMH protocol supported

by  DSpace  and  made  available  by  Theseus  in  XML format  through  HTTP  [22].

Previous  work  by  Gebresilassie  (2014)  goes  into  more  detail  about  Harvesting

Statistical Metadata from Theseus [23].

To collect the data needed for this project, a web scraper was developed to extract the

data from the Theseus repository in XML and store it in JSON. The scraper was built

using the Python framework Scrapy. Two different spiders were developed, one for the

theses  metadata  and  other  for  the  collections  metadata  with  information  about

universities  and programmes.  The  extracted data  was  stored in  JSON.  The  JSON

format was chosen instead of CSV because the extracted data fields contained array

values that are easier to store in JSON. Moreover, the JSON format was chosen over

the  native  XML  because  it  can  be  directly  loaded  into  Pandas  Dataframes  for

exploration and imported into databases such as MongoDB for  querying.  A Scrapy

pipeline was also developed to clean and load the scraped data both into a file for

exploration and into the database for modelling. The scraper can be launched multiple

times, and each time it will add new theses to the database.

4.2 Exploring the Data

In this phase, different statistics and graphs are computed on the scraped data to get a

better  understanding  of  the  data.  Data  exploration  lies  within  the  framework  of

Exploratory Data Analysis (EDA) that allows to formulate different hypotheses about

the data. The results in this phase are either produced using the MongoDB aggregation

framework or the Pandas library. The graphs are plotted with Matplotlib.
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After running the scraper, 118,212 theses metadata have been collected. An example

single thesis record contains the following information:

{

"_id": "oai:www.theseus.fi:10024/474",

"dates": ["20130819T10:18:05Z"],

"collections": ["com_10024_14", "col_10024_174"],

"urls": ["http://www.theseus.fi/handle/10024/474"],

"authors": ["Hakala, Lilli"],

"organizations": ["Satakunnan ammattikorkeakoulu"],

"programmes": ["Viestinnän koulutusohjelma"],

"orientations": [""],

"abstracts_fi": [

"Opinnäytetyössä kartoitettiin verkkovideoiden”],

"abstracts_en": ["The aim of this thesis is to chart … "],

"abstracts_sv": [],

"languages": ["fi"],

"subjects": [

"verkkojulkaiseminen", "verkkoviestintä", "verkkojulkaisut",

"video", "verkkolehdet"],

"keywords" : [],

"titles" : [

"Hyvä ja toimiva video sanomalehden verkkopalvelussa"],

"document_urls" : [

"http://www.theseus.fi/bitstream/10024/474/1/Hakala+Lilli.pdf
"],

"years" : ["2008"],

}

Listing 1. Example thesis document metadata.

Each thesis contains a unique identifier such as oai:www.theseus.fi:10024/474 that will

be stored in the database on the field _id. The rest of the field names are pluralized

because  although  for  this  example  thesis  only  the  fields  collections,  subjects  and

keywords contain more than one element, this is not the case for all theses.
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Figure 7 shows that only three fields have always one element: urls, dates and years.

The rest of the fields can have between 0 and 121 elements. The boxplot x-axis is

limited to 20 elements to better visualize the information. The boxes indicate fields that

have  multiple  array  lengths  that  are  frequent.  This  is  expected  for  subjects  and

keywords, but also happens for orientations. The rest of the fields have some outliers

that are represented by the dots. The box-plot shows that a thesis may have multiple

authors. That is totally possible because the Theseus dataset contains not only final

year theses but also publications from the different universities of applied sciences.

Figure 7. Boxplot of array lengths for each field.

The only fields that have no empty arrays are urls, dates, collections and years. Table 2

shows the number of theses with missing values for each field in more detail. A thesis

contains textual information about the programme and organization, but there are some

missing values. Instead, the codes present in the collections array were used to get the

name of the organization and programme by merging them with the separately scraped

data about the collections. The information from the collections data is considered to be

more reliable and updated, compared to the textual fields that were input when the

theses were submitted. Moreover, the programme or university names may change in

the future like it has already happened when Kymenlaakso UAS and Mikkeli UAS were
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merged to form XAMK (South-Eastern Finland UAS) from the 1 January 2017 [24]. At

the moment, this change has not being reflected on the Theseus dataset yet.

Table 2. Missing values count for each field.

Field Missing values count

abstracts_sv 113359

orientations 62983

subjects 50409

abstracts_fi 15134

keywords 13435

abstracts_en 13262

programmes 2726

authors 339

organizations 140

document_urls 43

languages 20

titles 1

years 0

collections 0

dates 0

urls 0

The statistics for the language field in figure 7 and table 2 indicate that some of the

118,212 collected theses have no language and that some other theses have more

than one language on the metadata. That is probably an inconsistency in the data that

may  need  further  processing  so  that  this  data  can  be  exploited.  These  kind  of

inconsistencies can be due to a data entry error when the thesis was submitted or due

to a data migration. Often present in real datasets, these inconsistencies happen when

the data is part of a system that does not validate sufficient constraints on data input.

The years field satisfies the constraint of having only one value for a given thesis. In

order  to  know whether  the field  values are  clean,  it  can also  be useful  to  get  the

number of distinct values for each field.
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Table 3. Distinct values count for each field.

Field Distinct values count

keywords 144,554

authors 124,720

document_urls 121,311

_id 118,212

urls 118,212

subjects 32,369

orientations 7,572

collections 1,053

programmes 911

years 589

organizations 47

languages 17

Based on table 3 a possible inconsistency on the data regarding the years field is

discovered.  This  field was expected to contain a smaller  limited number of  values.

Further exploration of the actual values will prove this inconsistency. The number of

different values for the _id and the url fields match the number of theses, indicating that

those fields are unique. When loading the theses data in the database, the _id field

was used as a primary key.

Table 4. Year frequencies.

Year Frequency

2015 17,163

2016 16,780

2014 16,128

2013 15,941

2012 14,534

... ...

2008-05-02 1

2010-09-24T08:29:36Z 1

2007-12-3 1

2009,2010 1

[2008] 1



16

Table 4 shows the more popular year values are clean, and the inconsistency comes

from  some  outliers.  To  understand  the  data  it  is  important  to  sample  values  with

different frequencies.  The outliers still seem to contain information about the year but

in a different format that needs to be parsed. Because the Theseus platform to submit

theses was first launched in 2009 and most of the outliers suggest previous years, this

format inconsistency may have come from a migration script  that was used to load

theses from existing university repositories.

Table 5. Language frequencies.

Language Frequency

fi 101,623

en 12,177

sv 4,348

689

fr 13

fi, en 11

ru 10

de 6

other 4

es 1

se 1

swe 1

selkokieli 1

et 1

zh 1

eng 1

akuuttihoito 1

Table 3 showed that the language field had the less number of different values. Table 5

shows that there are three frequent languages for theses: Finnish (fi), English (en) and

Swedish (sv). There are also 689 theses that have one of the languages as an empty

string “”.

Regarding the exploration of thesis subjects and keywords it may be interesting to have

a closer look at the histogram of number of keywords and subjects. Comparison of

figures 8 and 9, shows that it is much more frequent for a thesis to contain no subjects
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than  no  keywords.  Apart  from  zero,  the  most  frequent  number  of  keywords  and

subjects for a thesis is four. 

Figure 8. Subjects histogram.

Figure 9. Keywords histogram.

It is expected that some keywords and subjects are more frequent than others. This

hypothesis  can  be  confirmed  by  plotting  the  histogram  of  keywords  and  subjects

frequencies. 



18

Figure 10. Subject frequency histogram.

Figure 11. Keyword frequency histogram.

Figures  10  and  11  show  that  there  are  multiple  subjects  and  keywords  with  low

frequencies. Both figures have a logarithmic scale on the y-axis. It is Important to note

that over 51% of subjects (16,597 subjects out of 32,369) and over 72% of keywords

(104,872 keywords out of 144,554) appear only in one thesis.

Keywords and subjects  frequencies  are included in  tables  6 and 7.  Keywords and

subjects are not  normalized and can contain spaces,  empty values and capitalized

letters.
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Table 6. Subject frequencies.

Subject Frequency

markkinointi 2,570

kehittäminen 2,510

nuoret 1,909

lapset 1,865

laatu 1,715

... ...

Ultrasonic transducers 1

Dental Caries 1

Medios-hanke 1

pain 1

agrologer 1

Table 7. Keyword frequencies.

Keyword Frequency

markkinointi 1449

asiakastyytyväisyys 1339

kehittäminen 1323

varhaiskasvatus 1285

työhyvinvointi 1231

... ...

environmental friendliness 1

banking risks 1

Cross-border cooperation 1

eläkelaitos 1

flirttikouluttaja 1

4.3 Cleaning the Data

Data  cleaning  is  the  process  of  correcting  inaccurate  records  from a  dataset  and

dealing with inconsistencies in order to fit the data into a model. A survey published by

CrowdFlower in 2016 reported that 60% of a data scientist’s time deals with cleaning

and organizing data [25, 6]. Data cleaning simplifies and improves the data analysis

phase  as  often  simpler  algorithms  perform  better  on  cleaned  data  than  complex
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algorithms on messy data [26].  On the one hand, a bigger dataset can sometimes

compensate  for  the  lack  of  data  quality  as  Halevy  argues  in  his  essay  The

Unreasonable Effectiveness of Data [27]. On the other hand, a combination of better

data and algorithms is sometimes needed to get better results [28].

The results from the data exploration phase have shown some data inconsistencies

that need to be treated, including: wrong values, missing values, duplicate values and

wrongly formatted values. While modern databases such as NoSQL allow to store data

without a model, it is still important to clean the data. When writing application code

that will query and handle data, it is important to know certain rules regarding the data

because  otherwise  programming  errors  will  be  raised.  Furthermore,  some  data

inconsistencies  may result  in  a  poor  user  experience while  building a  product  that

exposes them.

In order  to  build  a product  to  explore  thesis  topics,  only  certain  fields  need to be

cleaned. In particular, this phase presents the processing done for the following fields:

keywords, subjects, languages, years, dates, titles, universities and degrees.

Figure 12. Topics histogram.

Cleaning Keywords and Subjects

Keywords and subjects were normalized by transforming the text to lower-case, joining

both arrays and removing empty values and duplicates to create a new topics field.
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After the process, figure 12 shows that there are fewer theses with no topic compared

to the results in figures 8 and 9.

Cleaning Languages

It is expected for consistency that a thesis is written in a single language. Given that

the thesis metadata may indicate multiple languages, only one of them was kept in a

new language field. For simplicity,  the language kept was the first one in the array.

Other  techniques  such  as  giving  a  priority  to  a  language  or  inferring  the  thesis

language from other fields could have been employed but were not a priority for the

application built. When building the web application to explore Theseus data only three

languages will be selectable: Finnish, English and Swedish.

Cleaning Years

It is expected that the value of the year field contains only integers over a reasonable

range of values. For that, the year information was parsed with a regular expression.

This field would be important for mining topics trends over time.

Cleaning Dates

It is expected that this field contains a date object including date and time that can be

used to sort the theses in chronological order. For that, the field was parsed into a

Python datetime object that will be loaded as a MongoDB Date object.

Cleaning Titles

It is expected that a thesis has one title. While a thesis can have a title in different

languages, for simplicity only one title was kept. The first title in the titles array was

selected after empty values were removed.

Cleaning Universities

The university code was extracted from the thesis collections array to be the one that

started with  com (abbreviation of community) such as  com_10024_14.  The DSpace

repository is structured in a hierarchy of communities that contain collections [29]. The
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university name was inferred by joining the thesis data with the separately scraped

collection data.

Cleaning Degrees

The degree code was extracted from the theses collections array to be the one that

started with col (abbreviation of collection) such as col_10024_174. For simplicity, only

the first occurrence was kept. The degree name was inferred by joining the thesis data

with the separately scraped collection data.

4.4 Analyzing the Data

This phase explores the relationships between degrees based on topics to be able to

identify related degrees. Intuitively, related degrees are those that have a lot thesis with

topics  in  common.  Data  will  be  first  preprocessed  to  then  perform  dimensionality

reduction to project degrees in a 2-dimensional map and clustering to form groups of

related degrees based on computed distances between degrees. Degree projections

will be evaluated based on whether different groups can be identified visually. Those

groups are supposed to be separated from other groups. Clustering techniques will be

then used to programmatically assign the degrees to groups, named clusters.

4.4.1 Preprocessing the Data for Analysis

First, the thesis data was loaded into a Pandas DataFrame. A DataFrame is a data

structure similar to a table that contains labelled columns and rows. Then, the thesis

DataFrame was grouped by degree to get a list of all repeated topics that occur for a

given degree in  a Pandas  DataFrame (topics column) and the number  of  different

thesis (n_thesis column). Table 8 shows five example rows of the degrees DataFrame

with various number of thesis.
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Table 8. DataFrame of degree topics.

degree_id topics n_thesis

col_10024_100 [lääkehoito, development project, implementati... 46

col_10024_100099 [produktion, tga, biodegradable plastics, star... 1

col_10024_100100 [non-technical skills, caracters and character... 4

col_10024_101 [ammattitaito, konepajat, työssäoppiminen, aik... 228

col_10024_102 [arviointitutkimus, tietokoneen käyttö, käytet... 35

In order to run machine learning algorithms using libraries such as Scikit-learn, the data

needs  to  be  represented  in  a  matrix  that  contains  only  numbers.  Data  was

preprocessed using the CountVectorizer class to get a matrix with degrees in the rows

and topics with a global frequency higher than two in the columns [30]. The values in

the generated matrix  indicate how many times a topic is present  in  a degree.  The

generated matrix  was stored in  compressed sparse row format that  allows to save

space by  only  storing  the entries  that  are  non zero.  In  this  case,  storing  only  the

337,720 non zero elements instead of the total 42,936,048 (1,026 degrees * 41,848

topics)  allows to save 99,3% of  memory space.  Moreover,  computations run much

faster.

A common numerical statistic known as TF-IDF was then used to transform the topics

count matrix to a normalized TF-IDF representation. The term TF-IDF stands for term

frequency-inverse document frequency. For example, this technique is used by search

engines to weigh the importance of results given a user query [31]. Topics that have a

low frequency for all degrees but occur often for some degrees will be given a high TF-

IDF. The applied Scikit-learn TfidfTransformer uses the formula tf-idf(d, t) = tf(t) * idf(d,

t) to compute the TF-IDF score of  a topic  t where  tf(t) is  the topic frequency for a

degree and idf(d, t) is computed as idf(d, t) = log [ n / df(d, t) ] + 1 where n is the total

number of theses and df(d, t) is the number of theses that contain a topic d [32]. After

the TF-IDF transformation, the values in the degree topics matrix are bounded between

0 and 1.

4.4.2 Dimensionality Reduction with PCA

To explore the relation between degrees, each degree vector produced by TF-IDF was

transformed  into  a  vector  of  two  dimensions  that  can  be  visualized  on  the  plane.
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Principal Component Analysis (PCA) was first used to transform each degree vector

with dimension 41,848 into a two dimensional vector. [33]

Figure 13. Projection of degrees in two dimension using PCA.

Figure  13 shows a  projection  of  each degree into  a plane where each blue circle

represents a degree. Visually there are no clear separate groups of circles in figure 13.

Circle labels would be required to assess whether the degrees on the top left-hand

quadrant are related between themselves and significantly different from the ones in

the bottom right-hand quadrant.

Figure 14. Ratio of explained variance vs the number of PCA principal components.
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When performing PCA it is important to know the percentage of variance explained by

each component. In this case, the two principal components explain less than 5% of

the variance, meaning that a lot of information regarding the structure of degrees is lost

by considering only two components. Figure 14 includes a plot of the cumulative ratio

of variance explained by the first 1,000 principal components. To keep at least 99% of

the variance the first 953 principal components need to be kept. At first sight, PCA does

not seem to be a sufficient technique to represent degrees on two dimensions that

allow to visualize separate groups but  may serve as a preprocessing step to more

advanced techniques. Indeed, it  is recommended to use PCA before applying other

techniques such as t-SNE to suppress some noise and speed up the computation of

pairwise distances between degrees [34, 2589].

4.4.3 Dimensionality Reduction with t-SNE

T-distributed  stochastic  neighbour  embedding  (t-SNE)  is  a  dimensionality  reduction

technique specially useful for embedding high-dimensional data into a space of two or

three dimensions to visualize in a scatter plot. The algorithm behind t-SNE builds up a

low dimensional  distribution over the pair  of  points to minimize the Kullback-Lieber

divergence with the original distribution [34, 2581]. In this way, points are mapped to

locations that try to respect the original distances in the high-dimensional space. The

optimization  problem  is  solved  using  the  gradient  descent  method  and  different

initializations might result in different local minima of the cost function. In the case of t-

SNE, keeping all the variance is not necessarily recommended. For example, keeping

1,000 components in PCA results in a projection which includes some areas with a high

density of points but also a lot points uniformly distributed between those areas as it

can be seen in figure 15. 



26

Figure 15. Degrees projection using t-SNE with 1,000 PCA components and euclidean distance.

The noise present in figure 15 results from the difficulty of finding a stable solution that

satisfies all the distance constraints. Laurens van der Maaten recommends reducing

high-dimensional data to a limited number of 30 dimensions  [34, 2589]. 

Figure 16. Degrees projection using t-SNE with 30 PCA  components and euclidean distance.

Keeping  only  the  first  30  principal  components  allows  to  visually  recognize  some

clusters in  figure 16.  Both projections  configure  the perplexity  parameter  to  be 50,

within the recommended range of 5 to 50. The default euclidean distance was used

from the sklearn.manifold.TSNE package.
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The  quality  of  the  t-SNE  projection  to  represent  degrees  that  are  related  will  be

evaluated  manually  in  the  visualizing  the  data  phase  with  the  interactive  web

application  that  allows  to  see  the  name  of  the  degrees  by  hovering  over  them.

Exploration of the circles discovered that degrees with a lot of theses and topics are

situated on the borders of the plot to satisfy the distance constraints between them

while  degrees with  less  information are  situated in  a high-density  area around the

centre.

The cosine distance was also tested to perform t-SNE. The results and shape of the

clusters differ from those achieved by using the euclidean distance as it can be seen in

figure 17. 

Figure 17. Degrees projection with 30 PCA components, cosine distance and perplexity 200.

Exploration of the projected degrees proved that higher values of perplexity produced

projections that were more radial in shape like in figure 16 with the degrees with less

topics and theses in the centre of the projection and more separation between clusters.

A good balance between having separated clusters and keeping the proximity between

different  clusters  was  found  for  a  perplexity  value  of  20  applied  to  50  principal

components.  This  projection  is  shown  in  figure  18  and  will  be  used  for  the  web

application.
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Figure 18.  Degrees projection using t-SNE with 50 components and perplexity of 20.

4.4.4 Clustering Degrees with k-means

K-means is a popular clustering algorithm that requires to set the number of desired

clusters in advance. The clusters are built  iteratively by first initializing randomly the

cluster  centroids  (“central”  point),  then assigning points  to  the  closest  centroid and

finally updating the centroids as the average of all  the cluster  points.  The k-means

algorithm  is  designed  to  only  work  with  euclidean  distances  because  euclidean

distances can be averaged to update the centroids after each iteration. It is known that

the  euclidean  distance  does  not  perform  best  on  high-dimensional  data  because

distances between any two points tend to converge. [35]

Regardless of those limitations, some interesting information can be extracted from k-

means. Particularly, k-means can perform well to detect outliers [36].

In figure 19 k-means was used to label degrees in ten different colour coded clusters

plotted  on  the  t-SNE  projection  using  the  cosine  distance.  Manual  exploration

discovered that  the green cluster  at  the left  in  figure 19 corresponded to business

studies, the dark blue cluster at the top corresponded to social studies, the green one

at the bottom to studies in information technology, the red one at the bottom to studies

in  construction,  architecture,  machine  operator  and  electricity.  The  spread  yellow

cluster corresponded mostly to degrees in English. Finally, the lighter blue cluster that
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contains most of the points corresponded mainly to outliers, degrees that did not have

enough theses or topics and were harder to classify. 

Figure 19. Degrees k-means clustering colors and t-SNE projection using the cosine metric.

Figure 20. Degrees k-means clustering colors and t-SNE projection using the euclidean metric.

In  figure  20  k-means  was  used  to  show  how  cluster  labels  in  the  original  high

dimensional space are respected by t-SNE. Clustering results did not perfectly match

the  results  from t-SNE projections  but  still  there  are  some clear  clusters  that  are

concentrated in one location such the green and cyan coloured ones. Other clusters

such  as  the  red  and  yellow  one  are  splitted  in  different  separated  groups  on  the
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projection. This can be interpreted as t-SNE being able to capture some of the higher

level  clustering  but  probably  focusing  on  a  finer  level  clustering  than  ten  different

groups.

4.4.5 Clustering Degrees with DBSCAN

Density-based spatial  clustering  of  applications  with  noise  (DBSCAN)  belongs to  a

different family of clustering algorithms than k-means. The algorithm groups points that

are close together and can find clusters of different shapes. Clusters are composed of

areas with high density of points separated by areas with low density. Furthermore, the

number of desired clusters does not need to be specified in advance. Instead, two

parameters are required: the minimum number of elements to form a cluster and the

maximum distance between two elements in the cluster. [37]

In the case of clustering degrees, the minimum number of degrees to form a cluster

can be set to two and the maximum distance was set empirically to 0.04. Figure 21

shows the result of running DBSCAN on top of the output of t-SNE for degrees that

have at least 50 theses. By removing degrees that have not enough theses and lay

between  clusters,  DBSCAN  allows  to  assign  degrees  to  the  clusters  that  are

recognized visually.

Figure 21. DBCAN clusters on top of t-SNE data for degrees with more than 50 theses.
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4.4.6 Hierarchical Clustering of Degrees

Hierarchical clustering is a technique that seeks to build a hierarchy of clusters. The

algorithm iteratively  merges clusters based on a metric  and a linkage criteria.  The

advantages  of  hierarchical  clustering  include  that  it  is  not  necessary  to  specify

parameters such as the number of clusters or maximum distance between elements in

a cluster in advance. Instead the result of the clustering can be later used to divide the

degrees in multiple different clusters based on different splitting criteria. [38]

The degrees were clustered using the cosine distance and the ward linkage criteria.

The clustering was done using the Python library Scipy. Hierarchical clustering can be

visualized using a dendrogram as seen in figure 22. The dendrogram represents a tree

of degrees that are joined together depending on the chosen distance. Nodes of the

tree that are closer are more related. 

Figure 22. Extract from the dendrogram of degrees.

Figure 22 allows to see the structure of a subset of degrees. Following the branches of

the dendrogram the degrees can be first separated in two clusters: the purple one with
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degrees in  the business area and the yellow one with degrees in  IT.  Furthermore,

degrees in  IT can  then be further  separated  on  two more  precise  clusters:  the  IT

degrees in  Finnish  and  IT the degrees  in  English.  Furthermore,  the  IT degrees  in

English  can  be  separated  on  Information  Technology  and  Business  Information

Technology.  Hierarchical  clusters  then  seems  to  successfully  capture  the  different

levels of degrees based on topics.

Based on the results,  hierarchical clustering could be further used to create a user

experience where a user first selects for example between 10 degree clusters. After it

has selected one of the clusters, then another 10 sub-clusters are shown and so on

until  the desired degree is  found.  This  technique was explored but  is  not  included

because of the difficulty to generate labels for each cluster at each level. One possible

technique to generate labels consists of showing the  n  most popular topics for each

cluster.

4.5 Modelling the Data

In order to build a data product that will query data it is important to model the data in a

database. For this project MongoDB was chosen because of its flexibility to store data

and its powerful aggregation framework. MongoDB is a NoSQL database that stores

data in databases that use collections of documents in JSON format. On the one hand,

the flexibility of MongoDB compared to relational databases allows to evolve the data

schema fast when it  is not  known in advance.  On the other hand,  MongoDB lacks

features  such  as  transactions  and  data  migrations  that  need  to  be  handled

programmatically.

One database named theseus and four collections were created to store the different

entities:  theses,  universities,  degrees  and  topics.  The  theses  collection  contains  a

series of thesis documents as seen in listing 2 and allows to get more information by

joining  the  data  with  the  degrees  and  universities  collections  using  the  $lookup

aggregation. 
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{

"_id" : "oai:www.theseus.fi:10024/474",

"collections" : ["com_10024_14", "col_10024_174"],

"url" : "http://www.theseus.fi/handle/10024/474",

"authors" : ["Hakala, Lilli"],

"title" : "Hyvä ja toimiva video sanomalehden verkkopalvelussa",

"topics"   :   ["verkkolehdet",   "video",   "verkkojulkaisut",

"verkkoviestintä",  "verkkojulkaiseminen"],

"university" : {“_id" : "com_10024_14"},

"degree" : {"_id" : "col_10024_174"},

"year" : 2008,

"date" : ISODate("20130819T10:18:05Z"),

"language" : "fi"

}

Listing 2. Most important fields for a thesis document.

Most  of  the  information  was  processed  during  the  data  cleaning  phase.  Several

indexes  were  created  to  speed  up  the  queries  on  the  following  fields:  topics,

university._id, degree._id, language and date.

The university's collection only contains the university id and name as can be seen in

listing 3.

{

"_id" : "com_10024_1",

  "name" : "Seinäjoen ammattikorkeakoulu"

  }

Listing 3. Example university document.

The degrees collection contains a series of degree documents with coordinates and

cluster fields generated during the data analysis phase as it can be seen in listing 4.

The degrees data is denormalized and contains the university data which improves the

query performance by avoiding the need to perform a join at query time.
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{

"_id" : "col_10024_102",

"name" : "Kuntoutus (ylempi AMK)",

"x" : 0.3869592718,

"y" : 0.1993278414,

"cluster" : 2,

"university" : {

"_id" : "com_10024_15",

"name" : "Turun ammattikorkeakoulu"

}

}

Listing 4. Example degree document.

The topics collection in listing 5 was used to be able to get a list of suggested topics in

the front-end topics search bar. The topics count was precomputed and included to be

able  to  sort  the  search  results  by  popularity.  Regular  expression  queries  were

performed on this collection to find topics.

{ 

"_id" : "markkinointi",

"count" : 3513

}

Listing 5. Example topic document.

To be able to send the database data to the front-end application a web API  was

developed  with  the  Python  library  Flask.  Seven  endpoints  were  developed  and

documented in table 9.
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Table 9. API endpoint descriptions.

Endpoint Description

/theses Returns a list of theses that match a query.

/universities Returns the list of all universities.

/degrees Returns a list of degrees that match a query with their counts.

/degrees/<degree_id> Returns a degree from its id.

/topics Returns a list of topics that match a query with their counts.

/counts Returns the number of matched entities.

/search_topics Returns a list of topics with their counts.

Some of  the  endpoints  also  accepted  query  strings  such  as  fields,  where,  group,

search and  limit.  For  example a request  to  the endpoint  /degrees?where={"topics":

{"$in":["python"]}} will  return  a list  of  degrees with  the number  of  theses that  have

python as a topic.

Several aggregation pipelines were built in MongoDB using the following operations:

$unwind,  $match,  $in,  $group,  $sum,  $sort, $limit,  $project,  $lookup and $regex. The

$unwind  operator was used to perform aggregations on topics by deconstructing the

topics array field to output a document for each topic. The $match operator was used

to filter theses by different criteria. It was important to execute the $match aggregation

before the rest to make use of the indexes. The $in operator was used together with

the $match operator as an equivalent of the $or operator to filter theses that contained

any of  the specified topics.  The  $group  and $sum  operators were used to get  the

number of theses for each topic or degree. The  $sort operator followed by the  $limit

operator were used to only get  the most popular topics and degrees. The  $project

operator was used to select the fields returned by the query. The $lookup operator was

used to join the aggregated counts by degree with the degree information. The $regex

operator was used to get a list of matching topics based on the user input on the topics

search bar.
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4.6 Visualizing the Data

This phase focuses on describing the functionality  of  the web application built  that

contains  a  dashboard  to  interactively  explore  topics  and  degrees.  In  the  previous

phases the generated graphs were static and did not allow the user to interact with

them. This limited the exploration of the different clusters and the evaluation of the

applied techniques.

To overcome these limitations a web application was built using JavaScript. AngularJS

was  used  as  a  framework  to  control  the  application  logic  and  D3.js  was  used  to

generate  the  visual  elements.  AngularJS  version  1.6  proved  to  be  a  powerful

combination together with Angular Material to create a dashboard with minimal code.

D3.js  was  a  natural  choice  to  visualize  JSON  data  and  integrate  graphs  in  the

dashboard. A state variable was created on the AngularJS scope and synchronized

with the url so that different views of the application could be shared between users

through the url. Graphs were updated by settings watches on the scope values. D3.js

code was integrated in AngularJS by creating two custom directives for  the bubble

chart and the bar graph.

The dashboard shown in figure 23 is divided into two parts: filters and reports.  Filters

allow the user to search for theses by topics, filter theses by university and filter theses

by language. The dashboard contains three reports: degrees, topics and theses. 

 

Figure 23. Ammattiko dashboard page.
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Degrees Report

The degrees report visualizes degrees as circles on a map with coordinates computed

by t-SNE on  the Analysing  the  Data  phase.  The  area of  the  circle  was set  to  be

proportional to the number of theses published for the degree. Hovering on a circle

shows a legend with information regarding the name of the degree and the name of the

university. One or more degrees can be selected by clicking on the circles. Selecting

one degree filters the topics and theses reports. Selecting multiple degrees extends the

topics and theses reports with the new degree using the OR logical operator.

Topics Report

The topics report visualizes the most popular topics as horizontal bars. The bars width

(and area) were set to be proportional to the number of theses with a topic. One or

more topics can be selected by clicking on the bars. Selecting one topic filters degrees,

topics and theses reports. Selecting multiple topics extends the degrees, topics and

theses reports with the the new topic using the OR logical operator. By also filtering

topics based on the selected topics, topics co-occurrences were explored to discover

related topics. 

Theses Report

The thesis report  contained a list  of  the most  recent  theses that  match the search

criteria sorted by published date. The number of matched theses was included at the

top  of  the  report.  Clicking  on  a  thesis  opens  a  new  tab  with  the  Theseus  page

containing all  information for  the thesis,  including the ability to download the thesis

paper.

Example Use Case

An initial  action by a user may be to search for a domain-specific topic to find the

degrees that cover that topic. For example a user interested in IT can search for the

most popular degrees that have published theses in javascript by typing in the search

bar and discover that there are two main clusters of degrees covering this topic. The

search bar returns a list of the matching topics based on the text entered ordered by

popularity.  The degrees map in figure 24 shows two initial  clusters that correspond
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mainly  to  the  IT studies  in  Finnish  and English.  In  this  case,  Swedish studies  are

located closer  to  the  English  cluster.  The  user  can also  discover  related topics  to

javascript in case he wants to expand his search with more topics on the topics report.

Figure 24. Screenshot of dashboard filtered by javascript.

Figure 25. Screenshot dashboard filtered by two topics, ohjelmointi and javascript.

For  example,  the  user  may then want  to  expand its  search to  include theses that

contain the topic javascript or ohjelmointi (programming) as it can be seen on figure 25.

Some  extra  clusters  will  appear,  containing  degrees  in  Finnish  about  kone-  ja

tuotantotekniikka (machines),  sahkotekniikka (electricity)  and  automaatiotekniikka
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(automation). Those degrees appear to also teach programming but are not focused on

web development in javascript.

The user can then zoom in a cluster to discover which are the most popular degrees.

After zooming in the bigger cluster the circles gets separated. Zooming in the Finnish

IT cluster shows that it can be further divided into two smaller clusters that correspond

to mainly  studies of  Tietotekniikka (information technology)  at  the bottom right  and

Tietojenkäsittely (information processing) at the top left in figure 26.

Figure 26. Degrees report filtered by ohjelmointi and javascript, zoom on the Finnish IT cluster.

The dashboard allows to filter also by university and language. For example, the most

popular topics can be found for Metropolia Ammattikorkeakoulu in English as shown in

figure 27 on the mobile version where reports are separated in different tabs. Theses

can be consulted on the theses report as shown in figure 28.
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Figure 27. Most popular thesis topics for Metropolia Ammattikorkeakoulu.

Figure 28. Example theses report.
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5 Discussion

The results from this thesis allowed to develop an interactive dashboard to explore

thesis topics and degrees. Multiple challenges were encountered at each stage of the

data mining process. The three phases that took the most time were: exploring the

data, analysing the data and visualizing the data.

The  data  collection  part  was  found  to  be  a  relatively  straightforward  part.  A

considerable amount of time was spent on understanding and evaluating the quality of

the  theses  data.  In  the  data  exploration  phase,  several  data  inconsistencies  were

raised  including  missing,  duplicate,  inaccurate  and  unformatted  values.  Those

inconsistencies were expected as the Theseus dataset is a real dataset in continuous

evolution and which allows user input.  These inconsistencies also contribute to the

relevance of the work as the presented techniques can be applied to a larger set of

data  available.  Indeed,  it  is  said  that  most  of  the  generated  data  nowadays  is

unstructured.  Regardless  of  the  data  inconsistencies  found,  the  Theseus  dataset

contained a lot of information that could be mined. While all the data processing was

performed in memory and thus the Theseus dataset can not be exactly considered

within the framework of big data of 5 Vs [39], it still has some of the characteristics of

big data regarding its volume, variety, velocity, variability and veracity. Furthermore, the

Theseus dataset is unique because it gathers all universities of applied sciences in a

single country, allowing to make relevant comparisons.

The understanding and processing of the data allowed to analyse the data to enrich it

with new inferred properties such as the projection coordinates and the degree cluster

labels.  The  analysis  phase  focused  on  exploring  the relationship  between  degrees

based on topics. Similar  techniques could have been used to explore the similarity

between topics to create a topics map or the similarity between theses to create a

thesis map. The biggest challenge found when trying to cluster the degrees was having

to  deal  with  outliers  or  insufficiently  annotated  data.  Indeed,  the  Theseus  dataset

contains  not  only  degree  programmes  but  also  collections  of  publications.  Some

degrees and some collections do not contain sufficient theses or annotated topics for

the algorithms to know how to classify them. These insufficiencies could have been

further  treated  by  extracting  the  topics  from  the  thesis  titles  or  abstracts.  The
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dimensionality  reduction  technique  t-SNE  seemed  to  perform  the  best  while

representing the degrees on a 2-dimensional  map.  Most  of  the time was spent  on

selecting  the  different  parameters  for  the  algorithm.  After  having  applied  multiple

clustering techniques, it was found that the models are relatively easy to apply but little

has been written about how to choose the right parameters. The choice often depends

on the domain and the understanding of the data and are based on experiments and

heuristics.  The  three  presented  clustering  techniques  showed  some  benefits  and

drawbacks.  The  most  interesting  results  came from the  hierarchical  clustering  that

allows to perform multiple partitions of the data at different levels. An improvement over

the  developed  system would  exploit  the  levels  of  clusters  to  help  the  user  find  a

relevant  degree by navigating a hierarchy.  Evaluation and generation of  meaningful

cluster  labels  proved  to  be the most  challenging part.  In  some applications,  those

phases  are  still  performed  manually  by  exploring  the  results.  Other  clustering

techniques such as affinity propagation, HDBSCAN or biclustering could have been

applied and compared.

The  data  model  chosen  to  store  the  data  proved  MongoDB  to  be  a  flexible  and

performant database to create a fluid user experience. All data aggregations were able

to be executed under one second due to the creation of database indexes and pre-

aggregation  of  some  data.  The  developed  dashboard  allows  the  user  to  discover

popular topics and degrees. Multiple options were allowed to filter the data by providing

topics  auto-completion  and the visualization  of  related topics  and degrees.  Special

effort was put into having a balance between the facility to use the dashboard and the

number of options possible. On the one hand, having too many options to interact with

the data can make the user lost. On the other hand, limiting too much the user options

may make the user frustrated. It is expected than sharing the work with more people at

different  universities  will  provide  valuable  feedback  over  how  to  improve  the  user

experience.  For  instance,  some users  found the degree  map to  contain  too  many

overlapping  circles.  The  zoom  functionality  allows  to  separate  the  circles.  Another

possible improvement would have been to use the hierarchical clustering to only show

labelled  clusters  of  degrees  that  would  display  only  the  cluster  members  when

selected. The laptop and tablet experience provide a better user experience than the

mobile one because the ability to see all the reports at the same time and the relations

between applying filters on the topics and degrees. Difficulties were found on adapting

the dashboard to mobile screens as the ability to hover over visual elements is not

clear.
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6 Conclusion

The goal of this thesis was to data mine the Theseus open data repository to discover

popular topics and popular degree programmes. A good understanding of the quality of

the  data  was  achieved  by  applying  different  data  mining  techniques  and  multiple

reports  and  graphs  were  created.  The  web  application  built  allows  the  user  to

interactively filter published theses by topics, universities, degrees and languages to

subsequently find the most popular degrees and most popular topics. Furthermore, the

degrees map using t-SNE embeddings proved to be useful to convey the information

regarding the study area. Several clustering techniques were applied to cluster degrees

but were not included on the web application because of the difficulty to evaluate the

results and label the clusters. Nevertheless, hierarchical clustering appeared to be the

most promising technique that could be used to deliver a better user experience by

allowing the user  to  select  between the different  levels  of  clusterings,  each cluster

labelled with the most popular topics.

A future line of development could explore the evolution of thesis topics over time to

identify trending topics. The evolution of the topics popularity over time for a degree

may be a good indicator of the reactivity of the study plans to adapt to the changes in

the industry and job market.
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