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The thesis covers the evolution of the JavaScript programming language from its inception 
up until the ECMAScript 6 iteration of the standard. The goal of the thesis was to analyse 
the language’s new features and to explain how they affect its structure, purpose and na-
ture. 
 
The project was carried out mostly through exhaustive literature review and as a technical 
analysis of the new features. The latter was often executed by comparing the ES6 features 
with their old ES5 equivalents. Code examples were added anywhere relevant in order to 
explain and support specific claims. 
 
As a result of the technical overview of ECMAScript 6, the thesis intends to prove how the 
new iteration of the standard is developing the language further by introducing new innova-
tive features thus allowing programmers to build powerful applications more simply and 
efficiently. Moreover, the structural changes of the languages were taken into consider-
ation and their impact analysed. 
 
In conclusion, the ECMAScript 6 standard certainly tries to redefine the language itself, 
mostly with the inclusion of classes. While JavaScript was considered a functional pro-
gramming language, it is safe to conclude that it has started to move towards object-
oriented principles in the recent years. With its increasing popularity, it is reasonable to 
expect an acceleration in the redefinition of the language. 
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1 Introduction 
The web is becoming more and more complex and the applications running behind the 

scene are growing in terms of functionality and complexity. In 2017, JavaScript is at the 

heart of it all. All browsers can interpret JavaScript code and most of the dynamic na-

ture of web pages is made possible because of JavaScript. In the recent years, the 

language has spread even further, expanding to the server side with technologies such 

as Node.js. This thesis covers the birth of JavaScript, putting it in context with its pre-

decessors, and its evolution to this day. Then are introduced the core concepts of EC-

MAScript6 and the new features it brings to programmers. Finally, an attempt is made 

to explain how this iteration of the ECMA standard will develop the web further for 

years to come. 

2 Brief history of JavaScript 

2.1 From hypertext to graphical browsers 
JavaScript itself was created in 1995, but it is useful to examine the time before this to 

understand the context in which it was born. While the communication over a network 

go as far as the 1960s, the Internet as we know it really started to develop in the 1980s 

and 1990s. The JavaScript discussion really becomes relevant when browsers start to 

emerge on the Internet as a way to access web pages over the HTML protocol. In its 

infancy, the Internet was a mean for researchers and scholars to exchange information. 

It was the National Center for Supercomputing Application (NCSA) who developed the 

first graphical web browser [1]. Its predecessors, such as ViolaWWW and Lynx, were 

purely textual browsers and while they are an integral part of the development of the 

Internet, they never gained mainstream traction. The creator of Mosaic was Marc An-

dreessen who would later join Netscape and work on the Navigator product. The re-

lease of Netscape Navigator is pivotal for the history of JavaScript and the web in gen-

eral.  

 

2.2 Netscape Navigator and Brendan Eich 
In 1995 Netscape started supporting Java but soon faced the problem that web de-

signers and developers were generally not Java developers or even acquainted with 

the object-oriented principles. A smaller-scale, purpose-built language was needed. In 

1995, the company hired Brendan Eich, who was tasked to develop a language that 

would allow both web administrators to connect and interact with the database and web 
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developers to interact with the web pages in the browser and make them more dy-

namic [2, 46]. Already in its inception the language had both a client and server pur-

pose. A loosely-typed scripting language was born under the wing of Eich and was 

called Livescript. In the same year the language was renamed JavaScript, a marketing 

move that was supposed to exploit Java’s momentum, but would eventually lead to a 

lot of confusion substantial confusion among the general public and new programmers. 

[3] [4] 

 

2.3 Fighting a bad reputation 
The evolution of JavaScript from its humble beginning to today is quite remarkable. In 

its early inception, it was considered by many a hobbyist scripting language, much dif-

ferent from fully fledged and tooled languages such as Java. However, its purpose-built 

nature allowed it to grow and be adopted overtime by other browsers. According to 

Shannon Horn, the language went from a phase of enthusiasm to a phase of distrust 

(partly because of security issues) followed by a renaissance in the more recent years. 

 [5, 36] 

 

2.4 Microsoft 

Microsoft recognized the potential for JavaScript and created its own implementation of 

the language called JScript. The language, which was first released in Internet Explorer 

(IE) 3, was very similar to JavaScript but with a few IE-specific features. Over the next 

few years, both Netscape and Microsoft would continue developing their own version of 

the language. The languages remained very similar, but the discrepancies between led 

to the two led to a will to standardize. [6, 27] 

 

2.5 Standardisation 
In 1996, as JavaScript grew in popularity, it was taken to ECMA for standardisation. 

ECMA is an organization founded in 1961 whose focus is to provide and publish stand-

ardisation in the IT and ICT field [7]. In a press release, Netscape said that “to enable 

interested parties to review the JavaScript proposal, Netscape is posting the JavaScript 

specification on its Internet site [8].” 

 

The first edition of the standard was ready in June 1997 and published under the code-

name Standard ECMA-262. The report, entitled ECMAScript: A general purpose, 

cross-platform programming language, officially defines for the first time the web scrip-
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ting language called ECMAScript. While ECMASCript is a language and a standard of 

its own, JavaScript, JScript and ActionScript are implementations of the standard [9]. 

 

2.6 The long road to ECMAScript 6 

The most important update to the standard came in 1999 when ECMAScript 3 was 

released. It introduced a large numbers of new concepts such as do-while, regular ex-

pressions, exception handling and several string methods. The next version (4), called 

Harmory, was eventually abandoned. According to Brendan Eich, the creator of 

JavaScript, “Some ES4 proposals have been deemed unsound for the Web, and are 

off the table for good: packages, namespaces and early binding.” [10] We had to wait 

until 2008 for ECMAScript 5 to be released. It includes features like strict mode, getters 

and setters and JSON support. The most recent implementation is now ECMAScript 6 

which was accepted in June 2015 and is slowly being supported by browsers. Most of 

the code written by web developers still uses ECMASCript 5 syntax and concepts but 

more and more ECMAScript 6 features are being used by developer and integrated 

into JavaScript frameworks. The next section is the core of the thesis and will discuss 

the new concepts introduced by the new standards. It will do so by explaining their 

structure and purpose. On a more global level, this thesis attempts to explain how 

these new features will promote the language and move the web forward [11, 45]. 

 

3 ECMAScript 6 

3.1 Transition period with transpilers 
Transpilers, in the most generic sense, translates  code into a different standard. In 

the context of ES6, transpilers are very useful for programmers to write code that is not 

yet fully supported by all browsers. It allows the web developer to write next generation 

JavaScript already today and have it translated into code that browsers fully compre-

hend. The two most popular ES5 to ES6 transpilers today are Google Traceur and 

Babel (formerly 5 to 6). As more and more features are supported by browsers, the use 

of transpilers will become irrelevant. The next section of the thesis will cover the differ-

ent new features of the language. 

3.2 New features 

3.2.1 const and let 
ES6 is introducing the const and let keywords. let allows the programmer to declare a 

variable which only exists within a block. It is similar to the var keyword which scope 
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extended to either the function or globally, depending where it is declared. The let key-

word allows for more control over the scope of the variable. 

 

function testingLet() { 

    let x = 100; 

    if(x < 150) { 

        let x = 200; 

        console.log(x) // 200 (inside the block) 

    } 

    console.log(x); // 100 (initial value because we 

existed the block) 

} 

Listing 1. Code example for let 
 

In the example above, the result would be different if we used var instead of let. This 

very simple example shows the potential for using the let keyword instead of var if we 

want to manipulate the value within a block only without changing the value of the vari-

able within the function. 

 

Constants are being introduced through the const keyword. The purpose of a constant 

is to allow for maintenance and immutability. They are used to set the value of a vari-

able that should essentially never change. In the exceptional cases where you would 

change the value of a constant, it remains easy to do. Usually declared on top of the 

file, the constant value can be changed in a single location and let the application use 

the new value throughout its code [12]. 

 

3.2.2 Scopes 
As we have seen with the let keyword, ES6 provides more flexibility when it comes to 

scoping. In ES5, variables could only be globally available or valid only inside a func-

tion. ES6 introduces the concept of block scoping to the language. 

 

Block scope 

A block can have different shapes, for example: an if block and a for loop are both con-

sidered as blocks. The following example shows how a constant can be defined within 

a for loop and changed on every iteration. The value is still immutable but since the 
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scope is limited to the block, it is reset on every iteration. Trying to redefine a constant 

in the same block will create an error. 

 

function constScope() { 

  for(var i=0; i<arguments.length; i++) { 

    const OUTPUT = arguments[i]; 

    console.log(OUTPUT); 

  } 

} 

constScope('first', 'second'); 

Listing 2. Code example for block scope 
 

In ES5, the language has a function-level scope. Variables cannot be block-scope vari-

ables per-se. It is, however, possible to emulate block-scoping by writing the following: 

 

function foo() { 

    var x = ‘hello’; 

    if (x) { 

        (function () { 

            var x = ‘world’; 

         }()); 

    } 

// x ‘. 

} 

Listing 3. ES5 block score emulation 
 

Listing 3 is a good example of how ES5 emulation drove the language forward. Many 

of the new features introduced by ES6 have been executed in ES5 through a series of 

hack and third party code. 

 

Hoisting and temporal dead zone 

The variables declared with let are considered to be in a ‘temporal dead zone’ from the 

start of the block until the actual variable declaration. This means that if the variable is 

called before it is declared, a TypeReference error will be thrown. This is important to 

keep in mind since it differs from how var variables are treated. A var variable will be 

hoisted to the top of the block so it will be made available before it is actually declared. 

This is possible because the JavaScript interpreter does two passes on the code. In the 

first pass, it hoists the variable to the top of the block. Hence, they are available in the 
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second pass when other operations are processed. Let variable do not get such treat-

ment. 

 

3.2.3 Arrow Functions 

To understand the new arrow functions, it is best to look at a comparison example be-

tween the ES5 and the ES6 nomenclatures: 

 

function(x, y) { return x + y; } // ES5 

(x, y) =>  x + y // ES6 

Listing 4. Comparison between a regular ES5 function and a ES6 arrow function 
 

 

Essentially, arrow functions allow programmers to avoid typing the function and return 

keywords, the curly brackets and the semi-colon. This makes the code much easier to 

read and maintain. Let us consider the following arrow function: 

 

values => values[0]; 

Listing 5. Simple arrow function 
 

As Listing 5 shows, the return statement of a single-statement arrow function is implicit. 

Moreover, since we have a single argument, we can drop the parentheses. In this 

case, the function returns the first value of the values array. In other programming lan-

guages, these single-statement functions are usually called Lambdas. 

 

Arrow functions and this 

The this keyword has always been slightly problematic in JavaScript since it behaves 

differently than other languages. In PHP for example, this refers to the instance of a 

class: the current object. In JavaScript however it refers to the function it sits in. Every 

function creates its own context.  

 

Contrary to traditional functions, the arrow function does not create its own this in-

stance. It simply inherits it from the scope surrounding it. In regular functions, the fact 

that every single function comes with its own scope can create problems. Let us con-

sider the following code: 

 

function testThis (service) { 

  var that = this; 
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  that.foo = 'Hello'; 

  service.execute(function (response) { 

    that.foo = response; 

  }); 

} 

Listing 6 Storing this value in ES5 
 

Listing 6 illustrates a fairly regular ‘hack’ in JavaScript. Upon entering the inner function 

whose role is to execute a function of the service, we encounter a scoping problem 

where this has a new value. For that reason, we store the value of the outer function 

into the variable that and use it in the inner function. With arrows functions, this prob-

lem is solved. Note that the problem above could also be solved with bind(), another 

relatively verbose alternative. In ES6, the arrow functions allows us to do the following: 

 

function testThis (service) { 

  this.foo = 'Hello'; 

  service.execute((response) => this.foo = response); 

} 

Listing 7. Arrow function and this 
 

The inner function can use this directly without having to first store its value in a tempo-

rary variable. This is extremely useful when dealing with inner functions as it simplifies 

the syntax greatly which in turn leads to a less error-prone code. This is most likely the 

most useful feature of the arrow function in ES6 [13] [14]. 

 

3.2.4 New parameters and operators in ES6 
Several new types of parameters and operators are introduced to the language with 

ES6. The following section will introduce the rest and default parameters as well as the 

spread operator. 

 

Rest parameter 

Rest parameters are denoted with the ellipsis (...). In ES5, when wanting a function 

containing an undefined amount of arguments, programmers can use the arguments 

keyword which is an array containing everything that was passed to the function. Let us 

compare ES5 and ES6 codes. 

// ES5 

function hobbyComparer(myHobbies) { 
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  for (var i = 1; i < arguments.length; i++) { 

    var hobby = arguments[i]; 

    if (myHobbies.indexOf(hobby) === -1) { 

      console.log(false) 

      return false; 

    } 

  } 

  console.log(true); 

  return true; 

} 

var myHobbies = ['volleyball', 'painting', 'fishing']; 

hobbyComparer(myHobbies, "volleyball", "painting"); 

 

 

// ES6 

function hobbyComparer(myHobbies, ...yourHobbies) { 

  for (var yourHobby of yourHobbies) { 

    if (myHobbies.indexOf(yourHobby) === -1) { 

      console.log(false); 

      return false; 

    } 

  } 

  console.log(true); 

  return true; 

} 

var myHobbies = ['volleyball', 'painting', 'fishing']; 

hobbyComparer(myHobbies, "volleyball", "painting"); 

Listing 8. Use of the rest operator in ES6 
 

The sample function in Listing 8 checks if both parties share all of the same hobbies. In 

the ES6 code, it is made clearer that the function is expecting both my hobbies (com-

monly referred as the haystack) and your hobbies (referred as needles). We do not 

have to rely on the arguments keyword since everything that comes after it is con-

sidered as being part of the same argument and stored into an array. In ES5, the ar-

guments keyword contains all of the arguments passed to a function while the rest pa-

rameter only contains the last one. One more difference is that the rest parameter is an 

actual array, which allows you access to all native array methods in order to manipulate 

it. 
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Default parameter 

Default parameters are a feature already available in several traditional programming 

languages such as Java or PHP. It is finally being included in the language as part of 

ES6. It can alleviate issues related to undefined variables within a function. The follow-

ing code snippet clearly shows the usefulness of default parameters. 

 

// ES5 

function greet(name) { 

    var name = typeof name !== 'undefined' ?  name : 

'visitor'; 

    console.log('Hello '+ name); 

} 

greet(); 

 

// ES6 

function greet(name=’visitor’) { 

    console.log('Hello '+ name); 

} 

greet(); 

Listing 9. Default parameters in ES6 

 

With the new syntax, there is no more need to check if the argument passed is unde-

fined. It is done on the argument level directly by assigning it a default value in the case 

of an undefined value. Even in the case of an argument specifically set to ‘undefined’, 

the default value will be used.  

 

Spread operator 

As with the rest parameter, the spread operator uses the ellipsis to represent a single 

entity that could be separate entities. It is most often used as an example replacement 

for the Function.prototype.apply() approach utilised in ES5.  

 

// ES5 

array = [1, 2 ,3]; 

function.apply(null, array); 

 

// ES6 
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array = [1, 2 ,3]; 

function(...array)); 

 

//ES6 

var numbers = [3, 4]; 

var numbers2 = [1,2, ...numbers 5,6]; // [1,2,3,4,5,6] 

 

//ES6 

numbers2.push(...numbers); //[1,2,3,4,5,6,3,4] 

Listing 10. Array manipulation with the spread operator 

 

As Listing 10 shows, it is possible to insert an array within another array with the help 

of the spread operator. It also allows for array easy array pushing. Spread operator 

makes array manipulation easier and cleaner. 

 

3.2.5 String manipulation: template strings, interpolation, tags and raw strings 
Template strings are string literals allowing for simpler multi-line strings. By using the 

backtick character ( ` ) around strings, it is possible to easily output multiline strings. A 

perhaps more useful feature is the possibility to interpolate, or substitute a variable 

directly within a string without having to rely on the concatenation operator. 

 

//ES6 

let x = 5; 

let y= 6; 

console.log(`You are ${x * y} years old`); //Will out-

put: You are 30 years old 

Listing 11. Interpolation in ES6 

 

The tagging functionality of template strings allows the programmer to further custo-

mize the output of a string by allowing for manipulation within a function. 

 

let x = 30; 

function templateFunction(strings, ...values) { 

  console.log(`${strings[0]}${values[0]} 

${strings[1]}`); 

  return 'Processed!'; 

} 
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console.log(templateFunction`You are ${x} years old`); 

//You are 30 years old 

// Processed! 

Listing 12. String manipulation with tags 

 

In the example code of Listing 12, we use a function to manipulate the passed string by 

using interpolation. The function itself also returns a string that we output. This is a use-

ful feature of the language when it comes to developing a user interface where, for ex-

ample, the current username needs to be output within a predefined and hardcoded 

string. 

 

Raw strings are an additional string feature offered by ES6. It is a very straightforward 

and allows for easy access to the string without escaping any characters or interpreting 

characters such as backslash. 

 

//ES6 

let ‘rawString = String.raw`First line \n Second 

line`; 

console.log(rawString); //First line \n Second line’; 

Listing 13. Example of raw string usage in ES6 

 

We can use this functionality shown in Listing 13 within a tag function as well with 

string.raw[x]. There is no such equivalent in ES5. 

 

3.2.6 Modules 

Prior to ES6, modularisation was not possible with pure JavaScript. To circumvent the 

problem, standards such as CommonJS Modules and Asynchronous Module Definition 

(AMD) were created. They allowed programmers to load JS files (modules) within other 

JavaScript files. The main advantage to working with modules is code organization and 

dependency management.  

 

With the advent of ES6, modules are supported at a language level and are denoted 

with the module keyword within the script tag. Both regular scripts and modules use the 

same .js file extension, but while regular scripts are loaded synchronously by the 

browser, modules are loaded asynchronously. 

 



12 (35) 

 

 

Exporting 

The first step in creating modular JavaScript is to export code that can be used by 

other modules. 

 

// ES6  

// myExporterFile.js 

export function myExportedMethod() { 

    console.log(‘Hello from the exported method!’); 

} 

// Export simple variables 

export let myExportedVar = {}; 

// Export whole classes 

export class myClass {} 

Listing 14. Example code for export functionality in ES6 

 

 

As seen in Listing 14, it is possible to export just about anything, ranging from simple 

data so full fledged classes. This is the first step in making JavaScript truly modular. 

 

Importing 

The counterpart of exporting is the import keyword. After exporting a block of code, it 

becomes possible to import it and use the contained methods directly. The following 

code example shows different ways to import code. 

 

Import { myExportedMethod as myRenamedMethod } from 

‘./myExporterFile’; 

myRenamedMethod(); // Hello from the exported method! 

 

//Import everything 

Import * as imported from ‘./lib.js’; 

//Import whatever was defined as default 

import imported from ./greet.js 

//Importing both default and non-default 

import myDefault, { someNonDefault } from ./myfile.js 

Listing 15. Different ways to use imports in ES6 
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It is also possible to import a whole module by using the star ( * ) symbol as depicted in 

Listing 15. This imports the whole file as a single object and allows for easy access, 

using the dot notation, to all of the file’s methods and variables as regular object prop-

erties. This type of import is called namespace import [15]. 

 

When it comes to importing default values, the syntax is very simple. Contrarily to the 

regular, non-default, exports, it does not require any curly braces. The import is named 

import will import whatever was set as default export within greet.js.  It is even possible 

to export/import both default and non-default bindings. When importing, one simply 

needs to separate them by a comma. They are easy to differentiate since the default 

import has no curly braces surrounding it. 

 

Restrictions regarding exports and imports 

Both modular expressions are meant to be fairly static. This means that it is not pos-

sible to export a variable inside a conditional expression. Similarly, one cannot import 

anything with a function or statement. In that sense, the modules feature of ES6 is not 

dynamic [16].  

 

Default exports 

It is also possible to define default exports anonymously. There can only be one default 

export per file. There are several ways to export something by default. One example is 

to use the renaming scheme using the JavaScript default keyword within it: 

 

function greet (name) { 

    return ‘Hello ‘ + name; 

} 

export { greet as default }; 

Listing 16. Default exports in ES6 

 

Loading modules in the browser 

The traditional and most common way to load JavaScript in a webpage is to include a 

<script> tag, to provide the location of the script in the src attribute and to set the type 

as text/javascript. Loading a module in the browser is very similar except for the type 

attribute that changes to module. This has the effect of excluding all of its content from 

the global scope. It is encapsulated within the module unless it is specifically exported 

and imported. 
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Differed loading 

Perhaps the most important aspect of the new modular nature of ES6 is that there is no 

need to load all of the code at once. This was already possible with technology such as 

CommonJS and AMD which purpose was exactly to provide JS with a modular func-

tionality. With ES6, however, this becomes part of the language itself.  

 

By default, when including a module in a web page, the browser will load the code se-

quentially as it appears. In practice, if the first module that the browser encounters con-

tains imports, it will recursively load all the dependencies. The recursive nature of the 

loading means that the browser will go as deep as needed before coming back to the 

top-level and load the second module directly included on the web page. 
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Figure 1. Module loading in the browser 

Figure 1 depicts the way the modules are loaded within the browser. The execution of 

the code follows a similar but slightly different model. Instead of loading the module 1 

first, it needs to loads all the dependencies within it. This makes sense because the 

higher level modules depend on the lower level ones; hence, they are importing them. 

 

It is also possible to load modules using web workers. Web workers provide an API 

that allows the loading of script to run as background tasks. It can help with page re-

sponsiveness since it does not have to wait and does not prevent other scripts or mod-

ules from loading. This thesis will not go into many details about web workers, but it is 

good to note that it is perfectly possible for web workers to handle modules, just like 

they do with regular scripts [17].  

 

Overall, modules are a way to encapsulate logic. It is also a way to protect your vari-

ables and functions from being accessed if necessary. To make the code available to 

other parts of the application, the programmer must make use of exports and imports. 

 

 

3.2.7 Classes 
It took much iteration of the standards for classes to arrive in the JavaScript world. Ob-

ject-oriented languages like Java have had access to classes for a long time but it 

never got included by default within the language. This never stopped third party library 

developers from creating solutions that emulate classes. With classes come many im-

portant concepts such as inheritance, extension, polymorphism, etc. 

 

Prototypal OOP and the constructor pattern 

The traditional way to emulate classes in JavaScript is to use a prototypal approach. 

First, you declare a function. Let us consider an Animal function: 

 

// We declare the function 

function Animal (color, size) { 

    this.color = color; 

    this.size = size; 

} 

// We add prototypal functions  

Animal.prototype.describe = function() { 
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    console.log(‘The animal is of size ‘ + size  + ‘ 

and of colour ‘ + color; 

} 

//We create a new instance of the “class” and use it 

var animal = new Animal(‘grey’, ‘medium’); 

animal.describe(); 

Listing 17. Prototypal approach 

 

Listing 17 shows the ES5 approach to class emulation. The function Animal acts as a 

class with properties colour and size. Following the declaration, we added new meth-

ods via the prototype functionality of the language. Finally, we can create an instance 

of the class and access its methods. 

 

In essence, JavaScript uses prototypal inheritance to encapsulate all the characterist-

ics of a class, namely its property and methods. There are other approaches than the 

prototypal one, namely the constructor pattern. This pattern tries to emulate even more 

closely the classical OOP approach by instantiating an object and calling a constructor. 

The following example illustrates this approach: 

     

function Programmer(name) { 

          Person.call(this, name); 

} 

Programmer.prototype = Ob-

ject.create(Person.prototype); 

Programmer.prototype.constructor = Programmer; 

Listing 18. Constructor approach 

 

Listing 18 is a good example of a classic JavaScript malpractice because it throws 

shade on the real language’s own implementation of OOP. In the words of Douglas 

Crockford, one of the main contributors to the development of the language: 

“JavaScript’s constructor pattern did not appeal to the classical crowd. It also obscured 

JavaScript’s true prototypal nature. As a result, there are very few programmers who 

know how to use the language effectively.” [18]  
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ES6 approach to classes 

ES6 brings solutions to some of those problems and complexity by introducing classes 

to the language. Let us re-create the simple code above in a more classical approach, 

using the new ES6 classes. 

 

class Animal { 

    constructor(color, size) { 

        this.color = color; 

        this. size = size; 

} 

 

describe() { 

console.log(‘The animal if of ‘ + size  + ‘ 

size and of ‘ + color + ‘ color.’; 

} 

} 

let animal = new Animal(‘blue’, ‘small’); 

animal.describe(); 

Listing 19. ES6 classes 

 

In Listing 19 we have declared a class with self-contained properties and methods and 

utilised it. One of the main differences compared to the ES5 approach to classes is the 

disappearance of the function keyword within the class, prototype and method declara-

tion. The new syntax is much more concise and in line with other object-oriented pro-

gramming. This is, however, a superficial difference since JavaScript actually considers 

classes a function; classes do behave differently than regular functions. 

 

Primary characteristics of classes 

Classes are not hoisted, meaning that they behave like a declarative let. In practice, 

this means that functions that make use of a class cannot be called before the class 

itself is declared and evaluated. Moreover, everything in a class acts in strict mode. 

And commas between member declarations are forbidden [19]. 

 

Class declaration and expression 

While the previous example class was named Animal, it is possible to declare classes 

anonymously: 

let myClass = class { 
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    … 

}  

let instanceOfMyClass = new myClass(“foo”); 

Listing 20. Alternative class declaration 

 

Listing 20 shows that there is nothing required after the class keyword. The main dif-

ference with the first declaration resides in the fact that the anonymous class’ name 

property is always empty. It is, however, possible to create non-anonymous class ex-

pressions by simply adding an expression after the class keyword. 

 

Getting and setting values 

The way to set the value of a property or retrieving its value is very simple. Let us con-

sider a simple example with class foo: 

class Foo { 

    constructor(name) { 

        this.name = name; 

    } 

 

    get name() { 

        return this.name; 

    } 

 

    set name(myName) { 

        this.name = myName; 

    } 

} 

Listing 21. Getter and setter example 

 

In Listing 21 we declared a class with a constructor, a getter and a setter. Calling the 

getter after instantiating the class will allow the user to get the current name set for the 

object (done within the constructor). Alternatively, calling the setter will allow us to re-

define the name property. 

 

Concept of first-class citizen in JavaScript 

Anything that can be passed as a value is considered to be a “first-class” citizen. 

Classes are no exception to the rule in JavaScript. They can indeed be used as an 

argument to a function. 
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Static method 

Static methods do not depend on the objects but on the class itself. They can be called 

directly on the class without the need to instantiate the class first. Let us create the Car 

class with a setMake static method: 

 

class Car { 

    ... 

    static setMake(name) { 

        return new Car(name); 

    } 

} 

 

let car = Car.setMake(‘Ford’); 

Listing 22. Static method example in ES6 

 

If we try to call the staticMethod on an instantiated object in Listing 22, an error will be 

thrown. To avoid the error, the static method should be called directly on the class. The 

static methods can be used in subclasses as well. Static classes are mostly useful for 

their utility purpose. For example, if we have a calculator class with methods offering 

different mathematical operations, it does not make sense to create a new calculator 

every time. We can simply use the class directly to execute the mathematical operation 

needed. For small applications, the difference in execution speed is minimal. The fol-

lowing code example consists of a small test that shows the difference between the 

two: 

 

var t0 = performance.now(); 

class Car2 { 

    doSquareRoot(number) { 

        return Math.sqrt(number); 

    } 

} 

 

let car2 = new Car2(); 

let result2 = car2.doSquareRoot("123456789"); 

console.log(result2); 

var t1 = performance.now(); 
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console.log("Call to doSquareRoot took " + (t1 - t0) + 

" milliseconds.") 

 

var t0 = performance.now(); 

class Car { 

    static doSquareRoot(number) { 

        return Math.sqrt(number); 

    } 

} 

 

let result = Car.doSquareRoot("123456789"); 

console.log(result); 

var t1 = performance.now(); 

console.log("Call to doSquareRoot took " + (t1 - t0) + 

" milliseconds.") 

Listing 23. Performance test for static methods 

 

The first test in Listing 23 will yield a result of 1.535 milliseconds, while the second one 

returns 0.585 milliseconds. The difference between the two is only one millisecond. For 

larger applications, however, where the instantiated class needs to also instantiate a 

bunch of objects, using static methods will result in less overhead and consequently to 

more performing applications [20]. 

 

Generator methods 

A generator allows you to iterate, exit and resume the execution of a function or a 

method. In the ES6 world, just like with regular functions, the symbol used to denote 

generators is the star symbol ( * ). An iterator method must contain the yield keyword. 

Used alongside promises, generators allow programmers to write asynchronous code 

by being able to pause the execution within an iteration [21]. The generators them-

selves are covered more in depth within another section of the thesis. 

 

Subclassing 

With the arrival of classes also comes the possibility to extend said classes and create 

subclasses. The advantage of a subclass is that it possesses all the properties and 

methods of the superclass, but can add its own methods and properties, without influ-

encing the superclass. A subclass can also be called a derived class while the super-
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class is usually referred to as the base class. Let us look at an example where we have 

a Car base class and a ColouredCar derived class. 

 

class Car { 

    constructor(make, model) { 

        this.make = make; 

        this.model = model; 

    } 

    stringify() { 

        return this.make.toString() + 

this.model.toString() 

    } 

} 

 

class DatedCar extends Car { 

    constructor(make, model, year) { 

        super(make, model); 

        this.year = year; 

    } 

    stringify() { 

        return super.stringify() + ' was built in ' + 

this.year; 

    } 

} 

 

datedcar = new DatedCar("ford", "taurus", 1998); 

datedcar = datedcar.toString(); 

console.log(datedcar); 

Listing 24. Subclassing in ES6 

 

The derived class depicted in Listing 24 does not need to assign the values in the con-

structor since the base class already does it. It can simply use the keyword super 

which in this case refers to the constructor of the base class. In its own implementation 

of the stringify method, it also calls the stringify method of the base class. 

 

It is important to note that calling the superconstructor is mandatory before being able 

to use the keyword this or even before instantiating an instance of the derived class 
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with an empty constructor. In both cases, failing to do so with result in a ReferenceEr-

ror [16]. 

 

Protecting class data 

In certain programming languages, protecting data by setting them as private is done 

via a keyword of the same name. All properties that can only be changed by the current 

class will be formally denoted as such. To be able to access those properties from in-

stantiated objects, the keyword public is used. 

 

In ES5 this was accomplished by appending an underscore character to the variable 

that should be considered private. However, while widely used, this offered no real pro-

tection as it is merely a naming convention and a guideline not to alter the data at 

hand. 

 //ES5 

Class MakeItPrivateES5 { 

    constructor(x, y) { 

this._x = x; 

this_y = y;     

     } 

} 

 

//ES6 with WeakMaps 

let _x = new WeakMap(); 

let _y = new WeakMap(); 

 

class MakePrivateES6 { 

    constructor(x, y) { 

        _x.set(this, x); 

        _y.set(this, y); 

} 

... 

} 

//ES6 with Symbols 

const _x = new Symbol(‘x’); 

cont _y = new Symbol(‘y’); 

 

class MakePrivateES6 { 
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    constructor(x, y) { 

        this[_x] = x; 

        this[_y] = y; 

} 

... 

} 

 

 

Listing 25. Private properties in ES5 and ES6 

 

The example in Listing 25 shows how to make properties private within ES5 and ES6. 

For the latter, Weakmaps and symbols are utilised to accomplish the desired result. 

The constructor sets its passed data to the WeakMap’s’ own private data, effectively 

encapsulating it within itself. In a WeakMap, the keys are weak meaning that the refer-

ences are cleared by the garbage collector [23]. 

 

The idea is the same with Symbols. This type of encapsulation however remains very 

‘hacky’, but there are proposals being outlined to make the private keyword part of the 

language. Yehud Katz from the ECMAScript’s TC39 standards committee, and co-

founder of ember.js, is currently preparing such a proposal [24].  

 

3.2.8 Promises 
JavaScript has always been an interactive language because of its application on the 

web. As users interact with a page, the language needs to be able to react accordingly 

and effectively. As a result, functionality such as events and callbacks were created 

and perfected throughout the language evolution.  

 

The asynchronous nature of JavaScript 

To understand why being asynchronous is important, it is relevant to have a look at the 

concurrency model and the event loop. At runtime, JavaScript operates using the con-

cepts of stack, heap and queue. The queue consists of a series of messages that are 

lined-up in the memory, ready to be processed within the stack. Once the stack is 

empty, the first message in the queue gets taken and a function stack is created. A 

stack is created when going through the code. The global scope is first analysed and 

each call to functions is pushed to the top of the stack as a separate frame. Once the 
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whole stack is executed, the next message in the queue is processed. The heap in this 

case is a separate part of the memory used to store data.  

 

One of the aspects that differentiate JavaScript from other languages is that it needs to 

finish the whole messages before it starts to process a new one. If the message takes 

too long to execute, most browsers present the user with a dialog warning about the 

script’s excessive execution time, even allowing the user to stop the script completely. 

The simplest example to illustrate this functionality is as follow: 

 

function callback() { 

    console.log(‘Hi from the callback’); 

} 

setTimeout(callback, o); 

console.log(‘Hi from the global space’); 

 

The output in the console is as follow: 

Hi from the global space 

Hi from the callback 

Listing 26. Simple callback example 

 

Listing 26 shows that the callback function was added to the stack first, followed by the 

output in the global space. Even without a timer (the value is set to 0), the callback has 

to wait for the rest of the stack to complete. 

 

Always completing but never blocking 

One of the key features of the language resides in its I/O processing which never 

blocks. It can process other inputs while waiting for events or callbacks to complete. 

This is the essence of the asynchronous nature of JavaScript. In practice this means 

that while the result of an operation is awaiting its completion in a callback or an event, 

the application is free to continue executing the stack. When the operation in the call-

back terminates, the application is notified. The simplest example is a network request; 

the application will not halt because a 3rd party API is not responding with the expected 

data. The programmer is strongly encouraged to create asynchronous and sound code 

but even in the event of a purposefully blocking code. For example, the browser will not 

accept a synchronous sleep() method [25] [26]. 
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Events and callbacks 

Events and callbacks are a major part of JavaScript and should be recognizable to all 

programmers familiar with the language. To illustrate the event model, let us consider 

one of the most popular browser events: the click. 

 

let el = document.getElementById('button1'); 

el.onclick = function(event) { 

    alert('clicked!'); 

} 

Listing 27. Simple event example 

 

In Listing 27, the onclick function is not added to the message queue until the user ac-

tually clicks the element in question. Events become verbose for more complex scen-

ario and are usually reserved for user interactions such as clicks and taps. 

 

Complex tasks are better handled via a callback function. Callbacks originate from 

functional programming which makes use of functions as arguments as a basic princi-

ple. Here’s a basic example using the forEach method. 

 

let myArray = ["hehe", "haha", "hihi"]; 

myArray.forEach(function (el) { 

    console.log(el); 

}); 

Listing 28. Example with forEach and callback 

 

The forEach method [27], part of the Array class, expects a callback as argument in 

Listing 26. If successful, the callback then outputs the content of the array to the con-

sole. The callback itself, taking the form of an anonymous function, is not executed until 

the forEach method itself is executed. The function can be either named or anony-

mous. For example, with a custom piece of code it is easy to simply have callback as a 

parameter for the function declaration and let the implementation decide on the call-

back. As long as the callback is effectively executed within the function declaration, the 

paradigm is valid [28]. 

 

This long-winded introduction to promises starts to take form when considering nested 

callback. As an example, if a callback depends on the completion of another function 

which also depends on the execution of a callback, we are required to use nested call-
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backs. The classic example of callback hell (inspired by callbackhell.com) consists of a 

function responsible for reading and writing to a file. It is composed of a series of call-

backs to determine if the file actually exists, is valid, is readable and is writable. In es-

sence, all these callbacks are necessary and valid, but in reality they create very com-

plicated code which is prone to errors. The callbacks are also limitative for tracking 

multi-operations process state. This is where ES6 promises shine and improve where 

callbacks fell short [29]. 

 

Improved callbacks 

After going through the evolution of asynchronous JavaScript, it is time to introduce the 

latest and best instalments of the asynchronous world: the JavaScript promise. As the 

name describes, a promise provide the expected result, at some point. The promise 

lifecycle comprises of a few different steps. The first state of the promise is pending 

and it occurs before it is either accepted or rejected. This image taken from the official 

Mozilla documentation describes the lifecycle perfectly [30]. 

 

During the pending state, the application executes the asynchronous actions required 

and subsequently enters 2 possible states: fulfilled or rejected. In either case, the code 

will have to be able to handle the scenario. In the case of a rejection, the most logical 

measure to take is to handle the error correctly, for example, by letting the user know 

what went wrong. Before going any further, it is important to note the use of the then 

method of the promise. This method allows the programmer to take action whether the 

promise has been fulfilled or rejected. The recapitulate, a promise has 3 possible 

states:  

• Pending 

• Fulfilled 

• Rejected 

 

Then method 

Each promise needs to implement the then method in order to be successful. The 

method takes 2 arguments: a function to handle a successful promise and a function to 

handle a failed promise. Let us consider a very simple and abstract scenario where the 

code promises to do something. 

 

let myPromise = doSomething(someParam); 
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myPromise.then(function(contents) { 

     // fulfilled, do something with contents. 

}, function(err) { 

    // rejection 

    console.error(err.message); 

}); 

Listing 29. Example with then 

 

In the rare case where a programmer would only want to handle a failed promise, it is 

possible to replace the then method from Listing 29 with the catch method. It is, how-

ever, not mandatory to handle the rejection of a failure [29]. 

 

 It is also possible to chain the promises, meaning that you call an already settled 

promise. This is due to the fact that then always returns a promise which can be re-

evaluated, for example to assign a different value to different objects. In chained prom-

ises, the errors are forwarded until a catch or an error handler is encountered. 

 

Promise global object method 

There are 4 methods which can be use to interact with promises. 

• Promise.all(iterable) 

• Promise.race(iterable) 

• Promise.reject(reason) 

• Promise.resolve(value) 

 

Resolved() returns a resolved promise object. It can either go through the then chain 

and resolve at the end of it, or else it will be fulfilled with the provided value. Let us 

consider the simplest scenario where the resolve method is used. 

 

let myPromise = new Promise(function(resolve, reject) { 

    console.log("This is a promise"); 

    resolve(); 

    //reject(); 

}).then(function() { 

    console.log("Promise resolved!"); 

}).catch(function() { 

     console.log("Promise unfulfilled!"); 

}); 
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Listing 30. Example of resolve() function 

 

When the promise of Listing 30 calls the resolve method, the promised is considered 

fulfilled and resolved. However, if we were to uncomment the reject call and comment 

resolve, the promise would become unfulfilled and the error would be caught by the 

catch prototype method [29]. 

 

Finally, if a program needs to address several operations happening before doing 

something else, then all method becomes useful. The method allows you to make sure 

that all operations, for example, network requests, have been executed before execut-

ing something else. This enables easy concurrency and keeps the code short and con-

cise. Overall, the main advantage of promises is that it allows for truly asynchronous, 

non-blocking code to be executed. It also allows for cleaner code and better error han-

dling than regular callbacks. One point to remember is that while callbacks are func-

tions, promises are simply JavaScript objects [33]. 

4 JavaScript as an object-oriented language 
In the words of Eric Ellitott, a leader figure in the JavaScript World, functional pro-

gramming can be defined as follows: “the process of building software by composing 

pure functions, avoiding shared state, mutable data, and side-effects. Functional pro-

gramming is declarative rather than imperative, and application state flows through 

pure functions.” [34] Functions accomplish all of the roles accomplished by classes and 

objects in the object-oriented paradigm. More specifically, pure functions play a central 

role in functional programming. They are defined by two rules: the function must con-

sistently return the same value given the same input arguments and it should have no 

side effects. They are independent, self-contained and are not affected by external 

states. They are not affecting external states either. Traditional JavaScript code usually 

includes a large number of pure functions; it is, consequently, at least partly a func-

tional programming language. 

 

4.1 Shared states 
Object oriented programming (OOP), as its name implies, revolves around objects. 

Objects are an instance of classes (a concept that is now part of JavaScript) that pos-

sess defined states and behaviours. In OOP, the complexity is broken down into 

smaller chunks of manageable contexts; the classes. In opposition to functional pro-
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gramming, OOP objects do alter external states. A class’ whole purpose might be to 

change the value of a “master object” which lives outside of its own scope. This con-

cept is called shared state and is omnipresent in OOP code. 

 

4.2 Race condition 

While shared state allows for a considerable amount of flexibility, it also contains many 

caveats. One of them being the race condition problem. In an asynchronous program, 

very popular concept all over the web, an operation on an object may occur while sev-

eral other operations have been triggered on the same object. A good example of ob-

ject being altered simultaneously could be a user profile on a website. Shared states 

create a timing issue as well as an order of execution issue which can be mitigated by 

pure functions in functional programming. This is one of the main arguments for propo-

nents of a purely-functional approach to JavaScript programming. 

 

4.3 Advantages of a OOP approach 
While functional programming has a large number of advantages, there are several 

reasons why the language has been making a shift towards OOP principles. A program 

using classes can be much easier to understand; the state and behaviour are much 

more clearly defined with class methods. Classes also help define “things” within our 

applications. If you can put a name on a concept, it is most likely definable as a class 

with its own set of properties and methods. In a sense, OOP is less abstract than func-

tional programming as it tries to encapsulate a concept understandable by the human 

within its own container. This has the advantage of being easily extendable when a 

large amount of programming work on the same program, which is usually the case in 

an industrial context. 

 

4.4 Best of both worlds 
JavaScript has traditionally been considered a functional programming language but 

some of the changes brought by ES6 are starting to integrate more and more object-

oriented principles within the language. In reality, the two concepts are not mutually 

exclusive and both co-exist within most JavaScript code. Some programmers may pre-

fer a functional-programming-oriented approach while others will choose the OOP 

route, now more than ever with the inclusion of native classes within the language. 
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4.5 Performance improvements 
According to a report entitles “Performance of ES6 features relative to the ES5 base-

line operations per second”, [35] the performance difference between the new ES6 

features and their ES5 equivalent varies considerably depending on which browser is 

interpreting the code. Among the biggest surprise is that only map-set-lookups seem to 

be faster on ES6 across all browsers. On the other side of the spectrum we find ‘map-

set-object’ which is executing slower than its ES5 counterpart on all browsers. How-

ever, as browsers improve their internal interpretation of JavaScript, we can expect 

newer features of the languages to become more powerful than their ES5 counterparts, 

for which browsers have been optimized for years. For example, from version to ver-

sion, the V8 engine (the engine powering Chromium and NodeJS) sees incredible 

speed improvement. The following figure is just an example on how fast JavaScript 

engines are being optimized to execute recent features such as Promises (ES6) and 

Async/Await. [36] 

 

 

 

 

 

 

 

 

 

 

Figure 2. Async performance improvement in V8 engine 

5 Conclusion 
JavaScript is a language that is continuously being developed. ES7 has been pub-

lished and ratified in June 2016 and ES8 is already in development and some features 

being made public. This thesis did not cover the ES7 but a large amount of documenta-

tion is already available and some transpilers allows the programmer to take advantage 

of ES7 features already today. For reference, ES7 includes new features such as ex-

ponentiation operator and Array.prototype.includes(), while ES8 will bring Await/async 

features to the language. [37] 
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In the TIOBE Index for March 2017, a yearly ranking of most popular programming 

language, JavaScript comfortably sits in 8th position with a 0,33% usage increase from 

2016 [38]. It is safe to say that the future of JavaScript is bright. With the rise of server-

side JavaScript environments such as Node.JS, the language that has often being di-

minishingly called a scripting language by classic programmer is more relevant than 

ever and will continue to drive and power the web forward. 
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