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ABSTRACT 
 

The thesis introduces a new method of estimating the stress concentration 
factor in a plate with two or three drilled holes. It is known, that stress 
concentrations are one of the biggest problems to avoid when designing 
any kind of structure. One drilled hole is decreasing the strength of a whole 
structure at least three times, which makes the production cost and 
amount of needed material more, and to avoid stress concentration 
different methods are used, for example, adding more material (e.g. 
welding) or other connections (e.g. bolts, rivets, etc.), which creates more 
stress concentrations.  
 
In this work a new approach is checked. It states, that more holes drilled 
near the main hole will decrease the stress concentration factor of the 
whole structure, which happens because of the stress interaction. But for 
now only few global recommendations have been given in previous 
studies, so this phenomena was studied more in cases with two and three 
drilled holes. 
 
Body force method, which is another numerical method to solve 
engineering problems, was used to make a Matlab code, which can be 
easily used by anyone to evaluate the stress concentration factors. Finite 
element analysis confirmed the code working correctly and at the end it 
was confirmed that auxiliary holes can reduce stress concentration factor 
from value 3 up to value 2.3 at least. Few recommendations were given 
and new questions were set for further studies. 
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NOTATION 

 
Latin Symbols 
 
a, b  Semi-minor and semi-major width of an ellipse 
E  Modulus of elasticity 
G  Shear modulus 
𝐾t  Stress concentration factor 
MM  Total number of segments 
N  Numerical order of a segment 
r  Radius of a hole or polar coordinate 
t  Projected width of an ellipse 
u, v  Displacement components in coordinate directions 
x, y  Cartesian coordinates 
 
Greek Symbols 
 
𝛾   Shear strain 
𝜀   Normal strain 
𝜗   Polar coordinate 
𝜈   Poisson’s ratio 
𝜌   Root radius 
𝜌xN, 𝜌yN, 𝜌X, 𝜌Y  Body force densities 

𝜎   Normal stress or normal stress influence coefficients 
𝜏   Shear stress or shear stress influence coefficients 
𝜑   Elliptical parameter 
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1 INTRODUCTION 

Nowadays there are any type of parts for any type of purposes produced 
by engineers. Huge variety of materials and geometrical shapes are used. 
Engineers are coming with new methods all the time how to get the best 
advantages from the materials so the profit is maximized. Mostly it all 
leads to get the best possible strength-cost ratio, for example. Engineers 
face the number of challenges doing that. 
 
One of the most significant tasks is to design needed part so that it will not 
break or deform too much. Here comes the importance of stress 
calculations. There are many factors, which must be taken into 
consideration: size of a part, dimensions of notches, radii, and holes, 
connections of several parts. Everything is affecting the stress value, which 
can the material stand before breaking or deforming plastically. All these 
non-homogeneities are creating such called stress concentration points, 
which are making the part weaker. 
 
One important thing, which is creating these stress concentration points, 
is a hole. Depending on the position of the hole and the distance from hole 
to the edge of a part, the specimen itself can become up to about three 
times weaker or even more. To know how much stress is concentrated in 
that critical point, stress concentration factor 𝐾t is used. 
 
As there is often some hole needed in design purposes, engineers started 
to invent different ways how to minimize consequences of the stress 
concentration. One solution is adding the material – to use some welding, 
or other type of connecting the materials, or making the part itself larger. 
Everything of that leads to two major disadvantages – a) new critical points 
of the stress concentration are created and b) it makes production more 
costly due to increased work time and material consumption. 
 
When technologies started to improve and it was possible to solve many 
difficult equations much faster using computers, new methods to calculate 
and estimate stress concentration appeared. Using so called body force 
method, which was invented in Japan in the second half of 20th century, it 
was discovered that stress concentration factor could be minimized by 
using auxiliary holes. It means that for reducing the effect of stress 
concentration better idea might be to remove material, not to add it. 
 
There were some previous studies on that topic done and it is possible to 
find some general works with equations how to act for better results, but 
there were no detailed recommendations of the size, the position and the 
number of auxiliary holes for better and stronger design of mechanical 
parts, which might be very useful for companies to use. The idea of this 
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thesis is to generate some code, which will be easy to use for estimating 
the stress concentration factor as well as have concrete recommendations 
as it was said before. 

1.1 Objective 

The objective of this thesis is to come up with some recommendation of 
size and position of auxiliary holes so that stress concentration factor in a 
plate is minimized as much as possible. 

  



3 
 

 
 

2 BACKGROUND INFORMATION 

2.1 General 

Any part made from any material, for example, machine member, plate, 
etc. very often has regions where stress has significantly larger value than 
predicted in theory. This happens due to several reasons: 
 

- Geometrical discontinuities or stress raisers such as holes, notches, 
and fillets; 

- Internal microscopic non-homogeneities of the material created by 
some manufacturing processes such as casting, molding, etc.; 

- Surface non-homogeneities such as cracks and marks created while 
producing part. 

 
Therefore, definition of stress concentration is following: localized stress 
considerably higher than average (even in uniformly loaded cross sections 
of uniform thickness) due to abrupt changes in geometry or localized 
loading (ASME BTH-1/2005, 13).  
 
Stress concentration is also called as “stress raiser” or “stress riser”. 
 
Easy way to describe what actually a stress concentration means is if stress 
is considered as a flow. As we can see in figure 1, when there are no stress 
concentrations in a plate, stress flow is straight and it is not disturbed by 
anything. It means, if any point of the plate is examined, the stress value 
will always be the same and it well be equal to σ, which is external stress 
due to loading. 

 

Figure 1. Stress flow in an infinite size plate 

When there is one hole in the middle of the plate, stress flow needs 
somehow to avoid it, as stress cannot go outside of the plate. In these 
points, where stress flow is disturbed, stress concentration occurs. It 



4 
 

 
 

means that stress at that point will not be equal to the nominal value, to 
the external applied stress. Equation (1) is showing how stress 
concentration factor is defined. 
 

𝐾t =
𝜎MAX

𝜎NOM
 (1) 

 
𝜎MAX in the equation stands for maximum value of stress which occurs due 
critical points in the plate (in our case it is a hole) and 𝜎NOM – nominal value 
which is equal to external stress due loading and occurs in a plate without 
holes or in a plate with hole far enough from the stress concentration. As 
it is clear from above mentioned, stress concentration effect is local, so at 
some particular distance from the hole (depending on its size) there will 
be no stress raiser anymore. 
 
From figure 2 it is easily seen what stress concentration means as stress 
flow differs from the one shown in figure 1. 
 

 

Figure 2. Stress flow in an infinite size plate with one drilled hole 

Just looking on the picture, a prediction may be done, that critical stress 
concentration values will be at points A, B, C, and D, as disruption of the 
stress flow is the largest there. The conclusion can be done, that the bigger 
is the change of that flow, the larger stress concentration’s value will be. 
Later, we will come back to this concept of stress concentration, when 
specimen for tests will be chosen. 

2.2 Theory of Elasticity 

As it is understandable from the name of the science, it works with the 
elastic region of the metals. Elasticity is concerned of the stresses and 
strains in a body due to applied loading, which can be mechanical or 
thermal, in those cases, when body reverts to its original shape and size 



5 
 

 
 

after releasing the loading. Comparing with mechanics or strength of 
materials, there are couple of benefits: 
 

 Theory of Elasticity makes no physical assumption; 

  
- Newton’s laws of motion; 
- Euclidian geometry; 
- Material constitutive law (for example, Hooke’s law); 

  
 
To find the stress concentration factor by means of theory elasticity, the 
superposition method is used (fig. 3). 

 

Figure 3. Stress concentration at a circular hole (Murakami n.d., 62) 

As in this problem the plate is of an infinite size, we can “cut” any other 
shape so that the part will be still of an infinite size and there will be area, 
where no interaction of the stress flow will appear because of the hole. In 
this case, the round shape is chosen because in polar coordinate system 
solution can be found. 
 
The stress values for cases (b) and (c) from figure 3 are the following 
 

𝐶𝐴𝑆𝐸 𝑏) 𝜎r =
1

2
𝜎0 (2a) 

 

𝐶𝐴𝑆𝐸 𝑐) 𝜎r =
1

2
𝜎0 𝑐𝑜𝑠2𝜃 (2b) 

 

𝐶𝐴𝑆𝐸 𝑐) 𝜏rθ = −
1

2
𝜎0 𝑠𝑖𝑛2𝜃 (2c) 

 
where 𝜎0 is the applied remote stress. 
 
Ernst Gustav Kirsch, a German engineer, is primarily known for his 
equations, which describe the elastic stresses around the hole in an infinite 
plate in one directional tension. 
 
The equation, which is needed in this problem, is following 
 

𝜙(𝑟, 𝜃) = (𝐴𝑟2 + 𝐵𝑟4 + 𝐶𝑟−2 + 𝐷) 𝑐𝑜𝑠2𝜃 (3) 
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Hence, the stresses for our particular problem are following 
 

𝜎rr = − (2𝐴 + 6𝐶𝑟−4 + 4𝐷𝑟−2) 𝑐𝑜𝑠2𝜃 (4a) 
 

𝜎θθ = −(2𝐴 + 12𝐵𝑟2 + 6𝐶𝑟−4) 𝑐𝑜𝑠2𝜃 (4b) 
 

𝜏rθ = −(2𝐴 + 6𝐵𝑟2 − 6𝐶𝑟−4 + 2𝐷𝑟−2) 𝑠𝑖𝑛2𝜃 (4c) 
 
After some arithmetical manipulations, final equations for stresses are 
derived and are the following 
 

𝜎rr =
𝜎0

2
(1 −

𝑎2

𝑟2) +
𝜎0

2
(1 +

3𝑎4

𝑟4 −
4𝑎2

𝑟2 ) 𝑐𝑜𝑠2𝜃 (5a) 

 

𝜎θθ =
𝜎0

2
(1 +

𝑎2

𝑟2
) −

𝜎0

2
(1 +

3𝑎4

𝑟4
) 𝑐𝑜𝑠2𝜃 (5b) 

 

𝜏rθ = −
𝜎0

2
(1 −

3𝑎4

𝑟4 +
2𝑎2

𝑟2 ) 𝑠𝑖𝑛2𝜃 (5c) 

 
To find stress 𝜎 θθ in the x direction at “top” point of a hole (point C on 
figure 2), the 𝜃 = 𝜋 2⁄  value is used, because in that case 𝜎X = 𝜎θθ (fig. 4). 
 
After simplifying the equation (5b), the following simple formula is got 
 

𝜎θθ = 𝜎0 (1 +
𝑎2

2𝑟2 +
3𝑎4

2𝑟4) (6) 

 

 

Figure 4. Stress concentration at a circular hole. Results (Murakami 
n.d., 65) 

It is seen, that when calculating for stress concentration factor at “top” 
point (point C) parameter a will be equal to hole’s radius r. When 
substituting this to equation (6), we will get stress concentration value for 
points C and D, as the problem is symmetrical, which be equal to 3. 
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When 𝜃 = 0 the stress concentration value at point B (and A, because of 
symmetry) can be calculated. When substituting needed values to 
equation (5b), we will get the result, which equals to -1. (Kirsch 1898, 797–
807.) 
 

So final results for circular ellipse problem are 𝐾t
A,B = −1 and 𝐾t

C,D = 3. It 
means that the maximum stress concentration value is 3, therefore, 
drilling a round hole in a plate far enough from the edges, will make the 
plate three times weaker. (Murakami n.d., 62-65.) 

2.2.1 Rule of Ellipse 

The rule of ellipse exists in the theory of elasticity, which is used to 
approximate different complicated problems with cracks, few holes or 
crack and hole combinations. In figure 5, the general ellipse problem is 
shown. 
 

 

Figure 5. Stress concentration at an elliptical hole (Murakami n.d., 67) 

As it was discussed in previous section, maximum stress concentration 
factor will occur at point A and will be equal to 3 in the case of round hole. 
In this problem external stress is applied in the y direction, this is important 
to notice, as many confusions may appear when not being attentive 
enough with coordinate systems. 
 
From equation (6) generalized formula for the ellipse can be derived 
 



8 
 

 
 

𝜎Y = 𝜎0 (1 +
2𝑎

𝑏
) = 𝐾t𝜎0 (7) 

 
From this equation, general formula for stress concentration factor for the 
ellipse can be easily derived 
 

𝐾t = 1 +
2𝑎

𝑏
= 1 + 2√

𝑡

𝜌
  (8) 

 
where 𝜌 is the root radius of the elliptical hole at the point A and t = a. 
 

𝜌 =
𝑏2

𝑎
 (9) 

 
𝜎X at point B, as it was derived before, does not depend on the root ratio. 
 

𝜎X = −𝜎0 (10) 
 
The idea of the ellipse rule, or the concept of equivalent ellipse, is to keep 
the root radius of a hole or notch at the point equal to approximated 
ellipse (dotted line in fig. 6). (Murakami n.d., 68-69.) 
 

 

Figure 6. The concept of equivalent ellipse (Murakami n.d., 69) 

2.2.1.1. Circle as a special case of ellipse 

As it is known from geometry, a circle is a particular case of an ellipse, as a 
= b in this case. From equation (7) or (8), if we substitute a to b or vice 
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versa, we will get same results as in the section 2.2 (which are -1 and 3), 
which proves the values of the stress concentration around the round hole. 

2.3 Body Force Method 

There are some different methods of how to approximate or calculate 
stress concentration or stress intensity (used for cracks) factor, especially 
for easy geometries, but sometimes because of geometry approximation 
is too big or too complex finite element analysis must be used, which can 
be very inconvenient and time consuming. 
 
In 1957, new approach was proposed by British engineer Eshelby. In 1967 
Japanese professor Nisitani developed this method to the form which is 
used now. It is called body force method. Idea of this method is to use 
stress field values, which are derived from point forces acting in an infinite 
plate or body. Boundary conditions are satisfied by continuously 
embedded point forces along the edges of notches or cracks or along the 
geometry of a hole. The method works both in two and three-dimensional 
problems. (Fraga & Hewitt 1983, 1.) 
 
Shortly, the basic idea is to consider a plate with a hole as a plate without 
hole, in which along the boundary of imaginary hole point forces will be 
located (fig. 8). These point forces will affect to the plate’s stress and strain 
same way as a hole in a plate without these forces. When solving problem, 
it is much easier to use these point forces and it is not a difficult task to 
find numerically how these point forces affect the stress and strain. 

2.3.1 Principles of body force method 

Let us consider the problem as shown in figure 7. 
 

 

Figure 7. The problem of an elliptical hole in an infinite plate 
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Stress, applied at infinity, will be marked as 𝜎X
∞. From Theory of Elasticity 

(Timoshenko & Goodier 1951) the x and y components of displacement, u 
and v respectively, at any arbitrary point on the edge of the hole with 
coordinates (ξ;η) are given by following equation. 
 

𝑢 =
𝜎X

∞

𝐸
(1 +

2𝑏

𝑎
) ξ (11a) 

and 

𝑣 = −
𝜎X

∞

𝐸
η (11b) 

 
where E is the modulus of elasticity (known as Young’s modulus) and a and 
b are semi-minor and semi-major widths of the ellipse respectively, as seen 
in figure 7. In our case we are more interested in round geometry, so a and 
b are equal to each other. 
 
Now to proceed with point forces an elliptical plate should be considered. 
This plate’s dimensions and shape should be same as the hole in previous 
case. To satisfy boundary conditions in future equations, the 
displacements of the edges of the elliptical plate must be same as the 
displacements of the edge of the holes. Then strain components at an 
arbitrary point on the plate can be derived 
 

𝜀X =
𝜕𝑢

𝜕ξ
=

𝜎X
∞

𝐸
(1 +

2𝑏

𝑎
) (12a) 

 

𝜀Y =
𝜕𝑣

𝜕η
=

−𝜎X
∞

𝐸
 (12b) 

 
𝛾XY = 0 (12c) 

 
where ε and γ are the normal and shear strains respectively.  
 
Corresponding normal and shear stress can be found from Hooke’s law 
 

𝜎X =
𝐸

1−𝜈2
(𝜀X + 𝜈𝜀Y) =

𝜎X
∞

1−𝜈2 (1 +
2𝑏

𝑎
− 𝜈) (13a) 

 

𝜎Y =
𝐸

1−𝜈2
(𝜀Y + 𝜈𝜀X) =

−𝜎X
∞

1−𝜈2 (1 − 𝜈 (1 +
2𝑏

𝑎
)) (13b) 

 
𝜏XY = 𝐺𝛾XY = 0 (13c) 

 

where σ and 𝜏 are the normal and shear stresses respectively. 
 
Now it can be considered that this elliptical plate, which has these surface 
stresses, is inserted exactly into the infinite plate from first case with the 
hole under the external loading with stress equaled to 𝜎X

∞. As a result, an 
infinite plate without a hole is got. As we satisfied boundary conditions for 
the elliptical hole in equation set (12), it can be claimed, that the problem 
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of an infinite plate with a hole and external loading is equivalent to the 
problem of an infinite plate without a hole and with both external stress 
and stress applied along the imaginary boundary of that ellipse which was 
defined in equation set (13). These are stresses, which come exactly from 
continuously embedded point forces along the boundary of the plate, 
which are the key of body force method. The basic background of that 
method is shown in figure 8.  
 
 

 

Figure 8. Body force method idea (Fraga & Hewitt 1983, 25) 

The next step is finding densities of these body forces in the x and y 
directions, 𝜌X and 𝜌Y respectively. This can be done using equation set 

(13). 
 

𝜌X =
𝜎X

∞

1−𝜈2 (1 +
2𝑏

𝑎
− 𝜈) (14a) 

 

𝜌Y =
−𝜎X

∞

1−𝜈2 (1 − 𝜈 (1 +
2𝑏

𝑎
)) (14b) 

 
where “unit length” is measured in y direction for 𝜌X and in x direction for 

𝜌Y. (Fraga & Hewitt 1983, 2.) 

 
By Nisitani (1978) Poisson's ratio ν does not affect the final results, so it 
can be set to zero and then the body force densities’ equations from set 
(14) can be written in the following way 
 

𝜌X = 𝜎X
∞ (1 +

2𝑏

𝑎
) (15a) 

 
𝜌Y = −𝜎X

∞ (15b) 

 
Therefore, it can be observed that for an elliptical hole in an infinite plate 
the densities of body forces are constant along the boundary of the hole. 
However, in general, body forces themselves will not be constant, so 
numerical technique must be used to determine them. (Fraga & Hewitt 
1983, 3.) 
 
It is seen as well that our resulting densities can be compared with the rule 
of ellipse used in theory of elasticity. Technically same formulas were 



12 
 

 
 

obtained and if round hole case will be considered, where a = b, then the 

result will be 𝐾t
A,B = −1 and 𝐾t

C,D = 3, and these are values which are got 
by the rule of ellipse. Therefore, the question might appear why body force 
method should be used then. For multiple holes cases in an infinite plate 
or for any other case with holes, cracks, or their combination in an infinite, 
semi-infinite, or finite plate body force method stays same simple and 
easy-to-use method for calculating the stresses when other methods’ 
difficultness and the number of system of equations needed for solving 
problem rises exponentially. 

2.3.2 Numerical technique 

2.3.2.1. Formulation 

For understanding how the body force method works when obtaining 
numerical solution, we will stick with the simple problem, which is one 
elliptical hole in an infinite plate since the results for that case are already 
known and constant so it can be easily checked whether numerical 
solution works fine.  
 
The problem shown in figure 7 will be considered. The first step is to divide 
the boundary of the ellipse to MM equal segments. The body force 
densities 𝜌x and 𝜌y are set to constant value for each segment. The whole 

idea of body force method is to calculate the influence coefficients from 
the stress field for a point force. Some boundary conditions should be 
applied, and in our case, it will be the mid-point of each segment to be free 
from stress. Later, the stress concentration factor and the stress at any 
arbitrary point of the plate can be calculated from systems of linear 
equations. (Fraga & Hewitt 1983, 14.) 

2.3.2.2. Solution sequence 

Firstly, as mentioned above, the ellipse is divided into MM equal intervals. 
The elliptical parameter φ, which comes from the equations of an ellipse, 
is used in this step. 
 

𝜉 = 𝑎 cos𝜑 (16a) 
 

𝜂 = 𝑏 sin𝜑 (16b) 
 
It is easy to derive the φ values at the end points and mid-points of the 
each segment. Let N to be the index number of segments. Then at the end 
points values are 
 

𝜑N−1 = −
𝜋

2
+

2(𝑁−1)𝜋

𝑀𝑀
 (17a) 
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𝜑N = −
𝜋

2
+

2𝑁𝜋

𝑀𝑀
 (17b) 

 
and φ value at the mid-point of a segment is 
 

𝜑M = −
𝜋

2
+

(2𝑁−1)𝜋

𝑀𝑀
 (17c) 

 
 
 
The x and y values of each segment’s mid-point can be derived easily as 
well. It is important to notice, that in the case with one hole the local 
coordinate system of the hole and the global coordinate system are 
coinciding (if not defined otherwise, but this is the most practical way). In 
cases with two or three holes, it is important to define local coordinate 
systems and the global coordinate system clearly, so there are no 
coordinate mistakes during calculations. Usually, the main hole’s, which is 
the central one is most of cases, local coordinate system is coinciding with 
the global one. 
 
So, the x and y values of each segment’s mid-point are 
 

𝑥 = 𝑎 cos (−
𝜋

2
+

(2𝑁−1)𝜋

𝑀𝑀
) (18a) 

 

𝑦 = 𝑏 sin (−
𝜋

2
+

(2𝑁−1)𝜋

𝑀𝑀
) (18b) 

 
The second step is to calculate the influence coefficients, which are the 
stress values at the mid-points of the M-th segment due to a body force of 
the N-th segment. Densities 𝜌X and 𝜌Y are considered to be equal 1 each. 

 
Fraga and Hewitt (1983) and Nisitani (1978) formulas for fundamental 
stress fields are used. The stress fields are needed for calculating the 
influence coefficients. For plane stress situation, the stress fields at (x,y) 
for point forces X and Y acting at (ξ;η) for an infinite plate are following 
 

𝜎x
X = −𝐹𝑙{(3 + 𝜈)𝑙2 + (1 − 𝜈)𝑚2}𝑋 (19a) 

 
𝜎y

X = 𝐹𝑙{(1 − 𝜈)𝑙2 − (1 + 3𝜈)𝑚2}𝑋 (19b) 

 
𝜏xy

X = −𝐹𝑚{(3 + 𝜈)𝑙2 + (1 − 𝜈)𝑚2}𝑋 (19c) 

 
𝜎x

Y = −𝐹𝑚{(1 + 3𝜈)𝑙2 − (1 − 𝜈)𝑚2}𝑌 (19d) 
 

𝜎y
Y = −𝐹𝑚{(1 − 𝜈)𝑙2 + (3 + 𝜈)𝑚2}𝑌 (19e) 

 
𝜏xy

Y = −𝐹𝑙{(1 − 𝜈)𝑙2 + (3 + 𝜈)𝑚2}𝑌 (19f) 

 
where 
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𝑙 =
𝑥−𝜉

𝑦
 (20a) 

 

𝑚 =
𝑦−𝜂

𝑦
 (20b) 

 

𝐹 =
1

4𝜋𝑦(𝑙2+𝑚2)2 (20c) 

 
As it could be easy to get confused by many different upper and lower 
indices, it is worth to notify, that upper index, which is written in capital 
letter, stands for body force’s direction, according to which stress field is 
calculated, whereas lower index stands for stress direction. 
 
Knowing the stress fields’ formulas, it is easy to express the needed 
influence coefficients. As the relations 𝑑𝜂 = 𝑏 𝑐𝑜𝑠𝜑 𝑑𝜑 and − 𝑑𝜉 =
𝑎 𝑠𝑖𝑛𝜑 𝑑𝜑 are true all over the ellipse, the coefficients are derived 
following way (Nisitani 1978.) 
 

𝜎xM
XN = ∫ 𝜎x

X(𝜉, 𝜂, 𝑥, 𝑦)| 𝑋=1𝑏 𝑐𝑜𝑠𝜑 𝑑𝜑
 

𝑁
 (21a) 

 

𝜎yM
XN = ∫ 𝜎y

X(𝜉, 𝜂, 𝑥, 𝑦)| 𝑋=1𝑏 𝑐𝑜𝑠𝜑 𝑑𝜑
 

𝑁
 (21b) 

 

𝜏xyM
XN = ∫ 𝜏xy

X (𝜉, 𝜂, 𝑥, 𝑦)| 𝑋=1𝑏 𝑐𝑜𝑠𝜑 𝑑𝜑
 

𝑁
 (21c) 

 

𝜎xM
YN = ∫ 𝜎x

Y(𝜉, 𝜂, 𝑥, 𝑦)| 𝑌=1𝑎 𝑠𝑖𝑛𝜑 𝑑𝜑
 

𝑁
 (21d) 

 

𝜎yM
YN = ∫ 𝜎y

Y(𝜉, 𝜂, 𝑥, 𝑦)| 𝑌=1𝑎 𝑠𝑖𝑛𝜑 𝑑𝜑
 

𝑁
 (21e) 

 

𝜏xyM
YN = ∫ 𝜏xy

Y (𝜉, 𝜂, 𝑥, 𝑦)| 𝑌=1𝑎 𝑠𝑖𝑛𝜑 𝑑𝜑
 

𝑁
 (21f) 

 
where ∫  

 

𝑁
 stands for integration of the N-th interval. 

 
As it was mentioned above, the influence coefficients are the stress values 
at the mid-point of the M-th segment due to a body force on the N-th 
segment. This is important to understand so there is no confusion when 
reading indices, values and choosing correct relevant data for equations. 
 
In some special cases, it is possible to make the whole solution process 
simpler. For example, in this case (one elliptical round hole), or when 
having two auxiliary holes at the same distance from the main hole from 
each side. The key is symmetry. Whenever the problem is symmetrical 
about the x and y axes, the influence coefficients should be calculated only 
for one quarter of the ellipse. The important moment is that during 
calculating these, for the chosen quarter all the influence coefficients must 
be calculated, which means that should be taken into consideration the 
effects of all body forces all around the ellipse. (Fraga & Hewitt 1983, 15.) 
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The third step in this solution sequence is to apply above-mentioned 
conditions to make the mid-point of each segment free from stresses. 

 
 

∑ 𝜌xN(𝜎xM
XN 𝑐𝑜𝑠𝜃 +  𝜏xyM

XN𝑀𝑀
𝑁=1  𝑠𝑖𝑛𝜃) +  ∑ 𝜌yN(𝜎xM

YN 𝑐𝑜𝑠𝜃 +𝑀𝑀
𝑁=1

 𝜏xyM
YN  𝑠𝑖𝑛𝜃) + 𝜎X

∞ 𝑐𝑜𝑠𝜃 = 0 (22a) 

 
∑ 𝜌xN(𝜎yM

XN 𝑠𝑖𝑛𝜃 +  𝜏xyM
XN𝑀𝑀

𝑁=1  𝑐𝑜𝑠𝜃) +  ∑ 𝜌yN(𝜎yM
YN 𝑠𝑖𝑛𝜃 +𝑀𝑀

𝑁=1

 𝜏xyM
YN  𝑐𝑜𝑠𝜃) = 0 (22b) 

 
where 𝜌xN and 𝜌yN are the body force densities of the N-th segment, 𝜎X

∞ is 

the stress from applied external loading and θ is the angle between the x-
axis and the normal to the ellipse at the mid-point of the M-th interval. 
(Fraga & Hewitt 1983, 15-16.) 
 

𝜃 = arctan (
𝑎

𝑏
 𝑡𝑎𝑛𝜑M) (23) 

 
where 𝜑M is φ value at the mid-point of a segment, found in equation (8c). 

 
As a result, a system of equations will be got. It will contain 2MM linear 
equations with 2MM unknowns, which will be 𝜌xN and 𝜌yN. 

 
The fourth step is to calculate stress at any arbitrary point P of the plate. 
Knowing the influence coefficients and the body force densities, it is 
possible to find numerical value of the stress by following equations 
 

𝜎𝑋 = ∑ (𝜎𝑥𝑃
𝑋𝑁𝜌𝑥𝑁 + 𝜎𝑥𝑃

𝑌𝑁𝜌𝑦𝑁) +𝑀𝑀
𝑁=1 𝜎𝑋

∞ (24a) 

 

𝜎𝑌 = ∑ (𝜎𝑦𝑃
𝑋𝑁𝜌𝑥𝑁 + 𝜎𝑦𝑃

𝑌𝑁𝜌𝑦𝑁)𝑀𝑀
𝑁=1  (24b) 

 

𝜏𝑋𝑌 = ∑ (𝜏𝑥𝑦𝑃
𝑋𝑁 𝜌𝑥𝑁 + 𝜏𝑥𝑦𝑃

𝑌𝑁 𝜌𝑦𝑁)𝑀𝑀
𝑁=1  (24c) 

 
The fifth step is to evaluate actual stress concentration factors, which are 
the answers actually needed and searched during using the body force 
method. As it comes from the definition of stress concentration and 
equation (1), for the problem shown in figure 7 the stress concentration 
factor can be calculated following way 
 

𝐾TA =
𝜎X(𝑎𝑡 𝐴)

𝜎X
∞  (25a) 

 

𝐾TD =
𝜎X(𝑎𝑡 𝐷)

𝜎X
∞  (25b) 

 
As the body force densities around the ellipse are constant, as mentioned 
above, there will be no error for this problem whatever value for MM is 
chosen, so the stress concentration factor will be the same regardless of 
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the number of segments. However, the MM value will affect when solving 
two, three or more holes problems – the smaller will be amount of  
segments (MM value), the less accurate will be the stress concentration 
values. 
 

2.3.2.3. Singularity 

In the numerical integration, a singularity will appear in the stress field 
equations (19) at y = η and x = ξ. It is happening when the stress are 
evaluated at mid-point (x,y) of a segment due to a point force X or Y of the 
same segment. It does not affect the integration over all other segments. 
 
To integrate over the singularity, the integral is splitted to three disjoint 
subsegments 
 

[𝜑𝑁−1, 𝜑𝑀𝐼𝐷 − 𝜖] ; [𝜑𝑀𝐼𝐷 − 𝜖, 𝜑𝑀𝐼𝐷 + 𝜖] ;  [𝜑𝑀𝐼𝐷 + 𝜖, 𝜑𝑁] (26) 
 
where the x and y are coordinates of segment’s mid-point. 
 

𝑥 = 𝑎 𝑐𝑜𝑠𝜑𝑀𝐼𝐷 ; 𝑦 = 𝑏 𝑠𝑖𝑛𝜑𝑀𝐼𝐷 (27) 
 
The first and last subintervals are straightforward, as they do not contain 
the midpoint of the segment, which is the cause of singularity. 
 
The second subsegment can be approximated by a function, which will not 
contain a singularity. For that ϵ should be chosen such a way, that it will be 
small enough relatively to the length of the interval [𝜑𝑁−1, 𝜑𝑁]. 
 
The integrals over the singularities for the ellipse can be approximated by 
the following simple analytic expressions (Nisitani, Suematsu & Saito 1973) 
 

∆𝜎xM
XM = 𝜖

𝑘

4𝜋(𝑘2+𝑤2)3
[6𝑤6 + (3 − 2𝑘2)𝑤4 − 6𝑘2𝑤2 − 𝑘4] (28a) 

 

∆𝜎yM
XM = 𝜖

𝑘

4𝜋(𝑘2+𝑤2)3
[−2𝑤6 − (1 − 6𝑘2)𝑤4 + 6𝑘2𝑤2 − 𝑘4] (28b) 

 

∆𝜏xyM
XM = 𝜖

𝑘

4𝜋(𝑘2+𝑤2)3
[−9𝑤5 − (6 + 2𝑘2)𝑤3 + 𝑘2(2 − 𝑘2)𝑤] (28c) 

 

∆𝜎xM
YM = 𝜖

𝑘

4𝜋(𝑘2+𝑤2)3
[−𝑤6 + 6𝑘2𝑤4 + 𝑘2(6 − 𝑘2)𝑤2 − 2𝑘4] (28d) 

 

∆𝜎yM
YM = 𝜖

𝑘

4𝜋(𝑘2+𝑤2)3
[−𝑤6 − 6𝑘2𝑤4 + 𝑘2(2 − 𝑘2)𝑤2 + 6𝑘4] (28e) 

 

∆𝜏xyM
YM = 𝜖

𝑘

4𝜋(𝑘2+𝑤2)3
[(1 − 2𝑘2)𝑤5 + 2𝑘2(1 + 3𝑘2)𝑤3 + 9𝑘4𝑤] (28f) 

 
where 
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𝑘 =
𝑏

𝑎
   ;    𝑤 = 𝑡𝑎𝑛𝜑M (29) 

 
For this M-th interval when y = η and x = ξ, additional stress, which are the 
stresses infinitesimally close to the ellipse subjected to a body force, must 
be added to 𝜎xM

XM, 𝜎xM
YM, 𝜎yM

XM, 𝜎yM
YM, 𝜏xyM

XM , 𝜏xyM
YM  respectively. 

 
The final equations of these stresses are following (Fraga & Hewitt 1983, 
Appendix 5.) 

∆𝜎x
X | 𝜌X=1 = −

1

16
(5 + 4 𝑐𝑜𝑠2𝜃 − 𝑐𝑜𝑠4𝜃) (30a) 

 

∆𝜎y
X | 𝜌X=1 =

1

16
(1 − 𝑐𝑜𝑠4𝜃) (30b) 

 

∆𝜏xy
X | 𝜌X=1 = −

1

16
(2 𝑠𝑖𝑛2𝜃 − 𝑠𝑖𝑛4𝜃) (30c) 

 

∆𝜎x
Y | 𝜌Y=1 =

1

16
(1 − 𝑐𝑜𝑠4𝜃) (30d) 

 

∆𝜎y
Y | 𝜌Y=1 = −

1

16
(5 − 4 𝑐𝑜𝑠2𝜃 − 𝑐𝑜𝑠4𝜃) (30e) 

 

∆𝜏xy
Y | 𝜌Y=1 = −

1

16
(2 𝑠𝑖𝑛2𝜃 + 𝑠𝑖𝑛4𝜃) (30f) 

 
As it was mentioned above, θ is the angle between the x-axis and the 
normal to the ellipse at the mid-point of the M-th interval. (Fraga & Hewitt 
1983, 16-17.) 

2.3.2.4. Results 

In table 1 the body force densities 𝜌X and 𝜌Y for each segment of a circular 

elliptical single hole in an infinite plate is shown. 
 
As it is seen, the results are same as in section 2.3.1. As it was mentioned 
above, the body force densities 𝜌X and 𝜌Y are constant all around the 

ellipse. As it resulted from equations (15), 𝜌X = 3 and 𝜌Y = -1. 

Table 1. Body force densities for circle in infinite plate (Fraga & Hewitt 
1983, 18.) 

Segment 𝜌X 𝜌Y 

1 3.000000 -1. 000000 

2 3.000000 -1. 000000 

3 3.000000 -1. 000000 

4 3.000000 -1. 000000 

5 3.000000 -1. 000000 

6 3.000000 -1. 000000 

7 3.000000 -1. 000000 

8 3.000000 -1. 000000 
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3 INTERACTION OF STRESS CONCENTRATION 

3.1 Matlab analysis 

It is possible to find any plate’s stress concentration, when there is an 
elliptical hole or few holes combination. There are some guides existing, 
how to evaluate stress concentration, even using computers, but most of 
them are a little bit out-of-date or do not provide detailed information, just 
giving some values and some relations. Idea of this work is to come up with 
a Matlab code, which later will be accessible for public use. This code will 
give the stress concentration factors for boundaries of all holes present in 
the plate. The only thing, which is needed to be input, is the size of the 
main and auxiliary holes and distance between holes. We will stick with 
two cases: one auxiliary hole and two auxiliary holes, which will be located 
symmetrically about the main hole. 
 
First, using Nisitani’s body force method, discussed in the section 2.3.1 and 
2.3.2, the code for one hole should be programmed, so the results can be 
easily checked with manual calculated ones to be sure that the code is 
working well. Later, the code will be modified, as body force method’s 
approach will not change, because the only thing, which should be added 
– coordinates of other holes. 

3.1.1 An infinite plate with one drilled hole 

The whole code is available in the Appendix 1. The input of the function is 
following 
 

 MM: number of segments; 

 a and b: semi-minor and semi-major widths of the ellipse; 

 epsilon: the step, which is used for dividing segment to subsegments 
in order to integrate over the singularity. 

 
Some minor details should be mentioned about some of the input values.  
 
In Fraga & Hewitt 1983 all the shown results for different cases, which are 
cracks, holes, combination of cracks and holes in infinite and semi-infinite 
plates, are shown for some different segment numbers MM. All of them 
are factor of four. There is no explanation unfortunately, as it might be 
mentioned in original papers of Nisitani, which are available only in 
Japanese. It was discovered after actually trying different values of MM in 
the code. First, the conclusion was made, that only even numbers should 
be used, as by some reason odd numbers were giving weird results. Later, 
as it is used in Nisitani’s results, MM value was narrowed up to numbers, 
which are factor of four. In further results, everywhere MM = 4 value was 
used. 
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For epsilon there are no special rules, it was chosen in experimental way, 
so it does not provide a big error and still works for integrating over 
singularity. To get the results in the program epsilon = 0.000002 was used. 
 
Small analysis of code will be shown to explain a little bit how it works, so 
it is easy to use the code. 
 
First, important thing is in Matlab should be the folder selected, which 
contains the program file. It is done using the button on the interface, 
shown in figure 9. 
 

 

Figure 9. Matlab interface. Running the program. Step 1 

After that needed function should be opened, in this case it is 
“One_hole.m”. This is done to input needed values. Input values are 
changed in two steps: 
 

 in the interface of program (shown in figure 10); 

 tself in main interface (shown in figure 11). 
 

 

Figure 10. Matlab interface. Running the program. Step 2 

The following lines should be changed accordingly to the data 
 
epsilon = 0.000002; 
a = 9; 
b = 9; 
 
Poisson’s ratio ν should not be changed, as in section 2.3.1 it was discussed 
that Poisson’s ratio has no effect on the stress concentration factor. 
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Figure 11. Matlab interface. Running the program. Step 3 

After that in Matlab command window should be written the function 
itself, which is first line of the code (figure 10). In round brackets there are 
located variables, which should be input. In our case, as it is seen, it is only 
amount of segments MM. 
 
[Kt] = One_hole(MM) 
 
As it was discussed above, we use MM = 4, putting the value in the round 
brackets. The results will appear below the input function, as it is shown in 
figure 12. In the left bottom corner maximum and minimum values of the 
resulting array are shown, as well as array itself. 
 

 

Figure 12. Matlab interface. Results 

As it is seen, the results are same as calculated by different methods, 
mentioned above, including, theory of elasticity and manual body force 
method.  
 
In other programs for more difficult cases other inputs will be used, but 
this will be discussed in following chapters and sections. 
 
Two useful Matlab commands to use are 
 
clear all 
clc 
 
First one is clearing the results from the workspace, second one – cleaning 
the command window. 
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Now the short explanation of the code itself. 
 
ellip = zeros(MM,2); 
ellip_M = zeros(MM,1); 
 
coord = zeros(MM,4); 
coord_M = zeros(MM,2); 
 
In these lines, empty matrices for storing coordinates are created. “Zeros” 
means than matrix will be full of zeroes, and matrix will contain MM lines 
and two columns, in case of variable “ellip”.  
 
In table 2 it is shown what every column of these four above mentioned 
variables means, whereas lines stand for each segment. 

Table 2. Coordinate storing in Matlab 

 Column 1 Column 2 Column 3 Column 4 

ellip Start 𝜑-coord. 
for start point 

of segment 

End 𝜑-
coord. for 
start point 
of segment 

 

ellip_m 𝜑-coord. for 
mid-point of 

segment 

 

coord Start x-coord. 
for start point 

of segment 

Start у-
coord. for 
start point 
of segment 

End x-
coord. for 
start point 

of 
segment 

End y-
coord. for 
start point 
of segment 

coord_
m 

x-coord. for 
mid-point of 

segment 

у-coord. for 
mid-point 

of segment 

 

 
The following code will be analyzed without checking all code, as many 
lines are very similar, for example, coordinate calculation for the x and y 
direction are almost same. In order to make it more compact, it will be 
mentioned only one code’s line will be shown here. 
 
sigmainf1 = ones(MM,1); 
sigmainf2 = zeros(MM,1); 
 
External stress is defined in these two lines for each segment, as later it 
will be used for calculating stress concentration factor. As the problem 
with axial tension is considered, in other axial direction stress will be zero. 
The external stress value is considered to be one, as the stress 
concentration is the ratio of the stresses. 
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for N=1:MM 
… 
end 
 
This block means that the inside functions will run in a loop for each N 
value, which is segment’s order number. In the loop there are equations 
(17) and (18) for calculating the coordinates. 
 
Sigmax_X = zeros(MM,MM); 
 
Empty matrices for storing the values of influence coefficients are created. 
As for each segment there are MM influence coefficients, the size of each 
matrix will me MM*MM. But firstly, fundamental stress fields should be 
calculated. 
 
x0 = @(q) a.*cos(q); 
 
l =@(q)(x-x0(q))./y; 
m =@(q)(y-y0(q))./y; 
F =@(q)1./(4.*pi.*y.*(l(q).^2+m(q).^2).^2); 
 
Symbol @ in Matlab is used for transforming variable to function of some 
variable. 
x0 and y0 are the ξ and η from equations (20). l, m, and F are defined in 
equations set (20). 
 
Sigmax_X_sum =@(q) 
 
These functions are the fundamental stress fields, which are presented in 
equations (19). 
 
if H ~= N 
… 
elseif H == N 
… 
end 
 
This block is dealing with singularity case. N stands for segment’s order 
number, for which influence coefficients are calculated and H – for the 
segment’s order number, according to which segment’s body force 
influence coefficients are calculated. 
 
As it was mentioned in section 2.3.2.3, singularity occurs when influence 
coefficient of a segment is calculated due to same segment’s body force. 
So “if” part is very simple as there is no singularity.  
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Sigmax_X(N,H) = quad(Sigmax_X_sum,ellip(H,1),ellip(H,2)); 
 
This is the step used after “if” statement, it is a regular integration, given 
in equations (21). “quad” command stands for integration. First element 
in brackets is an integrand, next element is start point of integration and 
last element – end point of integration. 
 
k=b/a ; 
w=tan(ellip_M(H,1)); 
t(N,1) =atan((a/b)*tan(ellip_M(H,1))); 
ADD_1 
 
The following code is for “elseif” statement. Equations (29) are given first, 
after that – ADD_* functions are calculated, which are equations (28). 
 
Sigmax_X(N,H) 
 
The influence coefficients for singularity case are calculated, summing up 
three subsegments’ values, which are given in formula (26). 
 
C_theta = zeros(MM,1); 
S_theta = zeros(MM,1); 
 
Empty matrices for storing cosine and sine values of θ for each segment, 
which are used in equations (23). Itself θ is defined in equation (22). In the 
following lines the value for the θ and its cosine and sine are calculated. 
 
Sigma_X1 = zeros(MM,MM); 
 
This variable and analogic ones in following three lines are part of 
equations (22). If to be exact – the parts in round brackets respectively. 
Following four lines after “for” statements are the actual calculations of 
these variables. 
 
sigma_inf = [sigmainf1;sigmainf2]; 
SIGMA1 = [Sigma_X1,Sigma_X2]; 
SIGMA2 = [Sigma_Y1,Sigma_Y2]; 
SIGMA = [SIGMA1;SIGMA2]; 
 
These four lines are written for composing the results. When comma is 
used, two matrices are combined, adding more columns, when semicolon 
is used – lines are added. Figure 13 is representing visually how it works. 
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Figure 13. Combining of matrices in Matlab 

Kt = SIGMA \sigma_inf 
 
The final line of the program and the thing, which is needed to find out in 
the program and the problem itself – the stress concentration factor, 
which is given in equation (1). 

3.1.2 An infinite plate with two or three drilled holes 

As it was mentioned above, code for both needed cases is almost the 
same; the one difference will be in one of the inputs. The whole code is 
available in appendices 2-6. 
 
One more difference is that program for these cases in written in modules 
for making the whole process more understandable. The module 
subprograms should be saved in the same folder as the main programs, as 
subprograms are called during calculation process and are run 
automatically. 
 
Firstly, the main programs will be shortly described with specifying inputs, 
and then – subprograms.  
 
function[Kt] = Two_Holes(MM,s1,s2,a1,b1,a2,b2) 
 
This is first line from program “Two_Holes.m” and, as it was mentioned 
above, in round bracket are the inputs, which should be put by a user. 
Figure 14 shows what every variable stands for, except the MM, which is 
the number of segments. 
 

 

Figure 14. Inputs for the Matlab program “Two_Holes.m” 
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Everything other is working same way as in the program for one hole, 
except the fact, that some parts from the program are brought out to 
subprograms. It is important to notice, that s1 is located on left from the 
y-axis of the global coordinate system. It means, that in Matlab s1 value 
must be negative. 
 
function[Kt] = Three_Holes(MM,s1,s2,s3,a1,b1,a2,b2,a3,b3) 
 
This is the first line with inputs of the program for three holes problems. 
Figure 15 shows the explanation of variables. 
 

 

Figure 15. Inputs for the Matlab program “Three_Holes.m” 

Same as in the case with “Two_Holes.m”, s1 value must be negative, 
whereas s2 value always equals zero, as it is shown in the picture. 
 
Subprograms “Module” and “Module_SP” contain program code for 
calculating the stresses from all the integrations and systems of equations, 
discussed in section 2.3.2. The difference between these two modules are 
in integrating over the singularity. Sub-program “ellip_MidPoint” is used 
for calculating the coordinates of segments. (Otto & Denier 2005.) 

3.2 Preliminary results for a plate with two and three holes 

For the problem with two holes only horizontal positioned case was 
checked, which is shown in figure 16. 
 
Vertical location of holes will not be checked because stress concentration 
factor will be much higher. It can be checked, using the rule of equivalent 
ellipse, as well as it can be seen from the schematic view of the stress flow, 
which was discussed in section 2.1. The stress flow of the plate with two 
vertically located holes is shown in figure 17. 
 
Rule of ellipse was discussed in section 2.2.1. Equation (8) is used to 
evaluate the stress concentration value. Figures 18 and 19 show the 
equivalent ellipse, drawn around two holes. 
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Figure 16. Problem with two horizontally located holes 

 

Figure 17. Problem with two vertically located holes 

 

Figure 18. Equivalent ellipse in the problem with two horizontally 
located holes 



27 
 

 
 

 

Figure 19. Equivalent ellipse in the problem with two vertically located 
holes 

Equation (8) is based on the figure’s 5 drawing and definition of variables. 
After customizing the equation for the above-mentioned case, we get the 
following 
 

𝐾𝑡 = 1 +
2𝑏

𝑎
 (31) 

 
Let us consider that sizes of big holes and small holes in both cases are 
same, so equivalent ellipse’s are of the same size, the only difference in 
these problems is that ellipse is rotated by 90°. 
 
In the problem with horizontal location of holes we assume that a = 2 and 
b = 1 and in the problem with vertical location – a = 1 and b = 2. Such 
dimensions are satisfying our condition of equality of the ellipses. 
 
Table 3 shows the result for stress concentration factor for these two 
problems, using equation (31). 

Table 3. Results of problems with two holes 

Case Horizontal location Vertical location 

𝐾𝑡 2 5 

 
From these results, it is clearly seen why no plates with vertically located 
holes are observed and analyzed, as this case will have much higher stress 
concentration value, and this is not our target. 
 
For preliminary analysis in Matlab it was decided to use ratios  
𝑅1

𝑅2
 𝑎𝑛𝑑 

𝑅1

𝑒
 changeable from 0.1 to 1 and keeping 𝑅1 constant, so the 

results will be able to be used for different kind of situations as they will 
be relative. 𝑅1 and 𝑅2 are radii of big and small holes respectively and e – 
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distance from the edge of left hole to the edge of right hole. Figure 20 
shows these dimensions, which are used in the results and appendices. 
 

 

Figure 20. Dimensions used in the results 

As an example, the results of once case will be shown in this section (table 
4). Full relative, as mentioned above, results for the problem with holes, 
are available in appendix 7 and 8. 

Table 4. Stress concentration factor for two circular holes in infinite 
plate. MM=4 

𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

𝑅2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

𝐾𝑡 3.09 3.04 2.99 2.95 2.92 2.90 2.88 2.86 2.85 2.84 2.83 
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4 FINITE ELEMENT METHOD 

4.1 Finite element method background 

The development of the finite element analysis began in the middle of 20th 
century. The finite method analysis (FEA), or the finite element method 
(FEM), is used for numerical solution of field problems. The main idea of 
FEM is to discretize continuum to finite elements, which are small pieces 
of a structure. They are called “finite” in opposite to infinitesimal elements 
that are used in calculus.  These elements are connected with each other 
at points that are called nodes (fig. 21). The arrangement of the elements 
is called a mesh, therefore the process of discretization of continuum to 
the elements is called meshing. In order to get the solution, a system of 
algebraic equation should be solved for unknown at nodes. These nodal 
unknowns are values of the field quantity. Combining nodal solutions for 
one element together with the field will determine the spatial variation of 
the field in the element. Hence the field quantity over the whole structure 
is the approximated element by element. From that the conclusion can be 
made that an FEA solution is approximate, not exact, but still it is very 
powerful method, and some modifications during the analysis can be 
made to improve the accuracy of the result. FEM itself has many 
advantages comparing to other numerical methods: 
 

 FEM can be used in any field problem: stress analysis, heat transfer, 
magnetic fields, etc.; 

 No limitations for geometrical shapes of the structure; 

 Any kind of boundary and loading conditions can be used; 

 Anisotropy within the body or even within the element can be used; 

 Different engineering components can be combined + bars, beams, 
plates, cables, wires, etc.; 

 Mesh can be improved by an engineer manually where needed (i.e., 
in stress concentration points) to improve the approximation. 

 
The FEA is done in several steps, which are the following 
 

1. Problem classification; 
2. Mathematical model; 
3. Discretization; 
4. Numerical analysis, 
5. Interpretation of results. 

 
Sections 4.1.1 to 4.1.4 discuss on these steps more thoroughly. (Cook, 
Malkus, Plesha & Witt, R. J. 2001, 1-2.) 
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Figure 21. A two-dimensional model. Elements, nodes, and loading is 
shown (Cook et al. 2001, 2) 

4.1.1 Problem classification and modelling 

This is the first step in any engineering problem, not only in using FEM. The 
loading conditions, time dependence, degree of freedoms, supports – 
everything should be clearly defined. After the physical nature of the 
problem is well understood, the next step can be started, which is creating 
a mathematical model. 
 
In modelling, all essential features must be included, but unnecessary 
details can be dropped out, so that further analysis will not be too 
complicated yet not too approximate. To transfer from geometrical model 
to mathematical model differential equations, that describe the behavior 
of the structure, and boundary conditions are introduced. As FEA is a 
simulation, not a reality, it is important to make a mathematical model 
appropriate and adequate, otherwise the results will not be reliable. 
 
Geometry, material properties, loads, boundary conditions are simplified 
in a mathematical model, and these simplifications are based on 
engineer’s understanding of the problem, which again highlights the 
importance of the correct problem classification. Some examples of these 
simplifications are 
 

 Material may be regarded isotropic, homogeneous and linearly 
elastic (although common materials are not like this); 

 A load distributed over a relatively small area can be considered as a 
force concentrated at a point (which is not physically true); 
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 Support can be considered as fixed one (although no support is 
completely rigid) and so on. 

 
After a mathematical model is done, the transformation to the finite 
element model, also called as a discretization, can be performed. (Cook et 
al. 2001, 3.) 

4.1.2 Discretization 

A mathematical model is split to a number of finite elements, which is also 
called meshing. In this step a continuum is represented by a piecewise 
continuum that is define by a finite number of nodal quantities, and simple 
interpolation within each element is done. It is another approximation 
used in FEM. It is important to understand that by this step two sources of 
error are introduced: modelling error and discretization error. Those two 
errors can be reduced by improving the model and by using larger number 
of elements, for example, by mesh refinement (i.e. h-method), use of 
higher order elements (i.e. p-method) and so on (Vavilov 2016). 
 
A simple case of discretization of two-dimensional model is shown in figure 
22. 
 

 

Figure 22. Steps from physical model to finite element model (Cook et 
al. 2001, 5) 

In this case the only independent variable will be the axial coordinate, as 
well as only the magnitude of the loading matters, as assumption can be 
made that the stress is uniaxial at every cross section. Considering some 
simplifications described in section 4.1.1, at the end the finite element 
representation is quite simple yet accurate enough for this particular 
problem. In the model there are three elements connected together with 
total four nodes. To reduce the discretization error the number of 
elements can be increased. (Cook et al. 2001, 4-5.) 
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4.1.3 Numerical analysis 

In this work the FEA process itself, which includes function interpolations 
and matrices calculations, will not be described very deeply as this is topic 
of a separate subject, but main ideas of the process will be discussed. 
 
When using a FEA software, input data contains structure geometry, 
material properties, loading and boundary conditions. Meshing is done 
automatically, however, an engineer can redefine mesh partially if needed 
– increase the number of elements, mesh density, element type and so on. 
After this step the numerical analysis is performed. 
 
The idea is that from each element’s force matrix, displacement matrix and 
stiffness matrix the global matrices are calculated using system of 
equations and differential equations. From global matrices the final 
answers are got. Al that is done automatically by software. The FEA 
solution and quantities are derived from the global matrix equation are 
displayed graphically or listed depending on what is required by an 
engineer. The only manual action in this step is to choose which results in 
what way should be displayed. 
 
After that, the results should be examined qualitatively to make sure no 
rude errors appear, all deformations and stresses look adequately, all 
needed problems are solved, etc. (Cook et al. 2001, 13-14). 

4.2 Results of finite element analysis 

In this work ANSYS Workbench 18.0 software was used for modelling the 
problem and performing the finite element analysis. 
 
The following four cases were chosen for comparing the results 
(dimensions explained in fig. 20): 

Table 5. Relative dimensions for confirming the results 

 Case I Case II Case III Case IV 
𝑅1 1 1 1 1 
𝑅2 0.5 0.6 0.7 0.8 

e 1.5 1.3 1.1 0.8 

 
Fig. 23 – 26 are showing the results of finite method analysis with 100 MPa 
applied remote stress.  
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Figure 23. Case I FEA results 

 

Figure 24. Case II FEA results 

 

Figure 25. Case III FEA results 

 

Figure 26. Case IV FEA results 

Table 6 shows the maximum stress concentration factor’s values of all 
cases. 

Table 6. Maximum stress concentration factor by FEA 

 Case I Case II Case III Case IV 
𝐾t 2.78 2.72 2.64 2.49 

 
The results are compared and discussed in the last chapter of this work. 
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5 RESULTS AND DISCUSSION 

Table 7 shows the stress concentration factors for cases I – IV obtained by 
different methods: body force method (Matlab code) and finite element 
method (ANSYS). 

Table 7. Comparison of the results 

 Case I Case II Case III Case IV 

BFM 2.81 2.72 2.61 2.46 

FEA 2.78 2.72 2.64 2.49 

 
As it comes from the results, Matlab code that used body force method 
shows pretty good correlation with finite element analysis as only 0.03 
difference in the stress concentration values is the maximum (which is less 
than 1.2% error in all cases), so it can be concluded, that Matlab code can 
be used for estimating the stress concentration and optimizing the design. 
 
As it is seen from the results (appendices 7-8), the stress concentration 
factor’s reduction is the most noticeable when auxiliary holes are almost 
same size as the main hole and the distance between closest points of 
main hole and the auxiliary hole is about half of the radius of the main hole. 
 
The following questions and tasks are the subjects of further studies of that 
topic: 
 

 In 3D case there is a thumb rule: if between two holes the another 
one with the same diameter as smaller hole can be fitted in, then 
there will be no stress interaction, however, in 2D case the 
interaction is more severe. Does there exist such a thumb rule for 2D 
case and if yes, what is the criteria? 

 To make a program, which uses Matlab code from this work, so no 
special software is needed to use the code. 

 To confirm the most suitable results experimentally, using, for 
example, the tensile test. 

 Make a handbook of stress intensities in case of two and three holes 
interaction, so it is easy to find smallest values. 
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Appendix 1/1 
MATLAB PROGRAM FOR A PLATE WITH ONE DRILLED HOLE 
 
function [Kt] = One_hole(MM) 
% Elliptical Hole in an Infinite Plate 
v = 0 ; 
epsilon = 0.000002; 
a = 9 ; 
b = 9 ; 
t = zeros(MM,1); 
sigmainf1 = ones(MM,1); 
sigmainf2 = zeros(MM,1); 
ellip = zeros(MM,2); 
ellip_M = zeros(MM,1); 
coord = zeros(MM,4); 
coord_M = zeros(MM,2); 
for N=1:MM     
ellip(N,1) = -(pi/2)+2*(N-1)*pi/MM ; 
ellip(N,2) = -(pi/2)+2*N*pi/MM;    
coord(N,1) = a*cos(ellip(N,1)); 
coord(N,2) = b*sin(ellip(N,1)); 
coord(N,3) = a*cos(ellip(N,2)); 
coord(N,4) = b*sin(ellip(N,2)); 
ellip_M(N,1) = -(pi/2)+(2*N-1)*pi/MM ;    
coord_M(N,1) = a*cos(ellip_M(N,1)); 
coord_M(N,2) = b*sin(ellip_M(N,1));    
end 
Sigmax_X = zeros(MM,MM); 
Sigmax_Y = zeros(MM,MM); 
Sigmay_X = zeros(MM,MM); 
Sigmay_Y = zeros(MM,MM); 
Tauxy_X = zeros(MM,MM); 
Tauxy_Y = zeros(MM,MM);  
for N=1:MM     
for H=1:MM 
coord_M(N,1) = a*cos(ellip_M(N,1)); 
coord_M(N,2) = b*sin(ellip_M(N,1));  
x0 = @(q) a.*cos(q); 
y0 = @(q) b.*sin(q);  
x = coord_M(N,1); 
y = coord_M(N,2); 
l =@(q)(x-x0(q))./y; 
m =@(q)(y-y0(q))./y; 
F =@(q)1./(4.*pi.*y.*(l(q).^2+m(q).^2).^2); 
Sigmax_X_sum =@(q) (-F(q).*l(q).*((3+v).*l(q).^2+(1-v).*m(q).^2)).*b.*cos(q); 
Sigmax_Y_sum =@(q) (-F(q).*m(q).*((1+3.*v).*l(q).^2-(1-v).*m(q).^2)).*a.*sin(q); 
Sigmay_X_sum =@(q) (F(q).*l(q).*((1-v).*l(q).^2-(1+3.*v).*m(q).^2)).*b.*cos(q); 
Sigmay_Y_sum =@(q) (-F(q).*m(q).*((1-v).*l(q).^2+(3+v).*m(q).^2)).*a.*sin(q); 
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 Tauxy_X_sum =@(q) (-F(q).*m(q).*((3+v).*l(q).^2+(1-v).*m(q).^2)).*b.*cos(q); 
 Tauxy_Y_sum =@(q) (-F(q).*l(q).*((1-v).*l(q).^2+(3+v).*m(q).^2)).*a.*sin(q); 
if H ~= N 
Sigmax_X(N,H) = quad(Sigmax_X_sum,ellip(H,1),ellip(H,2)); 
Sigmax_Y(N,H) = quad(Sigmax_Y_sum,ellip(H,1),ellip(H,2)); 
Sigmay_X(N,H) = quad(Sigmay_X_sum,ellip(H,1),ellip(H,2)); 
Sigmay_Y(N,H) = quad(Sigmay_Y_sum,ellip(H,1),ellip(H,2)); 
Tauxy_X(N,H) = quad(Tauxy_X_sum,ellip(H,1),ellip(H,2)); 
Tauxy_Y(N,H) = quad(Tauxy_Y_sum,ellip(H,1),ellip(H,2)); 
elseif H == N  
k=b/a ; 
w=tan(ellip_M(H,1)); 
t(N,1) =atan((a/b)*tan(ellip_M(H,1))); 
ADD_1 = (epsilon*k/(4*pi*(k^2+w^2)^3))*(6*w^6+(3-2*k^2)*w^4-6*k^2*w^2-k^4) + 
(-1/16)*(5+4*cos(2*t(N,1))-cos(4*t(N,1))); 
ADD_2 = (epsilon*k/(4*pi*(k^2+w^2)^3))*(-w^6+6*k^2*w^4+k^2*(6-k^2)*w^2-2*k^4) 
+ (1/16)*(1-cos(4*t(N,1))); 
ADD_3 = (epsilon*k/(4*pi*(k^2+w^2)^3))*(-2*w^6-(1-6*k^2)*w^4+6*k^2*w^2-k^4) + 
(1/16)*(1-cos(4*t(N,1))); 
ADD_4 = (epsilon*k/(4*pi*(k^2+w^2)^3))*(-w^6-6*k^2*w^4+k^2*(2-k^2)*w^2+6*k^4) 
+ (-1/16)*(5-4*cos(2*t(N,1))-cos(4*t(N,1))); 
ADD_5 = (epsilon*k^2/(4*pi*(k^2+w^2)^3))*(-9*w^5-(6+2*k^2)*w^3+k^2*(2-k^2)*w) 
+ (-1/16)*(2*sin(2*t(N,1))-sin(4*t(N,1))); 
ADD_6 = (-epsilon*1/(4*pi*(k^2+w^2)^3))*((1-
2*k^2)*w^5+2*k^2*(1+3*k^2)*w^3+9*k^4*w) + (-
1/16)*(2*sin(2*t(N,1))+sin(4*t(N,1))); 
Sigmax_X(N,H) = quad(Sigmax_X_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Sigmax_X_sum,ellip_M(H,1)+epsilon,ellip(H,2)) + ADD_1; 
Sigmax_Y(N,H) = quad(Sigmax_Y_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Sigmax_Y_sum,ellip_M(H,1)+epsilon,ellip(H,2)) + ADD_2; 
Sigmay_X(N,H) = quad(Sigmay_X_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Sigmay_X_sum,ellip_M(H,1)+epsilon,ellip(H,2)) + ADD_3; 
Sigmay_Y(N,H) = quad(Sigmay_Y_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Sigmay_Y_sum,ellip_M(H,1)+epsilon,ellip(H,2)) + ADD_4; 
 Tauxy_X(N,H) =  quad(Tauxy_X_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Tauxy_X_sum,ellip_M(H,1)+epsilon,ellip(H,2))  + ADD_5; 
 Tauxy_Y(N,H) =  quad(Tauxy_Y_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Tauxy_Y_sum,ellip_M(H,1)+epsilon,ellip(H,2))  + ADD_6; 
end 
end 
end  
C_theta = zeros(MM,1); 
S_theta = zeros(MM,1); 
for N=1:MM 
theta = atan((a/b)*tan(ellip_M(N,1))); 
C_theta(N,1)= cos(theta); 
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S_theta(N,1)= sin(theta); 
sigmainf1(N,1)= -1.*cos(theta); 
end 
Sigma_X1 = zeros(MM,MM); 
Sigma_X2 = zeros(MM,MM); 
Sigma_Y1 = zeros(MM,MM); 
Sigma_Y2 = zeros(MM,MM); 
for N = 1:MM 
for H = 1:MM 
Sigma_X1(N,H) = Sigmax_X(N,H)* C_theta(N,1)+Tauxy_X(N,H)*S_theta(N,1); 
Sigma_X2(N,H) = Sigmax_Y(N,H)* C_theta(N,1)+Tauxy_Y(N,H)*S_theta(N,1); 
Sigma_Y1(N,H) = Sigmay_X(N,H)* S_theta(N,1)+Tauxy_X(N,H)*C_theta(N,1); 
Sigma_Y2(N,H) = Sigmay_Y(N,H)* S_theta(N,1)+Tauxy_Y(N,H)*C_theta(N,1); 
end 
end 
sigma_inf = [sigmainf1;sigmainf2]; 
SIGMA1 = [Sigma_X1,Sigma_X2]; 
SIGMA2 = [Sigma_Y1,Sigma_Y2]; 
SIGMA = [SIGMA1;SIGMA2]; 
Kt = SIGMA \sigma_inf; 
End 
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MATLAB PROGRAM FOR A PLATE WITH TWO DRILLED HOLES 
 
function[Kt] = Two_Holes(MM,s1,s2,a1,b1,a2,b2) 
sigmainf2 = zeros(2*MM,1); 
[ellip_M1,x1,y1] = ellip_MidPoint(s1,a1,b1,MM); 
[ellip_M2,x2,y2] = ellip_MidPoint(s2,a2,b2,MM); 
[Sigma_X1_1_1,Sigma_X2_1_1,Sigma_Y1_1_1,Sigma_Y2_1_1,sigmainf_1] = 
MODULE(MM,ellip_M1,x1,y1,a1,b1,s1); 
[Sigma_X1_1_2,Sigma_X2_1_2,Sigma_Y1_1_2,Sigma_Y2_1_2,sigmainf_1] = 
MODULE_SP(MM,ellip_M1,x1,y1,a2,b2,a1,b1,s2); 
Sigma_X1_1 = [Sigma_X1_1_1,Sigma_X1_1_2]; 
Sigma_X2_1 = [Sigma_X2_1_1,Sigma_X2_1_2]; 
Sigma_Y1_1 = [Sigma_Y1_1_1,Sigma_Y1_1_2]; 
Sigma_Y2_1 = [Sigma_Y2_1_1,Sigma_Y2_1_2]; 
[Sigma_X1_2_1,Sigma_X2_2_1,Sigma_Y1_2_1,Sigma_Y2_2_1,sigmainf_2] = 
MODULE_SP(MM,ellip_M2,x2,y2,a1,b1,a2,b2,s1); 
[Sigma_X1_2_2,Sigma_X2_2_2,Sigma_Y1_2_2,Sigma_Y2_2_2,sigmainf_2] = 
MODULE(MM,ellip_M2,x2,y2,a2,b2,s2); 
Sigma_X1_2 = [Sigma_X1_2_1,Sigma_X1_2_2]; 
Sigma_X2_2 = [Sigma_X2_2_1,Sigma_X2_2_2]; 
Sigma_Y1_2 = [Sigma_Y1_2_1,Sigma_Y1_2_2]; 
Sigma_Y2_2 = [Sigma_Y2_2_1,Sigma_Y2_2_2]; 
Sigma_X1 = [Sigma_X1_1;Sigma_X1_2]; 
Sigma_X2 = [Sigma_X2_1;Sigma_X2_2]; 
Sigma_Y1 = [Sigma_Y1_1;Sigma_Y1_2]; 
Sigma_Y2 = [Sigma_Y2_1;Sigma_Y2_2];  
sigma_inf = [sigmainf_1;sigmainf_2;sigmainf2]; 
SIGMA1 = [Sigma_X1,Sigma_X2]; 
SIGMA2 = [Sigma_Y1,Sigma_Y2]; 
SIGMA = [SIGMA1;SIGMA2]; 
Kt = SIGMA \sigma_inf; 
end 
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MATLAB PROGRAM FOR A PLATE WITH THREE DRILLED HOLES 
 
function[Kt] = Three_Holes(MM,s1,s2,s3,a1,b1,a2,b2,a3,b3) 
sigmainf2 = zeros(3*MM,1); 
[ellip_M1,x1,y1] = ellip_MidPoint(s1,a1,b1,MM); 
[ellip_M2,x2,y2] = ellip_MidPoint(s2,a2,b2,MM); 
[ellip_M3,x3,y3] = ellip_MidPoint(s3,a3,b3,MM); 
[Sigma_X1_1_1,Sigma_X2_1_1,Sigma_Y1_1_1,Sigma_Y2_1_1,sigmainf_1] = 
MODULE(MM,ellip_M1,x1,y1,a1,b1,s1); 
[Sigma_X1_1_2,Sigma_X2_1_2,Sigma_Y1_1_2,Sigma_Y2_1_2,sigmainf_1] = 
MODULE_SP(MM,ellip_M1,x1,y1,a2,b2,a1,b1,s2); 
[Sigma_X1_1_3,Sigma_X2_1_3,Sigma_Y1_1_3,Sigma_Y2_1_3,sigmainf_1] = 
MODULE_SP(MM,ellip_M1,x1,y1,a3,b3,a1,b1,s3); 
Sigma_X1_1 = [Sigma_X1_1_1,Sigma_X1_1_2,Sigma_X1_1_3]; 
Sigma_X2_1 = [Sigma_X2_1_1,Sigma_X2_1_2,Sigma_X2_1_3]; 
Sigma_Y1_1 = [Sigma_Y1_1_1,Sigma_Y1_1_2,Sigma_Y1_1_3]; 
Sigma_Y2_1 = [Sigma_Y2_1_1,Sigma_Y2_1_2,Sigma_Y2_1_3]; 
[Sigma_X1_2_1,Sigma_X2_2_1,Sigma_Y1_2_1,Sigma_Y2_2_1,sigmainf_2] = 
MODULE_SP(MM,ellip_M2,x2,y2,a1,b1,a2,b2,s1); 
[Sigma_X1_2_2,Sigma_X2_2_2,Sigma_Y1_2_2,Sigma_Y2_2_2,sigmainf_2] = 
MODULE(MM,ellip_M2,x2,y2,a2,b2,s2); 
[Sigma_X1_2_3,Sigma_X2_2_3,Sigma_Y1_2_3,Sigma_Y2_2_3,sigmainf_2] = 
MODULE_SP(MM,ellip_M2,x2,y2,a3,b3,a2,b2,s3); 
Sigma_X1_2 = [Sigma_X1_2_1,Sigma_X1_2_2,Sigma_X1_2_3]; 
Sigma_X2_2 = [Sigma_X2_2_1,Sigma_X2_2_2,Sigma_X2_2_3]; 
Sigma_Y1_2 = [Sigma_Y1_2_1,Sigma_Y1_2_2,Sigma_Y1_2_3]; 
Sigma_Y2_2 = [Sigma_Y2_2_1,Sigma_Y2_2_2,Sigma_Y2_2_3]; 
[Sigma_X1_3_1,Sigma_X2_3_1,Sigma_Y1_3_1,Sigma_Y2_3_1,sigmainf_3] = 
MODULE_SP(MM,ellip_M3,x3,y3,a1,b1,a3,b3,s1); 
[Sigma_X1_3_2,Sigma_X2_3_2,Sigma_Y1_3_2,Sigma_Y2_3_2,sigmainf_3] = 
MODULE_SP(MM,ellip_M3,x3,y3,a2,b2,a3,b3,s2); 
[Sigma_X1_3_3,Sigma_X2_3_3,Sigma_Y1_3_3,Sigma_Y2_3_3,sigmainf_3] = 
MODULE(MM,ellip_M3,x3,y3,a3,b3,s3); 
Sigma_X1_3 = [Sigma_X1_3_1,Sigma_X1_3_2,Sigma_X1_3_3]; 
Sigma_X2_3 = [Sigma_X2_3_1,Sigma_X2_3_2,Sigma_X2_3_3]; 
Sigma_Y1_3 = [Sigma_Y1_3_1,Sigma_Y1_3_2,Sigma_Y1_3_3]; 
Sigma_Y2_3 = [Sigma_Y2_3_1,Sigma_Y2_3_2,Sigma_Y2_3_3]; 
Sigma_X1 = [Sigma_X1_1;Sigma_X1_2;Sigma_X1_3]; 
Sigma_X2 = [Sigma_X2_1;Sigma_X2_2;Sigma_X2_3]; 
Sigma_Y1 = [Sigma_Y1_1;Sigma_Y1_2;Sigma_Y1_3]; 
Sigma_Y2 = [Sigma_Y2_1;Sigma_Y2_2;Sigma_Y2_3]; 
sigma_inf = [sigmainf_1;sigmainf_2;sigmainf_3;sigmainf2]; 
SIGMA1 = [Sigma_X1,Sigma_X2]; 
SIGMA2 = [Sigma_Y1,Sigma_Y2]; 
SIGMA = [SIGMA1;SIGMA2]; 
Kt = pinv(SIGMA)*sigma_inf; 
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End 
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MATLAB SUBPROGRAM “MODULE” FOR TWO AND THREE DRILLED HOLES 
 
function [Sigma_X1,Sigma_X2,Sigma_Y1,Sigma_Y2,sigmainf1] = 
MODULE(MM,ellip_M,x,y,a,b,s) 
v = 0 ; 
epsilon = 0.00002; 
t = zeros(MM,1); 
sigmainf1 = zeros(MM,1); 
ellip = zeros(MM,2); 
for N=1:MM 
ellip(N,1) = -pi/2 + 2*(N-1)*pi/MM ; 
ellip(N,2) = -pi/2 + 2*N*pi/MM; 
end 
Sigmax_X = zeros(MM,MM); 
Sigmax_Y = zeros(MM,MM); 
Sigmay_X = zeros(MM,MM); 
Sigmay_Y = zeros(MM,MM); 
Tauxy_X = zeros(MM,MM); 
Tauxy_Y = zeros(MM,MM); 
for N=1:MM 
for H=1:MM 
x0 = @(q) a.*cos(q); 
y0 = @(q) b.*sin(q); 
l =@(q)(x(N,1)-(s+x0(q)))./y(N,1); 
m =@(q)(y(N,1)-y0(q))./y(N,1); 
F =@(q)1./(4.*pi.*y(N,1).*(l(q).^2+m(q).^2).^2); 
Sigmax_X_sum =@(q) (-F(q).*l(q).*((3+v).*l(q).^2+(1-v).*m(q).^2)).*b.*cos(q); 
Sigmax_Y_sum =@(q) (-F(q).*m(q).*((1+3.*v).*l(q).^2-(1-v).*m(q).^2)).*a.*sin(q) ; 
Sigmay_X_sum =@(q) (F(q).*l(q).*((1-v).*l(q).^2-(1+3.*v).*m(q).^2)).*b.*cos(q) ; 
Sigmay_Y_sum =@(q) (-F(q).*m(q).*((1-v).*l(q).^2+(3+v).*m(q).^2)).*a.*sin(q) ; 
Tauxy_X_sum =@(q) (-F(q).*m(q).*((3+v).*l(q).^2+(1-v).*m(q).^2)).*b.*cos(q) ; 
Tauxy_Y_sum =@(q) (-F(q).*l(q).*((1-v).*l(q).^2+(3+v).*m(q).^2)).*a.*sin(q) ; 
if H ~= N 
Sigmax_X(N,H) = quad(Sigmax_X_sum,ellip(H,1),ellip(H,2)); 
Sigmax_Y(N,H) = quad(Sigmax_Y_sum,ellip(H,1),ellip(H,2)); 
Sigmay_X(N,H) = quad(Sigmay_X_sum,ellip(H,1),ellip(H,2)); 
Sigmay_Y(N,H) = quad(Sigmay_Y_sum,ellip(H,1),ellip(H,2)); 
Tauxy_X(N,H) = quad(Tauxy_X_sum,ellip(H,1),ellip(H,2)); 
Tauxy_Y(N,H) = quad(Tauxy_Y_sum,ellip(H,1),ellip(H,2)); 
elseif H == N  
k=b/a ; 
w=tan(ellip_M(N,1)); 
t(N,1) =atan((a/b)*tan(ellip_M(N,1))); 
ADD_1 = (epsilon*k/(4*pi*(k^2+w^2)^3))*(6*w^6+(3-2*k^2)*w^4-6*k^2*w^2-k^4) + 
(-1/16)*(5+4*cos(2*t(N,1))-cos(4*t(N,1))); 
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ADD_2 = (epsilon*k/(4*pi*(k^2+w^2)^3))*(-w^6+6*k^2*w^4+k^2*(6-k^2)*w^2-2*k^4) 
+ (1/16)*(1-cos(4*t(N,1))); 
ADD_3 = (epsilon*k/(4*pi*(k^2+w^2)^3))*(-2*w^6-(1-6*k^2)*w^4+6*k^2*w^2-k^4) + 
(1/16)*(1-cos(4*t(N,1))); 
ADD_4 = (epsilon*k/(4*pi*(k^2+w^2)^3))*(-w^6-6*k^2*w^4+k^2*(2-k^2)*w^2+6*k^4) 
+ (-1/16)*(5-4*cos(2*t(N,1))-cos(4*t(N,1))); 
ADD_5 = (epsilon*k^2/(4*pi*(k^2+w^2)^3))*(-9*w^5-(6+2*k^2)*w^3+k^2*(2-k^2)*w) 
+ (-1/16)*(2*sin(2*t(N,1))-sin(4*t(N,1))); 
ADD_6 = (-epsilon*1/(4*pi*(k^2+w^2)^3))*((1-
2*k^2)*w^5+2*k^2*(1+3*k^2)*w^3+9*k^4*w) + (-
1/16)*(2*sin(2*t(N,1))+sin(4*t(N,1))); 
Sigmax_X(N,H) = quad(Sigmax_X_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Sigmax_X_sum,ellip_M(H,1)+epsilon,ellip(H,2)) + ADD_1; 
Sigmax_Y(N,H) = quad(Sigmax_Y_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Sigmax_Y_sum,ellip_M(H,1)+epsilon,ellip(H,2)) + ADD_2; 
Sigmay_X(N,H) = quad(Sigmay_X_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Sigmay_X_sum,ellip_M(H,1)+epsilon,ellip(H,2)) + ADD_3; 
Sigmay_Y(N,H) = quad(Sigmay_Y_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Sigmay_Y_sum,ellip_M(H,1)+epsilon,ellip(H,2)) + ADD_4; 
 Tauxy_X(N,H) =  quad(Tauxy_X_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Tauxy_X_sum,ellip_M(H,1)+epsilon,ellip(H,2))  + ADD_5; 
 Tauxy_Y(N,H) =  quad(Tauxy_Y_sum,ellip(H,1),ellip_M(H,1)-epsilon) + 
quad(Tauxy_Y_sum,ellip_M(H,1)+epsilon,ellip(H,2))  + ADD_6; 
end 
end 
end 
C_theta = zeros(MM,1); 
S_theta = zeros(MM,1); 
for N=1:MM 
theta = atan((a/b)*tan(ellip_M(N,1))); 
C_theta(N,1)= cos(theta); 
S_theta(N,1)= sin(theta); 
sigmainf1(N,1)= -1.*cos(theta); 
end 
Sigma_X1 = zeros(MM,MM); 
Sigma_X2 = zeros(MM,MM); 
Sigma_Y1 = zeros(MM,MM); 
Sigma_Y2 = zeros(MM,MM); 
for N = 1:MM 
for H = 1:MM 
Sigma_X1(N,H) = Sigmax_X(N,H)* C_theta(N,1) + Tauxy_X(N,H)*S_theta(N,1); 
Sigma_X2(N,H) = Sigmax_Y(N,H)* C_theta(N,1) + Tauxy_Y(N,H)*S_theta(N,1); 
Sigma_Y1(N,H) = Sigmay_X(N,H)* S_theta(N,1) + Tauxy_X(N,H)*C_theta(N,1); 
Sigma_Y2(N,H) = Sigmay_Y(N,H)* S_theta(N,1) + Tauxy_Y(N,H)*C_theta(N,1); 
end 
end 
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end 
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MATLAB SUBPROGRAM “MODULE_SP” FOR TWO AND THREE DRILLED HOLES 
 
function [Sigma_X1,Sigma_X2,Sigma_Y1,Sigma_Y2,sigmainf1] = 
MODULE_SP(MM,ellip_M,x,y,a,b,a1,b1,s) 
v = 0 ; 
sigmainf1 = zeros(MM,1); 
ellip = zeros(MM,2); 
for N=1:MM 
ellip(N,1) = -pi/2 + 2*(N-1)*pi/MM ; 
ellip(N,2) = -pi/2 + 2*N*pi/MM; 
end 
Sigmax_X = zeros(MM,MM); 
Sigmax_Y = zeros(MM,MM); 
Sigmay_X = zeros(MM,MM); 
Sigmay_Y = zeros(MM,MM); 
Tauxy_X = zeros(MM,MM); 
Tauxy_Y = zeros(MM,MM); 
for N=1:MM 
for H=1:MM 
x0 = @(q) a.*cos(q); 
y0 = @(q) b.*sin(q); 
l =@(q)(x(N,1)-(s+x0(q)))./y(N,1); 
m =@(q)(y(N,1)-y0(q))./y(N,1); 
F =@(q)1./(4.*pi.*y(N,1).*(l(q).^2+m(q).^2).^2); 
Sigmax_X_sum =@(q) (-F(q).*l(q).*((3+v).*l(q).^2+(1-v).*m(q).^2)).*b.*cos(q); 
Sigmax_Y_sum =@(q) (-F(q).*m(q).*((1+3.*v).*l(q).^2-(1-v).*m(q).^2)).*a.*sin(q) ; 
Sigmay_X_sum =@(q) (F(q).*l(q).*((1-v).*l(q).^2-(1+3.*v).*m(q).^2)).*b.*cos(q) ; 
Sigmay_Y_sum =@(q) (-F(q).*m(q).*((1-v).*l(q).^2+(3+v).*m(q).^2)).*a.*sin(q) ; 
Tauxy_X_sum =@(q) (-F(q).*m(q).*((3+v).*l(q).^2+(1-v).*m(q).^2)).*b.*cos(q) ; 
Tauxy_Y_sum =@(q) (-F(q).*l(q).*((1-v).*l(q).^2+(3+v).*m(q).^2)).*a.*sin(q) ; 
Sigmax_X(N,H) = quad(Sigmax_X_sum,ellip(H,1),ellip(H,2)); 
Sigmax_Y(N,H) = quad(Sigmax_Y_sum,ellip(H,1),ellip(H,2)); 
Sigmay_X(N,H) = quad(Sigmay_X_sum,ellip(H,1),ellip(H,2)); 
Sigmay_Y(N,H) = quad(Sigmay_Y_sum,ellip(H,1),ellip(H,2)); 
Tauxy_X(N,H) = quad(Tauxy_X_sum,ellip(H,1),ellip(H,2)); 
Tauxy_Y(N,H) = quad(Tauxy_Y_sum,ellip(H,1),ellip(H,2)); 
end 
end 
C_theta = zeros(MM,1); 
S_theta = zeros(MM,1); 
for N=1:MM 
theta = atan((a1/b1)*tan(ellip_M(N,1))); 
C_theta(N,1)= cos(theta); 
S_theta(N,1)= sin(theta); 
sigmainf1(N,1)= -1.*cos(theta); 
end 
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Sigma_X1 = zeros(MM,MM); 
Sigma_X2 = zeros(MM,MM); 
Sigma_Y1 = zeros(MM,MM); 
Sigma_Y2 = zeros(MM,MM); 
for N = 1:MM 
for H = 1:MM 
Sigma_X1(N,H) = Sigmax_X(N,H)* C_theta(N,1) + Tauxy_X(N,H)*S_theta(N,1); 
Sigma_X2(N,H) = Sigmax_Y(N,H)* C_theta(N,1) + Tauxy_Y(N,H)*S_theta(N,1); 
Sigma_Y1(N,H) = Sigmay_X(N,H)* S_theta(N,1) + Tauxy_X(N,H)*C_theta(N,1); 
Sigma_Y2(N,H) = Sigmay_Y(N,H)* S_theta(N,1) + Tauxy_Y(N,H)*C_theta(N,1); 
end 
end 
end 
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MATLAB SUBPROGRAM “ELLIP_MIDPOINT” FOR TWO AND THREE DRILLED HOLES 
 
function [ellip_M,x,y] = ellip_MidPoint(s,a,b,MM) 
ellip = zeros(MM,2); 
ellip_M = zeros(MM,1); 
x = zeros(MM,1); 
y = zeros(MM,1); 
for N=1:MM 
ellip(N,1) = -pi/2 + 2*(N-1)*pi/MM ; 
ellip(N,2) = -pi/2 + 2*N*pi/MM; 
ellip_M(N,1) = (ellip(N,1) + ellip(N,2))/2 ; 
x(N,1) = s + a*cos(ellip_M(N,1)); 
y(N,1) = b*sin(ellip_M(N,1));  
end 
end 
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PRELIMINARY RESULTS FOR A PLATE WITH TWO HOLES 
 
MM = 4 value was used for these results. 
𝑅1 is the raduis of the main hole. 
𝑅2 is the radius of the auxilliary hole. 
e is the distance between closer edges of the holes. 
 

𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.9918 3.0003 3.0045 3.0060 3.0063 3.0059 3.0052 3.0042 3.0032 3.0021 3.001 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.9979 3.0198 3.0259 3.0261 3.0238 3.0203 3.0161 3.0118 3.0076 3.0037 3.0003 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 3.0446 3.0621 3.0607 3.0532 3.0435 3.0334 3.0234 3.0141 3.0057 2.9984 2.9921 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 3.1094 3.1076 3.0912 3.0715 3.0521 3.0341 3.0179 3.0037 2.9914 2.9811 2.9725 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 3.1561 3.1302 3.0976 3.0663 3.0382 3.0139 2.9931 2.9755 2.9609 2.9489 2.9393 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 3.1554 3.1104 3.0667 3.0282 2.9956 2.9683 2.9458 2.9274 2.9125 2.9008 2.8917 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 3.0916 3.0394 2.9933 2.9545 2.9226 2.8967 2.8760 2.8596 2.8469 2.8374 2.8304 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.9640 2.9184 2.8797 2.8477 2.8220 2.8017 2.7860 2.7743 2.7660 2.7603 2.7570 
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𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.7835 2.7569 2.7337 2.7144 2.6992 2.6878 2.6798 2.6749 2.6724 2.6721 2.6736 

 
𝑅1  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.5682 2.5684 2.5658 2.5628 2.5608 2.5605 2.5619 2.5650 2.5696 2.5755 2.5824 
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PRELIMINARY RESULTS FOR A PLATE WITH THREE HOLES 
 
MM = 4 value was used for these results.  
𝑅1 is the raduis of the main hole. 
𝑅2 = 𝑅3 is the radius of the auxilliary holes. 
e is the distance between closer edges of the holes. 
 

𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.9808 2.9990 3.0056 3.0078 3.0080 3.0073 3.0059 3.0042 3.0024 3.0007 2.9992 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.9945 3.0261 3.0340 3.0330 3.0284 3.0221 3.0150 3.0080 3.0013 2.9952 2.9900 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 3.0648 3.0830 3.0757 3.0609 3.0442 3.0273 3.0113 2.9968 2.9839 2.9728 2.9635 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 3.1525 3.1327 3.0988 3.0642 3.0325 3.0042 2.9795 2.9582 2.9403 2.9256 2.9137 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 3.1905 3.1288 3.0694 3.0182 2.9752 2.9392 2.9094 2.8849 2.8651 2.8495 2.8374 

 

𝑅1 1.0 1.0 1.0 1.0 1.0 1.0  
𝑅2 0.5 0.5 0.5 0.5 0.5 0.5 

e 1.1 1.2 1.3 1.4 1.5 1.6 
𝐾𝑡 2.8284 2.8220 2.8177 2.8152 2.8143 2.8145 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 3.1260 3.0392 2.9676 2.9101 2.8641 2.8273 2.7981 2.7751 2.7575 2.7444 2.7350 

 

𝑅1 1.0 1.0 1.0 1.0  
𝑅2 0.6 0.6 0.6 0.6 

e 1.1 1.2 1.3 1.4 
𝐾𝑡 2.7288 2.7252 2.7238 2.7242 



 
 

 
 

Appendix 8/2 
 

𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.9428 2.8578 2.7918 2.7409 2.7015 2.6714 2.6487 2.6320 2.6204 2.6130 2.6091 

 

𝑅1 1.0 1.0  
𝑅2 0.7 0.7 

e 1.1 1.2 
𝐾𝑡 2.6080 2.6092 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.6606 2.6011 2.5561 2.5224 2.4977 2.4803 2.4688 2.4622 2.4597 2.4605 2.4640 

 
𝑅1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.3188 2.2978 2.2934 2.3140 2.3233 2.3496 2.3666 2.3835 2.4003 2.4171 2.4339 

 
𝑅1  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
𝑅2  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0 1.0 

e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
𝐾𝑡 2.4104 2.4215 2.4298 2.4370 2.4442 2.4520 2.4604 2.4696 2.4795 2.4899 2.5007 

 
 


