

Evgenii Korepanov

DEVELOPMENT OF WEB INTERFACE
FOR WORKING WITH TABULAR DATA

Bachelor’s thesis
Degree Programme in Information Technology

2017

Author (authors) Degree

Time

Evgenii Korepanov Degree Programme
in Information
Technology

April 2017

Title
Development of web interface
for working with tabular data

54 pages
5 pages of appendices

Commissioned by

Roman Denisov, Tpoint OY

Supervisor
Paula Posio

Abstract

The aim of this thesis is to investigate the process of migration of client-server applications
into WEB basis. The example described in the thesis is intended to provide such a
migration of client-server application, which is being developing as a service by Tpoint Oy
company.

During this work, exact realization of client application was designed by the iterative method
of developing, including prototyping and different techniques review. A justifying of finally
selected method is presented in the text of this thesis.

During the thesis work client-side specialized web application was designed, developed and
implemented. This application is aimed to replace the solution used before, which is a
native Microsoft Windows application based on MS Access. Functionality of old application
was aimed to handle data of enterprise accounting system and all functions were planned to
be realized in a new web application. This realization was partially fulfilled in this thesis as a
working prototype of application that demonstrates concept of development, proves the
viability of such a decision and possibility to develop the product up into full-featured.

It is shown in the thesis that independent development of web components for a graphical
user interface can have significant advantages over the use of ready solutions. This work
serves as a start for development of universal user interface components for working with
relative tabular data.

Keywords

Client-server, Web development, Web interface, JavaScript, Web standards, Web
Components, Coffeescript, Web application

CONTENTS

1 INTRODUCTION .. 5

2 GOALS ... 5

3 TRENDS OF WEB DEVELOPMENT .. 6

3.1 Operating systems and hardware diversity growth ... 6

3.2 Web application as universal solution ... 7

3.3 Adaptive design .. 8

3.4 Rich Internet Application as a Single Page Application - one for the price of three 9

3.5 Component approach as solution for web development hell 11

4 USED TECHNOLOGIES .. 13

4.1 Web components .. 13

4.2 Standards of Web Components .. 15

4.2.1 Custom Elements ... 15

4.2.2 Shadow DOM ... 16

4.2.3 HTML Templates .. 16

4.2.4 HTML Imports ... 17

4.3 BEM instead of shadow DOM ... 17

4.4 Event model .. 19

4.5 Data binding with D3js .. 19

4.6 Utilization of CoffeeScript as a cultivated version of JavaScript [20]..................... 21

4.7 JQuery .. 22

4.8 Bootstrap .. 22

4.9 What was dropped as non-suitable ... 23

5 DESCRIPTION OF THE DEVELOPED APPLICATION .. 24

5.1 Hello-world example tag ... 24

5.2 System architecture .. 27

5.3 How it actually works .. 29

5.3.1 Main functionality .. 29

5.3.2 Configuration and custamization ... 38

5.3.3 Mobile interface .. 43

5.3.4 Application work summary .. 48

6 SUMMARY ... 49

REFERENCES .. 51

APPENDIX

5

1 INTRODUCTION

This thesis work is based on existing commercial software "Tpoint Logistics" [1]

used for the warehouse, financial and logistics accounting. The existing solution

is a native desktop application made using Microsoft Access as a client to

Microsoft SQL Server.

Despite of the widespread presence of this approach to implementation of

various accounting systems, the use of Microsoft Access has a number of

significant disadvantages: platform dependence [2], inability to use Access in

client-server architecture for connecting to SQL Server since version 2013 [3].

The scaling overall system functionality and implementation of new features to

the product is also limited by the solution.

Impossibility to resolve these disadvantages required finding a replacement for

the client part, which led to formulation of the goals of this thesis.

2 GOALS

The goals of this work were based on requirements for the application to have

certain properties. Major property was to create cross-platform client application

designed for both desktop and mobile devices. The application needs to be

customizable for both program interface and functionality. The users were

required to be able to work with software under their favourite operating system

as well as to work outside of the office. The same trends can be observed among

users of most accounting systems [4].

A new solution also needs to be easily modifiable and scalable to cover the

needs of users that cannot already be satisfied with existing solution. Scaling

overall system functionality and implementation of new features to the product is

also limited by the current solution.

6

The list of application properties was combined based on set of goals. According

to generalized requirements list, the application must be:

 web-based

 cross-platform

 desktop and mobile

 scalable

 customizable

 extendable

 lightweight.

Achieving mentioned goals can be divided into three phases:

1. development of the prototype that is ready to be extended: working
demonstration of core functionality

2. development of a minimum viable product (MVP [5]): Navigation and
CRUD (Create-Read-Update-Delete) to any data table

3. development of a full-featured product: ready replacement of existing
solution

It is necessary to follow the trends in the software market for a delivery of a

successful product. Next follows a review of discovered trends to business

software.

3 TRENDS OF WEB DEVELOPMENT

3.1 Operating systems and hardware diversity growth

Extreme popularity of Microsoft Windows drops slowly but surely. Windows

market share has decreased by 10 percent during the last eight years and it has

a slow descending tendency [6], also see figure 51.

Diversity of used hardware platforms is growing, and the desktop platform is not

the leader any more. The number of desktop platform users almost have not

changed during the period of 2013-2015 but a 40% growth of digital media usage

came from mobile and tablet devices users [7], also see figure 52

7

All of this causes demand for software to provide support for multiple operating

systems as well as for multiple devices.

Due to huge growth of mobile devices popularity, mobile applications nowadays

become more popular then desktop ones [8], also see figure 53. Particularly, time

spent in mobile applications for business is about 40% of time spent for business

on all application platforms and it is continuously growing [4], also see figure 54.

Nowadays employees become more mobile. They can perform their work tasks

outside of the office and use several devices including phones, desktop

computers and tablets during a day [9]. According to Citrix mobile analytics report

[9], the number of devices managed in the enterprise increased 72% from 2014

to 2015”. That all causes the importance of mobile marketing in business

application development.

3.2 Web application as universal solution

Web applications are a step forward compared with native applications when

support for several runtime environments is required. The factors of these

solutions are described next.

1) native application

Development is more expensive since every platform requires development and

support of individual software versions. The cost of maintenance and updating

becomes higher. Users may be using different application versions and there is a

need to support many previously released versions and keep up with updates for

all platforms. Native solutions for a chosen program, platform or equipment do

not cover all devices or platforms that can be used to work with information.

2) web application

Web applications are much easier to maintain as it has common code base

across multiple platforms. There is no need to think about backward application

compatibility since there are no different application versions. This lowers

maintenance costs. Users do not need to download, install and update the

8

application. The application can be released any time and updated dynamically or

partly, as per the developer’s preferences.

Web solution is the best option for ERP system user interface development as it

works on all platforms since almost every device has a modern web browser.

Another thing about web application is that it provides a convenient way for

promoting and advertising. Potential users visiting promotional web site can get

directly to the demo-version of a program.

3) Multi-platform development environments are not popular because they have

problems of both native solution and web application. They do not cover the

entire diversity of platforms and do not have all specific platform features

implemented.

3.3 Adaptive design

More than half of Internet users visit websites with mobile devices and small

screens [10], also see figure 35. This makes a web developer thinking about the

functioning of the website not only on desktops but on mobile and touchscreen

devices too.

Creation of two versions of web interface might be a decision but it doubles work

of application support and development, which is not always cost-effective.

The concept of adoptive design solves this problem. The site equally displays

information in the most complete way, regardless of the type of screen and the

size of the device. The content and colour scale do not change, only the form and

the way to group information and navigation blocks of the site in the most

convenient way for the user changes.

9

3.4 Rich Internet Application as a Single Page Application - one for the

price of three

Today's web is not used as it was designed to be used. Originally, World Wide

Web was designed as a network of web sites, where the web site is a resource

consisting of one or more web pages with hypertext, multimedia (images, video,

audio) and other types of static content. Today's web is more like a network of

web applications. Web applications differ from web sites by having dynamic

behaviour, meaning that the content of a web page changes without loading it

from a web server, but by the program that brings interactivity to static content.

Earlier web applications worked by the principle of moving between pages by

hyperlinks and sending forms to the server using a web browser. Such

applications are built by client-server architecture with a thin client. HTML, being

the markup language of documents and displayable by browsers, is ideal for this.

The sequence of user actions is the constant sending of requests to the server.

Server generates static web pages and returns them to the client. This approach

is called Server-side HTML.

Method of HTML generation effectively works for simple applications. But

performance falls down for complex application with rich functionality and many

graphical elements. Method of HTML generation creates excess complexity for

large structure of elements and makes interaction between elements difficult to

implement. Server-side generation of HTML makes state of application stored at

server that inevitably leads to cache invalidation problems:

"There are only two hard problems in Computer Science: cache

invalidation and naming things”

— Phil Karlton [26]

Modern approach in development of web-applications is moving away from

standard approach to an approach where it is standard to run such applications in

web browser environment that has appearance and functionality similar to

10

desktop-applications. That class of programs is called Rich Internet Application

(RIA) [27].

To provide RIA functionality software logic has to move from server to client

environment. This means that static web pages are replaced by dynamic pages.

When a page is static, it looks always the same, regardless of the user's actions.

For example, the menu is organized by links to individual pages, not a drop-down

list. By definition, dynamic web pages react to user actions and other events. For

example, moving the mouse cursor over text leads to display of translation of the

word.

Dynamics on web pages is implemented by using scripts written in JavaScript

language that are executed by the browser. HTML elements support definition of

event handlers. For example, event handler might be set to process "mouse

click" event in the picture. Then if the user clicks on this picture, the handler

defined for this event will be called. This allows for countless applications in

dynamic web.

As the functionality of the application grows, so does the number of requests to

the server. Each response from the server must be rendered by the client. This

leads to an increase in the load for both the client and the server and an increase

in the amount of information transmitted.

Developers can avoid this excessive exchange by dynamically loading only

needed data at an appropriate moment without reloading entire page. For this,

AJAX technology is used. AJAX stands for Asynchronous JavaScript and XML. It

is a technology of requesting server without page reloading. Due to this, the

response time is reduced, and interactivity of the web application becomes

indistinguishable from desktop analogues.

AJAX technology is widely used for making Single Page Applications (SPA) [28].

SPA is a web application that uses single HTML document to display all content.

Typically, SPA implements user interactivity by dynamically loading HTML, CSS

11

and JavaScript with AJAX queries. Applying AJAX at SPA improves development

quality due to data being loaded only when needed. Compared to loading all

page data at once, AJAX increases speed and decreases response time.

3.5 Component approach as solution for web development hell

In today’s web, a number of tweaks that make possible the development of

complex Web applications make the development process so difficult that Web

frameworks had to appear to address such needs. Technologies, which have

been created to help Web be developer-friendly, follow next. Third-party browser

plug-ins such as Microsoft Silverlight, Java Applets, Adobe Acrobat Reader,

Adobe Flash Player. JavaScript frameworks include Backbone.js, AngularJS,

Ember.js, KnockoutJS,Dojo, Knockback.js, CanJS, Polymer,Reac, Mithril,

Ampersand, Flight, Vue.js ,Marionette.js, TroopJ, RequireJS, SocketStream,

Firebase.

Plugins developed with Netscape Plugin API are not going to work in most

browsers any more [11], [12]. In addition, Adobe Flash Player is replaced by

HTML5 since all necessary capabilities of Flash Player are now implemented in

HTML5 [13]. It means that correct operating of an application made using these

techniques can not be guaranteed.

JavaScript frameworks are function libraries having their own rules of code

organization. Their main idea is to create a set of high-level abstractions that hide

details of web technologies and let developers work suitable level of abstraction.

For example, a framework might let you to describe a web page using new

inexistent tags and attributes that will be converted by framework to JavaScript

objects manipulated by framework's functions.

The main problem of frameworks is that abstractions are not perfect. During

overview of frameworks that initially looked like proper solution, it was found that

with increasing complexity of the application, the number of nuances of the

12

framework is growing rapidly. Such nuances can not be explained without

understanding source code of the framework.

Another point discovered is that frameworks provide a restricted way to make

applications since they have their own rules. With any framework there comes a

moment when requirements appear, that force changing framework behaviour.

Inability to control third-party components (adjust them to specific needs)

becomes then a real problem. For example, no suitable solutions were found that

fully meet the requirements of simplicity, lightweight, customizable, and adaptive

interface design.

As practice shows, usage of a framework brings the requirement to know how it

works and, therefore, requires studying of its source codes. That is, the

complexity of many tasks is not decreased, but increased by appearance of new

technology stack that must be studied and maintained. Efforts for mastering the

framework's universal components are comparable to efforts of writing of self-

made particular solution. Self-made solution meets all requirements with no

limitations brought by the external framework. Thus, it was decided to develop

self-made solution without using frameworks at all.

When a web site or web page is described as complying with web standards, it

usually means that the site or page has valid HTML, CSS and JavaScript.

Development tools were chosen in a way not to destroy web standards (add an

extra technology stack), but to take advantages from utilization of web standards.

Complex interfaces have long been unresolved problem in the world of web

applications.

One of the techniques that are typically used in implementation of complex

projects is the fragmentation of the project into possibly small parts that are

loosely dependent on each other, which are easily developed separately.

Fragmenting of the development process reduces its complexity. Software

development then becomes easier and therefore better testable and reliable. The

13

main outcome of component approach is an ability to reuse components

everywhere, so they become building blocks of complex application.

Previously browsers did not have native support for tools describing the solution

of a problem with the help of abstractions. The task of representing a web

application as set of self-made tags was typically solved by various JavaScript-

frameworks. This created difficulties, as various program layers were added.

Each of added layers was not part of standard. Accumulation of the experience

and knowledge of the developer community led to the creation of a standard of

Web Components in 2011 by Alex Russell with the following considerations:

"We need more observable ways to share loose meaning to feed the

process of progress"

— Alex Russell, 2011 [14]

4 USED TECHNOLOGIES

4.1 Web components

"Web components" is the set of a standards enabling to create new DOM

elements with its own properties, methods, encapsulated DOM and styles.

Nowadays those standards continue to be developed and have different level of

implementation in

browsers [15], also see figure 56.

Currently Chromium and its derivatives implement latest version of W3C

specification for Web Components.

For browsers that do not support Web Components standard, Google team has

developed polyfills – JavaScript library that implements missing parts. To explain

specifics of production usage of Web Components, the following ways to use

Web Components can be considered:

14

1. Chromium-based browsers. Most popular browser in the world, Google
Chrome, has mostly production ready realization of Web Components.
Chrome is a web browser based on Chromium, developed by Google.
First stable version was released in December 2008. Today it is the mostly
used browser. According to statistics below it has more than half of web
browsers market share [16] (figure 57), [17] (figure 58).

2. Polyfills. Polyfill is a JavaScript library that implements capabilities of
modern browsers in older ones. For example if you are ingrained Internet
Explorer 8 user and web developer using standard property textContent of
DOM element at his site wants you to be able to visit the site he has to add
there polyfill which adds required functionality into old browser using
available functions of the browser.

Example source code for such polyfill is shown in figure 1.

Figure 1. Polyfill example

15

Example code shows the principle of polyfills' work. First it checks the browser for

property support. If the property has undefined value then it is not supported.

Second step then is to define it. In example it is done by Object.defineProperty

function. textContent property of DOM element is now defined for IE8 as an alias

for innerText which works properly in most cases.

Polyfills of some web components' features today are needed for Firefox, Safari,

Edge and other web browsers. Library can be found on the official site of

WebComponents [18].

This thesis work was done using Chromium without polyfills to provide faster,

more comprehensive and simpler results.

4.2 Standards of Web Components

Web Components platform include four standards which are Custom Elements,

Shadow DOM, HTML Templates and HTML Imports. Next follows the description

of each standard.

4.2.1 Custom Elements

Custom Elements standard provides a way to create new HTML tags and

describe their own properties, methods, constructor, DOM content, and CSS

styles. The name of custom tag must consist of two words divided by dash.

Syntax: <my-tag></my-tag>

Custom elements have their lifecycle reactions, allowing to attach certain

behaviour to different parts of the element's lifecycle such as "created", "attached

to the document", "detached out of the document", "attribute added, changed, or

removed".

To create new element the following call is used:

document.registerElement(name, prototype:proto)

 name: two words divided by dash;

 proto: prototype object for new element.

16

To have standard properties and methods, new tag needs to have object,

inheriting from HTMLElement as a prototype:

Object.create(HTMLElement.prototype). It is also possible to extend standard

html tag by using as a prototype of new element object, similar to following:

Object.create(HTMLButtonElement.prototype). In this case tag <button> will be

extended.

4.2.2 Shadow DOM

Shadow DOM is a standard that lets to create inside of an element DOM tree that

is separated from external document and is not accessible from outside without

special methods. It has its own naming and styling scope.

Content of that type is created for the element by calling:

elem.createShadowRoot()

which is then accessible as a property:

elem.shadowRoot

The initial content of element is then hided and shadow DOM is displayed

instead. Specialized tag <content> can be added inside shadow DOM to specify

the place to display the initial content.

4.2.3 HTML Templates

HTML tag <template id="t"></template> is intended to store a markup template. It

is not displayed by default but is used for deferred rendering. Its content can be

inserted into document many times with JavaScript and then manipulate as an

essence belonging to instance of a component.

The following code assigns to c variable a DocumentFragment containing copy of

template's content.

c = document.querySelector('#t').content.cloneNode(true)

17

4.2.4 HTML Imports

HTML Imports are a way to include and reuse HTML documents in other HTML

documents. Imported documents called Imports are inserted as a part of main

document with shared script and style spaces. It is needed to provide the full

modularity of the application by splitting the whole code into files including HTML

that was not able to be divided before since it has not been considered from a

component approach perspective. Web Components standard supposes that

main document can import files-definitions with all needed HTML, JS and CSS of

components that can be then used.

Syntax:

<link rel="import" href="http://site.com/document.html">

Document loaded by <link rel="import"> is handled, and its DOM is built but is not

shown in the beginning. That DOM can be inserted later when needed.

4.3 BEM instead of shadow DOM

Shadow DOM has two major disadvantages. Firstly, it does not let to include

external CSS files which decrease quality of code organisation. Secondly,

shadow DOM has CSS scope that prevents using of CSS libraries such as

Bootstrap. Therefore, this thesis uses BEM methodology for CSS to overcome

shadow DOM obstacles.

BEM (Block, Element, and Modifier) is a component approach to web

development. Its main idea is to divide interface into independent reusable parts.

The methodology is based on 3 main notions that are represented by class

attributes in HTML. Independence of blocks is achieved by naming scope.

Names are words divided by dashes: "name-of-block", "name-of-element",

"name-of-modifier". Using of id and tag name in selectors is not recommended.

3 main notions explained:

18

 Block. Block is a functionally-independent component that can be reused.
It is named by noun like "button" or "menu". Blocks can be nested to each
other for any level. Example is shown in figure 2.

Figure 2. Blocks in BEM methodology

 Element. Element is a part of block and it cannot be used separately. Its
name is also a noun (ex. "item", "text"). Elements can be nested but they
must be part of element and not another block. Name of block sets the
naming scope that guarantees that element is dependent of block: "block-
name__element-name". Example of blocks having elements is shown in
figure 3.

Figure 3. Elements in BEM methodology.

The HTML above has BEM-structure in CSS shown in figure 4.

Figure 4. BEM structure in CSS

 Modifier. Is an entity that describes the state, outlook or behaviour of block
or element and it has an appropriate name. Name of modifier also includes
full hierarchy coming from block: "block-name_modifier-name" or "block-
name__element-name_modifier-name". In HTML class modifier name is

19

used together with block or modifier name and must not be used
separately:
<div class="button button_disabled"></div>
<div class="menu__item menu__item_selected"></div>
Modifier can be of boolean type. When being presented in class attribute it
means true-value.
Also it can be of type key-value. Then value is specified in name: "block-
name_modifier-name_modifier-value" or "block-name__element-
name_modifier-name_modifier-value"

4.4 Event model

Browser event model was selected to organize interaction of application parts.

Event model is based on two components, event generators and handlers.

Handler is a function or method that can be called. Generator fires an event and

handlers subscribed on it are called.

It is easier to instruct modules to generate certain events than to link module

handlers to each other, because in first case modules are loosely related that

greatly simplifies making communication API. So, components do not know

anything about each other. They have methods that fire events. To provide

components interconnection, "router" in main script catches event of one

component and then calls proper methods of other components. Components do

not call each other’s' methods directly.

4.5 Data binding with D3js

Data binding is a technique that binds business logic data source with user

interface elements. It means that when data value changes, elements bound to

the data automatically reflect changes. Also, when outer representation of data in

interface control element is affected it is reflected in underlying data.

D3js standing for Data Driven Documents is a JavaScript library for data handling

and visualisation in a web. It provides convenient methods for working with data

arrays and creating DOM elements. D3js in the project is used for one-way data

20

binding - interface reflects data changes. Data input values are bound to

elements in the DOM so that values are referenced to elements with applying

mapping rules.

Data input for D3js is represented by array of any type including multilevel or

JSON. DOM elements are represented by Selection. It is an object returned by

d3.select(css-selector) or d3.selectAll(css-selector) function that contains the set

of nodes corresponding to CSS-selector. The library realizes fluent interface

approach which enables to create call-chains. Each method in the chain is called

on the object returned by previous method.

The following call,

d3.select('div').selectAll('p').data(["first", "second", third])

first creates Selection of paragraphs inside the first div-element in the document.

Then, last method .data() called on Selection returns Data-Join. It is a draft for

future DOM, which reflects the structure of given data. Describing the structures

D3js employs declarative approach. The draft is used to bring data structure to

the selected part of DOM by modifying, deleting and creating new elements with

the help of mapping functions. Instance of data is stored inside DOM-structure

and helps D3js to analyse changes in data and modify only few parts of DOM

thus improving rendering performance.

JavaScript code, shown in figure 5 will generate HTML, shown in figure 6.

Figure 5. D3js rendering

will produce such HTML:

21

Figure 6. Result of D3js rendering

No matter how many <il>-elements were inside , we will get as many of <il>

as there were elements in data array. The only requirement is that "li#my"

element must exist.

This technique helps to render all parts of interface throughout the application.

4.6 Utilization of CoffeeScript as a cultivated version of JavaScript [20]

All script files in the project were written with CoffeeScript language.

CoffeeScript is a language compileble into JavaScript. It lets you to write cleaner,

understandable and consequently more supportable code. It changes general

syntax constructions of JavaScript that are not always easily-writable and easily-

readable into simpler syntax and adds new useful features. Also CoffeeScript

uses indentation instead of tons of brackets. As common practice shows, this

way is simpler. Therefore, it is used actively in the project. CoffeeScript files are

included directly in the main HTML page and are run-time compiled during

application loading. Basic examples are shown below.

Example of variables’ declaration in CoffeeScript is shown in figure 7 and its

equivalent in JavaScript is shown in figure 8.

Figure 7. Variables in CoffeeScript

22

Figure 8. Variables in JavaScript

Example of function’s declaration in CoffeeScript is shown in figure 9 and its

equivalent in JavaScript is shown in figure 10.

Figure 9. Functions in CoffeeScript

Figure 10. Function in JavaScript

4.7 JQuery

JQuery is a JavaScript library that focuses on the interaction of JavaScript and

HTML. JQuery is used in the project as it has the set of ready convenient

functions especially for events, selection arrays and html-elements handling.

Utilization of JQuery is a well-established practice in web development and it

provides useful tools that have cross-browser support. It is also a dependency for

bootstrap and coffeescript libraries, used in the project.

4.8 Bootstrap

As a tool for making adaptive design, Bootstrap css library is used in the project.

Bootstrap is a HTML+CSS open source framework, the set of tools and templates

23

for faster web applications development. It is dynamically updating and some its

features might not work in old browsers.

Using Bootstrap in this thesis enabled a quick creation of first template, some

functionality was added that let to create working prototype of application.

The main advantages of bootstrap are the following:

 saving time by using ready classes and design.

 allows to create adaptive design that is well displayed on devices of
different types with no need to change markup.

 Ready design. Unified style of all elements and pages as a whole that
displays well in different browsers (except old).

 Open source enables making changes of default behavior if needed.

 Popularity. Source code is examined by many developers. Factor of
standardisation.

 Adaptivity. Design is ready to be displayed properly on different devices.

Main Bootstrap tools used in thesis:

 Typography. Ready design of paragraphs, headings, text alignment.

 Tables. Tools of tables designing.

 Navigation. Classes for designing of tabs, pages, menu and toolbars.

 Forms. Enables to create different forms: single or multi-line, with tips,
validation, labels and drop-downs. Forms can be styled and highlighted by
adding classes.

 Popups. Realizes dialog windows design.

 Buttons. Includes different type buttons design as well as button groups
and drop-downs.

4.9 What was dropped as non-suitable

The following techniques were considered for using in the project but were not

applied.

 Bootstrap Studio [21]. Was used to create the first HTML+CSS draft of the
application but it did not find any use afterwards.

 Jquery UI [22]. The library of user interface components to make adaptive
design. Bootstrap was preferred because it is based on HTML+CSS when
Jquery UI has a lot of JavaScript realization. Due to this it is badly-

24

customizable and not so lightweight. Looks good only on mobile devices
but the design is bad for desktop.

 W2UI [23]. One of the best ready solutions for assigned task. But it does
not support mobile interface and has slow speed performance. It has lots
of good features to make interface but is difficult to customize for specific
needs which all the same inevitably arise.

 Model View Controller (MVC) [24]. The application was first developed
with MVC pattern. With growth of application complexity but the pattern
became insufficient as it divides development into 3 blocks only. Need of
block component architecture appeared and instead of division into model
view and controller application became to be consisting of blocks. Each
block was done by as a component implementing MVC inside itself.

 Object Oriented Programming approach in JavaScript. As a way to split
the application into component blocks object oriented programming was
tried and small application have been implemented this way and it works
now as a part of software package. But in the context of current application
such architecture have been supplemented by WebComponents as they
offer additional functionality and have reach built-in support of HTML
features.

 Template processors. This technology was beforehand excluded from use-
list as it adds additional level to the stack of technologies which needs to
be developed and supported. After finding out that template processors
can be replaced by D3JS, the last one was adopted.

5 DESCRIPTION OF THE DEVELOPED APPLICATION

5.1 Hello-world example tag

Every web component has its own HTML, CSS and CoffeeScript file that can be

included in the main document. As a result of several trials, canonical example of

web component was developed. It was named hello-world component. CSS files

are optional for the component but normally always used. Hello-world

component's files are listed below:

 hello-world.html

 hello-world.css

 hello-world.coffee

Minimum possible content of every file is presented in figures 11, 12, 13.

25

 hello-world.html is in figure 11.

Figure 11. hello-world.html

HTML file contains initial markup for the component and should be included in the

main document by HTML-import <link rel="import" href="hello-world.html">. The

document then will have its own separated namespace and a small JavaScript

code is used to define variable documentHelloWorld into global context (as a

property of window object). Variable contains execution context of hello-

world.html.

 hello-world.coffee is in figure 12.

Figure 12. hello-world.coffee

The script in figure 12 does the following. First, it creates a (?) prototype object

for the custom tag representing the component. Then the tag <hello-world> is

registered into main document. Prototype object HelloWorld has the same

prototype as HTMLElement. That brings standard functionality of html element to

our new tag. Also, HelloWorld object sets own properties and methods for new

tag. createdCallback() method is used as a constructor. It is a method realizing

lifecycle reaction in Custom Elements standard and it is called when tag is added

to the document or when it is registered. This constructor creates a copy of DOM

from <template>-draft referred through the context of hello-world.html

window.documentHelloWorld. Then constructor adds this DOM inside the <hello-

26

world></hello-world> tag. Element's DOM can be modified using initial data of the

component before it is inserted into document. Example test() method of the tag

modifies its internal DOM when called.

 hello-world.css

To follow BEM methodology CSS file should describe only classes and their

names must start with 'hello-world' as shown in figure 13.

Figure 13. hello-world.css

Example of usage is following. Assume our main document contains code, listed

in figure 14.

Figure 14. Example of hello-world HTML tag usage

After new tag is registered, the DOM-tree will look as listed in figure 15.

Figure 15. Initial content of hello-world HTML tag

In the main script test() method of the component is called:

document.querySelector('#cool-tag').test('Hell oo world')

27

Then we will get the DOM-tree, listed in figure 16.

Figure 16. Content of hello-world HTML tag modified.

Described basic web component is used as template for all project components.

5.2 System architecture

The daily routine of users of accounting systems consists of working with large

number of records of the same type. The task of data handling often includes

working with large set of records. Data sets can be represented in a spreadsheet

view and are called 'tabular data'.

This work describes design decisions, development process and actual usage

experience of generic tabular web interface.

To transfer structured data between frontend and backend JSON format is used.

It is more easy-to-use and lightweight than XML and supported well in JavaScript.

Frontend is a Single Page Application. All data transfer happens in the

background without page reloading using AJAX technology.

Example of the methods provided by the server:

 login(username, password) - requests session id

 get_filters_list(table) - requests dictionary of type "filters_list" with unique
name Table

 select(table, offset, limit, sorting, filtering) - requests content of table

28

Structure of 6 elements can cover various enterprise accounting systems due to

only simple configuration is involved in customizing tables for different purposes.

Class diagram in Unified Modelling Language [25] is shown in figure 17. This

diagram graphically describes the relationships of six components used in the

system.

Figure 17. UML class diagram of system components

In application architecture, table is a unit providing scalability. Tabular component

called 'super-table' can be reused many times for different data views and can be

nested to bring ability to represent hierarchical data in different ways. Super-table

component can be used as standalone or as a part of another component.

29

5.3 How it actually works

5.3.1 Main functionality

After logging in, a user sees tabular interface shown in figure 18. The interface

consists of two basic parts: “main menu” located on the top and “data table”

which is below the menu.

Figure 18. Tabular interface of program

In the example (Figure 18) there are 4 dropdown lists (menu groups) in the left

part of main menu. Menu groups (such as “Workflow”, “Finances”, ...) are lists of

data tables available to user. Application has access rights separation so that

different user groups see different tables and menu groups. A menu with one

group opened is shown in figure 19.

Figure 19. Main menu

30

The main action of menu items (such as “Charges”, “Bills, …) is switching

between data tables. In addition to being able to switch between data tables,

some menu items implement custom actions, such as "logout". These actions are

set by JavaScript in configuration file. Action “logout” in the menu is shown in

figure 20.

Figure 20. Custom action ”Logout” and name of table view “Stock”

 The interface has UI component providing server-side filtering of data in table. It

is represented by <filter-form> tag. Filters can have different number of

parameters of different types. When a filter is picked, it can be applied by

entering required parameters. An API-request is then sent and data for filters

(name and list of parameters for each filter) comes from the server and it is used

by UI component to render html-form. If the filter does not have parameters (bool-

filter), it is applied directly when picked.

A configuration file can set default filter(s) for table.

In figure 21 there is the "Stock" table view with applied filter "in stock" by default.

It has "cross" button to remove filtering condition. "Apply" button applies picked

filters. A list of available filters for current table is displayed when "Filters" button

is clicked. The opened list is shown in figure 21.

31

Figure 21. Filters

The filter "stored days" can be picked by clicking 4-th item from the bottom in the

list shown in figure 21. Being picked filter is removed from the list and being

unpicked it is returned back. HTML form named "stored days" will appear on the

panel. Changes made from figure 21 after described actions are displayed in

figure 22. Browser window is resized in figure 22 so that everything fits to the

Thesis page.

Interface components have resize control to follow the browser window size.

Figure 22. ”stored days” filter form with parameters

32

The appeared filter form shown in figure 22 has two input fields for filter

parameters having parameter names in their placeholders. These parameters are

represented at server side in SQL-query corresponding to the filter. Such

architecture enables to create various custom filters only limited by SQL

capabilities. The task of the filter component is to provide a convenient way for

passing filter conditions and parameters.

Button "Remove" also appeared when picking “stored days” filter, as shown in

figure 22. This button removes all picked filters and requests non-filtered table

from the server. It was not there before picking “stored days” filter because only

one filter “in stock” was set. "X" button in the right of filter removes that filter.

Since the filter form is displayed, parameters can be typed in. While they are

typed, background of input fields is white. This means that data which currently is

in input fields is not applied yet (have not been sent in request). State of form

during typing process is shown in figure 23.

Figure 23. Filter form during typing of parameters

After user clicks "Apply" button or waits for 3 seconds filters are applied and

changed table comes from server. It can be seen that total records amount has

changed from 178 (in figure 22) to 7 (in figure 24). Background of filter

parameters input fields is now grey. If input will be changed again, the

background will become white until new values are applied. Table with

parameterized filter applied is shown in figure 24.

33

Figure 24. Table with parameterized filter applied

If "Remove" button (figure 24) is clicked, an unfiltered table comes from the

server. The result is shown in figure 25. Now there are 359 records, more than

there was in the beginning because default filter has gone too.

Figure 25. Totally unfiltered table.

There is no "Apply" and "Remove" buttons in figure 25 because now they have no

use. Declarative semantic of D3js can be clearly observed in the behaviour of

“Apply” and “Remove” buttons. The following code sets the whole behaviour and

outlook modifications:

34

Filter form supports parameters of different types. For example, if parameter is of

type "data", user may enter one, two, or three valid numbers divided by anything.

First number then represents day, second - month and third - year.

If there is only one number entered - it is interpreted to the day of current month,

if there are two - to the date of current year. Three numbers is interpreted to the

full date. Consider the filter “period”, shown in figure 26.

Figure 26. Filter ”period” with parameters of type ”date”

Date may be entered with the previously described ways. Examples of the input

are shown in figure 27.

Figure 27. Examples of input for filter parameters of type ”date”

When filter having parameters of type “date” is applied, the input is converted to

proper date format. Examples of inputs from figure 27 converted to proper date

format are shown in figure 28.

Figure 28. Input to filter parameters converted to proper format when applying

Background of the input fields is grey until the user starts input since current

values are applied. There is a plan for future support of suggestion box,

dropdown list and calendar to input parameters.

35

Interface also supports a server-side sorting. To sort the table by some column

the header of the column must be clicked. Tables can be configured to have

default sorting.

In figure 29, table is sorted by "date" column in descending order so that the

latest items in the stock are displayed first. Down directed triangle indicates this

fact.

Figure 29. Table ”Stock” sorted by ”Date” column in descending order

Client side sorting and filtering are not used in the program. It helps to keep data

connectivity in server database and client interface synchronized, as well as to

keep interface simpler by realizing data processing on the server with SQL. But

client side sorting might be realized later.

Interface realizes lazy-loading, means that the table is loaded in parts during

scrolling. Because sorting and filtering are server-side actions, table is loaded

from the beginning when it is sorted or filtered. Last displayed row of the table

indicates the process of loading as shown in figure 30.

Figure 30. Loading indication

36

Last displayed row turns from “loading” (figure 30) to "end of table" (figure 31)

when the whole table is loaded

Figure 31. ”Whole table is loaded” indication

Table component of the interface realizes vertically frozen header and footer of

the table. When the table is scrolled vertically, header and footer do not move

and during horizontal scrolling they move synchronously with the table rows.

HTML + CSS do not provide this functionality at all and even CSS “display:fixed”

not does the job. So, it is done using several HTML + CSS + JavaScript tricks.

Thus, five HTML table tags are used to display one table. Vertically and

horizontally scrolled table is shown in figure 32.

37

Figure 32. Vertically and horizontally scrolled table

The columns of table have auto-size and they fit to width of content. Example is

shown in figure 33.

Figure 33. Columns with auto-width

By default, columns are configured to have maximum width of 60px. If content

overflows the maximum width, it is wrapped and cut by dots as it happens in

figure 34.

38

Figure 34. Cell content overflow

To display the whole content of the cell it must be clicked. Then data is shown as

multiline and cell content is highlighted and ready to be copied to clipboard

(shown in figure 35).

Figure 35. Display the whole content of the cell

The future plan assumes the opportunity to configure width, maximum width and

other style parameter of table columns in the configuration file.

5.3.2 Configuration and custamization

Configuration file revision follows next. There is a default config file that can be

edited separately for different users. Config consists of two parts. First part

defines menu items. For example, code in figure 36 describes menu groups:

Workflow, Finances and so on.

39

Figure 36. Configuration of menu

Each user group, shown in figure 36, has list of tables lying under the group.

Tables have "role" property to differentiate access rights. Tables "q_charges",

"q_bills" and so on are shown only to user of type "finances" which is defined by

“F” variable. Others are shown for all users. Menu item can also have predefined

action assigned, as listed in figure 37.

Figure 37. Custom actions in menu

Click on "Logout" item in "Tools" group will end user's session.

Second part of the config describes table views. Code is then similar to listed in

figure 38.

40

Figure 38. Tables configuration

Code in figure 38 sets name of table view displayed on the top of the page

(caption: 'Jobs'). "job_id" is set as a key field of table. Also, column and direction

is set for default sorting. Then columns of the table are described. "columns"

property of table specifies for each column, which field of data coming from the

server is shown in the column. For some columns, sorting can be disabled.

Custom content with custom behaviour can be assigned to a table column by

config. Have a look at configuration of "queries" data view, shown in figure 39.

Figure 39. Custom table content

In example, shown in figure 39, default filter "all" is set for table view. One of the

columns is called "Query" and it uses "qry_name" field of data coming from

server. Sorting is disabled for it.

41

"Render" property sets the custom content for every cell of the column. It can be

a function of cell data returning html

(render: (data) -> return '<p>Data is: ' + data + '</p>')

In our case data is not rendered and html is set as a string to put button named

"run" into every cell.

"on_cell_click" property sets custom reaction on click for the cell. It is a function

having data record as an argument. That is the record of data from server

belonging to table row where the cell is. In the example the reaction is set so that

when we click the button rendered inside the cell, query with the name specified

in the record is called. Let us see what is the query.

Query is an SQL query stored in the server. When we click "run" button, we enter

parameters and send API request. Parameters are used in SQL at the server and

then result table is returned.

Next follows description of the way it works in the application. For example, "test"

query shown in the table in figure 40.

Figure 40. Stored SQL queries.

When user clicks "run" button, full-screen pop-up window is shown. This window

provides to user a way of processing certain query. The same before described

HTML-form component is used for entering the query processing parameters of

table filters. Pop-up window for query processing in parameters entering phase is

shown in figure 41.

42

Figure 41. Pop-up window for query processing. Parameters entering phase.

When user enters parameters and presses enter or waits for 3 seconds, API

request is sent and table result is returned. In the example, result contains two

record-sets. They can be switched by clicking tabs "1" or "2". This result is shown

in figure 42.

Figure 42. Pop-up window with query result.

All functionality of application is also available for mobile devices. Example

program view for smartphone is shown in figure 43.

43

5.3.3 Mobile interface

Figure 43. Example program view for smartphone.

On mobile devices menu is wrapped into sandwich. When menu is opened, it

covers the table and there are hierarchical menu groups (figure 44).

44

Figure 44. Mobile menu.

List of filters for the table is also observable on mobile devices by touching

"Filters" button (figure 45).

45

Figure 45. Filters on mobile devices.

Any number of filters can be picked and edited also on mobile devices (figure 46).

46

Figure 46. Mobile filters editing.

Work with queries is possible on mobile devices too. For example, processing of

"test" query can be run by touching proper button (figure 47).

47

Figure 47. Queries on mobile devices.

When user runs query on mobile device, full screen pop-up window is opened

(figure 48).

48

Figure 48. Query processing on mobile device.

5.3.4 Application work summary

That was the description of current version application work. As said before the

interface is built using 6 web components. Plan for future is to continue

development of components and realize single form view, sub tables, records

editing and so on up to full CRUD of all data views. The main principle is to solve

as many accounting tasks as possible avoiding growth of complexity in program

structure complexity - using one structure for everything.

49

6 SUMMARY

The result of this thesis is the solution that is easy to support and extend. Total

amount of code lines written is about 1100, excluding configuration file. Code has

been rewritten many times. Due to fast rendering speed there is no need for

graphical displaying of waiting process. This result is considered important

because modern users have high expectations for a site loading delay. According

to the “Forbes” publication [19], users expect pages to load in two seconds, and

after three seconds, up to 40% of users will abandon the web site. Time of the

application loading in Chromium is shown in figure 49.

Figure 49. Time of application loading.

Time of displayed table view switching is shown in figure 50.

Figure 50. Time of table view switching.

50

Solving general problem allowed eliminating dependence of spaghetti code from

number of tables. One code base processes any number of related tables.

Solution does not depend on kind of tables needed to be displayed, their

structure and their count. Application state is set by configuration file that allows

for declarative style programming rather than imperative. Simplicity of supporting

is achieved by minimal code base and prevalence of self-developed code.

Developed application can be extended to implement plans for its future.

51

REFERENCES

1. Tpoint Oy. WWW page. Available at: https://tpoint.fi [Accessed 18 May 2017].

2. Microsoft TechNet. System requirements for Office 2010. WWW page.
Available at:
https://social.technet.microsoft.com/wiki/contents/articles/13967.system-
requirements-for-office-2010.aspx [Accessed 18 May 2017]

3. Microsoft developers network. Changes in access. Office 2013 and later.
WWW page. Updated 28 July 2015. Available at:
https://msdn.microsoft.com/en-us/library/office/jj618413.aspx [Accessed 18
May 2017]

4. ComScore. All digital growth now coming from mobile usage. WWW page.
Updated 3 April 2016. Available at: http://marketingland.com/digital-growth-
now-coming-mobile-usage-comscore-171505 [Accessed 18 May 2017]

5. Eric Ries, 2009. Minimum Viable Product: a guide. WWW page. Updated 3
August 2009. Available at:
http://www.startuplessonslearned.com/2009/08/minimum-viable-product-
guide.html [Accessed 18 May 2017

6. Stat Counter global stats. Desktop operating system market share worldwide.

Feb 2009 to Feb 2017. WWW page. Available at:
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-
200902-201702 [Accessed 18 May 2017]

7. Diana Goovaerts, 2016, Death of Desktop: 65% of Digital Media Consumed

on Mobile. WWW page. Updated 31 March 2016. Available at:
https://www.wirelessweek.com/news/2016/03/death-desktop-65-digital-media-
consumed-mobile [Accessed 18 May 2017]

8. Dave Chaffey, 2017. Mobile marketing statistics compilation. WWW page.

Updated 1 March 2017. Available at: http://www.smartinsights.com/mobile-
marketing/mobile-marketing-analytics/mobile-marketing-statistics/ [Accessed
18 May 2017]

9. Citrix. 7 Enterprise Mobility Statistics You Should Know. WWW page.

Updated February 2015. Available at : https://www.citrix.ru/articles/7-
enterprise-mobility-statistics-you-should-know.html [Accessed 18 May 2017]

10. Stat Counter global stats, 2016. Mobile and tablet internet usage exceeds

desktop for first time worldwide. WWW page. Available at:
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-
desktop-for-first-time-worldwide [Accessed 18 May 2017]

http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-200902-201702
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-200902-201702

52

11. Chromium Blog, 2013. Saying Goodbye to Our Old Friend NPAPI. WWW
page. Updated 23 September 2013. Available at:
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-
npapi.html [Accessed 18 May 2017]

12. Bugzilla@Mozilla, 2016. Remove support for all NPAPI plugins (except

Flash). WWW page. Available at:
https://bugzilla.mozilla.org/show_bug.cgi?id=1269807 [Accessed 18 May
2017]

13. Adobe corporate communications, 2015. Flash, HTML 5 and open web

standards. WWW page. Updated 30 November 2015. Available at:
https://blogs.adobe.com/conversations/2015/11/flash-html5-and-open-web-
standards.html [Accessed 18 May 2017]

14. Alex Russell, 2011. Web Components and Model Driven Views. Video and

transcript, WWW page. Available at:
https://fronteers.nl/congres/2011/sessions/web-components-and-model-
driven-views-alex-russell [Accessed 18 May 2017]

15. Web Components. WWW page. Updated 11 May 2017. Available at:

https://www.webcomponents.org/ [Accessed 18 May 2017]

16. Stat Counter global stats. Browser Market Share Worldwide from Jan 2009 to
Feb 2017. WWW page. Available at: http://gs.statcounter.com/browser-
market-share#monthly-200901-201702 [Accessed 18 May 2017]

17. W3Counter. Web browser usage trends. WWW page. Available at:

https://www.w3counter.com/trends [Accessed 18 May 2017]

18. Web Components. Polyfills. WWW page. Available at:
https://www.webcomponents.org/polyfills [Accessed 18 May 2017]

19. Lara Swanson, 2014. Web Performance Is User Experience. WWW page.

Updated 16 January 2014. Available at:
https://www.forbes.com/sites/oreillymedia/2014/01/16/web-performance-is-
user-experience/#1854781e5a52 [Accessed 18 May 2017]

20. Coffeescript. WWW page. Available at: http://coffeescript.org/ [Accessed 18

May 2017]

21. Bootstrap studio.WWW page. Available at: https://bootstrapstudio.io/
[Accessed 18 May 2017]

22. Jquery UI. WWW page. Available at: https://jqueryui.com/ [Accessed 18 May

2017]

23. W2UI. WWW page. Available at: http://w2ui.com/web/ [Accessed 18 May
2017]

http://gs.statcounter.com/browser-market-share#monthly-200901-201702
http://gs.statcounter.com/browser-market-share#monthly-200901-201702

53

24. MVC Architecture. WWW page Available at:
https://developer.chrome.com/apps/app_frameworks [Accessed 18 May 2017]

25. Class diagram. WWW page. Available at:

https://en.wikipedia.org/wiki/Class_diagram [Accessed 18 May 2017]

26. Two hard things. WWW page. Updated 14 August 2015. Available at:
https://martinfowler.com/bliki/TwoHardThings.html [Accessed 18 May 2017]

27. Rich Internet Application. WWW page Available at:

https://www.techopedia.com/definition/2531/rich-internet-application-ria

[Accessed 18 May 2017]

28. Single Page Application. WWW page. Available at:
https://www.codeschool.com/beginners-guide-to-web-development/single-
page-applications [Accessed 18 May 2017]

54

LIST OF FIGURES

Figure 1. Polyfill example .. 14

Figure 2. Blocks in BEM methodology ... 18

Figure 3. Elements in BEM methodology. ... 18

Figure 4. BEM structure in CSS .. 18

Figure 5. D3js rendering .. 20

Figure 6. Result of D3js rendering ... 21

Figure 7. Variables in CoffeeScript .. 21

Figure 8. Variables in JavaScript ... 22

Figure 9. Functions in CoffeeScript ... 22

Figure 10. Function in JavaScript .. 22

Figure 11. hello-world.html .. 25

Figure 12. hello-world.coffee ... 25

Figure 13. hello-world.css .. 26

Figure 14. Example of hello-world HTML tag usage .. 26

Figure 15. Initial content of hello-world HTML tag ... 26

Figure 16. Content of hello-world HTML tag modified. .. 27

Figure 17. UML class diagram of system components .. 28

Figure 18. Tabular interface of program .. 29

Figure 19. Main menu ... 29

Figure 20. Custom action ”Logout” and name of table view “Stock” 30

Figure 21. Filters ... 31

Figure 22. ”stored days” filter form with parameters .. 31

Figure 23. Filter form during typing of parameters ... 32

Figure 24. Table with parameterized filter applied ... 32

Figure 25. Totally unfiltered table. ... 33

Figure 26. Filter ”period” with parameters of type ”date” 34

Figure 27. Examples of input for filter parameters of type ”date” 34

Figure 28. Input to filter parameters converted to proper format when applying .. 34

Figure 29. Table ”Stock” sorted by ”Date” column in descending order 35

Figure 30. Loading indication .. 35

Figure 31. ”Whole table is loaded” indication ... 36

Figure 32. Vertically and horizontally scrolled table ... 36

55

Figure 33. Columns with auto-width .. 37

Figure 34. Cell content overflow .. 37

Figure 35. Display the whole content of the cell .. 38

Figure 36. Configuration of menu .. 38

Figure 37. Custom actions in menu ... 39

Figure 38. Tables configuration ... 39

Figure 39. Custom table content ... 40

Figure 40. Stored SQL queries. ... 41

Figure 41. Pop-up window for query processing. Parameters entering phase. ... 41

Figure 42. Pop-up window with query result. ... 42

Figure 43. Example program view for smartphone. ... 43

Figure 44. Mobile menu. .. 44

Figure 45. Filters on mobile devices. ... 45

Figure 46. Mobile filters editing. ... 46

Figure 47. Queries on mobile devices. .. 47

Figure 48. Query processing on mobile device. .. 48

Figure 49. Time of application loading. .. 49

Figure 50. Time of table view switching. .. 49

Delete the references parts from the list of figures

APPENDIX

Figure 51. Desktop operating system market share - worldwide.

Figure 52. Growth in digital media time.

Figure 53. Mobile marketing statistics compilation

Figure 54. Share of content category time spent by platform

Figure 55. Mobile and tablet internet usage exceeds desktop

Figure 56. Web Components status of realization in web browsers

Figure 57. Browser market share worldwide

Figure 58. Web browser usage trends]

56

APPENDIX

Figure 51. Desktop operating system market share - worldwide.

57

APPENDIX

Figure 52. Growth in digital media time.

Figure 53. Mobile marketing statistics compilation

58

APPENDIX

Figure 54. Share of content category time spent by platform [Reference 4]

Figure 55. Mobile and tablet internet usage exceeds desktop [Reference 10]

59

APPENDIX

Figure 56. Web Components status of realization in web browsers [Reference 15]

Figure 57. Browser market share worldwide [Reference 16]

60

APPENDIX

Figure 58. Web browser usage trends [Reference 17]

