
Saimaa University of Applied Sciences
Faculty of Technology, Lappeenranta
Degree Programme in Mechanical Engineering and Production Technology

Luka Ivanovskis

Four Axis Hot-Wire Foam Cutter
Controlled by Mindstorms EV3

Thesis 2017

2

Abstract
Luka Ivanovskis
Four Axis Hot-Wire Foam Cutter Controlled by Mindstorms EV3, 47 pages, 3
appendices
Saimaa University of Applied Sciences
Faculty of Technology, Lappeenranta
Degree Programme in Mechanical Engineering and Production Technology

Thesis 2017
Instructor: Lecturer Jouni Könönen, Saimaa University of Applied Sciences

The purpose of the study was to develop a 4-axis numerically controlled hot-wire
foam cutter suitable for flying aircraft modelling purposes. Numerically controlled
foam cutter had to be able to cut intricate shapes out of foam material such as
extruded polystyrene by using 3D virtual model.

The study reviewed existing foam cutters built by modellers all around the world
and set priorities for a new system, such as usage of common 3D format for input
and common programming language for software. Unconventional mechanical
design for the foam cutter was realized with Lego Mindstorms Ev3 parts. C++
language was used to program the Ev3 brick. A new algorithm was developed for
approximation of triangulated models in STL format with ruled surfaces that are
possible to cut with a straight hot wire.

The built foam cutter and its software were tested for production of fuselage of an
airplane. The machine did not reach sufficient accuracy of cut, but showed a wide
range of capabilities for cutting of sophisticated shapes. Questions covered in the
study may be helpful for those who wants to built a numerically controlled ma-
chine, in particular, the foam cutter.

Keywords: hot-wire foam cutting, laminated object manufacturing, Lego Mind-
storms Ev3, numerical control, ruled surfaces

3

Table of contents

Terminology .. 4

1 Introduction .. 5
1.1 Motivation behind the Study ... 5
1.2 Numerical Control in Modelling .. 7
1.3 Priorities for a New System .. 10

2 Structural Design ... 10

2.1 Working Principle of Hot-Wire Cutting.. 10
2.2 Examples of Numerically Controlled Machines in LEGO 12
2.3 The First Prototype .. 14
2.4 Better Model .. 18

3 Algorithms for Ruled Surfaces ... 20

3.1 Ruled Surfaces .. 20

3.2 Algorithms for 2D Contours .. 22
3.3 Algorithms for 3D Shapes .. 25

3.4 Developed Algorithm.. 27
4 Programming LEGO Mindstorms Cutter .. 31

4.1 Tools for Programming Mindstorms Ev3 .. 31

4.2 Cutter Software .. 32
4.2.1 Input and Preprocessing ... 32
4.2.2 Algorithm to Match Contours ... 33

4.2.3 Motion Control ... 34
5 Foam Cutting ... 37

5.1 Test Runs .. 37
5.2 Case Study: Airplane Fuselage ... 39

6 Summary and Discussion .. 41

Figures .. 43

References.. 45

Appendices

 Appendix 1. Runstl Program

 Appendix 2. C++ Foam Cutter Program Stultor

 Appendix 3. Media Files about Foam Cutting

4

Terminology

3D – Three Dimensional

ABS – Acrylonitrile Butadiene Styrene

CAD – Computer Aided Design

CAM – Computer Aided Manufacturing

CPU – Central Processing Unit

DC – Direct Current

DIY – Do It Yourself

EPS – Expanded Polystyrene

EPP – Expanded Polypropylene

FPU – Floating Point Unit

GPU – Graphical Processing Unit

LOM – Layered Object Manufacturing

NC – Numerical Control

RAM – Random Access Memory

RC – Radio Control

RP – Rapid Prototyping

STL – STereoLithography (file format)

XPS – Extruded Polystyrene Foam (Styrofoam)

5

1 Introduction

1.1 Motivation behind the Study

Flying aircraft modelling as a hobby has undergone significant development in

the 21st century. This occurred because of miniaturization of power and radio

electronics, increase in power density for both electric motors and batteries as

well as availability of strong and lightweight and easy to process foamed polymer

materials: EPP, EPS, XPS. Many companies produce RC model bodies from

these materials with intricate shape either for advanced aerodynamics or resem-

blance to famous airplanes (see Yak-130 model launched by FMS company in

2017 (1)).

Figure 1 Yak-130 by FMS company (1)

Manufacturers use foam moulding process. This process is well suited for mass

production, since one high quality matrix can be used to produce many identical

parts, like fuselage or wings (in case of RC models). Hobbyists that prefer to

make their models at home with hand tools are usually limited to much simpler

shapes that are obtained via bending plain Styrofoam sheets around multiple

cross-sectional elements (see partly assembled Concorde model by Alexander

Degtyarev (2))

6

Figure 2 Concorde model by Alexander Degtyarev (2)

Other modellers adopted layered object manufacturing (LOM) technique used for

rapid manufacturing. They build their models from thick (approximately 30-100

mm) layers of Styrofoam that were cut with hot wire and glued together to form

the intended object. Hot wire (heated with electric current) must follow precisely

contours of cross sections which is achieved with templates glued on both sides

of each layer (see FliteTest guide on how to build a model of Viggen plane (3))

Figure 3 FliteTest. Hot-wire cutting (3)

7

Figure 4 FliteTest. Hot-wire cut layers (3)

Again, it requires much skill and labour in order to achieve the desired result. The

current research is an attempt to build a system that can serve similar needs (but

not limited to) of flying aircraft modelers.

1.2 Numerical Control in Modelling

Procedure described earlier for manual building of a Styrofoam body suffers from

several drawbacks:

 Precise templates from a hard material (like laser cut plywood) are

needed, they should be firmly attached to flat surface of the material

 In aircraft design the weight is crucial, but making cross sections hollow is

quite challenging

 Manual propulsion of hot wire is not smooth, synchronicity of following both

contours may be far from ideal

There were several attempts to bring modern technology into this field. A member

of RCGroups forum shared his experience in building a numerically controlled hot

wire cutter that uses devWing Foam software suited for cutting long one-piece

wings (4).

8

Figure 5 RCGroups. Hot-wire cutter (4)

Hans Seybold from Germany has made a NC hot wire cutter with 4 degrees of

freedom. He used a unique mechanical layout where a bow with hot wire is posi-

tioned in space with 4 filaments of variable length controlled by 4 stepping motors.

He also developed a program to drive the bow along a desired route which uses

plain text description of all coordinates of the shape. All information is available

for free on the internet at (5).

Figure 6 Hot-wire cutter by Hans Seybold (5)

9

Probably the most advanced technology is used in AeroTetris company located

in Russia. They use a 6 axis NC machine which allows to achieve accuracy of

0,09-0,5 mm with wire inclination up to 165 degrees. During cutting process

speed and temperature are varied. The company sells sets of Styrofoam parts

for building large models (up to 4 metres wingspan) with careful exterior and in-

terior design (suited for installation of impellers). See example below (6).

Figure 7 Starfighter from Aerotetris (6)

Figure 8 Parts for Starfighter from Aerotetris (6)

All opensource solutions require large working space and manipulate with cross

sections (not 3D models).

10

1.3 Priorities for a New System

Several goals were set for a newly designed system to bring CAM technology to

the hot wire foam cutting:

 Try to use capabilities of CAD design software for 3D modelling

 Avoid new formats, prefer existing ones

 Use commonly used programming language

 Use commonly accessible parts

The last point suggested LEGO Mindstorms Ev3 as a universal platform for cre-

ation of both the hardware (mechanical) and software part of the new system,

since it provides structural elements (LEGO Technic), actuators (servomotors)

and processing unit with open software (Ev3 Brick). All parts from LEGO can be

reversibly assembled and disassembled many times which makes them particu-

larly suitable for developing a new design. Once created in LEGO, the design can

be rebuilt using standard parts for mechatronics – stepping motors, Arduino board

etc.

2 Structural Design

2.1 Working Principle of Hot-Wire Cutting

There are two types of hot-wire foam cutters (7). The first group uses stiff pre-

formed wire used to cut prespecified profiles. Currently there is a research about

bending such a wire or strip during the cutting process in order to produce convex

or concave shapes out of one solid foam block (8).

Figure 9 Cutting head with a hot strip (8)

11

The other type (which is considered in this work) uses thin taut wire that remains

straight during cutting. The wire is heated with current, therefore, the wire should

have high internal resistance as electric conductor and good corrosion resistance

at elevated temperature. A typical material for the wire is stainless steel or ni-

chrome. Hot-wire cutters are offered both as hand tools (usually there is a bow

that stretch the wre) or as numerically controlled machines that are able to pro-

duce complicated 3D shapes. Unlike CNC milling, the hot wire cutting has ad-

vantage in speed and effectiveness of material removal. The finite diameter of a

hot wire (starting from 0,2 mm) produces a gap during the cutting known as kerf.

Kerf width is a function of feed rate, temperature, wire diameter and material

properties such as heat conductivity, heat capacity, melting point (9). The kerf

width can be reduced by using smaller wires, however the kerf is often much

wider than the wire itself due to the thermo-mechanical nature of hot wire cutting.

Cutting occurs below the melting point of the material (material just softens be-

cause of its thermoplastic nature) and requires application of force in the direction

of cutting to intensify the heat input and to go through viscous softened material.

Any change in feed rate affects the kerf width and the cut surface. When a hot

wire is held stationary for a second it will produce a round hole in the material

which may be one order of magnitude bigger in diameter than the wire itself (10).

Figure 10 Test cuts with different temperature and speed (10)

12

A professional CNC hot-wire cutter has 4 axis freedom which is enough to posi-

tion straight wire in relative to the piece of material. Rigid frame serves as a base

for 2-axis positioning devices consisting of steeping motors and orthogonally or-

ganized lead screws and guide rails on the opposite sides of the machine. Cutting

force acting perpendicular to the wire may bend it easily, so, to prevent this, the

wire is under high tension provided by springs that are capable to adopt to wire

thermal extension and varying distance between wire attachment points when the

wire goes diagonally from one side to another.

Figure 11 Professional 4 axis foam cutter (10)

Advanced software in addition to the following of the specified shape may provide

necessary offsetting for kerf width compensation as well as wire temperature con-

trol. As all NC machines, NC hot wire cutters use G-code file that specifies cutting

parameters and lists all coordinates to be gone through. Each line contains, re-

spectively, four coordinates (x and y for both sides). The geometry of the machine

must be made known to the software in advance.

2.2 Examples of Numerically Controlled Machines in LEGO

There is evidence of many experiments with NC implemented with LEGO Mind-

storms platform, either NXT or Ev3. The NXT computer brick has 3 ports for mo-

tors and 4 for sensors, which correspondingly limits the amount of degrees of

13

freedom. One example is a 3-axis milling machine by Arthur Sacek which can mill

3D shapes from light material called floral foam using virtual model from the Au-

todesk Softimage software (11).

Figure 12 LEGO milling machine (11)

LEGO is held in esteem also in industrial companies like ABB Robotics. Their

employees recreated with LEGO parts a programmable 6-axis robotic manipula-

tor designed in ABB (12). They faced problem with ensuring structural stiffnes of

the whole robot, but the end result mimics all capabilities of the real prototype.

The model uses two Ev3 bricks, each of them has 4 ports for motors and 4 for

sensors.

Figure 13 ABB robot from LEGO (12)

14

Finally, there were attempts to build a hot-wire foam cutter out of LEGO parts.

Existing designs have only 2 axis freedom, like the one shown at (13).

Figure 14 LEGO foam cutter (13)

2.3 The First Prototype

Limitations of LEGO Technics parts that strongly affect design are the following:

 Material – ABS plastic has approximately 10 times lower strength(ultimate

tensile strength 40MPa) and 100 times lower stiffness (modulus of elastic-

ity 1,4-3,1 GPa) than steel or aluminium (14)

 Softening point at 105°C, LEGO parts should be isolated from the hot wire

 Longest solid structural element is only 120 mm long

 LEGO obviously does not have nichrome wire and power supply for that

While cutting forces are quite low, the wire must be strongly tensioned. Moreover,

unlike mill, laser or water jet, the wire must be held from both sides of the material.

Closed structure of the machine limits dimensions of piece of material that can

be processed. Building 500-600 mm large closed frame for handling standard

foam sheets (that come in this size) seemed impractical, so preference was given

to the open structure (C-frame) that would be able to reach 200-250 mm from the

boundary of a sheet and make usable all of its area when approaching it from

one side and then from the opposite. Another idea for extending the available

working space while keeping the machine compact was to let the machine move

15

(ride on a table) while keeping material stationary using a suitable clamp (de-

pending on the dimensions and the shape of a piece). With this in mind, the first

prototype was built.

Figure 15 The first model of the 4-axis foam cutter

The C-frame was supported by five wheels and could ride on a table under the

control of L-servomotor (large) from LEGO Mindstorms Ev3, allowing to cut arbi-

trarily long pieces. The upper arm of the C-frame was formed by a 25 cm long

rack with a carriage sliding along it and holding the hot wire. This carriage was

driven by the M-servomotor (medium). The position of the carriage on the rack

was defined by a taut nylon cord (0,4 mm fishing rod) that was winded on a double

coil. When the coil rotated, the cord was unwinded on the one side and winded

on the other, as consequence, the carriage moved.

16

Figure 16 Carriage mechanism

A similar rack was arranged on the lower arm of the C-frame, but this could be

shifted with the help of rack and pinion drive across the basement. The carriage

was driven by another M-motor, while the rack – by the L-motor (large).

Figure 17 The first model is cutting XPS

To increase the torque and adapt the speed of motors, worm gearboxes were

chosen. Worm gearing has an advantage over spur gears that it transmits torque

from the input to the output and not backwards. It means that the mechanism

equipped with worm gear will not move under load even without any power

supply, although it has lower efficiency. Putting a worm gear as a last stage in

each drive set helped to solve a very common problem of precise CNC machines

– a backlash.

Backlash, or play is a clearance or lost motion in a mechanism caused by gaps

between the parts (15). Two main strategies are used to overcome that:

 manufacture precise parts

17

 pre-load parts to eliminate backlash

The first option is not possible with LEGO, since all moving parts use loose fitting

to lighten the motion. The second method is often realized in mechanisms by

splitting gear into two gears – one half is firmly attached to the shaft and the other

half of the gear is allowed to turn on the shaft, but pre-loaded in rotation by coil

springs. The springs work in the direction to eliminate any backlash. In LEGO this

method was realized by using a pair of worm gears in each gear set. With correct

positioning worm gears were pressed against the housing by the teeth of the spur

gear.

Figure 18 Backlash elimination in LEGO worm gearbox

A unique wire tightening mechanism was implemented. The lack of available

space made it impossible to use springs, so gravity was used to keep the wire

under tension. The Ev3 Brick with battery weighs very close to 300 grams and in

combination with a system of pulleys it maintained constant tension in the wire

regardless its position or slope.

Figure 19 Tensioning mechanism

A very primitive program was written to test the machine in action. The machine

was programmed to cut a truncated cone out of 20 mm thick XPS (extruded pol-

18

ystyrene). The 0,16 mm wire was heated with 6 AA batteries (current 0,7 A, tem-

perature 140-150°C). While the machine proved viability of the foam cutter with

open structure, it had significant drawbacks that led to the following conclusions:

 tension of the wire should be increased

 wire tension creates significant deflection (skew) in the C-frame. The de-

flection is not constant, it varies (up to 1 cm) depending on the position

and the slope of the wire

 inclined wire caused high load on motors that were moving the carriages

 the sheet of material must be held on a constant height more tightly

 nylon cordage was too much complicated – once the hot wire was over-

heated and nylon melted, it took more than one hour to make a new wiring

inside the C-frame

These conclusions have led to the creation of a new version of the foam cutter.

2.4 Better Model

Deflections in the structure is a known problem of CNC machines. They may

cause notable deviations from the programmed path, so the software may include

specific error compensation module (16, p. 157). Such a module requires a de-

tailed physical model of the machine which is excessively complicated for a

DIY(do-it-yourself) project.

Instead, by changing the mechanical layout of the machine, deformations were

made practically constant and not affecting neither wire position nor servomotors.

An 18 cm long wire was tightened in a bow with parallelogram structure. The

longer wire made it possible to cut shapes like tapered airplane wings. Joints that

held the bow allowed to incline the wire up to 40 degrees from vertical. The ten-

sion of the wire was not affecting servo motors anymore, they had to overcome

only friction and unbalanced weight of the bow, which was partly compensated

by a counterweight at the bottom.

The concept of the riding machine was turned upside down, making sheet of ma-

terial to slide on the table under driven wheels held in place at adjustable height

depending on material thickness. Silicone paper between the surface of a table

19

and foam sheet reduced friction. Rack-and-pinion drive was used for tilting the

bow. Backlash was eliminated by using two shifted racks in each gear set.

Figure 20 The second model of the 4-axis foam cutter

The hot wire was powered by a universal charger – 24 W power adapter that

provided a range of voltages: 3; 4,5; 5; 6; 7,5; 9; 12V. Finer tuning of working

temperature was possible via appropriate placement of crocodile clips on the wire

(different length under the same voltage means different current and tempera-

ture, as consequence).

Figure 21 Inclination of the hot wire

20

The new machine has lost compactness of the previous model and also had is-

sues with stiffness of the bow and arm that feeds the material, but appeared a lot

more convenient in use.

3 Algorithms for Ruled Surfaces

3.1 Ruled Surfaces

The cutting tool of a foam cutter remains always straight, therefore the surface

produced in a single pass belongs to the so called ruled surfaces. According to

the definition (17), a surface is ruled if through every point of this surface there is

a straight line that lies on it. In addition to trivial examples like plane, cylinder or

cone (as well as their variations), ruled surfaces may be doubly curved like hy-

perbolic paraboloid with equation 𝑧 = 𝑥𝑦.

Figure 22 Hyperbolic paraboloid (17)

Ruled surfaces are often described as a set of points swept by a moving straight

line, which, in turn, is defined by two points moving along two spatial parametric

curves called directrices. In case of foam cutter, these curves lie on either sides

of the plate material to be cut.

Ruled surfaces play an important role in modern manufacturing because they can

be produced by a single pass of a straight tool, thus allowing to produce curved

surfaces effectively. Approximation with ruled surfaces is used to create tool

21

paths in manufacturing of impellers (18). In this method a 5-axis CNC milling ma-

chine may use a cylindrical or conical mill to produce a complicated 3D shape in

a fewer passes instead of a conventional layer-by-layer material removal strat-

egy. On the other hand, hot-wire foam cutting is used in for manufacturing of

large-size moulds for concrete panels forming facades of modern buildings (19).

Figure 23 Facade rationalized with ruled surfaces (19)

The main difficulty in generation of a tool path for ruled surface is the choice of

the right parametrization for both directrices. In this context, parametrization

means definition which points of both directories are reached by the ruling simul-

taneously. Different parametrizations lead to different surfaces between the di-

rectrices. In case of circular directrices, possible surfaces range from cylinder or

cone to paraboloid. This makes parametrization a non-trivial problem and re-

quires a special algorithm to solve it.

Figure 24 Twisted cylinder becomes a paraboloid (20)

22

3.2 Algorithms for 2D Contours

Simpler algorithms for parametrization of directrices neglect any information

about 3D shape of the CAD model and use contours obtained when slicing model

in layers for rapid prototyping (RP) from polystyrene foam. In RP, cutting sloped

layers instead of plain 2D layers reduces surface error of produced object with

the same layer thickness (21).

Figure 25 Surface error: 2D layers versus sloped layers (21)

Algorithms belonging to this type may use different objectives to optimize the par-

ametrization. Examples for such objectives include (22):

 Minimal surface area

 Minimal twist

 Maximal convexity

 Minimal bending energy

 Minimal mean curvature variation

 Combination of several objectives

See Figure 26 for illustration.

23

Figure 26 Surface triangulation for different objectives: (a) the directrices, (b) min.
area (c) min. twist (d) max. convexity, (e) min. bending, (f) min. mean curvature
variation (22)

RP machines often use .STL format files that store triangulated representation of

the solid CAD model. Individual triangles (called facets) that make up the surface

of the model are represented by x, y, z coordinates and facet normal vectors.

Slicing triangulated model with planes produces polygonal contours that are the

input directrices of parametrization algorithm. The algorithm spans then given

contours with triangles. Every triangle has one vertex coincident with a vertex of

one contour and opposing side coincident with an edge of another contour. When

the first ruling line is defined by the ends of the contours, the successive triangle

is obtained by making a step forward along either the first or the second contour.

The sequence of such steps on both contours up to the last ruling defines a tri-

angulated ruled surface between two contours. In order to assess quality of such

a surface, a cost regarding optimization criteria is assigned to each triangle (like

area, for example). As a result, the quality of the obtained surface corresponds

to the sum of costs of individual triangles forming the surface.

24

Figure 27 Possible advancement of ruling: on the lower or on the upper contour

The amount of possible triangle sequences grows exponentially with the number

of contours edges, proportional to
(𝑚+𝑛)!

𝑚!𝑛!
, where m and n are the numbers of con-

tour edges (23). However, the problem of finding an optimal surface may be re-

formulated as finding the shortest path in a graph, where graph vertices (or

nodes) correspond to ruling lines between the contours and edges (or arcs) be-

tween the vertices correspond to possible triangles formed by two successive

rulings. Each ruling then has a corresponding node and forming a surface from

the first ruling to the last one means going in allowed directions (along the di-

rected arcs) from node to node in the graph.

Figure 28 Graph formulation of optimization problem: allowed connections
between nodes (left), correspondence between arcs and triangular
patches(middle and right) (23)

The structure of the graph allows to use dynamic programming to find the best

path between the starting node and the ending node. The method of dynamic

programming breaks down a complex problem into a collection of simpler sub-

problems, solving each of those subproblems just once and storing their solutions

(24). In the ruled surface fitting problem the general problem is to find the lowest

cost to reach the last (target) node starting from the first one (the source). The

25

subproblem is, respectively, the lowest cost to reach an arbitrary node starting

from the first one.

The algorithm runs as follows:

1. Weights (or costs) of all arcs are computed.

2. For every node a current estimate of cost is stored. At the beginning all the

estimates are initialized with infinity, except the source for which it equals

0.

3. Nodes from left to right and from top to bottom try to improve estimates of

the related nodes, presuming direction of the arcs (rightward and down-

ward). From the current node the next node may be reached at cost of

connecting arc, therefore the new estimate is the current estimate summed

with the cost of arc. The new estimate is applied if it is better than the

existing one.

4. At the end, the estimate of the target node corresponds to the best possi-

ble quality of the fitted surface.

Since the algorithm must return the whole sequence of rulings that lead to the

target in an optimal way, for each node the best predecessor is stored, so that it

is possible to reconstruct the optimum path and, returning to the terminology of

directrix parametrization problem, the correspondence between the contours.

3.3 Algorithms for 3D Shapes

Although algorithms that work with contours are sufficient for RP or LOM pur-

poses, they do not use capabilities of cutting ruled surfaces. Figure 29 illustrates

how much can be achieved when appropriate direction of the cutting tool is cho-

sen. In aircraft modelling the bodywork must withstand significant loads while

keeping weight as low as possible. This is achievable by keeping integrity of bod-

ywork with low amount of parts and adhesive bonds between them where me-

chanical stresses tend to concentrate because of different material properties.

Therefore, a more advanced algorithm for the hot-wire cutter was required.

26

Figure 29 How tool inclination improves surface quality (19)

General algorithms for fitting ruled surfaces posess similar structure as the pre-

viously described algorithm for contour matching. Even though they use paramet-

ric representation of smooth freeform surfaces instead of triangulated ones as

input, they also require some sort of discretization along contours defined by

splines (Bézier type or others). Such discretization serves as a base for applying

dynamic programming for finding best rulings connecting two contours. The as-

pect that changes is the objective for optimization. Now for each patch between

two successive rulings the maximum distance between the patch and given

smooth surface is computed or estimated (25). Another type of discretization is

to find possible (discrete) directions of rulings that pass through numerous sam-

ple points and coincide well with the surface (26). Again, the optimal set is found

by dynamic programming.

Figure 30 Example of candidate rulings (26)

The aforementioned algorithms have several drawbacks:

 They are computationally expensive (researchers even adapt them for

running on GPU to increase the speed)

27

 They are difficult in realization for a DIY project (both parsing of CAD files

with parametric surfaces and computations themselves are complicated)

 They do not address the problem of triangular patches

Triangular patches cause problems in hot-wire cutting because the cutting tool

must remain stationary at the apex of triangle which creates a surface defect be-

cause material melts too far away from the wire. In the work (27) special trajectory

correction is proposed which avoids stalling of the cutting tool, but it works only

for convex shapes.

Figure 31 Tool trajectory correction to cut triangular patch (27)

3.4 Developed Algorithm

The algorithm that was developed specifically for the foam cutter uses triangu-

lated surface representation for input and has a similar structure of those de-

scribed in the previous sections, but introduces some new features.

Firstly, it searches edge to edge correspondence between contours instead of

ruling lines connecting vertex to vertex. In other words, it searches for an optimal

set of bilinear patches instead of triangular ones. Bilinear patches have an ad-

vantage that the cutting tool has non-zero speed at all points, but they overlap

when it is needed to go for the next edge on one contour while staying at the

28

same edge on the other. The algorithm overcomes this issue by proportional sub-

division of edges that belong to multiple patches. The edge is subdivided in the

same proportion as the opposite edges of the patches.

Figure 32 Patch interpolation rule: optimum overlapping patches (blue lines
above), non-overlapping interpolated patches (red)

Secondly, the cost of possible patches is equal to the normal distance between

the closest facet of surface and the centre point of the patch. The cost estimation

algorithm takes four vertices of the patch ABCD and a candidate facet ΔV1V2V3

for distance computation. For the first candidate a facet is chosen that shares one

common edge with the considered patch. For the patch the centre point H is de-

termined (as average of A, B, C and D point coordinates) and unit normal vector

n.

𝒏 =
(𝐴𝐵⃗⃗⃗⃗ ⃗ + 𝐶𝐷⃗⃗⃗⃗ ⃗)×(𝐴𝐶⃗⃗⃗⃗ ⃗ + 𝐵𝐷⃗⃗⃗⃗⃗⃗)

|(𝐴𝐵⃗⃗⃗⃗ ⃗ + 𝐶𝐷⃗⃗⃗⃗ ⃗)×(𝐴𝐶⃗⃗⃗⃗ ⃗ + 𝐵𝐷⃗⃗⃗⃗⃗⃗)|
 (1)

Then, centre mass point CM of the candidate facet is computed. In order to check

whether the candidate facet is pierced (or is close to be pierced) by the normal

vector n, the perpendicular distance d from the point CM to the normal is com-

puted using auxiliary vector p:

𝒑 = 𝐻𝐶𝑀
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (2)

29

𝑑 = |𝒑 − (𝒑 ⋅ 𝒏) ⋅ 𝒏| (3)

If the perpendicular distance d of the current candidate is lower than that of its

neighbour facets (local minimum is achieved), then the search is stopped and the

cost c is computed:

𝑐 = 𝒑 ∙ 𝒏 (4)

Figure 33 Patch cost estimation

The squared value of this cost (to get rid of sign and to make difference between

optimal and bad patches) is stored for each viable patch for later dynamic pro-

gramming. Checking patches for viability reduces the amount of possible patches

by omitting those that are sloped too much and cannot be cut due to limited incli-

nation of the hot wire.

Lastly, the algorithm works with closed contours because they are easy to extract

from an .STL model of the surface without any reference where the surface

should start and end. Therefore, there are multiple starting patches that should

be treated as a source node in dynamic programming. Similarly, the target node

must correspond to the same patch as the source.

C++ program was written that implemented this algorithm and visualized the re-

sults in .STL format. Since .STL format does not support other facets than trian-

gular ones, each bilinear patch was represented with three triangles.

30

Different shapes were created in Solidworks 2016 software (student version) to

test the algorithm. Solidworks provides all necessary tools for creation of input

files: solid modelling, transforming solid bodies into surfaces by deleting unnec-

essary faces and converting surfaces into .STL format with adjustable accuracy.

Microsoft 3D Builder was used for fast review of .STL files, both input and output.

Figure 34 Test 3D shape: solid model, surface model, STL model, ruled surface

As can be seen, the algorithm was able to extract upper and lower contours from

the shape and replace facets with bilinear patches that matched well both flat and

concave regions of the test surface. More examples of free form surfaces are

given in Section 5.

31

4 Programming LEGO Mindstorms Cutter

4.1 Tools for Programming Mindstorms Ev3

LEGO Mindstorms Ev3 programmable brick has a CPU with the working fre-

quency of 300 MHz that runs Linux as an operating system. LEGO company pro-

vides a graphical environment to program robots, but it has a limited set of in-

structions that may be given to a robot. Several other operating systems were

created, so that programmers could use Java language (in LejOS system) or Py-

thon, C and C++ (in Ev3dev) (28). This approach requires installation of a respec-

tive operating system on a MicroSD memory card for which there is a slot in Ev3

Brick. However, Linux operating system works in such a way that the software

may access external devices connected to CPU (like motors and sensors) by

simply writing to a system file (to send a command) or reading from (to get a

feedback). Lauro Ojeda has created an extensive tutorial at (29) on how to use

this interface on the Ev3 brick while programming on C++ language. C++ is a

general-purpose programming language which has many tools to control

memory, create data structures and implement algorithms. C++ is a compiled

language, meaning that a compiler program for a target platform is needed which

will translate human-written instructions into commands understood by CPU.

Codelite company offers different C++ cross-compilers, including that which com-

piles C++ programs on a computer running Windows for CPU with ARM architec-

ture (like in Ev3 brick) running Linux. Plain text editor, in this case it was Geany

1.24 (personal preference of the author) ends the list of tools for programming

Ev3 in C++.

A minor problem caused by Ev3 native software (firmware) is that it prevents

launching any applications other than that of .rbf format produced with LEGO

programming software. This issue has been solved by Ojeda who has made an

.rbf application that is able to launch any prespecified application. The author has

used (30) firmware documentation from LEGO and created an .rbf application

called Runstl which provides interface for user to select an .STL input file and

launch foam cutter application written in C++. The code is provided in Appendix

1.

32

Figure 35 Runstl program screenshots

4.2 Cutter Software

The C++ code of the cutter software is shown in Appendix 2. The following sec-

tions outline how the software works.

4.2.1 Input and Preprocessing

The program receives a path to the input .STL file as an argument and reads it

facet by facet. STL format has a disadvantage that it provides no information

about the topology of the represented object, or in other words, which facets have

common edges and form one surface. Therefore, this is what the software does

as it reads the description of facet vertices: first, it finds matching vertices, sec-

ond, it finds pairs of adjacent facets.

All facets have now information about their neighbours (adjacent facets). The

program uses this information to classify into internal and boundary facets. Inter-

nal facets have all three neighbours, but facets lying on a boundary of surface

lack one or more neighbours. By analyzing the relative positioning of boundary

edge and the facet itself, boundary facets are classified into lower and upper

ones. Here it is assumed that the model is oriented in x,y,z coordinate system so

that z-axis corresponds to its vertical, but xy-plane (z=0) matches the horizontal

surface of the table on which the foam material will slide. Z-axis positive direction

points upward. A modern CAD software like Solidworks allows the user to create

arbitrary coordinate systems and use them as a reference to export models into

.STL format.

33

4.2.2 Algorithm to Match Contours

The program should now process all pairs of upper and lower contours. While

there are unprocessed upper facets, one of them (the choice criteria is given be-

low) will be taken and the corresponding closed upper contour will be assembled

from the information about connections between facets.

Next, the program walks from facet to facet (they are connected) until it finds a

lower facet. Similarly, the lower contour is assembled. Both contours are oriented

in counter-clockwise direction for clarity. For each pair of upper and lower con-

tours the dynamic programming algorithm (from section 3.4) is run. The algorithm

outputs a sequence of double coordinates (upper x,y,z and lower x,y,z) that de-

fine points (they are called checkpoints inside the program) on the upper and

lower contours to be swept by the hot wire. The sequence of checkpoints from

the origin along all the contours and back again to the origin defines the whole

tool path. At last, each checkpoint becomes a time value when it should be

passed (time values are assigned, starting from 0, in order to main predefined

average cutting speed for both upper and lower ends of the hot wire).

Every next closed loop that cuts one object out of sheet of material is connected

to the already existing path where the distance between them is minimal. This is

used as criteria for choosing a new unprocessed upper facet – that one which the

closest to already defined checkpoints.

Figure 36 Example of tool path

34

4.2.3 Motion Control

In small NC applications stepper motors are typically used for their simplicity of

position control. Stepper motor is controlled by pulses of current, each pulse

forces the rotor to move to the next discrete position (typically several tens per

revolution) which eliminates necessity in position sensor (called shaft encoder)

(31). Mindstorms Ev3 set uses DC servomotors, with incremental encoders that

have 1 degree accuracy for the output shaft position. Incremental encoder does

not give an absolute position of the shaft in every moment, but sends a signal

when the position is changed in forward or backward direction and requires a

counter to transform these signals into position value withrespect to the starting

position. Servomotors may have higher speeds and torques compared to stepper

motors (16, pp. 12-13).

Control of servomotors can be done in open loop or closed loop. The open-loop

control does not require any feedback from a servomotor. It uses well-described

physical model of a system and controls the voltage or current fed to a servomotor

depending on commanded position. Such controller is called a feedforward con-

troller. Because of presence of unpredictable factors in virtually all real processes,

the open-loop control cannot insure precise following of commanded position.

Therefore, in CNC applications closed-loop, or feedback controllers are used to-

gether with feedforward controllers to accommodate changing circumstances of

operation (16, pp. 157-185). Closed-loop controller makes decision about suita-

ble voltage or current level based on the error between commanded position

The most widely used feedback controller is PID controller. The output of PID

controller is a weighted sum of proportional, integral and derivative components

of position error. Proportional component is directly proportional to the actual

value of error with some coefficient Kp, called proportional gain. Proportional term

serves for direct minimization of error. The integral term equals the integral (or

sum) of error value over time. The respective coefficient Ki is called integral gain.

The integral term is responsible for reduction of steady-state error, when small

error does not produce enough power supply to overcome friction in a system

when based on proportional term only. Big proportional and integral gains result

35

in fast response of a system, but may cause instability when servomotor over-

shoots the commanded position, tries to return back, overshoots again and con-

tinue to oscillate around the target position. In such systems a derivative term is

added which is proportional to the rate of change of the error and starts to brake

servomotor before it reaches the commanded position. The derivative gain is de-

noted as Kd.

In the foam cutter program, checkpoints coordinates are recalculated into the re-

quired encoder counts for each servomotor. The resolution of the motors were

the following:

 Drive motion: 63,7 counts per mm

 Shift motion: 75 counts per mm

 Tilting motions (in both directions): 9000 counts per sine of inclination an-

gle, or roughly 160 counts per one degree

Test runs with the first prototype of the foam cutter have showed that the simplest

proportional controller causes a big lag in hot wire’s position. Therefore, a feed-

forward control was added for the second model. Because of linear interpolation

of position between successive checkpoints, the speed of each motion was easy

to calculate. This value was used for feedforward controller that suggested the

needed level of power (between 0 and 100) from the maximum and the required

speed. The LEGO guide for Ev3 set states that L-motor runs at 160-170 rpm,

while M-motor have 240-250 rpm speed. Additionally, for the closed-loop control,

proportional gain for all motors was set. For the L-motors the choice of propor-

tional gain was easy and straight forward: the gain was raised until the motors

began to oscillate (this happened at Kp = 5) and then reduced to roughly half of

that value (Kp = 3). The drive remained stable under all circumstances with the

maximum error of 2-3 encoder counts (this information together with the power

level was displayed on the screen of the Ev3 brick during the cutting process).

36

Figure 37 Cutting progress on the screen

The M-motors appeared to be much more difficult for control. Even with Kp = 0,1

they tended to oscillate. Because of significant friction in the worm gearboxes

compared to their torque (8 Ncm versus 20 Ncm by L-motors) at the start and

stop moments there were notable jerks (even with integral terms) that worsened

the quality of the cut surface. Very high contoller loop execution frequency (more

than 10000 cycles per second, with Linux timer accuracy of 1 microsecond) did

not prevent from overshoots. To increase the stability, the derivative term was

added. Its contribution suffered from the noise - at maximum speed, the M-motor

must have 1500 encoder counts per second, which makes estimation of the de-

rivative term from too frequently sampled data quite unprecise. This is a known

problem in servomotor control and is resolved with decrease in sampling fre-

quency and application of low-pass filter that removes high-frequency noise (32).

In the cutter software the sampling frequency was reduced to about 1000 cycles

per second and exponential smoothing was applied to the derivative term accord-

ing to the following formula (33):

𝑠𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑠𝑡−1 (5)

Here st denotes smoothened value at time t, xt is the actual value at time t, while

the smoothing factor α was chosen to be equal 0,1 after several trials and errors.

These measures reduced oscillations in operation of M-motors, but rapid

changes in torque induced undesired oscillations of the bow because of its mo-

ment of inertia and limited stiffness of the drive. Finally, a solution that helped to

37

improve the situation was limiting changes of the power level to just one unit per

cycle (which still allowed power to raise from 0 to 100 in 0,1 seconds).

5 Foam Cutting

5.1 Test Runs

Test runs of the second foam cutter model allowed to tune servomotors control

and find the most suitable cutting speed and voltage to be applied to 0,25 mm

thick spring steel wire (resistance at room temperature 0,6 Ω). Material for cutting

was 20 mm thick XPS with density of 30 kg/m3. While speeds up to 4-5 mm/s

were possible, the cutting forces were distorting frame of the machine and re-

quired fast accelerations from the tilting servomotors. Therefore, the speed was

set between 1,5 and 2,0 mm/s, usually 1,7 mm/s. The resulting kerf was 1-2 mm,

depending on the actual speed at different points.

Simple geometrical shape was cut in order to test accuracy. The shapes were

regular octogonal frustums with the upper width of 6 cm and lower 7 and 8 cm

respectively. While produced shapes were not geometrically precise, some di-

mensions could deviate for more than 5 mm, the hot-wire after completing a

closed contour always returned to the starting point with deviation less than 1

mm, which implies that the repeatability of the results is much better and improve-

ment in accuracy can be achieved with a better mechanical model inside the cut-

ter’s software. Appendix 3 includes weblinks to videos that have captured the

foam cutter in operation.

Figure 38 Octagonal frustums

38

Figure 39 Octagonal frustums with ruler

The cutter’s capability to cut curvelinear surfaces was tested together with cor-

rectness of generating tool path for multiple contours. Specifically, the test in-

volved cutting one contour inside of another, so that the software had to choose

place where to cut through the outer contour to reach the inner one and return

back. While there was again a mismatch in the resulting dimensions, all supposed

features were realized.

Figure 40 Two contours one inside another

39

5.2 Case Study: Airplane Fuselage

Despite the imperfections present in simple shapes, the machine was tested for

primarily intended use – production of airplane foam body. For reproduction in

XPS a model of Yak-130 jet was chosen. Precise Solidworks CAD model of its

complicated exterior was available in the GrabCAD library at (34). The model was

downscaled in ratio of 1:20. The fuselage was sliced into 28 layers of 20 mm

thickness. Additionally a large segment of its vertical stabilizer (fin) was prepared

for a single cut (dimensions of the cutter did not allow to cut all the height of it but

only 10 cm out of 14 cm). 28 pieces for the fuselage were cut in sets of 7 pieces.

STL representation of these sets contained up to 4000 facets and it took Ev3

brick between 12 to 15 seconds to process the models and generate tool paths.

One set required 15-20 minutes to cut.

When all 28 layers were hot-glued together, mismatches between adjacent layers

were easy to notice, especially on various protruding thin details of the exterior.

However, the foam model showed resemblance to the prototype, including the 10

cm tall fin cut in one piece. Appendix 3 refers to media files capturing stages of

work.

Figure 41 Yak-130 fuselage Solidworks model

40

Figure 42 Yak-130 XPS model: top view (above), bottom view (below)

The surface structure shows unnecessary change in direction of the hot wire

which indicates flaws of ruled surface approximation algorithm. It can be elimi-

nated by introducing a secondary optimization criterion into dynamic program-

ming that will preserve the directionof the tool unless a change is really needed.

41

During operation one feature of the construction was revealed that needs special

attention. When some pieces in a set are fully cut they may fall down before the

motion is ended. If the fall was not complete, it may create an obstacle for the

drive motion of the machine because of interference with the table. Absence of

any offsetting mechanism in trajectory planning clearly decreases the accuracy

of cut. Partly it maybe compensated by using a surface offsetting tool in CAD

software, but for better results this should consider a true physical model of the

cutting process.

6 Summary and Discussion

The thesis dealt with designing a numerically controlled hot-wire foam cutter ded-

icated for do-it-yourself hobby applications, like modelling of flying aircraft. The

challenge involved multiple disciplines, starting with mechanical engineering,

continueing with mechatronics and control engineering, ending with programming

and information technology.

The mechanical design showed limitations of conventional LEGO parts, but al-

lowed to create a new kinematical layout of a 4-axis hot-wire foam cutter that

allows a wide range of the wire’s positions while reducing the load on servodrives.

LEGO showed its full educational power in engineering and technology, because

it poses engineering challenges that are common in the real industry (like back-

lash or excessive flexibility).

In the programming part of the design it was showed that a quite small program

with a little more than 1000 lines of code when run on a 300 MHz processing unit

may successfully use results of CAD software, which requires sometimes 10 gi-

gabytes of disk space on a personal computer (like Solidworks does). While there

are CAM programs that have hundreds of settings, a self-written program gives

an extensive knowledge of how the machine works. In the author’s opinion, this

makes a process of interaction between a user and a program more clear and

unambiguous. Programming of the developed foam cutter required to create a

new algorithm for processing of 3D shapes that would match the set objectives

(use information about the shape from 3D modelling software in a common 3D

format). While the algorithm could be made more stable regarding avoidance of

42

unnecessary changes in the position of the cutting tool, it proved its applicability

to the stated problem.

Both the hardware and software part of this project can be improved. LEGO can

be substituted with other components that perform better and do not wear out as

fast as plastic pieces. The tool path planning software may become more cus-

tomizable (concerning cutting parameters or input formats) and give the user

more feedback about the progress of cutting.

The author hopes that this work may serve as a guide for motivated hobbyists to

build their own NC systems. It will inform them about difficulties and methods to

overcome them.

43

Figures

Figure 1 Yak-130 by FMS company, p. 5

Figure 2 Concorde model by Alexander Degtyarev, p.6

Figure 3 FliteTest. Hot-wire cutting, p. 6

Figure 4 FliteTest. Hot-wire cut layers, p. 7

Figure 5 RCGroups. Hot-wire cutter, p. 8

Figure 6 Hot-wire cutter by Hans Seybold, p. 8

Figure 7 Starfighter from Aerotetris, p. 9

Figure 8 Parts for Starfighter from Aerotetris, p. 9

Figure 9 Cutting head with a hot strip, p. 10

Figure 10 Test cuts with different temperature and speed, p. 11

Figure 11 Professional 4 axis foam cutter, p. 12

Figure 12 LEGO milling machine, p. 13

Figure 13 ABB robot from LEGO, p. 13

Figure 14 LEGO foam cutter, p. 14

Figure 15 The first model of the 4-axis foam cutter, p. 15

Figure 16 Carriage mechanism, p. 15

Figure 17 The first model is cutting XPS, p. 16

Figure 18 Backlash elimination in LEGO worm gearbox, p. 17

Figure 19 Tensioning mechanism, p. 17

Figure 20 The second model of the 4-axis foam cutter, p. 19

Figure 21 Inclination of the hot wire, p. 19

Figure 22 Hyperbolic paraboloid, p. 20

Figure 23 Facade rationalized with ruled surfaces, p. 21

Figure 24 Twisted cylinder becomes a paraboloid, p. 21

Figure 25 Surface error: 2D layers versus sloped layers, p. 22

Figure 26 Surface triangulation for different objectives, p. 23

Figure 27 Possible advancement of ruling, p. 24

Figure 28 Graph formulation of optimization problem, p. 24

Figure 29 How tool inclination improves surface quality, p. 26

Figure 30 Example of candidate rulings, p. 26

Figure 31 Tool trajectory correction to cut triangular patch, p. 27

Figure 32 Patch interpolation rule, p. 28

44

Figure 33 Patch cost estimation, p. 29

Figure 34 Test 3D shape, p. 30

Figure 35 Runstl program screenshots, p. 32

Figure 36 Example of tool path, p. 33

Figure 37 Cutting progress on the screen, p. 36

Figure 38 Octagonal frustums, p. 37

Figure 39 Octagonal frustums with ruler, p. 38

Figure 40 Two contours one inside another, p. 38

Figure 41 Yak-130 fuselage Solidworks model, p. 39

Figure 42 Yak-130 XPS model, p. 40

45

References

1. Yak-130 model by FMS company. http://www.horizonhobby.com/product/air-

planes/airplanes-14501--1/plug-n-play/yak-130-jet-pnp--70mm:-red-p-

fmm088pred . Accessed on 7 May 2017.

2. Degtyarev, A. Concorde from Styrofoam. http://rc-aviation.ru/polucopy/1938-

concorde . Accessed on 7 May 2017.

3. FliteTest JA-37 Viggen. http://www.flitetest.com/articles/ja-37-viggen-scratch-

build . Accessed on 7 May 2017.

4. Simple but Mighty DIY 4 Axis CNC Foam Cutter. http://www.rcgroups.com/fo-

rums/showthread.php?2563600-Simple-but-mighty-DIY-4-axis-CNC-Foam-

Cutter-Theremino-Controller-(Not-Arduino)! . Accessed on 7 May 2017.

5. Seybold, H. CNC Hot-Wire Cutter. http://www.cnc-hotwire.de . Accessed on

7 May 2017.

6. Aerotetris company. Official website. http://bukvorez.com . Accessed on 7

May 2017.

7. Wikipedia. Hot-Wire Foam Cutter. http://en.wikipedia.org/wiki/Hot-

wire_foam_cutter . Accessed on 7 May 2017.

8. Broek, J.J., Horvath, I., de Smit, B., Lennings, A.F., Rusak, Z. Vergeest,

J.S.M. 2002. Free-Form Thick Layer Object Manufacturing Technology for

Large-Sized Physical Models. Elsevier, Automation in Construction 11, 335-

347.

9. Aitchison, D., Brooks, H., Bain., J., Pons, D. 2009. An Investigation into the

Prediction of Optimal Machining Conditions for Polystyrene Foam Cut with a

Taut Hot-Wire. The Annals of “Dunarea de Jos” University of Galati, Fascicle

V, Technologies in Machine Building, ISSN 1221- 4566.

10. Abeysinghe, A., Abeysiriwardena, S., Nanayakkarawasam, R., Wimalsiri, W.,

Lalitharatne, T.D., Tennakoon, S. 2016. Development of a Numerically Con-

trolled Hot Wire Foam Cutting Machine for Wing Mould Construction.Mora-

tuwa Engineering Research Conference (MERCon). DOI:

10.1109/MERCon.2016.7480116. Accessed on 25 January 2017.

46

11. Arthur Sacek LEGO 360° Milling Machine. 2012.

http://www.youtube.com/watch?annotation_id=annotation_686662&fea-

ture=iv&src_vid=pX1cO2XhMrg&v=oF0pMILT7_Y . Accessed on 7 May

2017.

12. ABB Robotics. Engineering with Lego can transform the future. 2014.

http://www.youtube.com/watch?v=-tsPuHaHFDw&t=7s . Accessed on 7 May

2017.

13. Lego® Mindstorms NXT Styrofoam Cutter. 2009.

http://www.youtube.com/watch?v=tzNww9_m5Uk . Accessed on 7 May 2017.

14. The Engineering Toolbox. Young's Modulus – Tensile Modulus or Modulus of

Elasticity – for steel, glass, wood and other common materials.

http://www.engineeringtoolbox.com/young-modulus-d_417.html . Accessed

on 7 May 2017.

15. Wikipedia. Backlash (engineering). http://en.wikipedia.org/wiki/Backlash_(en-

gineering) . Accessed on 7 May 2017.

16. Suh, S.-H., Kang, S.-K., Chung, D.-H., Stroud, I., 2008, Theory and Design of

CNC Systems. London: Springer Series in Advanced Manufacturing ISSN

1860-5168

17. Wikipedia. Ruled surface. http://en.wikipedia.org/wiki/Ruled_surface . Ac-

cessed on 7 May 2017.

18. Quan, L., Yongzhang, W., Hongya, F., Zhenyu, H., 2008. Cutting Path Plan-

ning for Ruled Surface Impellers. Chinese Journal of Aeronautics 21(2008)

462-471.

19. Flöry, S., Pottmann, H., 2010. Ruled Surfaces for Rationalization and Design

in Architecture. Association for Computer Aided Design in Architecture (ACA-

DIA). Life Information. On Responsive Information and Variations in Architec-

ture: pp. 103-109.

20. Yao, Z., de la Cruz, M.O., 2014. Ruled Surface Underlying KcsA Potassium

Channels. Soft Matter, Issue 4.

21. Koc, B., Lee, Y.-S., 2002. Adaptive ruled layers approximation of STL models

and multiaxis machining applications for rapid prototyping. Journal of Manu-

facturing Systems. DOI: 10.1016/S0278-6125(02)80159-5. Accessed on 7

May 2017.

47

22. Wang, C.C.L., Tang, K., 2005. Optimal Boundary Triangulations of an Inter-

polating Ruled Surface. Journal of Computing and Information Science in En-

gineering. DOI: 10.1115/1.2052850. Accessed on 7 May 2017.

23. Fuchs, H., Kedem, Z.M., Uselton, S.P., 1977. Optimal Surface Reconstrcution

from Planar Contours. Association for Computing Machinery, Inc.

24. Wikipedia. Dynamic Programming. http://en.wikipedia.org/wiki/Dynamic_pro-

gramming . Accessed on 7 May 2017.

25. Wang., C.C.L., Elber, G., 2013. Multi-Dimensional Dynamic Programming in

Ruled Surface Fitting. Preprint submitted to Elsevier.

26. Bi, Q., Lu, Y., Li, Z., Zhu, L., Ding, H., Liu, G., 2013. Constrained Ruled Sur-

face Reconstruction for 5-axis NC Machining of Aero Structure. DOI:

10.4028/www.scientific.net/AMM.365-366.938. Accessed on 7 May 2017.

27. Gupta, T., Chandila, P.K., Tripathi, V., Choudry, A.R., 2004. Direct Slicing with

Optimum Number of Contour Points. International Journal of CAD/CAM, Vol

4, No 1.

28. Nine alternative programming languages for LEGO MINDSTORMS.

http://www.legoengineering.com/alternative-programming-languages/ . Ac-

cessed on 7 May 2017.

29. Ojeda, L. Robot Navigation. www.robotnav.com . Accessed on 7 May 2017.

30. LEGO Mindstorms Ev3 Firmware Documentation. http://ev3.fantastic.com-

puter/doxygen/index.html . Accessed on 7 May 2017.

31. Lifewire. Stepper Motors vs. Servo Motors - Selecting a Motor.

http://www.lifewire.com/stepper-motor-vs-servo-motors-selecting-a-motor-

818841 . Accessed on 7 May 2017.

32. Wikipedia. PID controller. http://en.wikipedia.org/wiki/PID_controller . Ac-

cessed on 7 May 2017.

33. Wikipedia. Exponential Smoothing. http://en.wikipedia.org/wiki/Exponen-

tial_smoothing . Accessed on 7 May 2017.

34. GrabCAD. Yak-130 Solidworks model. http://grabcad.com/library/yak-130-1 .

Accessed on 7 May 2017.

 Appendix 1. Runstl Program

vmthread MAIN

{

 UI_DRAW(SELECT_FONT,SMALL_FONT)

 DATA32 timer

 DATA32 status

 DATAS rootdir 100

 DATAS curdir 100

 DATAS subdir 20

 DATAS exec 150

 DATA8 nfolders

 DATA8 pressed

 DATA8 line

 DATA16 lnheight

 MOVE16_16(10,lnheight)

 DATA16 indent

 MOVE16_16(15,indent)

 DATA16 height

 DATA16 len

 FILENAME(GET_FOLDERNAME,100,rootdir)

 FILENAME(GET_FOLDERNAME,100,curdir)

UPD_DIRS:

 UI_DRAW(FILLWINDOW,BG_COLOR,0,0)

 UI_DRAW(TEXT,FG_COLOR,0,0,curdir)

 FILE(GET_FOLDERS,curdir,nfolders)

 MOVE8_8(0,line)

 MOVE16_16(0,height)

 JR_FALSE(nfolders, CONTROLS)

PRINT_DIRS:

 ADD16(height,lnheight,height)

 ADD8(line,1,line)

 FILE(GET_SUBFOLDER_NAME,curdir,line,20,subdir)

 UI_DRAW(TEXT,FG_COLOR,indent,height,subdir)

 JR_LT8(line,nfolders,PRINT_DIRS)

 MOVE8_8(1,line)

 MOVE16_16(lnheight, height)

 UI_DRAW(TEXT,FG_COLOR,0,height,'>')

CONTROLS:

 UI_DRAW(UPDATE)

 UI_BUTTON(WAIT_FOR_PRESS)

 TIMER_WAIT(100,timer)

 TIMER_READY(timer)

 UI_BUTTON(SHORTPRESS,UP_BUTTON,pressed)

 Appendix 1. Runstl Program

 JR_TRUE(pressed,PREV_DIR)

 UI_BUTTON(SHORTPRESS,DOWN_BUTTON,pressed)

 JR_TRUE(pressed,NEXT_DIR)

 UI_BUTTON(SHORTPRESS,LEFT_BUTTON,pressed)

 JR_TRUE(pressed,PARENT_DIR)

 UI_BUTTON(SHORTPRESS,RIGHT_BUTTON,pressed)

 JR_TRUE(pressed,ENTER_DIR)

 UI_BUTTON(SHORTPRESS,ENTER_BUTTON,pressed)

 JR_TRUE(pressed,EXEC_DIR)

 UI_BUTTON(SHORTPRESS,BACK_BUTTON,pressed)

 JR_TRUE(pressed,EXIT)

PREV_DIR:

 JR_EQ8(line,0,CONTROLS)

 JR_EQ8(line,1,CONTROLS)

 UI_DRAW(TEXT,FG_COLOR,0,height,' ')

 SUB8(line,1,line)

 SUB16(height,lnheight,height)

 UI_DRAW(TEXT,FG_COLOR,0,height,'>')

 JR(CONTROLS)

NEXT_DIR:

 JR_EQ8(line,nfolders,CONTROLS)

 UI_DRAW(TEXT,FG_COLOR,0,height,' ')

 ADD8(line,1,line)

 ADD16(height,lnheight,height)

 UI_DRAW(TEXT,FG_COLOR,0,height,'>')

 JR(CONTROLS)

PARENT_DIR:

 FILENAME(SPLIT,curdir,100,curdir,subdir,subdir)

 STRINGS(GET_SIZE,curdir,len)

 SUB16(len,1,len)

 WRITE8(0,len,curdir)

 JR(UPD_DIRS)

ENTER_DIR:

 JR_FALSE(line,CONTROLS)

 FILE(GET_SUBFOLDER_NAME,curdir,line,20,subdir)

 STRINGS(ADD,curdir,'/',curdir)

 STRINGS(ADD,curdir,subdir,curdir)

 JR(UPD_DIRS)

EXEC_DIR:

 FILE(GET_SUBFOLDER_NAME,curdir,line,20,subdir)

 STRINGS(ADD,rootdir,'/stultor ',exec)

 Appendix 1. Runstl Program

 STRINGS(ADD,exec,curdir,exec)

 STRINGS(ADD,exec,'/',exec)

 STRINGS(ADD,exec,subdir,exec)

 STRINGS(ADD,exec,'.STL',exec)

 SYSTEM(exec,status)

 UI_DRAW(TEXT,FG_COLOR,0,0,'@')

 UI_DRAW(UPDATE)

 UI_DRAW(TEXT,FG_COLOR,0,0,curdir)

 JR(CONTROLS)

EXIT:

}

 Appendix 2. C++ Foam Cutter Program Stultor

1. #include <cmath>
2. #include <cstdio>
3. #include <cstdlib>
4. #include <fcntl.h>
5. #include <set>
6. #include <string.h>
7. #include <sys/mman.h>
8. #include <sys/time.h>
9. #include <unistd.h>
10. #include "lms2012.h"
11. #include "d_lcd.h"
12.
13. const float LARGE = 1e9f;
14. const float ZERO = 1e-9f;
15. const float MAX_INCLINATION = 40.0f; //degrees
16. const float PRECISION = 1e-4f; //mm precision to distinguish vertices
17.
18. //constants for EV3 hardware
19. const char MOTOR_PORT_A = 0;
20. const char MOTOR_PORT_B = 1;
21. const char MOTOR_PORT_C = 2;
22. const char MOTOR_PORT_D = 3;
23.
24. const float PI = 3.1415926f;
25. /*machine geometry & material properties*/
26. const float steer_steps_per_sin = (40.0f*360.0f) / (0.5f*3.2f); //resolution of the steering M-

motor
27. const float tilt_steps_per_sin = (40.0f*360.0f) / (0.5f*3.2f); //resolution of the tilting M-

motor
28. const float shift_steps_per_mm = (360.0f) / (1.5f*3.2f); //resolution of the shifter L-

motor
29. const float drive_steps_per_mm = (24.0f*360.0f) / (PI*43.2f); //resolution of the drive L-motor
30. const float joint_height_mm = 6.0f;
31. const float M_rev_per_sec = 170.0f/60.0f; //nominal speed of the M-motor
32. const float L_rev_per_sec = 110.0f/60.0f; //nominal speed of the L-motor
33. const float CUTTING_SPEED = 1.7f; // mm/s
34. const int CYCLE_SLEEP = 500; //microseconds
35. const int DISPLAY_SLEEP = 500000; //microseconds
36.
37. using namespace std;
38.
39. struct vec3_t {
40. float x, y, z;
41.
42. vec3_t()
43. {
44. }
45.
46. vec3_t(float* point):
47. x(point[0]), y(point[1]), z(point[2])
48. {
49. }
50.
51. vec3_t(float x0, float y0, float z0):
52. x(x0), y(y0), z(z0)
53. {
54. }
55.
56. friend bool operator<(const vec3_t& lhs, const vec3_t& rhs) //"comparator"
57. {
58. return ((lhs.x+PRECISION < rhs.x) ||
59. (!(lhs.x-PRECISION > rhs.x) && (lhs.y+PRECISION < rhs.y)) ||
60. (!(lhs.x-PRECISION > rhs.x) && !(lhs.y-

PRECISION > rhs.y) && (lhs.z+PRECISION < rhs.z)));
61. }
62.
63. friend float operator*(const vec3_t& u, const vec3_t& v) //dot product
64. {
65. return (u.x*v.x + u.y*v.y + u.z*v.z);
66. }

 Appendix 2. C++ Foam Cutter Program Stultor

67.
68. friend vec3_t operator%(const vec3_t& u, const vec3_t& v) //cross product
69. {
70. return vec3_t(u.y*v.z - u.z*v.y, u.z*v.x-u.x*v.z, u.x*v.y - u.y*v.x);
71. }
72.
73. friend vec3_t operator*(const float& n, const vec3_t& v) //multiplucation with scalar
74. {
75. return vec3_t(n*v.x, n*v.y, n*v.z);
76. }
77.
78. friend vec3_t operator+(const vec3_t& u, const vec3_t& v)
79. {
80. return vec3_t(u.x+v.x, u.y+v.y, u.z+v.z);
81. }
82.
83. friend vec3_t operator-(const vec3_t& u, const vec3_t& v)
84. {
85. return vec3_t(u.x-v.x, u.y-v.y, u.z-v.z);
86. }
87.
88. friend float operator^(const vec3_t& u, const vec3_t& v)
89. {
90. return (u.x*v.y - u.y*v.x);
91. }
92.
93. friend float magnitude(const vec3_t& v)
94. {
95. return sqrtf(v*v);
96. }
97.
98. friend vec3_t interpolate(const vec3_t& A, const vec3_t& B, float q)
99. {
100. return A+q*(B-A);
101. }
102.
103. friend float square(const vec3_t& v)
104. {
105. return (v*v);
106. }
107. };
108. typedef vec3_t * pvertex_t;
109. bool pvertex_comp(pvertex_t l, pvertex_t r) {return *l<*r;}
110. const vec3_t ZAXIS = vec3_t(0.0f, 0.0f, 1.0f);
111. const vec3_t ORIGIN = vec3_t(0.0f, 0.0f, 0.0f);
112.
113.
114. enum facet_type { upper_facet, internal_facet, lower_facet, used_facet };
115. typedef struct facet_t facet_t;
116. typedef facet_t * pfacet_t;
117. struct facet_t
118. {
119. vec3_t n;
120. pvertex_t v[3];
121. pfacet_t a[3]; //adjacent facets
122. float dist;
123. pfacet_t bktrace;
124. int id;
125. facet_type type;
126. };
127.
128.
129. struct edge_t
130. {
131. pair<pvertex_t, pvertex_t> v;
132. pfacet_t f;
133. pfacet_t * edgeid;
134.
135. edge_t(pvertex_t v1, pvertex_t v2, pfacet_t f0, pfacet_t * edgeid0):
136. f(f0), edgeid(edgeid0)

 Appendix 2. C++ Foam Cutter Program Stultor

137. {
138. if(*v1<*v2) v = make_pair(v1, v2);
139. else v = make_pair(v2, v1); //edges are represented in oriented manner
140. }
141.
142. friend bool operator<(const edge_t& lhs, const edge_t& rhs) //"comparator"
143. {
144. return (lhs.v.first < rhs.v.first) || (!(rhs.v.first < lhs.v.first) && (lhs.v.secon

d < rhs.v.second));
145. }
146. };
147. typedef set<edge_t> edges_t;
148.
149.
150. struct boundarel_t
151. {
152. pvertex_t v;
153. pfacet_t f;
154. };
155. typedef pair<boundarel_t, boundarel_t> bounode_t; //"boundary node"
156. typedef bounode_t * pbounode_t;
157.
158. struct patch_t
159. {
160. pfacet_t upp, low;
161. };
162. typedef patch_t * ppatch_t;
163.
164. struct steep_enough_t
165. {
166. float limcos;
167. vec3_t v;
168.
169. steep_enough_t(float inclination_limit):
170. limcos(cosf(3.1415926f/180.0f*inclination_limit))
171. {
172. }
173.
174. bool operator()(vec3_t& A, vec3_t& B, vec3_t& C, vec3_t& D) //AB on the one boundary, C

D on the other one
175. {
176. v = A+B-C-D;
177. return (v*ZAXIS > magnitude(v)*limcos) || (v*ZAXIS < -magnitude(v)*limcos);
178. }
179. };
180.
181. enum direction_t {west, north, norwest, indef, start};
182. typedef struct routel_t routel_t;
183. typedef routel_t * proutel_t;
184. struct routel_t
185. {
186. float selfcost, routecost;
187. direction_t from;
188.
189. void improve(proutel_t r, direction_t dir)
190. {
191. if(r->routecost < routecost)
192. {
193. routecost = r->routecost;
194. from = dir;
195. }
196. }
197. };
198.
199. struct get_cost_t
200. {
201. pfacet_t f, next;
202. vec3_t H, n;
203. vec3_t CM, nextCM;
204. vec3_t p, nextp;

 Appendix 2. C++ Foam Cutter Program Stultor

205. float dev, nextdev;
206.
207. get_cost_t()
208. {
209. f = NULL;
210. }
211.
212. void setseed(pfacet_t start_facet)
213. {
214. f = start_facet;
215. CM = (1.0f/3.0f) * (*(f->v[0]) + *(f->v[1]) + *(f->v[2]));
216. }
217.
218. float operator()(vec3_t& A, vec3_t& B, vec3_t& C, vec3_t& D) //AB on the one boundary,

CD on the other one
219. {
220. if(f==NULL)
221. {
222. printf("uninitialized facet\n");
223. return -1.0f;
224. }
225.
226. H = 0.25*(A+B+C+D); //centre of the patch
227. n = (B-A+D-C)%(C-A+D-B); //averaged normal to the patch
228. if(magnitude(n) < ZERO) return LARGE; //something is wrong, not a good patch anyway

229. n = (1.0f/magnitude(n)) * n; //unit normal
230. p = CM-H;
231. if(magnitude(p)<ZERO) return ZERO;
232. dev = magnitude(p - (p*n)*n); //deviation
233.
234. for(;;)
235. {
236. next = NULL;
237. for(int i=0; i<3; i++)
238. {
239. if(f->a[i] != NULL)
240. {
241. nextCM = (1.0f/3.0f) * (*(f->a[i]->v[0]) + *(f->a[i]->v[1]) + *(f-

>a[i]->v[2]));
242. nextp = nextCM-H;
243. if(magnitude(nextp)<ZERO) return ZERO;
244. nextdev = magnitude(nextp - (nextp*n)*n);
245.
246. if(nextdev < dev)
247. {
248. next = f->a[i];
249. CM = nextCM;
250. p = nextp;
251. dev = nextdev;
252. }
253. }
254. }
255.
256. if(next!=NULL)
257. f = next;
258. else
259. return (p*n)*(p*n);
260. }
261. return LARGE;
262. }
263. };
264.
265.
266. enum mech_dof {steer, tilt, drive, shift, MAX_MECH_DOF}; //degrees of freedom of the machin

e - actuators
267. typedef struct checkpoint_t checkpoint_t;
268. typedef checkpoint_t * pcheckpoint_t;
269. struct checkpoint_t
270. {

 Appendix 2. C++ Foam Cutter Program Stultor

271. vec3_t upp, low;
272. float axis[MAX_MECH_DOF];
273. int ct; //check time
274. pcheckpoint_t next;
275.
276. checkpoint_t()
277. {
278. }
279.
280. checkpoint_t(const vec3_t& upper, const vec3_t& lower, pcheckpoint_t nextcp):
281. upp(upper), low(lower), next(nextcp)
282. {
283. vec3_t d = upper - lower;
284. float len = magnitude(d);
285. axis[steer] = -steer_steps_per_sin * (d.y/len);
286. axis[tilt] = -tilt_steps_per_sin * (d.x/sqrtf(d.x*d.x+d.z*d.z));
287. d = lower + ((joint_height_mm - lower.z)/d.z) * d;
288. axis[drive] = drive_steps_per_mm * d.x;
289. axis[shift] = shift_steps_per_mm * d.y;
290. }
291.
292. float& operator[](int id) { return axis[id]; }
293.
294. const float& operator[](int id) const { return axis[id]; }
295.
296. friend checkpoint_t operator-(const checkpoint_t& u, const checkpoint_t& v)
297. {
298. checkpoint_t res;
299. for(int i=0; i<MAX_MECH_DOF; i++)
300. res[i] = u[i] - v[i];
301. return res;
302. }
303. };
304.
305. struct state_t
306. {
307. float x;
308. float xdot;
309. };
310.
311. struct coordinates_t
312. {
313. state_t state[MAX_MECH_DOF];
314. pcheckpoint_t p;
315. int pn;
316.
317. struct timeval tv_begin;
318. struct timeval tv_cur;
319. int t, tlast;
320. pcheckpoint_t cur, old;
321.
322. coordinates_t(pcheckpoint_t p0, int pn0, float cut_speed): //cut speed in mm/s
323. p(p0), pn(pn0)
324. {
325. char s[100];
326.
327. float dist2time = 1e6f*0.5f/cut_speed;
328. p[0].ct = 0;
329. old = p;
330. cur = old->next;
331. for(int i=1; i<pn; i++)
332. {
333. cur->ct = old->ct + lrintf(dist2time * (magnitude(cur->upp - old-

>upp) + magnitude(cur->low - old->low)));
334. old = cur;
335. cur = cur->next;
336. }
337. tlast = old->ct;
338. }
339.

 Appendix 2. C++ Foam Cutter Program Stultor

340. void runchrono()
341. {
342. gettimeofday(&tv_begin, NULL);
343. cur = p;
344. }
345.
346. bool finished()
347. {
348. gettimeofday(&tv_cur, NULL);
349. t = (tv_cur.tv_sec-tv_begin.tv_sec)*1000000 + (tv_cur.tv_usec-tv_begin.tv_usec);
350. return (t > tlast);
351. }
352.
353. void update(int i)
354. {
355. if(finished()) return;
356.
357. if(cur->ct < t)
358. {
359. old = cur;
360. while(cur->ct < t) cur = cur->next;
361. }
362.
363. float dx = cur->axis[i] - old->axis[i];
364. float dt = cur->ct - old->ct;
365. state[i].xdot = dx/dt; // in steps/microsec
366. state[i].x = old->axis[i] + state[i].xdot * (t - old->ct);
367. }
368.
369. ~coordinates_t()
370. {
371. free(p);
372. }
373. };
374.
375. struct motor_t
376. {
377. static MOTORDATA *pMotorData;
378. static char motor_command[3];
379. static int motor_file;
380. static int encoder_file;
381.
382. char port;
383. float pos_coef, der_coef, speed_coef;
384. int beginpos;
385. float pos, err, prev, buf, predict;
386. state_t *target;
387. int axis;
388. int power;
389. char command[3];
390.
391. motor_t(char port0, float pos_coef0, float der_coef0,
392. float speed_coef0, state_t *target0):
393. port(port0), pos_coef(pos_coef0), der_coef(der_coef0),
394. speed_coef(speed_coef0), target(target0), err(0.0f), prev(0.0f), buf(0.0f), power(0

)
395. {
396. command[0] = opOUTPUT_POWER;
397. command[1] = 1 << port;
398. command[2] = 0;
399. write(motor_file, command, 3);
400.
401. command[0] = opOUTPUT_START;
402. write(motor_file, command, 2);
403.
404. command[0] = opOUTPUT_RESET;
405. write(motor_file, command, 2);
406.
407. command[0] = opOUTPUT_POWER;
408.

 Appendix 2. C++ Foam Cutter Program Stultor

409. beginpos = pMotorData[port].TachoSensor;
410. }
411.
412. void act()
413. {
414. pos = pMotorData[port].TachoSensor - beginpos;
415. pos = target->x-pos;
416. buf = 0.1*(pos-prev)+0.9f*buf;
417. predict = target->xdot*speed_coef + pos*pos_coef + buf*der_coef;
418. err += pos;
419. if((predict > power) && (power < 100)) power++;
420. else if((predict < power) && (power > -100)) power--;
421.
422. command[1] = 1 << port;
423. command[2] = power;
424. write(motor_file, command, 3);
425. prev = pos;
426. }
427.
428. static bool init()
429. {
430. //Open the device file asscoiated to the motor controlers
431. if((motor_t::motor_file = open(PWM_DEVICE_NAME, O_WRONLY)) == -1) return false;
432. //Open the device file asscoiated to the motor encoders
433. if((motor_t::encoder_file = open(MOTOR_DEVICE_NAME, O_RDWR | O_SYNC)) == -

1) return false;
434. motor_t::pMotorData = (MOTORDATA*)mmap(0, sizeof(MOTORDATA)*vmOUTPUTS, PROT_READ |

PROT_WRITE, MAP_FILE | MAP_SHARED, motor_t::encoder_file, 0);
435. if (motor_t::pMotorData == MAP_FAILED) return false;
436. return true;
437. }
438.
439. static void deinit()
440. {
441. close(motor_t::motor_file);
442. close(motor_t::encoder_file);
443. }
444.
445. ~motor_t()
446. {
447. command[1] = 1 << port;
448. command[2] = 0;
449. while(pMotorData[port].Speed)
450. {
451. write(motor_file, command, 3);
452. }
453.
454. command[0] = opOUTPUT_STOP;
455. write(motor_file, command, 2);
456. }
457. };
458.
459. MOTORDATA* motor_t::pMotorData;
460. char motor_t::motor_command[3];
461. int motor_t::motor_file;
462. int motor_t::encoder_file;
463.
464. struct buttons_t
465. {
466. int button_file;
467. UI *pbuttons;
468. enum {UP, CENTER, DOWN, RIGHT, LEFT, BACK};
469.
470. buttons_t()
471. {
472. if((button_file = open(UI_DEVICE_NAME, O_RDWR | O_SYNC)) == -1) return;
473. pbuttons = (UI*)mmap(0, sizeof(UI), PROT_READ | PROT_WRITE, MAP_FILE | MAP_SHARED

, button_file, 0);
474. if (pbuttons == MAP_FAILED) return;
475. }

 Appendix 2. C++ Foam Cutter Program Stultor

476.
477. bool keypressed()
478. {
479. for(int key = 0; key < BUTTONS; key++)
480. {
481. if(pbuttons->Pressed[key]) return true;
482. }
483.
484. return false;
485. }
486.
487. ~buttons_t()
488. {
489. close(button_file);
490. }
491. };
492.
493. pfacet_t find_other_side(pfacet_t facets, pfacet_t seed, int maxn, facet_type target, steep

_enough_t *steep)
494. {
495. pfacet_t q[maxn];
496. q[0] = seed;
497. pvertex_t A, B, C, D;
498. for(int i=0; i<3; i++)
499. {
500. if(seed->a[i] == NULL)
501. {
502. A = seed->v[(i+1)%3];
503. B = seed->v[(i+2)%3];
504. break;
505. }
506. }
507.
508. int left=0, right=1;
509. bool used[maxn];
510. for(int i=0; i<maxn; i++) used[i] = false;
511.
512. while(left<right)
513. {
514. if(q[left]->type == target)
515. {
516. for(int i=0; i<3; i++)
517. {
518. if(q[left]->a[i] == NULL)
519. {
520. C = q[left]->v[(i+1)%3];
521. D = q[left]->v[(i+2)%3];
522. break;
523. }
524. }
525. if((*steep)(*A, *B, *C, *D))
526. return q[left];
527. }
528.
529. for(int i=0; i<3; i++)
530. {
531. if(q[left]->a[i] == NULL) continue;
532. if(!used[q[left]->a[i] - facets])
533. {
534. q[right++] = q[left]->a[i];
535. used[q[left]->a[i]-facets] = true;
536. }
537. }
538. left++;
539. }
540.
541. return NULL; //normally should never happen, just in case if...
542. }
543.

 Appendix 2. C++ Foam Cutter Program Stultor

544. bool input(const char *fname, pfacet_t& solid, int& nfacet, pvertex_t& vertices, int& nvert
ex)

545. {
546. FILE *partfile;
547. partfile = fopen(fname, "rb");
548. if(!partfile)
549. {
550. printf("unable to open %s\n", fname);
551. return false;
552. }
553.
554. char buf[80];
555. fread(buf, 80, 1, partfile); //80 chars for the name of a solid in .STL
556.
557. fread(&nfacet, sizeof(nfacet), 1, partfile); //4-byte integer for number of facets
558.
559. solid = (pfacet_t)malloc(sizeof(facet_t)*nfacet);
560. vertices = (pvertex_t)malloc(sizeof(vec3_t)*(nfacet+1));
561. nvertex = 0;
562. set<pvertex_t, bool(*)(pvertex_t, pvertex_t)> vdb(&pvertex_comp); //vertices data base

563. edges_t edges;
564. float point[3];
565.
566. for(int i=0; i<nfacet; i++)
567. {
568. fread(point, sizeof(point), 1, partfile); //read facet normal
569. solid[i].n = vec3_t(point);
570.
571. for(int j=0; j<3; j++)
572. {
573. fread(point, sizeof(point), 1, partfile); //read facet vertices
574.
575. vertices[nvertex] = vec3_t(point);
576. solid[i].v[j] = (pvertex_t) *(vdb.insert(vertices + nvertex).first);
577. if(solid[i].v[j] == vertices+nvertex) nvertex++;
578. if(nvertex>nfacet)
579. {
580. printf("weak surface %d %d\n", nvertex, nfacet);
581. return false;
582. }
583. }
584.
585. fread(buf, 2, 1, partfile); //read two useless colour bytes
586.
587. //let's find facet connectivity (neighbourhood)
588. //we put all the edges of the current facet in a set
589. //if such edge is already there, we make corresponding facets to "know" about each

other
590. for(int j=0; j<3; j++)
591. {
592. solid[i].a[j] = NULL;
593. pair<edges_t::iterator, bool> test;
594. //triangle ABC has edges BC, CA, AB
595. test = edges.insert(edge_t(solid[i].v[(j+1)%3], solid[i].v[(j+2)%3], solid+i,

solid[i].a+j));
596.
597. if(!test.second) //such edge has already been found
598. {
599. solid[i].a[j] = test.first-

>f; //the corresponding facet and the current facet are neighbours
600. *(test.first->edgeid) = solid+i;
601. }
602. }
603. }
604. vdb.clear();
605. edges.clear();
606.
607. return true;
608. }

 Appendix 2. C++ Foam Cutter Program Stultor

609.
610. bool lower_boundary(vec3_t& B1, vec3_t& B2, vec3_t& I)
611. {
612. if((B1.z < I.z) && (B2.z < I.z)) //obviously it is lower boundary
613. return true;
614.
615. vec3_t b = B2-B1;
616. vec3_t v = I-B1;
617. v = v - ((v*b)/square(b)) * b; //component of vector B1I perpendicular to B1B2
618.
619. return (v.z > 0.0f);
620. }
621.
622. bool classify(const pfacet_t solid, const int nfacet, const pvertex_t vertices, const int n

vertex, pbounode_t& b, int& uppn, int& lown)
623. {
624. //classification of facets into internal, upper boundary and lower boundary
625. b = (bounode_t*)malloc(sizeof(bounode_t)*nvertex);
626. for(int i=0; i<nvertex; i++) b[i].first.v = NULL;
627.
628. for(int i=0; i<nfacet; i++)
629. {
630. int cnt = 0;
631. for(int j=0; j<3; j++)
632. {
633. if(solid[i].a[j] == NULL)
634. cnt++;
635. }
636.
637. if(cnt == 3) //stand-alone facet
638. {
639. return false;
640. }
641. if(cnt == 2) //we'll make two facets, each having just one edge at the boundary
642. {
643. pfacet_t f1 = solid+i, f2 = f1->a[0];
644. if(f2 == NULL) f2 = f1->a[1];
645. if(f2 == NULL) f2 = f1->a[2];
646. if((f2->a[0] == NULL) || (f2->a[1] == NULL) || (f2->a[2] == NULL))
647. {
648. printf("defect in STL: incurable\n");
649. return false;
650. }
651. //f1 - current "bad" facet, f2 - its only neighbour
652.
653. pvertex_t A, B, C, D; //vertices of the quadrilateral formed by two old facets

,
654. //for which we'll swap the diagonal
655. if((f1->v[0] == f2->v[0]) || (f1->v[0] == f2->v[1]) || (f1->v[0] == f2-

>v[2]))
656. {
657. A = f1->v[0];
658. if((f1->v[1] == f2->v[0]) || (f1->v[1] == f2->v[1]) || (f1->v[1] == f2-

>v[2]))
659. {
660. C = f1->v[1];
661. B = f1->v[2];
662. }
663. else
664. {
665. C = f1->v[2];
666. B = f1->v[1];
667. }
668. }
669. else
670. {
671. A = f1->v[1];
672. C = f1->v[2];
673. B = f1->v[0];
674. }

 Appendix 2. C++ Foam Cutter Program Stultor

675. D = f2->v[0];
676. if((D==A) || (D==B) || (D==C)) D = f2->v[1];
677. if((D==A) || (D==B) || (D==C)) D = f2->v[2];
678.
679. pfacet_t fA, fC; //related facets, we'll edit their connections to the old face

ts
680. pfacet_t *pA, *pC;
681. for(int j=0; j<3; j++)
682. {
683. if(f2->a[j] == f1) continue;
684. if((f2->a[j]->v[0] == A) || (f2->a[j]->v[1] == A) || (f2->a[j]-

>v[2] == A))
685. {
686. fA = f2->a[j];
687. for(int k=0; k<3; k++)
688. {
689. if(fA->a[k] == f2) pA = fA->a+k;
690. }
691. }
692. if((f2->a[j]->v[0] == C) || (f2->a[j]->v[1] == C) || (f2->a[j]-

>v[2] == C))
693. {
694. fC = f2->a[j];
695. for(int k=0; k<3; k++)
696. {
697. if(fC->a[k] == f2) pC = fC->a+k;
698. }
699. }
700. }
701.
702. //replace facet 1 with a new one
703. f1->v[0] = A;
704. f1->v[1] = B;
705. f1->v[2] = D;
706. f1->a[0] = f2;
707. f1->a[1] = fA;
708. *pA = f1;
709. f1->a[2] = NULL;
710.
711. //replace facet 2 with a new one
712. f2->v[0] = C;
713. f2->v[1] = B;
714. f2->v[2] = D;
715. f2->a[0] = f1;
716. f2->a[1] = fC;
717. *pC = f2;
718. f2->a[2] = NULL;
719. }
720. }
721.
722. //now all facets have either 0 or 1 edge on the boundary
723. uppn=0, lown=0;
724. for(int i=0; i<nfacet; i++)
725. {
726. pvertex_t bv1, bv2, iv=NULL; //boundary facet has two boundary vertices and one int

ernal
727.
728. for(int j=0; j<3; j++)
729. {
730. if(solid[i].a[j] == NULL) //missing adjacent facet -

> current facet lies on boundary
731. {
732. iv = solid[i].v[j];
733. bv1 = solid[i].v[(j+1)%3];
734. bv2 = solid[i].v[(j+2)%3];
735. }
736. }
737.
738. if(iv==NULL) //internal facet
739. {

 Appendix 2. C++ Foam Cutter Program Stultor

740. solid[i].type = internal_facet;
741. }
742. else
743. {
744. if(lower_boundary(*bv1, *bv2, *iv)) //lower boundary
745. {
746. solid[i].type = lower_facet;
747. lown++;
748. }
749. else //upper boundary
750. {
751. solid[i].type = upper_facet;
752. uppn++;
753. }
754.
755. if(b[bv1-vertices].first.v==NULL)
756. {
757. b[bv1-vertices].first.v = bv2;
758. b[bv1-vertices].first.f = solid+i;
759. }
760. else
761. {
762. b[bv1-vertices].second.v = bv2;
763. b[bv1-vertices].second.f = solid+i;
764. }
765.
766. if(b[bv2-vertices].first.v==NULL)
767. {
768. b[bv2-vertices].first.v = bv1;
769. b[bv2-vertices].first.f = solid+i;
770. }
771. else
772. {
773. b[bv2-vertices].second.v = bv1;
774. b[bv2-vertices].second.f = solid+i;
775. }
776. }
777. }
778.
779. return true;
780. }
781.
782. void make_contour(bounode_t *b, pvertex_t v0, pfacet_t start, boundarel_t *c, int& n)
783. {
784. c[0].v = (start->a[0] == NULL) ? (start->v[1]) : (start->v[0]);
785. c[0].f = b[c[0].v-v0].first.f;
786. int i;
787. for(i=0; (i==0) || (c[i].v != c[0].v); i++)
788. {
789. c[i+1].v = (b[c[i].v-v0].first.f == c[i].f) ? b[c[i].v-v0].first.v : b[c[i].v-

v0].second.v;
790. c[i+1].f = (b[c[i+1].v-v0].first.f != c[i].f) ? b[c[i+1].v-

v0].first.f : b[c[i+1].v-v0].second.f;
791. }
792. n = i;
793. }
794.
795. void make_ccw(boundarel_t *c, int n)
796. {
797. float dir = *(c[n-1].v) ^ *(c[0].v);
798. for(int i=0; i<n-1; i++) dir+= *(c[i].v) ^ *(c[i+1].v);
799.
800. if(dir<0.0f)
801. {
802. for(int i=0, j=n-1; i<j; i++, j--) //reverse contour
803. {
804. boundarel_t swp = c[i]; c[i] = c[j]; c[j] = swp;
805. }
806.

 Appendix 2. C++ Foam Cutter Program Stultor

807. pfacet_t tmp = c[0].f; //cyclic shift of facets to restore their correspondence to
vertices

808. for(int i=0; i<n-1; i++) c[i].f = c[i+1].f;
809. c[n-1].f = tmp;
810. }
811. }
812.
813. bool best_route(const boundarel_t *uppc, const int uppn, const boundarel_t *lowc, const int

 lown, pfacet_t lowstart,
814. steep_enough_t& steep_enough, ppatch_t& p, int& pn)
815. {
816. //if found pair of lower and upper contour elements is not steep enough, let's find som

ething better
817. for(int l = lowstart->id, r = lowstart->id; r-l < lown/2; l--, r++)
818. {
819. if(steep_enough(*(uppc[0].v), *(uppc[1].v), *(lowc[(l+lown)%lown].v), *(lowc[(l+1+l

own)%lown].v)))
820. {
821. lowstart = lowc[(l+lown)%lown].f;
822. break;
823. }
824. if(steep_enough(*(uppc[0].v), *(uppc[1].v), *(lowc[r%lown].v), *(lowc[(r+1)%lown].v

)))
825. {
826. lowstart = lowc[r%lown].f;
827. break;
828. }
829. }
830. if(!steep_enough(*(uppc[0].v), *(uppc[1].v), *(lowc[lowstart->id].v), *(lowc[lowstart-

>id+1].v)))
831. {
832. printf("surface sloped too much\n");
833. printf("shit\n");
834. return false;
835. }
836.
837. //now for each upper contour element we can determine valid segment in the lower contou

r
838. //from lim[i].first to lim[i].second
839. pair<int, int> lim[uppn+1];
840. lim[0].first = lowstart-

>id; //for the 0th upper boundarel we start from the found starting lower boundarel
841. lim[0].second = lowstart->id;
842. bool cancel = false;
843. while((lim[0].second - lim[0].first < lown) && (!cancel)) //let's see how far we can go

 from the starting boundarel in the lower contour
844. {
845. cancel = true;
846. //try to extend allowable interval backwards
847. if(steep_enough(*(uppc[0].v), *(uppc[1].v),
848. *(lowc[(lim[0].first-

1+lown)%lown].v), *(lowc[(lim[0].first+lown)%lown].v)))
849. {
850. lim[0].first--;
851. cancel = false;
852. }
853. //try to extend allowable interval backwards
854. if(steep_enough(*(uppc[0].v), *(uppc[1].v),
855. *(lowc[(lim[0].second)%lown].v), *(lowc[(lim[0].second+1)%lown].v))

)
856. {
857. lim[0].second++;
858. cancel = false;
859. }
860. }
861. if(lim[0].first < 0)
862. {
863. lim[0].first += lown;
864. lim[0].second+= lown;
865. }

 Appendix 2. C++ Foam Cutter Program Stultor

866.
867. //now we find such interval for each upper boundarel
868. for(int i=1; i<uppn; i++)
869. {
870. lim[i].first = lim[i-1].first;
871. while((lim[i].first<=lim[i-

1].second) && !steep_enough(*(uppc[i].v), *(uppc[i+1].v),
872. *(lowc[(lim[i].first)%lown].v), *(lowc[(lim[i].first+1)%lown].v

)))
873. {
874. lim[i].first++;
875. }
876. if(!steep_enough(*(uppc[i].v), *(uppc[i+1].v),
877. *(lowc[(lim[i].first)%lown].v), *(lowc[(lim[i].first+1)%lown].v

)))
878. {
879. printf("surface sloped too much\n");
880. return false;
881. }
882.
883. lim[i].second = lim[i-1].second;
884. while((lim[i].second <= lim[0].second+lown) && steep_enough(*(uppc[i].v), *(uppc[i+

1].v),
885. *(lowc[(lim[i].second)%lown].v), *(lowc[(lim[i].second+1)%lown]

.v)))
886. {
887. lim[i].second++;
888. }
889. }
890.
891. lim[uppn].first = lim[0].first + lown; //repeat first item, but now everything is shift

ed one loop forward
892. lim[uppn].second= lim[0].second+ lown;
893.
894. //initialize table for dynamic programming
895. routel_t * t[uppn+1];
896. for(int i=0; i<uppn+1; i++)
897. {
898. t[i] = (routel_t*) malloc(sizeof(routel_t) * (lim[i].second-lim[i].first));
899. t[i] -= lim[i].first;
900. }
901.
902. get_cost_t get_cost;
903. for(int i=0; i<uppn; i++)
904. {
905. for(int j = lim[i].first; j < lim[i].second; j++)
906. {
907. get_cost.setseed(uppc[i].f);
908. t[i][j].selfcost = get_cost(*(uppc[i].v), *(uppc[i+1].v), *(lowc[j%lown].v), *(

lowc[(j+1)%lown].v));
909. }
910. }
911. for(int j = lim[uppn].first; j<lim[uppn].second; j++)
912. t[uppn][j] = t[0][j-lown];
913.
914. //let's run dynamic programming!
915. p = (patch_t*)malloc(sizeof(patch_t)*(uppn+lown+1));
916. float min = LARGE;
917. //we try each possible patch between 0th upper boundarel and valid lower boundarel as s

tarting patch
918. //and find the cost of a route until the same patch (cycle)
919. for(int k = lim[0].first; k < lim[0].second; k++)
920. {
921. for(int i=0; i<uppn+1; i++)
922. {
923. for(int j = lim[i].first; j < lim[i].second; j++)
924. {
925. t[i][j].from = indef;
926. t[i][j].routecost = LARGE*LARGE;
927. }

 Appendix 2. C++ Foam Cutter Program Stultor

928. }
929. t[0][k].from = start; //current starting patch for which we'll find optimal cycle
930.
931. bool promising = true;
932. for(int i=0; (i<uppn+1) && promising; i++)
933. {
934. promising = false;
935. for(int j = lim[i].first; j < lim[i].second; j++)
936. {
937. proutel_t r = &(t[i][j]);
938. r->routecost = r->selfcost;
939. switch(r->from)
940. {
941. case west: r->routecost += t[i-1][j].routecost; break;
942. case north: r->routecost += t[i][j-1].routecost; break;
943. case norwest:r->routecost += t[i-1][j-1].routecost; break;
944. case indef: r->routecost = LARGE*LARGE; continue;
945. case start: r->routecost = 0.0f;
946. }
947. if(r->routecost > min) continue; //search of optimum is hopeless
948. else promising = true; //we may still improve our result
949.
950. if(j+1 < lim[i].second) //try to improve i,j

-> i,j+1
951. t[i][j+1].improve(r, north);
952. if(i<uppn)
953. {
954. if((j >= lim[i+1].first) && (j < lim[i+1].second)) //try to improve

 i,j -> i+1,j
955. t[i+1][j].improve(r, west);
956. if((j+1 >= lim[i+1].first) && (j+1 < lim[i+1].second)) //try to improve

 i,j -> i+1,j+1
957. t[i+1][j+1].improve(r, norwest);
958. }
959. }
960. }
961.
962. proutel_t r = &(t[uppn][k+lown]);
963. if(r->routecost < min) //better cycle is found -> we should save the route
964. {
965. min = r->routecost;
966. pn=uppn+lown;
967. for(int i=uppn, j=k+lown; t[i][j].from!=start; pn--)
968. {
969. p[pn].upp = uppc[i].f;
970. p[pn].low = lowc[j%lown].f;
971.
972. switch(t[i][j].from)
973. {
974. case west: i--; break;
975. case north: j--; break;
976. case norwest:i--; j--; break;
977. }
978. }
979. }
980. }
981. if(min >= LARGE) return false;
982.
983. //shift route to the beginning of the array
984. for(int i=pn; i<uppn+lown; i++)
985. {
986. p[i-pn+1] = p[i+1];
987. }
988. pn = uppn+lown-pn;
989. p[0] = p[pn];
990.
991. for(int i=0; i++; i<uppn+1)
992. {
993. t[i] += lim[i].first;
994. free(t[i]);

 Appendix 2. C++ Foam Cutter Program Stultor

995. }
996.
997. return true;
998. }
999.
1000. void stitch_patches(boundarel_t *uppc, int uppn, boundarel_t *lowc, int lown, patch_t *p, i

nt pn,
1001. pcheckpoint_t& cp, int& cpn, pcheckpoint_t branch)
1002. {
1003. //assembling patches in one route
1004. float uppselflen[uppn], uppcouplen[uppn];
1005. float lowselflen[lown], lowcouplen[lown];
1006.
1007. uppc[uppn] = uppc[0]; lowc[lown] = lowc[0];
1008. for(int i=0; i<uppn; i++)
1009. {
1010. uppcouplen[i] = 0.0f;
1011. uppselflen[i] = magnitude(*(uppc[i+1].v) - *(uppc[i].v));
1012. }
1013. for(int i=0; i<lown; i++)
1014. {
1015. lowcouplen[i] = 0.0f;
1016. lowselflen[i] = magnitude(*(lowc[i+1].v) - *(lowc[i].v));
1017. }
1018. for(int i=0; i<pn; i++)
1019. {
1020. uppcouplen[p[i].upp->id] += lowselflen[p[i].low->id];
1021. lowcouplen[p[i].low->id] += uppselflen[p[i].upp->id];
1022. }
1023. p[pn] = p[0];
1024.
1025.
1026. float upplen=0.0f, lowlen=0.0f;
1027. for(int i=pn-1; p[i].upp == p[0].upp; i--)
1028. {
1029. lowlen+= lowselflen[p[i].low->id];
1030. }
1031. for(int i=pn-1; p[i].low == p[0].low; i--)
1032. {
1033. upplen+= uppselflen[p[i].upp->id];
1034. }
1035. vec3_t upper, lower;
1036. cp[cpn++] = *branch;
1037. cp[cpn-1].next = branch->next;
1038. for(int i=0; i<pn; i++)
1039. {
1040. upper = interpolate(*(uppc[p[i].upp->id].v), *(uppc[p[i].upp-

>id+1].v), lowlen/uppcouplen[p[i].upp->id]);
1041. lower = interpolate(*(lowc[p[i].low->id].v), *(lowc[p[i].low-

>id+1].v), upplen/lowcouplen[p[i].low->id]);
1042. if(p[i].upp == p[i+1].upp) lowlen+= lowselflen[p[i].low->id];
1043. else lowlen = 0.0f;
1044. if(p[i].low == p[i+1].low) upplen+= uppselflen[p[i].upp->id];
1045. else upplen = 0.0f;
1046. cp[cpn++] = checkpoint_t(upper, lower, cp+cpn);
1047. }
1048.
1049. float dist, min = LARGE;
1050. pcheckpoint_t closest, before_closest;
1051. for(int i=cpn-pn; i<cpn; i++)
1052. {
1053. dist = square(branch->upp - cp[i].upp);
1054. if(dist < min)
1055. {
1056. min = dist;
1057. closest = cp+i;
1058. before_closest = (i>cpn-pn) ? (closest-1) : (closest+pn-1);
1059. }
1060. }
1061. branch->next = closest;

 Appendix 2. C++ Foam Cutter Program Stultor

1062. cp[cpn-1].next = cp+cpn-pn;
1063. cp[cpn++] = *closest;
1064. cp[cpn-1].next = cp+cpn-pn-2;
1065. before_closest->next = cp+cpn-1;
1066. }
1067.
1068. int main(int argc, char* argv[])
1069. {
1070. //Initialize and clear screen
1071. LCD my_lcd;
1072. dLcdInit(my_lcd.Lcd);
1073. LCDClear(my_lcd.Lcd);
1074.
1075. if(argc < 2)
1076. {
1077. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 30, NORMAL_FONT, (signed char*)"no model is p

rovided");
1078. dLcdUpdate(&my_lcd);
1079. usleep(DISPLAY_SLEEP);
1080. return 1;
1081. }
1082.
1083. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 1, TINY_FONT, (signed char*)argv[1]);
1084. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 10, NORMAL_FONT, (signed char*)"model is processe

d...");
1085. dLcdUpdate(&my_lcd);
1086.
1087. pfacet_t solid=NULL;
1088. int nfacet;
1089. pvertex_t vertices=NULL;
1090. int nvertex;
1091.
1092. if(!input(argv[1], solid, nfacet, vertices, nvertex))
1093. {
1094. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 30, NORMAL_FONT, (signed char*)"something is

wrong with the model");
1095. dLcdUpdate(&my_lcd);
1096. usleep(DISPLAY_SLEEP);
1097. return 1;
1098. }
1099.
1100. pbounode_t boundary;
1101. int uppn, lown;
1102. if(!classify(solid, nfacet, vertices, nvertex, boundary, uppn, lown))
1103. {
1104. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 30, NORMAL_FONT, (signed char*)"defects in ST

L");
1105. dLcdUpdate(&my_lcd);
1106. usleep(DISPLAY_SLEEP);
1107. return 1;
1108. }
1109.
1110. boundarel_t *uppc, *lowc; //upper, lower contour
1111. uppc = (boundarel_t*)malloc(sizeof(boundarel_t)*(uppn+1));
1112. lowc = (boundarel_t*)malloc(sizeof(boundarel_t)*(lown+1));
1113. checkpoint_t *cp;
1114. cp = (checkpoint_t*)malloc(sizeof(checkpoint_t)*4*(uppn+lown+1));
1115. int cpn = 0;
1116. cp[cpn++] = checkpoint_t(ZAXIS, ORIGIN, NULL);
1117. int uppleft = uppn;
1118.
1119. while(uppleft>0)
1120. {
1121. float min = LARGE;
1122. pfacet_t uppstart=NULL, lowstart=NULL;
1123. pcheckpoint_t branch=NULL;
1124. for(int i=0; i<nfacet; i++)
1125. {
1126. if(solid[i].type == upper_facet)
1127. {

 Appendix 2. C++ Foam Cutter Program Stultor

1128. vec3_t middle;
1129. for(int j=0; j<3; j++)
1130. {
1131. if(solid[i].a[j] == NULL)
1132. {
1133. middle = 0.5f * (*(solid[i].v[(j+1)%3]) + *(solid[i].v[(j+2)%3]));

1134. }
1135. }
1136. for(int j=0; j<cpn; j++)
1137. {
1138. float dist = square(middle - cp[j].upp);
1139. if(dist < min)
1140. {
1141. min = dist;
1142. uppstart = solid+i;
1143. branch = cp+j;
1144. }
1145. }
1146. }
1147. }
1148. if(uppstart == NULL)
1149. {
1150. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 30, NORMAL_FONT, (signed char*)"no upper

contour");
1151. dLcdUpdate(&my_lcd);
1152. usleep(DISPLAY_SLEEP);
1153. return 1;
1154. }
1155.
1156. //make upper and lower contours in CCW direction (positive against Z-axis)
1157. make_contour(boundary, vertices, uppstart, uppc, uppn);
1158. for(int i=0; i<uppn; i++) uppc[i].f->type = used_facet;
1159. make_ccw(uppc, uppn);
1160. uppstart = uppc[0].f;
1161. uppleft -= uppn;
1162.
1163. steep_enough_t steep_enough(MAX_INCLINATION); //steepness tester
1164.
1165. lowstart = find_other_side(solid, uppstart, nfacet, lower_facet, &steep_enough);
1166. if(lowstart == NULL)
1167. {
1168. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 30, NORMAL_FONT, (signed char*)"no lower

contour");
1169. dLcdUpdate(&my_lcd);
1170. usleep(DISPLAY_SLEEP);
1171. return 1;
1172. }
1173. make_contour(boundary, vertices, lowstart, lowc, lown);
1174. make_ccw(lowc, lown);
1175. for(int i=0; i<uppn; i++) uppc[i].f->id = i;
1176. for(int i=0; i<lown; i++) lowc[i].f->id = i;
1177. uppc[uppn] = uppc[0]; lowc[lown] = lowc[0];
1178.
1179. patch_t *p; //storage for optimal route found by DP (maximal possible length)
1180. int pn;
1181. if(!best_route(uppc, uppn, lowc, lown, lowstart, steep_enough, p, pn))
1182. {
1183. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 30, NORMAL_FONT, (signed char*)"impossibl

e to cut");
1184. dLcdUpdate(&my_lcd);
1185. usleep(DISPLAY_SLEEP);
1186. return 1;
1187. }
1188.
1189. stitch_patches(uppc, uppn, lowc, lown, p, pn, cp, cpn, branch);
1190. free(p);
1191. }
1192.
1193. free(solid);

 Appendix 2. C++ Foam Cutter Program Stultor

1194. free(vertices);
1195. free(boundary);
1196. free(uppc);
1197. free(lowc);
1198. //cp is freed later
1199.
1200. //make position at the origin the same height as the connected one
1201. cp[0].upp.z = cp[0].next->upp.z;
1202. cp[0].low.z = cp[0].next->low.z;
1203. cp[1].upp.z = cp[0].next->upp.z;
1204. cp[1].low.z = cp[0].next->low.z;
1205.
1206. if(!motor_t::init()) return 1;
1207.
1208. buttons_t buttons;
1209.
1210. // initializing machine
1211. coordinates_t coordinates(cp, cpn, CUTTING_SPEED);
1212.
1213. motor_t *motor[MAX_MECH_DOF];
1214. motor[steer] = new motor_t(MOTOR_PORT_D, 0.1f, 1.0f, 0.6e5f, coordinates.state+steer);

1215. motor[tilt] = new motor_t(MOTOR_PORT_C, 0.1f, 1.0f, 0.6e5f, coordinates.state+tilt);
1216. motor[drive] = new motor_t(MOTOR_PORT_A, 3.0f, 0.0f, 1.0e5f, coordinates.state+drive);

1217. motor[shift] = new motor_t(MOTOR_PORT_B, 3.0f, 0.0f, 1.0e5f, coordinates.state+shift);

1218.
1219. LCDClear(my_lcd.Lcd);
1220. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 1, TINY_FONT, (signed char*)argv[1]);
1221. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 50, 8, SMALL_FONT, (signed char*)"error power");

1222. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 16, SMALL_FONT, (signed char*)"steer");
1223. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 26, SMALL_FONT, (signed char*)"tilt");
1224. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 36, SMALL_FONT, (signed char*)"drive");
1225. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 46, SMALL_FONT, (signed char*)"shift");
1226. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 1, 80, LARGE_FONT, (signed char*)"compl.");
1227.
1228. char s[100];
1229. int cnt = 0;
1230. bool alright = true;
1231. coordinates.runchrono();
1232.
1233. while(!coordinates.finished() && alright) {
1234. for(int i=0; i<MAX_MECH_DOF; i++)
1235. {
1236. coordinates.update(i);
1237. motor[i]->act();
1238. }
1239. if(cnt%256 == 0)
1240. {
1241. for(int i=0; i<MAX_MECH_DOF; i++)
1242. {
1243. sprintf(s, "%4.0f%4d", motor[i]->pos, motor[i]->power);
1244. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 50, 16+10*i, NORMAL_FONT, (signed char*)

s);
1245. }
1246. sprintf(s, "%3d%%", 100*(coordinates.t/1024)/(coordinates.tlast/1024));
1247. dLcdDrawText(my_lcd.Lcd, FG_COLOR, 100, 80, LARGE_FONT, (signed char*)s);

1248. dLcdUpdate(&my_lcd);
1249. }
1250.
1251. usleep(CYCLE_SLEEP);
1252.
1253. if(buttons.keypressed()) alright = false;
1254.
1255. cnt++;
1256. }
1257.

 Appendix 2. C++ Foam Cutter Program Stultor

1258. for(int i=0; i<MAX_MECH_DOF; i++) {
1259. delete motor[i];
1260. }
1261. motor_t::deinit();
1262. dLcdExit();
1263.
1264. return 0;
1265. }

 Appendix 3. Media Files about Foam Cutting

Cutting octogonal frustum (sloped) https://youtu.be/3NRxQBad2iE

Cutting octogonal frustum (steeper) https://youtu.be/YDKHIMDHst0

Cutting nested contours https://youtu.be/62PK5w1T_YM

Cutting a set of 7 Yak-130 pieces https://youtu.be/UVwoC9tWKEY

Cutting vertical stabilizer https://youtu.be/QRS_CMgMO4Y

Yak-130 set of 7 parts with a tool path:

https://youtu.be/3NRxQBad2iE
https://youtu.be/YDKHIMDHst0
https://youtu.be/62PK5w1T_YM
https://youtu.be/UVwoC9tWKEY
https://youtu.be/QRS_CMgMO4Y

 Appendix 3. Media Files about Foam Cutting

Yak-130 cut parts:

Yak-130 assembled:

