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ABSTRACT 

Machine learning have an enormous impact on Computer Vision. 
This thesis investigates how to improve efficiency of a Machine 
learning technique called deep learning on classification tasks using 
Haar transform and model ensemble. Haar transform can be used 
to reduce the input size of image data to train more models and 
model ensemble is known to boost performance using multiple 
models instead of one. 
 
Experimental results showed that Adaboost and stacking work as 
expected as they boosted the accuracies by 2-3% and 
approximately 1%. However, the other two methods, averaging 
and geometric mean, did not boost but scored between the best 
individual model and the worst. This thesis also suggests future 
work onto Adaboost and stacking. 

 
Keywords machine learning, deep learning, computer vision, haar transform, model 

ensemble  
 
Pages 27 pages including appendices 6 pages 
 
 
 
 
 

mailto:Raine.Lehto@hamk.fi
mailto:joni.kamarainen@tut.fi


2 
 

 
 

CONTENTS 

 

1 MOTIVATION ............................................................................................................... 4 

2 INTRODUCTION TO MACHINE LEARNING AND DEEP LEARNING ................................ 4 

2.1 Machine learning ................................................................................................. 4 

2.2 Deep learning ...................................................................................................... 5 

2.2.1 Neural network ........................................................................................ 5 

2.2.2 Convolutional neural network ................................................................. 6 

3 DEEP LEARNING MODELS ............................................................................................ 8 

3.1 Architecture ......................................................................................................... 8 

3.2 Training and testing ............................................................................................. 9 

3.2.1 Training algorithm ................................................................................... 9 

3.2.2 Testing procedure .................................................................................. 10 

4 HAAR TRANSFORM .................................................................................................... 11 

4.1 Basics ................................................................................................................. 11 

4.2 Illustrations ........................................................................................................ 11 

4.3 Producing images using Haar transform ........................................................... 12 

4.3.1 Inefficient MATLAB program for performing Haar transform .............. 12 

4.3.2 Better MATLAB program for performing Haar transform ..................... 13 

4.3.3 Outcome ................................................................................................ 13 

5 MODEL ENSEMBLING ................................................................................................ 14 

5.1 Boosting ............................................................................................................. 14 

5.1.1 Multiclass Adaboost algorithm .............................................................. 15 

5.1.2 Multiclass Adaboost algorithm implementation in Python .................. 16 

5.1.3 Results ................................................................................................... 16 

5.2 Averaging ........................................................................................................... 17 

5.3 Geometric mean ................................................................................................ 17 

5.4 Stacking ............................................................................................................. 17 

5.5 Summary ........................................................................................................... 17 

6 EXPERIMENTS ............................................................................................................ 18 

6.1 Scope ................................................................................................................. 18 

6.2 Procedures ........................................................................................................ 18 

6.3 Data set and tools ............................................................................................. 18 

6.4 Goals .................................................................................................................. 19 

6.5 Results ............................................................................................................... 19 

7 CONCLUSIONS ........................................................................................................... 19 

REFERENCES .................................................................................................................... 21 

APPENDIX 1 – ADABOOST IMPLEMENTATION ............................................................... 22 



3 
 

 
 

APPENDIX 2 – OUTPUT OF ADABOOST PROGRAM ON HAAR LEVEL 2 DATA SET .......... 23 

APPENDIX 3 – OUTPUT OF ADABOOST PROGRAM ON HAAR LEVEL 1 DATA SET .......... 24 

APPENDIX 4 – OUTPUT OF ADABOOST PROGRAM ON DIFFERENCE DATA SET ............. 24 

APPENDIX 5 – OUTPUT OF ADABOOST PROGRAM ON ORIGINAL DATA SET ................. 25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 

 
 

1 MOTIVATION 

Machine learning is advancing very fast nowadays with the support 
of powerful hardware and parallel programming. From self-driving 
cars to face recognition and lung cancer detection, machine 
learning is there to help to solve difficult tasks. Some of them even 
seem impossible. With a belief in the enormous potential of this 
field, scientists and engineers are racing to develop new algorithms 
and techniques which can beat the current best. One of these 
recent techniques are convolutional neural networks or deep 
learning in general. First proposed by Yann LeCun (LeCun et al., 
1989), deep learning made its first success in classifying hand 
written digits. Over the time, deep learning has become a very 
effective method with good generalization, reasonable training 
time thanks to GPU technology and very little feature engineering. 
These features make deep learning an excellent candidate for 
image-related work. However, can we do better? This thesis 
examines a method of using Haar wavelet transform and model 
ensemble to boost the performance of deep learning models.  
 
Model ensemble has been a well-known method to boost the 
accuracy of a specific machine learning algorithm just by combining 
different models trained on different dataset. But is there any 
other way of producing different training sets rather than splitting 
the original one? 
 
Haar wavelet transform is a possible answer. Haar wavelet 
transform is an image processing technique that is often used in 
image compression. The basic idea is that Haar transform can 
reduce the dimensions of an image by a power of 2, therefore 
reduce the workload or memory of transferring or storing the 
original image. The smaller image can always be transformed back 
to original dimensions using inverse Haar transform. With the use 
of Haar transform, images can be reduced to different smaller 
dimensions which means that different training sets can be 
produced. 

2 INTRODUCTION TO MACHINE LEARNING AND DEEP LEARNING 

2.1 Machine learning 

Machine learning is a subfield of Artificial Intelligence that “gives 
computers the ability to learn without being explicitly 
programmed” (Samuel, 1959). Machine learning has an enormous 



5 
 

 
 

impact on many different areas, this thesis however discusses only 
one application: a classification task in computer vision. 
 
In classification task in computer vision, a set of images is collected 
beforehand. The images are coloured or grayscale images of the 
same size and each one of them is labelled correctly as the name 
of the object appearing in the image. For example, an image 
containing an airplane will be labelled “airplane”. The labelled 
images are then given to a computer and throughout an algorithm, 
the computer will build a model to extract knowledge from these 
images. This process is called training. After this, the model will be 
given images which it has not seen before to classify these new 
images into labels (or classes) which are known during training. 
This process is called predicting. 
 
Labelled images are often divided into three subsets: training set, 
validation set, testing set by 80:10:10. The training set and the 
validation set are involved in training process to diagnose what is 
currently wrong with the model while testing set is used in 
predicting process along with some accuracy metrics to see how 
well the model is classifying.  
 
For simplicity purpose, collecting images was skipped in this thesis 
and a public data set CIFAR-10 (Krizhevsky, 2009) was used for the 
experiment. This data set contains 60000 coloured images of size 
32x32 and each one of them is labelled with the name of a single 
object they contain: “airplane”, “automobile”, “bird”, “cat”, 
“deer”, “dog”, “frog”, “horse”, “ship” and “truck”. 

2.2 Deep learning 

Deep learning is a machine learning technique that is used during 
the training process to extract knowledge from the data. It has a 
unique nature that it requires very little or no input pre-processing 
to learn very well from training data unlike other machine learning 
techniques. Also, as the GPU hardware is being improved and 
becoming better and more inexpensive, deep learning is favoured 
more and more since training time is much shorter than before. All 
of this makes deep learning a perfect solution to computer vision 
or speech recognition problems. 

2.2.1 Neural network 

A neural network (M. W. Gardner, S. R. Dorling, 1997) is the core 
concept of deep learning models. Inspired by human brains, neural 
network consists of multiple layers which are fully connected to 
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each other. Each layer also contains multiple nodes or neurons. 
There are three layer types in a neural network: 

 Input layer: where data is feed into the network. 

 Hidden layer: where output from input layer is processed, or 
activated. A neural network can have more than one hidden layer. 

 Output layer: where output from hidden layers is forced into 
probabilities of class labels. 
 
 

 
 

Figure 1: A neural network that has 1 input layer, 1 hidden layer and 1 output layer. 

2.2.2 Convolutional neural network 

A convolutional neural network (CNN) (LeCun et al., 1998) is very 
similar to a neural network in the sense that they both share the 
same structure and idea. The only difference is that CNNs have 
more layers and several types of layers. This section quickly 
introduces some of the most common layer in a convolutional 
neural network besides input and output layers. 
 

 Convolutional (CONV) layer is the core layer of a CNN (LeCun et al., 
1998). It filters and captures only the local regions in the input. 
Figure 2 illustrates how convolutional layer works. Suppose we 
have an input of 7x7 (bottom square) fed into a CONV layer. This 
layer will then look at each smaller region of the input and map 
them into an 5x5 yet smaller output (top square). 



7 
 

 
 

 

 
Figure 2: An example of Convolutional layer. (understanding-convolutional-neural-networks-for-nlp, 2015) 

 RELU layer applies activation function and leaves the dimension of 
the input unchanged (LeCun et al., 1998). 

 Max pooling (POOL) layer shrinks the input dimension by a factor 
(LeCun et al., 1998).  

 Besides the most common and important layers above, there are 
some other types such as DROPOUT, FLATTEN or DENSE etc. Some 
of them are used to either change input dimension or prevent 
overfitting. These layers will be explained briefly as they appear 
later in this thesis. 
 
A complete architecture of a CNN often contains multiple 
combinations of three above layers before forwards everything 
into some fully connected layers to produce probabilities. CONV-
RELU-POOL combinations help CNNs generalize input data very 
well without overfitting since they only compute smaller areas 
instead of every single number in a matrix input. Below is an 
illustrated architecture of a typical CNN: 
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Figure 3: A typical CNN with image input data, 2 combinations of CONV-RELU-POOL, 2 fully connected layers and 

produces probabilities for 4 different classes. (CONV layer, 2016) 

3 DEEP LEARNING MODELS 

3.1 Architecture 

The architecture of the deep neural network used in this 
experiment is very simple but powerful. There are two main groups 
of layers in the model: the deep layers and the fully-connected 
layers. Deep layer groups consist of two combinations of CONV-
RELU with MAX-POOLING as the last layer. Fully-connected layer 
group is more like a regular neural network as it contains two layers 
which are connected to each other. The structure of deep neural 
network is illustrated in the following: 
 

𝐷𝑒𝑒𝑝 𝑙𝑎𝑦𝑒𝑟𝑠 

{
 
 

 
 

𝑐𝑜𝑛𝑣
𝑟𝑒𝑙𝑢
𝑐𝑜𝑛𝑣
𝑟𝑒𝑙𝑢

𝑝𝑜𝑜𝑙𝑖𝑛𝑔
𝑑𝑟𝑜𝑝𝑜𝑢𝑡

 

 

𝐷𝑒𝑒𝑝 𝑙𝑎𝑦𝑒𝑟𝑠 

{
 
 

 
 

𝑐𝑜𝑛𝑣
𝑟𝑒𝑙𝑢
𝑐𝑜𝑛𝑣
𝑟𝑒𝑙𝑢

𝑝𝑜𝑜𝑙𝑖𝑛𝑔
𝑑𝑟𝑜𝑝𝑜𝑢𝑡

 

 

                       𝐹𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟𝑠 

{
 
 

 
 
𝑓𝑙𝑎𝑡𝑡𝑒𝑛
𝑑𝑒𝑛𝑠𝑒
𝑟𝑒𝑙𝑢

𝑑𝑟𝑜𝑝𝑜𝑢𝑡
𝑑𝑒𝑛𝑠𝑒
𝑠𝑜𝑓𝑡𝑚𝑎𝑥

 

 

The basic flow when an image is fed into the model is simple. First, 
the image goes into two CONV-RELU so that important regions in 
the image are captured. Then, MAX POOLING will shrink down 
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these regions a little bit in size. Next, DROPOUT sets some random 
weights to zero to prevent the model to overfit (Srivastava et al., 
2014). Similarly, there is a second deep-layer group to continue 
doing the same thing. Finally, fully-connected layers come (Hinton 
et al., 2012). The input at this point is three dimensional, so a 
FLATTEN layer is needed to reshape it into one dimension, i.e., a 
row vector. This row vector is now fed into two DENSE layers which 
are nothing but regular hidden layers. RELU and DROPOUT come 
between these DENSE layers for input activation and preventing 
overfitting. SOFTMAX is the last layer, it forces the output of the 
models into probabilities.  

3.2 Training and testing 

3.2.1 Training algorithm 

In this project, deep learning models were trained by Stochastic 
Gradient Descent (SGD) algorithm (Bottou, 2010). The idea of this 
algorithm is simple and is demonstrated in the following. 
First, SGD starts with the following objective function: 
 

𝑄(𝑤) =
1

𝑛
∑ 𝑄𝑖(𝑤)

𝑛

𝑖=1
  

w𝑖𝑡ℎ 𝑤 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑏𝑒𝑖𝑛𝑔 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 
 

 This function measures the loss or how bad the model is fitting the 
training samples with parameter w, so we want to find w which 
minimizes this loss. SGD starts with an initial random guess of w. It 
then iterates through n training samples and for each sample, it 
computes the gradient of the loss at this sample with respect to w; 

i.e.; 
𝜕𝑄𝑖

𝑤
. According to Robbins-Siegmund theorem (H. Robbins, D. 

Siegmund, 1971), convergence or a global minimum of the loss is 
almost sure to be obtained. Hence, to converge, SGD updates w by: 
 

w = 𝑤 − 𝑛
𝜕𝑄𝑖
𝑤
  

wℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑟 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 
 
To sum up, a complete pseudocode of SGD algorithm looks like 
this: 
 

 Choose an initial vector of parameters w and learning rate n 

 Repeat until a global minimum is obtained: 
o Shuffle training samples uniformly 
o For 𝑖 = 1, 2, 3, … , 𝑛 do: 

 𝑤 = 𝑤 − 𝑛
𝜕𝑄𝑖

𝑤
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3.2.2 Testing procedure 

First, the training set is divided into two parts. One part is used for 
training, the other one is used for validating. Now, for each epoch, 
the model is trained on the training set, then the probabilities on 
the validation set are predicted and the accuracy is reported. By 
doing this, one can understand how the model gets better at 
classifying after each epoch. 
 
Finally, after the model have been trained for many epochs, it is 
used to predict on the test set. This test set is different from the 
training and validation set and is provided by Kaggle (CIFAR-10 - 
Object Recognition in Images, n.d.). At this point, predictions are 
uploaded to Kaggle and they report the accuracy back. This is now 
the official accuracy of this model. 
Table 1 reports characteristics of four models which are trained 
with the same algorithm for 100 epochs: 
 

 

 
 

 Models are named based on the dataset they were trained on.  

 Train loss and Val loss are the losses computed by the SGD loss 
function in Section 3.2.1 on the training set and validation set, 
respectively. 

 Train acc and Val acc are the accuracies of the predictions on the 
training set and validation set, respectively which are computed 
by dividing the number of correctly classified samples with the 
total samples. 

 Train time is the actual time in seconds that each model spent on 
training. 

 Final acc is the official accuracy of each model which is reported 
by Kaggle.   

 

Name Train 
loss 

Train 
acc 

Val 
loss 

Val 
acc 

Train 
time 

Final 
acc 

32x32 0.5978 0.7923 0.5199 0.8224 2439.06 0.8241 

16x16 haar 1.1957 0.5858 0.9376 0.6768 1063.56 0.6706 

16x16 diff 1.0403 0.6342 0.9999 0.6570 1092.88 0.6574 

8x8 haar 1.57 0.4479 1.4224 0.51 839.22 0.5157 

Table 1 - Accuracies of deep learning models on different datasets 
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4 HAAR TRANSFORM 

4.1 Basics 

Haar wavelet transform is a dimension reduction technique which 
is often used for time series data and images. The Haar transform 
can be expressed in the following matrix form (Rafael C. Gonzalez, 
Richard E. Woods): 

𝑇 = 𝐻𝐹𝐻𝑇  
where F is an 𝑁 ×𝑁 image matrix, H is an 𝑁 ×𝑁 Haar transformation 
matrix and T is the resulting 𝑁 × 𝑁 transform. To generate matrix H, Haar 
basics function is used. Some examples of matrix H are: 

 

𝐻2 =
1

√2
[
1 1
1 −1

] (2 × 2 Haar matrix) 

 

𝐻4 =
1

√4
[

1 1 1 1
1 1 −1 −1

√2 −√2 0 0

0 0 √2 −√2

] (4 × 4 Haar matrix) 

 
 
Details on how to generate these Haar matrices is more 
complicated hence not presented here.  
 
Figure 4 is an example of how Haar transform works on images. 
Using MATLAB command haart2, two different images could be 
produced from a 32x32 image of a frog. The resulted images are 
smaller and less details are displayed, but still shows the shape of 
the frog. 

 

 
Figure 4: An example of using Haar transform compress a 32x32 image into smaller dimensions: 16x16 and 8x8 

4.2 Illustrations  

Figure 5 plots five different images of “car”, “deer”, “truck”, 
“truck” and “horse” before and after Haar transformation. 
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Figure 5: Some other examples of Haar transform on different images from the training set 

4.3 Producing images using Haar transform 

Since the CIFAR-10 dataset is very big (50000 images), how to 
perform Haar transform efficiently and program this task in 
MATLAB was a problem. The original version will be analysed in the 
beginning, then two improvements that speed up the process will 
be pointed out.  

4.3.1 Inefficient MATLAB program for performing Haar transform 

 
% Init an empty vector 

haarlvl1 = [] 

 

for j = 1: 50000 

    % Read j-th image  

    img = rgb2gray(imread(sprintf('train/%d.png', j))); 

     

    % Perform haar transform  

    h16 = haar_function(img); 

     

    % Flatten the haar image 

    h16 = reshape(h16, [1, 16*16]); 

     

    % Push it to vector 
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    haarlvl1 = [ haarlvl1; h16]; 

end 

 
First, an empty vector is initialized. Then the program looped 
through 50000 images, for each image read, Haar transform is 
performed on it and finally the image is pushed into my vector. This 
program worked correctly, however, there were two problems 
concerning its performance: 

 Initialize an empty vector was not a clever idea, especially when the 
size of the vector was known after reading. The reason for this was 
when a new image was pushed into my vector, the program had to 
copy the whole thing before. Therefore, the asymptotic complexity 
is 𝑂(𝑛3) where n is the number of images (50000 in this case).  

 Parallel for loop could be used to speed up the loop. 

4.3.2 Better MATLAB program for performing Haar transform 

Using these above analysis, I could program this task in a much 
more efficient way: 
 

% Init an zeros vector with the size (50000, 256) 

haarlvl1 = zeros(50000, 16*16); 

 

parfor j = 1: 50000 

    % Read j-th image  

    img = rgb2gray(imread(sprintf('train/%d.png', j))); 

     

    % Perform haar transform  

    h16 = haar_function(img); 

     

    % Flatten the haar image 

    h16 = reshape(h16, [1, 16*16]); 

     

    % Push it to vector 

    haarlvl1(j, :) = h16; 

end 

 

 Now because the size of the vector was known, it was initialized 
with proper size beforehand. The program didn’t have to copy the 
whole thing when it added new image, so the performance is 𝑂(𝑛) 
and it was 𝑛2 = 500002 times faster. A huge improve! 

 “Parfor” which stands for “parallel for” instead of “for” was used, 
so MATLAB ordered the CPU to work on multiple cores instead of a 
single core.  

4.3.3 Outcome  

The outcome of this program is that we now have four different 
datasets. The first one is the original dataset which contains 32x32 
images. The next two is the haar level 1 and haar level 2 dataset 
which contains 16x16 and 8x8 images transformed from the first 
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one. The last one is the difference images between the second and 
the third which are 16x16 images. Readers can consider section 4.2 
to get an idea of these datasets. 

5 MODEL ENSEMBLE 

At this point, multiple datasets are obtained. Also, experiment 
confirmed that a single deep learning model is doing very well on 
classification task (more than 80% classified correctly). Is it the 
limit? Can multiple models do better than a single model? This is 
where model ensemble comes in. By combining two or more 
models, a higher accuracy is expected to be achieves. But how to 
combine and which models to combine?  

5.1 Boosting 

Adaboost (Zhu et al., 2006) is an ensemble algorithm known for 
combining several models by invoking them many times on a 
training set. The idea of this algorithm is very simple. First, we 
weight every sample of the training set by a constant and train a 
model on this set. Next, we increase the weights of the 
misclassified samples and decrease the weights of the correctly 
classified samples. This process will happen multiple times and 
after this, we will have a pool of models with different weights for 
each model. However, there are a few things to notice: 
 

 The models to combine should be “weak”. That means their 
prediction capabilities are limited. Otherwise, this method will only 
lead to overfitting. 

 Deep learning models are clearly not “weak”. But if Haar transform 
is applied to the data so that the information that the model 
receives is reduced, a “weak” model will be trained. Experiments 
have confirmed this. On level two Haar transformed images, deep 
learning model classified ~50% correctly, in contrast of ~80% when 
trained on the original images. 

 The original Adaboost algorithm trains the models with a set of 
sample weights. This, however, does not work with deep neural 
networks without adapting suitable learning rate (Holger Schwenk, 
Yoshua Bengio, 2000). Since adapting suitable learning rate can be 
a heavy and slow task, a different algorithm has been chosen. 
Instead of training the model with sample weights, this second 
algorithm resamples the training set so that the probability of 
misclassified samples is high.  
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This section first introduces and explains pseudo-code of the 
Adaboost algorithm by words and computer codes. Next, results of 
experiments on CIFAR-10 dataset is presented. 
 

5.1.1 Multiclass Adaboost algorithm 

The algorithm is invented by (Holger Schwenk, Yoshua Bengio, 
2000). However, the algorithm presented below has been slightly 
modified so that it is easier to understand and program. 
 
 
 

Input: sequence of N examples (𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁) with labels 𝑦𝑖 ∈ {1, … , 𝐾} 

Initialize: sample weights 𝐷1(𝑖) = [𝐷1(𝑖, 1), 𝐷1(𝑖, 2), 𝐷1(𝑖, 3), … , 𝐷1(𝑖, 𝐾)] 

with {
𝐷1(𝑖, 𝑗) =  

1

𝑁(𝐾−1)
 𝑖𝑓 𝑦𝑗 ≠ 𝑦𝑖

𝐷1(𝑖, 𝑗) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Repeat: 
1. If this is the first estimator, train the estimator on all the training set. 

Else, resample the training set with respect to distribution 𝐷𝑡 
2. Obtain hypothesis ℎ𝑡 
3. Calculate the pseudo-loss of ℎ𝑡: 

𝜖𝑡 =
1

2
∑ 𝐷𝑡(𝑖, 𝑗) (1 − ℎ𝑡(𝑥𝑖, 𝑦𝑖) + ℎ𝑡(𝑥𝑖, 𝑦𝑗))

𝑖,𝑗=1

𝑖≤𝑁,𝑗≤𝐾

 

4. Set: 

𝛽𝑡 =
𝜖𝑡

1 − 𝜖𝑡
 

5. Update distribution 𝐷𝑡: 

𝐷𝑡+1(𝑖, 𝑗) = 𝐷𝑡(𝑖, 𝑗)𝛽𝑡

1
2
(1+ℎ𝑡(𝑥𝑖,𝑦𝑖)−ℎ𝑡(𝑥𝑖,𝑦𝑗))

 

6. Normalize 𝐷𝑡+1 

Output: final hypothesis: 

𝑓(𝑥) = argmax∑(log
1

𝛽𝑡
)ℎ𝑡(𝑥, 𝑦𝑗)

𝑡

 

 
 

 Initialize step is very clear. The algorithm gives a uniform 
sample weights for every sample at every class that is not 
the label. 

 Next, for each of M estimators, we do sub step (1) (2) (3) (4) 
(5) (6) 

 At step (1), we fit the current estimator to the training data 
if this is the first estimator, otherwise we resample the data 
based on the distribution and train. 

 At step (2), we obtain a hypothesis that can output the 
probability of a class for a sample. 



16 
 

 
 

 At step (3), we compute the pseudo-loss of the hypothesis. 
This equation may look complicated, but it is simple. For 
each sample, we subtract the probability of the correct class 
from the probability of all the other classes and multiply this 
vector with the weight vector. After this, we sum up for 
every sample.  

 At step (4), we set the model weight for the current 
hypothesis. 

 At step (5), we update the sample weight by multiplying 
them with model weight to the power of the loss. 

 At step (6), we normalize the weight.  

 After finishing the above steps for M classifiers, the 
algorithm outputs the model weights and we can use them 
to combine predictions of all M classifiers. 

5.1.2 Multiclass Adaboost algorithm implementation in Python 

In this experiment, two machine learning libraries were used, 
namely Keras and Scikit-learn. Keras played a key role in being a 
framework for CNNs. Scikit-learn offered a wide range of machine 
learning tools and algorithms. It also provided an excellent 
implementation for Adaboost algorithm but unfortunately, it was 
neither compatible with Keras model nor implemented using the 
chosen algorithm. So, a fresh implementation of the algorithm was 
written. The program is shown in Appendix1 and may help 
clarifying the algorithm further. 

5.1.3 Results  

To see the impact of Adaboost, four experiments were conducted. 
In each one of the experiments, the dataset was first split into two 
parts. An empty model was trained on the big part in a Adaboost 
manner, then the pool was tested against the small part. Table 2 
reports the accuracies of Adaboost algorithm: 
 

Table 2 - Impact of 10-estimator Adaboost on different datasets 

Dataset trained on Original model 
with 1 estimator 

Boosted model 
with 10 estimators 

Original (32x32) 0.82 0.84 

Haar level 1 (16x16) 0.68 0.72 

Haar level 2 (8x8) 0.52 0.56 

Difference data (16x16) 0.64 0.67 
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5.2 Averaging 

This method is very simple. After we train multiple neural 
networks, we average their predictions on test set to produce the 
final predictions: 

𝑃𝑓𝑖𝑛𝑎𝑙 =
1

𝑛
∑ 𝑃𝑘 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 

𝑛

𝑘=1
 

5.3 Geometric mean 

This method is similar to averaging, but instead taking average of 
predictions, we take geometric mean of them: 

𝑃𝑓𝑖𝑛𝑎𝑙 = √∏ 𝑃𝑘
𝑛

𝑘=1

𝑛

wℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 

5.4 Stacking 

Stacking or stacked generalization is an ensemble method that 
feeding probabilities from a set of estimators to another one 
before production final predictions which is first proposed by David 
H. Wolpert (Wolpert, 1992). After training four networks with each 
one on different data sets, they were used to generate predictions 
for the training set. Next, these predictions were concatenated into 
a matrix of 40 features. Now another model was trained on top of 
these predictions. The reason was that the stacking model can 
learn different weights for four neural networks. This contrasts 
with averaging which gives 0.25 to all the networks. Also, this 
method can reduce over-fitting if there is a model which learns too 
aggressively. 
However, which model should be use for stacking and how one can 
maximize its accuracy? In this experiment, logistic regression was 
chosen as a stacking model because it is very fast and simple (it only 
has two main parameters). Also because of this simplicity, the 
model was tuned easily so performance was maximized. After 
approximately 16 minutes of thoroughly searching through 
possible parameters, best set of parameters were achieved: {C = 
100, penalty=l2} and this stacking model scored 0.8298 on Kaggle. 

5.5 Summary 

Table 3 summarises the effect of different ensemble approaches: 
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Table 3 - Comparison of different ensemble methods 

Approach Input Final acc 

Average Probabilities of 4 CNNs 0.7923 

Geometric mean Probabilities of 4 CNNs 0.7921 

Boosting Probabilities of 10 CNNs 
along with their model 
weights 

0.841 

Stacking Probabilities of 4 CNNs 
and their weights 

0.8296 

6 EXPERIMENTS 

6.1 Scope 

This experiment investigates only the impact of Haar transform and 
model ensemble on efficiency and accuracy of deep learning 
models. Architecture of models, optimization algorithm or tuning 
parameters will be tried to be left as default or as simple as 
possible. This purpose is to see how big the impact of the proposed 
method. 

6.2 Procedures 

1. Download CIFAR-10 data set (Krizhevsky, 2009). 
2. Reading the original images and perform pre-processing as 

followed: 
a. Convert colored images to grayscale images and save this 

data as original_images. 
b. Perform Haar transform level 1 and level 2 on 

original_images and save them as haar_lvl1 and haar_lvl2 
respectively. 

c. Calculate the difference images of the above data sets and 
save it as diff_data.  

3. For each one of these four data sets, program and train a deep 
learning model in Keras. 

4. Apply basic tuning and validating to maximize the accuracies. 
5. Report the testing errors and training time of the models. 
6. Now apply model ensemble on these models and report the testing 

errors. 
7. Answer the question whether the proposed method leads to any 

improvement. 

6.3 Data set and tools 

The image data set used in this experiment is the public CIFAR-10 
collected by University of Toronto (Krizhevsky, 2009). This data set 
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contains 60000 different coloured images of size 32x32 and they 
are all correctly labelled and classified into one of ten different 
classes. 
 
Deep learning models and model ensemble are programmed in 
Python using common machine learning libraries: 

 Keras for convolutional neural networks 

 Scikit-learn for other Machine learning algorithms or techniques  
 
Beside Python, MATLAB is also used since it provides excellent 
toolboxes for fast reading and writing images as well as performing 
Haar transform.  

6.4 Goals 

With this experiment, the author aims to achieve: 

 Deeper understanding of Convolutional neural networks. 

 Understanding of Haar image compression technique. 

 Understandings of different model ensemble techniques. 

 Better programming skills on implementing Machine learning 
models using relevant libraries and toolboxes. 

6.5 Results 

The result of the experiment is considered successful as the author 
meets his objective which is a broader knowledge of relevant 
topics. In addition, the proposed method shows promising 
potential because of a significant boost in accuracies of deep 
learning models. However, in order to be applied in practice, 
further consideration on matters such as training time or predicting 
time (especially Adaboost) must be done under case-by-case basis.  

7 CONCLUSIONS 

Experiment has shown that deep learning models are doing very 
well on classification tasks. Original dataset was still the best to 
train model on since it contained the most details of images. As 
deeper Haar transform was applied, the more details were thrown 
away the worse models performed. Section 3.2.2 reports the 
accuracies of modes when they were trained directly on these 
datasets. However, it has been shown that ensemble methods 
boost these accuracies by an amount depending on which method. 
There were four different methods which have been used during 
the experiments. Section 5.5 compares best accuracies of these 
methods.  
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Adaboost and stacking seemed to perform very well during 
experiments. The reasons for this was that they both try to balance 
the learning capability of different models. Adaboost was slow to 
train but showed very good promise as it often boosted the 
accuracies by at least 2-3 percent. Stacking also boosted but just 
slightly because it depended heavily on the stacking model and 
how we tune hyperparameters. 
 
The two left methods are averaging and geometric mean. These 
methods did not boost but made it even worse if we compare to 
the best accuracy of individual deep learning models. It was 
because these two methods are two simple and they weight every 
models the same. Therefore, they can only score between the best 
and the worst. 
 
This thesis suggests some more future works: 

 Different number of estimators in an Adaboost pool can be 
experimented. 

 Stacking depends heavily on the stacking model and only 
logistic regression was tried during experiments. However, 
there are other model can be used, for example: support 
vector machine or random forest. They are both robust and 
work well in practice. 

 There is a similar ensemble method to stacking called data 
blending. It is said to perform slightly better than stacking 
since it leaks less data. But just like stacking, which model 
should we stack on? 
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APPENDIX 1 – ADABOOST IMPLEMENTATION 

def pseudo_loss(weights, y_pred, y_true): 

    """ 

    Calculate pseudo_loss 

    """ 

    loss = np.transpose(y_pred) - np.sum(np.multiply(y_pred, y_true), axis=1) 

    e = 0.5*np.sum(weights*np.transpose(1+loss)) 

    beta = e/(1-e) 

    w = weights*np.transpose(beta**(0.5*(1-loss))) 

    w = w / np.sum(w)  # Normalize 

    return beta, w, e 
 

 

def probabilities(weights): 

    """ 

    Calculate probabilities to resample data based on weights  

    """ 

    p = np.sum(weights, axis=1) 

    return p / np.sum(p, axis=0) 

 

 

def train(X, y, X_val, y_val, M): 

    """ 

    :param X: training samples 

    :param y: training labels 

    :param X_val: validating samples 

    :param y_val: validating labels 

    :param M: number of estimators 

    :return: list of trained estimators and model weights 

    """ 

    K = 10  # number of classes 

    estimators = []  # list of M estimators 

    n = X.shape[0]  # number of training samples 

    n2 = X_val.shape[0]  # number of validating samples 

    w = (np.ones((n, 10))-y)*(1.0/(n*(K-1)))  # sample weights 

    betas = []  # list of model weights  

 

    for m in range(M): 

        # Resample training data 

        indices = np.random.choice(range(n), n, replace=True, p=probabilities(w)) 

        if m == 0: 

            X_resampled = X 

            y_resampled = y 

        else: 

            X_resampled = X[indices, :] 

            y_resampled = y[indices, :] 

 

        # Fitting 

        print "\nFitting %d-th estimator" % (m+1) 

        estimator = make_estimator() 

        estimator.fit(X_resampled, y_resampled) 

 

        # Validating error 

        y_pred = estimator.predict(X_val) 

        incorrect = y_pred != np.argmax(y_val, axis=1) 

        error_rate = float(sum(incorrect)/float(n2)) 

        print "Accuracy is %f" % (1-error_rate) 

 

        # Computing loss 

        y_pred_proba = estimator.predict_proba(X_resampled) 
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        betaT, w, e = pseudo_loss(w, y_pred_proba, y_resampled) 

 

        # Adding things 

        betas.append(betaT) 

        estimators.append(estimator) 

 

    betas = np.log(1.0/np.array(betas)) 

    return estimators, betas 

APPENDIX 2 – OUTPUT OF ADABOOST PROGRAM ON HAAR LEVEL 2 
DATA SET 

Fitting 1-th estimator 

Accuracy is 0.520200 

0.286579235402 0.401697356768 

 

Fitting 2-th estimator 

Accuracy is 0.474100 

0.26847141123 0.36700057298 

 

Fitting 3-th estimator 

Accuracy is 0.480800 

0.271085074961 0.371902214715 

 

Fitting 4-th estimator 

Accuracy is 0.468400 

0.269984538093 0.369833999663 

 

Fitting 5-th estimator 

Accuracy is 0.475500 

0.281239453672 0.391283933306 

 

Fitting 6-th estimator 

Accuracy is 0.474100 

0.271369104215 0.372436999014 

 

Fitting 7-th estimator 

Accuracy is 0.463900 

0.268328006913 0.366732647208 

 

Fitting 8-th estimator 

Accuracy is 0.470200 

0.267180458007 0.364592430601 

 

Fitting 9-th estimator 

Accuracy is 0.483800 

0.260863273245 0.352929659428 

 

Fitting 10-th estimator 

Accuracy is 0.469800 

0.261700968945 0.354464733038 

[ 0.91205632  1.00239187  0.98912432  0.99470102  0.93832181  

0.98768739 

  1.00312218  1.00897518  1.04148651  1.03714642] 

Final accuracy is 0.558700 

 

Process finished with exit code 0 
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APPENDIX 3 – OUTPUT OF ADABOOST PROGRAM ON HAAR LEVEL 1 
DATA SET 

Fitting 1-th estimator 

Accuracy is 0.686100 

0.0504095791351 0.0530856019896 

 

Fitting 2-th estimator 

Accuracy is 0.637000 

0.0607932677578 0.0647283134489 

 

Fitting 3-th estimator 

Accuracy is 0.631800 

0.0683382837181 0.0733509626121 

 

Fitting 4-th estimator 

Accuracy is 0.641100 

0.0602554250285 0.0641189389471 

 

Fitting 5-th estimator 

Accuracy is 0.645100 

0.0612167344739 0.0652085915056 

 

Fitting 6-th estimator 

Accuracy is 0.630000 

0.0604638808931 0.0643550361327 

 

Fitting 7-th estimator 

Accuracy is 0.634900 

0.0611015934134 0.0650779604957 

 

Fitting 8-th estimator 

Accuracy is 0.633400 

0.0598257367351 0.0636326041594 

 

Fitting 9-th estimator 

Accuracy is 0.625700 

0.0603047047659 0.0641747437406 

 

Fitting 10-th estimator 

Accuracy is 0.619700 

0.0565608004455 0.0599517175799 

[ 2.93584954  2.73755656  2.61249965  2.7470155   2.73016405  

2.74334009 

  2.73216934  2.7546293   2.74614555  2.81421575] 

Final accuracy is 0.720500  

 

Process finished with exit code 0 

APPENDIX 4 – OUTPUT OF ADABOOST PROGRAM ON DIFFERENCE DATA 
SET 

Fitting 1-th estimator 

Accuracy is 0.643500 

0.0649786928684 0.0694943445383 
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Fitting 2-th estimator 

Accuracy is 0.583100 

0.0689700286351 0.0740792786015 

 

Fitting 3-th estimator 

Accuracy is 0.578000 

0.0740303545849 0.0799490079956 

 

Fitting 4-th estimator 

Accuracy is 0.574700 

0.0739570445929 0.0798635140639 

 

Fitting 5-th estimator 

Accuracy is 0.579900 

0.0689202621934 0.0740218687991 

 

Fitting 6-th estimator 

Accuracy is 0.578100 

0.0688842671736 0.0739803493219 

 

Fitting 7-th estimator 

Accuracy is 0.565700 

0.0660541453759 0.0707258831428 

 

Fitting 8-th estimator 

Accuracy is 0.568500 

0.0707516431421 0.0761385722342 

 

Fitting 9-th estimator 

Accuracy is 0.580400 

0.066734912569 0.0715069206678 

 

Fitting 10-th estimator 

Accuracy is 0.569500 

0.0624873317218 0.066652253176 

[ 2.6665099   2.60261943  2.52636625  2.52743618  2.60339471  

2.60395577 

  2.64894367  2.57520028  2.63796104  2.70826643] 

Final accuracy is 0.670800  

 

Process finished with exit code 0 

 

APPENDIX 5 – OUTPUT OF ADABOOST PROGRAM ON ORIGINAL DATA 
SET 

Fitting 1-th estimator 

Accuracy is 0.741600 

4.99829717168e-05 4.99854701392e-05 

 

Fitting 2-th estimator 

Accuracy is 0.678200 

0.0499596914037 0.0525869175778 

 

Fitting 3-th estimator 

Accuracy is 0.665200 

0.0498335826929 0.0524472153354 
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Fitting 4-th estimator 

Accuracy is 0.674500 

0.0503087887774 0.0529738384255 

 

Fitting 5-th estimator 

Accuracy is 0.679000 

0.05042335551 0.0531008800634 

 

Fitting 6-th estimator 

Accuracy is 0.668000 

0.0506258738288 0.0533255251362 

 

Fitting 7-th estimator 

Accuracy is 0.679800 

0.0499913903163 0.0526220392181 

 

Fitting 8-th estimator 

Accuracy is 0.675200 

0.0496624617305 0.0522577081622 

 

Fitting 9-th estimator 

Accuracy is 0.671500 

0.0505178182493 0.0532056516913 

 

Fitting 10-th estimator 

Accuracy is 0.666800 

0.051000476882 0.0537413092837 

Final accuracy is 0.755400 

Generating predictions 

Writing to csv 

 

Process finished with exit code 0 

 


