

IMPROVEMENT OF DEEP LEARNING MODELS ON

CLASSIFICATION TASKS USING HAAR TRANSFORM AND MODEL

ENSEMBLE

Bachelor’s thesis

Valkeakoski, Automation Engineering

Spring 2017

Tung Son Nguyen

1

ABSTRACT

Automation Engineering
HAMK Valkeakoski

Author Tung Son Nguyen Year 2017

Subject Improvement of deep learning models on classification task

using Haar transform and model ensemble.
Supervisors Raine Lehto (Raine.Lehto@hamk.fi – HAMK University of

Applied Sciences)
 Joni Kämäräinen (joni.kamarainen@tut.fi – Tampere

University of Technology)

ABSTRACT

Machine learning have an enormous impact on Computer Vision.
This thesis investigates how to improve efficiency of a Machine
learning technique called deep learning on classification tasks using
Haar transform and model ensemble. Haar transform can be used
to reduce the input size of image data to train more models and
model ensemble is known to boost performance using multiple
models instead of one.

Experimental results showed that Adaboost and stacking work as
expected as they boosted the accuracies by 2-3% and
approximately 1%. However, the other two methods, averaging
and geometric mean, did not boost but scored between the best
individual model and the worst. This thesis also suggests future
work onto Adaboost and stacking.

Keywords machine learning, deep learning, computer vision, haar transform, model

ensemble

Pages 27 pages including appendices 6 pages

mailto:Raine.Lehto@hamk.fi
mailto:joni.kamarainen@tut.fi

2

CONTENTS

1 MOTIVATION ... 4

2 INTRODUCTION TO MACHINE LEARNING AND DEEP LEARNING 4

2.1 Machine learning ... 4

2.2 Deep learning .. 5

2.2.1 Neural network .. 5

2.2.2 Convolutional neural network ... 6

3 DEEP LEARNING MODELS .. 8

3.1 Architecture ... 8

3.2 Training and testing ... 9

3.2.1 Training algorithm ... 9

3.2.2 Testing procedure .. 10

4 HAAR TRANSFORM .. 11

4.1 Basics ... 11

4.2 Illustrations .. 11

4.3 Producing images using Haar transform ... 12

4.3.1 Inefficient MATLAB program for performing Haar transform 12

4.3.2 Better MATLAB program for performing Haar transform 13

4.3.3 Outcome .. 13

5 MODEL ENSEMBLING .. 14

5.1 Boosting ... 14

5.1.1 Multiclass Adaboost algorithm .. 15

5.1.2 Multiclass Adaboost algorithm implementation in Python 16

5.1.3 Results ... 16

5.2 Averaging ... 17

5.3 Geometric mean .. 17

5.4 Stacking ... 17

5.5 Summary ... 17

6 EXPERIMENTS .. 18

6.1 Scope ... 18

6.2 Procedures .. 18

6.3 Data set and tools ... 18

6.4 Goals .. 19

6.5 Results ... 19

7 CONCLUSIONS ... 19

REFERENCES .. 21

APPENDIX 1 – ADABOOST IMPLEMENTATION ... 22

3

APPENDIX 2 – OUTPUT OF ADABOOST PROGRAM ON HAAR LEVEL 2 DATA SET 23

APPENDIX 3 – OUTPUT OF ADABOOST PROGRAM ON HAAR LEVEL 1 DATA SET 24

APPENDIX 4 – OUTPUT OF ADABOOST PROGRAM ON DIFFERENCE DATA SET 24

APPENDIX 5 – OUTPUT OF ADABOOST PROGRAM ON ORIGINAL DATA SET 25

4

1 MOTIVATION

Machine learning is advancing very fast nowadays with the support
of powerful hardware and parallel programming. From self-driving
cars to face recognition and lung cancer detection, machine
learning is there to help to solve difficult tasks. Some of them even
seem impossible. With a belief in the enormous potential of this
field, scientists and engineers are racing to develop new algorithms
and techniques which can beat the current best. One of these
recent techniques are convolutional neural networks or deep
learning in general. First proposed by Yann LeCun (LeCun et al.,
1989), deep learning made its first success in classifying hand
written digits. Over the time, deep learning has become a very
effective method with good generalization, reasonable training
time thanks to GPU technology and very little feature engineering.
These features make deep learning an excellent candidate for
image-related work. However, can we do better? This thesis
examines a method of using Haar wavelet transform and model
ensemble to boost the performance of deep learning models.

Model ensemble has been a well-known method to boost the
accuracy of a specific machine learning algorithm just by combining
different models trained on different dataset. But is there any
other way of producing different training sets rather than splitting
the original one?

Haar wavelet transform is a possible answer. Haar wavelet
transform is an image processing technique that is often used in
image compression. The basic idea is that Haar transform can
reduce the dimensions of an image by a power of 2, therefore
reduce the workload or memory of transferring or storing the
original image. The smaller image can always be transformed back
to original dimensions using inverse Haar transform. With the use
of Haar transform, images can be reduced to different smaller
dimensions which means that different training sets can be
produced.

2 INTRODUCTION TO MACHINE LEARNING AND DEEP LEARNING

2.1 Machine learning

Machine learning is a subfield of Artificial Intelligence that “gives
computers the ability to learn without being explicitly
programmed” (Samuel, 1959). Machine learning has an enormous

5

impact on many different areas, this thesis however discusses only
one application: a classification task in computer vision.

In classification task in computer vision, a set of images is collected
beforehand. The images are coloured or grayscale images of the
same size and each one of them is labelled correctly as the name
of the object appearing in the image. For example, an image
containing an airplane will be labelled “airplane”. The labelled
images are then given to a computer and throughout an algorithm,
the computer will build a model to extract knowledge from these
images. This process is called training. After this, the model will be
given images which it has not seen before to classify these new
images into labels (or classes) which are known during training.
This process is called predicting.

Labelled images are often divided into three subsets: training set,
validation set, testing set by 80:10:10. The training set and the
validation set are involved in training process to diagnose what is
currently wrong with the model while testing set is used in
predicting process along with some accuracy metrics to see how
well the model is classifying.

For simplicity purpose, collecting images was skipped in this thesis
and a public data set CIFAR-10 (Krizhevsky, 2009) was used for the
experiment. This data set contains 60000 coloured images of size
32x32 and each one of them is labelled with the name of a single
object they contain: “airplane”, “automobile”, “bird”, “cat”,
“deer”, “dog”, “frog”, “horse”, “ship” and “truck”.

2.2 Deep learning

Deep learning is a machine learning technique that is used during
the training process to extract knowledge from the data. It has a
unique nature that it requires very little or no input pre-processing
to learn very well from training data unlike other machine learning
techniques. Also, as the GPU hardware is being improved and
becoming better and more inexpensive, deep learning is favoured
more and more since training time is much shorter than before. All
of this makes deep learning a perfect solution to computer vision
or speech recognition problems.

2.2.1 Neural network

A neural network (M. W. Gardner, S. R. Dorling, 1997) is the core
concept of deep learning models. Inspired by human brains, neural
network consists of multiple layers which are fully connected to

6

each other. Each layer also contains multiple nodes or neurons.
There are three layer types in a neural network:

 Input layer: where data is feed into the network.

 Hidden layer: where output from input layer is processed, or
activated. A neural network can have more than one hidden layer.

 Output layer: where output from hidden layers is forced into
probabilities of class labels.

Figure 1: A neural network that has 1 input layer, 1 hidden layer and 1 output layer.

2.2.2 Convolutional neural network

A convolutional neural network (CNN) (LeCun et al., 1998) is very
similar to a neural network in the sense that they both share the
same structure and idea. The only difference is that CNNs have
more layers and several types of layers. This section quickly
introduces some of the most common layer in a convolutional
neural network besides input and output layers.

 Convolutional (CONV) layer is the core layer of a CNN (LeCun et al.,
1998). It filters and captures only the local regions in the input.
Figure 2 illustrates how convolutional layer works. Suppose we
have an input of 7x7 (bottom square) fed into a CONV layer. This
layer will then look at each smaller region of the input and map
them into an 5x5 yet smaller output (top square).

7

Figure 2: An example of Convolutional layer. (understanding-convolutional-neural-networks-for-nlp, 2015)

 RELU layer applies activation function and leaves the dimension of
the input unchanged (LeCun et al., 1998).

 Max pooling (POOL) layer shrinks the input dimension by a factor
(LeCun et al., 1998).

 Besides the most common and important layers above, there are
some other types such as DROPOUT, FLATTEN or DENSE etc. Some
of them are used to either change input dimension or prevent
overfitting. These layers will be explained briefly as they appear
later in this thesis.

A complete architecture of a CNN often contains multiple
combinations of three above layers before forwards everything
into some fully connected layers to produce probabilities. CONV-
RELU-POOL combinations help CNNs generalize input data very
well without overfitting since they only compute smaller areas
instead of every single number in a matrix input. Below is an
illustrated architecture of a typical CNN:

8

Figure 3: A typical CNN with image input data, 2 combinations of CONV-RELU-POOL, 2 fully connected layers and

produces probabilities for 4 different classes. (CONV layer, 2016)

3 DEEP LEARNING MODELS

3.1 Architecture

The architecture of the deep neural network used in this
experiment is very simple but powerful. There are two main groups
of layers in the model: the deep layers and the fully-connected
layers. Deep layer groups consist of two combinations of CONV-
RELU with MAX-POOLING as the last layer. Fully-connected layer
group is more like a regular neural network as it contains two layers
which are connected to each other. The structure of deep neural
network is illustrated in the following:

𝐷𝑒𝑒𝑝 𝑙𝑎𝑦𝑒𝑟𝑠

{

𝑐𝑜𝑛𝑣
𝑟𝑒𝑙𝑢
𝑐𝑜𝑛𝑣
𝑟𝑒𝑙𝑢

𝑝𝑜𝑜𝑙𝑖𝑛𝑔
𝑑𝑟𝑜𝑝𝑜𝑢𝑡

𝐷𝑒𝑒𝑝 𝑙𝑎𝑦𝑒𝑟𝑠

{

𝑐𝑜𝑛𝑣
𝑟𝑒𝑙𝑢
𝑐𝑜𝑛𝑣
𝑟𝑒𝑙𝑢

𝑝𝑜𝑜𝑙𝑖𝑛𝑔
𝑑𝑟𝑜𝑝𝑜𝑢𝑡

 𝐹𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟𝑠

{

𝑓𝑙𝑎𝑡𝑡𝑒𝑛
𝑑𝑒𝑛𝑠𝑒
𝑟𝑒𝑙𝑢

𝑑𝑟𝑜𝑝𝑜𝑢𝑡
𝑑𝑒𝑛𝑠𝑒
𝑠𝑜𝑓𝑡𝑚𝑎𝑥

The basic flow when an image is fed into the model is simple. First,
the image goes into two CONV-RELU so that important regions in
the image are captured. Then, MAX POOLING will shrink down

9

these regions a little bit in size. Next, DROPOUT sets some random
weights to zero to prevent the model to overfit (Srivastava et al.,
2014). Similarly, there is a second deep-layer group to continue
doing the same thing. Finally, fully-connected layers come (Hinton
et al., 2012). The input at this point is three dimensional, so a
FLATTEN layer is needed to reshape it into one dimension, i.e., a
row vector. This row vector is now fed into two DENSE layers which
are nothing but regular hidden layers. RELU and DROPOUT come
between these DENSE layers for input activation and preventing
overfitting. SOFTMAX is the last layer, it forces the output of the
models into probabilities.

3.2 Training and testing

3.2.1 Training algorithm

In this project, deep learning models were trained by Stochastic
Gradient Descent (SGD) algorithm (Bottou, 2010). The idea of this
algorithm is simple and is demonstrated in the following.
First, SGD starts with the following objective function:

𝑄(𝑤) =
1

𝑛
∑ 𝑄𝑖(𝑤)

𝑛

𝑖=1

w𝑖𝑡ℎ 𝑤 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑏𝑒𝑖𝑛𝑔 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

 This function measures the loss or how bad the model is fitting the
training samples with parameter w, so we want to find w which
minimizes this loss. SGD starts with an initial random guess of w. It
then iterates through n training samples and for each sample, it
computes the gradient of the loss at this sample with respect to w;

i.e.;
𝜕𝑄𝑖

𝑤
. According to Robbins-Siegmund theorem (H. Robbins, D.

Siegmund, 1971), convergence or a global minimum of the loss is
almost sure to be obtained. Hence, to converge, SGD updates w by:

w = 𝑤 − 𝑛
𝜕𝑄𝑖
𝑤

wℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑟 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒

To sum up, a complete pseudocode of SGD algorithm looks like
this:

 Choose an initial vector of parameters w and learning rate n

 Repeat until a global minimum is obtained:
o Shuffle training samples uniformly
o For 𝑖 = 1, 2, 3, … , 𝑛 do:

 𝑤 = 𝑤 − 𝑛
𝜕𝑄𝑖

𝑤

10

3.2.2 Testing procedure

First, the training set is divided into two parts. One part is used for
training, the other one is used for validating. Now, for each epoch,
the model is trained on the training set, then the probabilities on
the validation set are predicted and the accuracy is reported. By
doing this, one can understand how the model gets better at
classifying after each epoch.

Finally, after the model have been trained for many epochs, it is
used to predict on the test set. This test set is different from the
training and validation set and is provided by Kaggle (CIFAR-10 -
Object Recognition in Images, n.d.). At this point, predictions are
uploaded to Kaggle and they report the accuracy back. This is now
the official accuracy of this model.
Table 1 reports characteristics of four models which are trained
with the same algorithm for 100 epochs:

 Models are named based on the dataset they were trained on.

 Train loss and Val loss are the losses computed by the SGD loss
function in Section 3.2.1 on the training set and validation set,
respectively.

 Train acc and Val acc are the accuracies of the predictions on the
training set and validation set, respectively which are computed
by dividing the number of correctly classified samples with the
total samples.

 Train time is the actual time in seconds that each model spent on
training.

 Final acc is the official accuracy of each model which is reported
by Kaggle.

Name Train
loss

Train
acc

Val
loss

Val
acc

Train
time

Final
acc

32x32 0.5978 0.7923 0.5199 0.8224 2439.06 0.8241

16x16 haar 1.1957 0.5858 0.9376 0.6768 1063.56 0.6706

16x16 diff 1.0403 0.6342 0.9999 0.6570 1092.88 0.6574

8x8 haar 1.57 0.4479 1.4224 0.51 839.22 0.5157

Table 1 - Accuracies of deep learning models on different datasets

11

4 HAAR TRANSFORM

4.1 Basics

Haar wavelet transform is a dimension reduction technique which
is often used for time series data and images. The Haar transform
can be expressed in the following matrix form (Rafael C. Gonzalez,
Richard E. Woods):

𝑇 = 𝐻𝐹𝐻𝑇
where F is an 𝑁 ×𝑁 image matrix, H is an 𝑁 ×𝑁 Haar transformation
matrix and T is the resulting 𝑁 × 𝑁 transform. To generate matrix H, Haar
basics function is used. Some examples of matrix H are:

𝐻2 =
1

√2
[
1 1
1 −1

] (2 × 2 Haar matrix)

𝐻4 =
1

√4
[

1 1 1 1
1 1 −1 −1

√2 −√2 0 0

0 0 √2 −√2

] (4 × 4 Haar matrix)

Details on how to generate these Haar matrices is more
complicated hence not presented here.

Figure 4 is an example of how Haar transform works on images.
Using MATLAB command haart2, two different images could be
produced from a 32x32 image of a frog. The resulted images are
smaller and less details are displayed, but still shows the shape of
the frog.

Figure 4: An example of using Haar transform compress a 32x32 image into smaller dimensions: 16x16 and 8x8

4.2 Illustrations

Figure 5 plots five different images of “car”, “deer”, “truck”,
“truck” and “horse” before and after Haar transformation.

12

Figure 5: Some other examples of Haar transform on different images from the training set

4.3 Producing images using Haar transform

Since the CIFAR-10 dataset is very big (50000 images), how to
perform Haar transform efficiently and program this task in
MATLAB was a problem. The original version will be analysed in the
beginning, then two improvements that speed up the process will
be pointed out.

4.3.1 Inefficient MATLAB program for performing Haar transform

% Init an empty vector

haarlvl1 = []

for j = 1: 50000

 % Read j-th image

 img = rgb2gray(imread(sprintf('train/%d.png', j)));

 % Perform haar transform

 h16 = haar_function(img);

 % Flatten the haar image

 h16 = reshape(h16, [1, 16*16]);

 % Push it to vector

13

 haarlvl1 = [haarlvl1; h16];

end

First, an empty vector is initialized. Then the program looped
through 50000 images, for each image read, Haar transform is
performed on it and finally the image is pushed into my vector. This
program worked correctly, however, there were two problems
concerning its performance:

 Initialize an empty vector was not a clever idea, especially when the
size of the vector was known after reading. The reason for this was
when a new image was pushed into my vector, the program had to
copy the whole thing before. Therefore, the asymptotic complexity
is 𝑂(𝑛3) where n is the number of images (50000 in this case).

 Parallel for loop could be used to speed up the loop.

4.3.2 Better MATLAB program for performing Haar transform

Using these above analysis, I could program this task in a much
more efficient way:

% Init an zeros vector with the size (50000, 256)

haarlvl1 = zeros(50000, 16*16);

parfor j = 1: 50000

 % Read j-th image

 img = rgb2gray(imread(sprintf('train/%d.png', j)));

 % Perform haar transform

 h16 = haar_function(img);

 % Flatten the haar image

 h16 = reshape(h16, [1, 16*16]);

 % Push it to vector

 haarlvl1(j, :) = h16;

end

 Now because the size of the vector was known, it was initialized
with proper size beforehand. The program didn’t have to copy the
whole thing when it added new image, so the performance is 𝑂(𝑛)
and it was 𝑛2 = 500002 times faster. A huge improve!

 “Parfor” which stands for “parallel for” instead of “for” was used,
so MATLAB ordered the CPU to work on multiple cores instead of a
single core.

4.3.3 Outcome

The outcome of this program is that we now have four different
datasets. The first one is the original dataset which contains 32x32
images. The next two is the haar level 1 and haar level 2 dataset
which contains 16x16 and 8x8 images transformed from the first

14

one. The last one is the difference images between the second and
the third which are 16x16 images. Readers can consider section 4.2
to get an idea of these datasets.

5 MODEL ENSEMBLE

At this point, multiple datasets are obtained. Also, experiment
confirmed that a single deep learning model is doing very well on
classification task (more than 80% classified correctly). Is it the
limit? Can multiple models do better than a single model? This is
where model ensemble comes in. By combining two or more
models, a higher accuracy is expected to be achieves. But how to
combine and which models to combine?

5.1 Boosting

Adaboost (Zhu et al., 2006) is an ensemble algorithm known for
combining several models by invoking them many times on a
training set. The idea of this algorithm is very simple. First, we
weight every sample of the training set by a constant and train a
model on this set. Next, we increase the weights of the
misclassified samples and decrease the weights of the correctly
classified samples. This process will happen multiple times and
after this, we will have a pool of models with different weights for
each model. However, there are a few things to notice:

 The models to combine should be “weak”. That means their
prediction capabilities are limited. Otherwise, this method will only
lead to overfitting.

 Deep learning models are clearly not “weak”. But if Haar transform
is applied to the data so that the information that the model
receives is reduced, a “weak” model will be trained. Experiments
have confirmed this. On level two Haar transformed images, deep
learning model classified ~50% correctly, in contrast of ~80% when
trained on the original images.

 The original Adaboost algorithm trains the models with a set of
sample weights. This, however, does not work with deep neural
networks without adapting suitable learning rate (Holger Schwenk,
Yoshua Bengio, 2000). Since adapting suitable learning rate can be
a heavy and slow task, a different algorithm has been chosen.
Instead of training the model with sample weights, this second
algorithm resamples the training set so that the probability of
misclassified samples is high.

15

This section first introduces and explains pseudo-code of the
Adaboost algorithm by words and computer codes. Next, results of
experiments on CIFAR-10 dataset is presented.

5.1.1 Multiclass Adaboost algorithm

The algorithm is invented by (Holger Schwenk, Yoshua Bengio,
2000). However, the algorithm presented below has been slightly
modified so that it is easier to understand and program.

Input: sequence of N examples (𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁) with labels 𝑦𝑖 ∈ {1, … , 𝐾}

Initialize: sample weights 𝐷1(𝑖) = [𝐷1(𝑖, 1), 𝐷1(𝑖, 2), 𝐷1(𝑖, 3), … , 𝐷1(𝑖, 𝐾)]

with {
𝐷1(𝑖, 𝑗) =

1

𝑁(𝐾−1)
 𝑖𝑓 𝑦𝑗 ≠ 𝑦𝑖

𝐷1(𝑖, 𝑗) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Repeat:
1. If this is the first estimator, train the estimator on all the training set.

Else, resample the training set with respect to distribution 𝐷𝑡
2. Obtain hypothesis ℎ𝑡
3. Calculate the pseudo-loss of ℎ𝑡:

𝜖𝑡 =
1

2
∑ 𝐷𝑡(𝑖, 𝑗) (1 − ℎ𝑡(𝑥𝑖, 𝑦𝑖) + ℎ𝑡(𝑥𝑖, 𝑦𝑗))

𝑖,𝑗=1

𝑖≤𝑁,𝑗≤𝐾

4. Set:

𝛽𝑡 =
𝜖𝑡

1 − 𝜖𝑡

5. Update distribution 𝐷𝑡:

𝐷𝑡+1(𝑖, 𝑗) = 𝐷𝑡(𝑖, 𝑗)𝛽𝑡

1
2
(1+ℎ𝑡(𝑥𝑖,𝑦𝑖)−ℎ𝑡(𝑥𝑖,𝑦𝑗))

6. Normalize 𝐷𝑡+1

Output: final hypothesis:

𝑓(𝑥) = argmax∑(log
1

𝛽𝑡
)ℎ𝑡(𝑥, 𝑦𝑗)

𝑡

 Initialize step is very clear. The algorithm gives a uniform
sample weights for every sample at every class that is not
the label.

 Next, for each of M estimators, we do sub step (1) (2) (3) (4)
(5) (6)

 At step (1), we fit the current estimator to the training data
if this is the first estimator, otherwise we resample the data
based on the distribution and train.

 At step (2), we obtain a hypothesis that can output the
probability of a class for a sample.

16

 At step (3), we compute the pseudo-loss of the hypothesis.
This equation may look complicated, but it is simple. For
each sample, we subtract the probability of the correct class
from the probability of all the other classes and multiply this
vector with the weight vector. After this, we sum up for
every sample.

 At step (4), we set the model weight for the current
hypothesis.

 At step (5), we update the sample weight by multiplying
them with model weight to the power of the loss.

 At step (6), we normalize the weight.

 After finishing the above steps for M classifiers, the
algorithm outputs the model weights and we can use them
to combine predictions of all M classifiers.

5.1.2 Multiclass Adaboost algorithm implementation in Python

In this experiment, two machine learning libraries were used,
namely Keras and Scikit-learn. Keras played a key role in being a
framework for CNNs. Scikit-learn offered a wide range of machine
learning tools and algorithms. It also provided an excellent
implementation for Adaboost algorithm but unfortunately, it was
neither compatible with Keras model nor implemented using the
chosen algorithm. So, a fresh implementation of the algorithm was
written. The program is shown in Appendix1 and may help
clarifying the algorithm further.

5.1.3 Results

To see the impact of Adaboost, four experiments were conducted.
In each one of the experiments, the dataset was first split into two
parts. An empty model was trained on the big part in a Adaboost
manner, then the pool was tested against the small part. Table 2
reports the accuracies of Adaboost algorithm:

Table 2 - Impact of 10-estimator Adaboost on different datasets

Dataset trained on Original model
with 1 estimator

Boosted model
with 10 estimators

Original (32x32) 0.82 0.84

Haar level 1 (16x16) 0.68 0.72

Haar level 2 (8x8) 0.52 0.56

Difference data (16x16) 0.64 0.67

17

5.2 Averaging

This method is very simple. After we train multiple neural
networks, we average their predictions on test set to produce the
final predictions:

𝑃𝑓𝑖𝑛𝑎𝑙 =
1

𝑛
∑ 𝑃𝑘 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠

𝑛

𝑘=1

5.3 Geometric mean

This method is similar to averaging, but instead taking average of
predictions, we take geometric mean of them:

𝑃𝑓𝑖𝑛𝑎𝑙 = √∏ 𝑃𝑘
𝑛

𝑘=1

𝑛

wℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠

5.4 Stacking

Stacking or stacked generalization is an ensemble method that
feeding probabilities from a set of estimators to another one
before production final predictions which is first proposed by David
H. Wolpert (Wolpert, 1992). After training four networks with each
one on different data sets, they were used to generate predictions
for the training set. Next, these predictions were concatenated into
a matrix of 40 features. Now another model was trained on top of
these predictions. The reason was that the stacking model can
learn different weights for four neural networks. This contrasts
with averaging which gives 0.25 to all the networks. Also, this
method can reduce over-fitting if there is a model which learns too
aggressively.
However, which model should be use for stacking and how one can
maximize its accuracy? In this experiment, logistic regression was
chosen as a stacking model because it is very fast and simple (it only
has two main parameters). Also because of this simplicity, the
model was tuned easily so performance was maximized. After
approximately 16 minutes of thoroughly searching through
possible parameters, best set of parameters were achieved: {C =
100, penalty=l2} and this stacking model scored 0.8298 on Kaggle.

5.5 Summary

Table 3 summarises the effect of different ensemble approaches:

18

Table 3 - Comparison of different ensemble methods

Approach Input Final acc

Average Probabilities of 4 CNNs 0.7923

Geometric mean Probabilities of 4 CNNs 0.7921

Boosting Probabilities of 10 CNNs
along with their model
weights

0.841

Stacking Probabilities of 4 CNNs
and their weights

0.8296

6 EXPERIMENTS

6.1 Scope

This experiment investigates only the impact of Haar transform and
model ensemble on efficiency and accuracy of deep learning
models. Architecture of models, optimization algorithm or tuning
parameters will be tried to be left as default or as simple as
possible. This purpose is to see how big the impact of the proposed
method.

6.2 Procedures

1. Download CIFAR-10 data set (Krizhevsky, 2009).
2. Reading the original images and perform pre-processing as

followed:
a. Convert colored images to grayscale images and save this

data as original_images.
b. Perform Haar transform level 1 and level 2 on

original_images and save them as haar_lvl1 and haar_lvl2
respectively.

c. Calculate the difference images of the above data sets and
save it as diff_data.

3. For each one of these four data sets, program and train a deep
learning model in Keras.

4. Apply basic tuning and validating to maximize the accuracies.
5. Report the testing errors and training time of the models.
6. Now apply model ensemble on these models and report the testing

errors.
7. Answer the question whether the proposed method leads to any

improvement.

6.3 Data set and tools

The image data set used in this experiment is the public CIFAR-10
collected by University of Toronto (Krizhevsky, 2009). This data set

19

contains 60000 different coloured images of size 32x32 and they
are all correctly labelled and classified into one of ten different
classes.

Deep learning models and model ensemble are programmed in
Python using common machine learning libraries:

 Keras for convolutional neural networks

 Scikit-learn for other Machine learning algorithms or techniques

Beside Python, MATLAB is also used since it provides excellent
toolboxes for fast reading and writing images as well as performing
Haar transform.

6.4 Goals

With this experiment, the author aims to achieve:

 Deeper understanding of Convolutional neural networks.

 Understanding of Haar image compression technique.

 Understandings of different model ensemble techniques.

 Better programming skills on implementing Machine learning
models using relevant libraries and toolboxes.

6.5 Results

The result of the experiment is considered successful as the author
meets his objective which is a broader knowledge of relevant
topics. In addition, the proposed method shows promising
potential because of a significant boost in accuracies of deep
learning models. However, in order to be applied in practice,
further consideration on matters such as training time or predicting
time (especially Adaboost) must be done under case-by-case basis.

7 CONCLUSIONS

Experiment has shown that deep learning models are doing very
well on classification tasks. Original dataset was still the best to
train model on since it contained the most details of images. As
deeper Haar transform was applied, the more details were thrown
away the worse models performed. Section 3.2.2 reports the
accuracies of modes when they were trained directly on these
datasets. However, it has been shown that ensemble methods
boost these accuracies by an amount depending on which method.
There were four different methods which have been used during
the experiments. Section 5.5 compares best accuracies of these
methods.

20

Adaboost and stacking seemed to perform very well during
experiments. The reasons for this was that they both try to balance
the learning capability of different models. Adaboost was slow to
train but showed very good promise as it often boosted the
accuracies by at least 2-3 percent. Stacking also boosted but just
slightly because it depended heavily on the stacking model and
how we tune hyperparameters.

The two left methods are averaging and geometric mean. These
methods did not boost but made it even worse if we compare to
the best accuracy of individual deep learning models. It was
because these two methods are two simple and they weight every
models the same. Therefore, they can only score between the best
and the worst.

This thesis suggests some more future works:

 Different number of estimators in an Adaboost pool can be
experimented.

 Stacking depends heavily on the stacking model and only
logistic regression was tried during experiments. However,
there are other model can be used, for example: support
vector machine or random forest. They are both robust and
work well in practice.

 There is a similar ensemble method to stacking called data
blending. It is said to perform slightly better than stacking
since it leaks less data. But just like stacking, which model
should we stack on?

21

REFERENCES

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent.

Proceedings of COMPSTAT'2010, 177 - 186.
CIFAR-10 - Object Recognition in Images. (n.d.). Retrieved from kaggle:

https://www.kaggle.com/c/cifar-10
CONV layer. (2016). Retrieved from datascience.stackexchange.com:

https://goo.gl/ItjK9C
H. Robbins, D. Siegmund. (1971). A convergence theorem for non negative almost

supermartingales and some applications. Herbert Robbins Selected Papers, 111 -
135.

Hinton et al. (2012). ImageNet Classification with Deep Convolutional. Advances in
Neural Information Processing Systems 25 (NIPS 2012).

Holger Schwenk, Yoshua Bengio. (2000). Boosting Neural Networks. Neural Computation
(Volume 12, Issue 8, August 2000), 1869 - 1887.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.
LeCun et al. (1989). Backpropagation applied to handwritten zip code recognition.

Neural Computation (Volume 1, Issue 4. December 1989), 541 - 551.
LeCun et al. (1998). Gradient-based learning applied to document recognition.

Proceedings of the IEEE (Volume: 86, Issue: 11, Nov 1998), 2278 - 2324.
M. W. Gardner, S. R. Dorling. (1997). Artificial neural networks (the multilayer

perceptron) - A review of applications in atmospheric sciences. Atmospheric
Environment (Volume 32, Issues 14-15, 1 August 1998), 2627 - 2636.

Rafael C. Gonzalez, Richard E. Woods. (n.d.). In Digital image processing 3rd edition (pp.
474-475). Person.

Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of research and development.

Srivastava et al. (2014). Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research 15.

understanding-convolutional-neural-networks-for-nlp. (2015). Retrieved from
www.wildml.com: https://goo.gl/J0Qdyk

Wolpert, D. H. (1992). Stacked generalization. Neural Networks (Volume 5, Issue 2,
1992), 241 - 259.

Zhu et al. (2006). Multi-class adaboost. Statistics and its Interface (Volume 2, 2009), 349
- 360.

22

APPENDIX 1 – ADABOOST IMPLEMENTATION

def pseudo_loss(weights, y_pred, y_true):

 """

 Calculate pseudo_loss

 """

 loss = np.transpose(y_pred) - np.sum(np.multiply(y_pred, y_true), axis=1)

 e = 0.5*np.sum(weights*np.transpose(1+loss))

 beta = e/(1-e)

 w = weights*np.transpose(beta**(0.5*(1-loss)))

 w = w / np.sum(w) # Normalize

 return beta, w, e

def probabilities(weights):

 """

 Calculate probabilities to resample data based on weights

 """

 p = np.sum(weights, axis=1)

 return p / np.sum(p, axis=0)

def train(X, y, X_val, y_val, M):

 """

 :param X: training samples

 :param y: training labels

 :param X_val: validating samples

 :param y_val: validating labels

 :param M: number of estimators

 :return: list of trained estimators and model weights

 """

 K = 10 # number of classes

 estimators = [] # list of M estimators

 n = X.shape[0] # number of training samples

 n2 = X_val.shape[0] # number of validating samples

 w = (np.ones((n, 10))-y)*(1.0/(n*(K-1))) # sample weights

 betas = [] # list of model weights

 for m in range(M):

 # Resample training data

 indices = np.random.choice(range(n), n, replace=True, p=probabilities(w))

 if m == 0:

 X_resampled = X

 y_resampled = y

 else:

 X_resampled = X[indices, :]

 y_resampled = y[indices, :]

 # Fitting

 print "\nFitting %d-th estimator" % (m+1)

 estimator = make_estimator()

 estimator.fit(X_resampled, y_resampled)

 # Validating error

 y_pred = estimator.predict(X_val)

 incorrect = y_pred != np.argmax(y_val, axis=1)

 error_rate = float(sum(incorrect)/float(n2))

 print "Accuracy is %f" % (1-error_rate)

 # Computing loss

 y_pred_proba = estimator.predict_proba(X_resampled)

23

 betaT, w, e = pseudo_loss(w, y_pred_proba, y_resampled)

 # Adding things

 betas.append(betaT)

 estimators.append(estimator)

 betas = np.log(1.0/np.array(betas))

 return estimators, betas

APPENDIX 2 – OUTPUT OF ADABOOST PROGRAM ON HAAR LEVEL 2
DATA SET

Fitting 1-th estimator

Accuracy is 0.520200

0.286579235402 0.401697356768

Fitting 2-th estimator

Accuracy is 0.474100

0.26847141123 0.36700057298

Fitting 3-th estimator

Accuracy is 0.480800

0.271085074961 0.371902214715

Fitting 4-th estimator

Accuracy is 0.468400

0.269984538093 0.369833999663

Fitting 5-th estimator

Accuracy is 0.475500

0.281239453672 0.391283933306

Fitting 6-th estimator

Accuracy is 0.474100

0.271369104215 0.372436999014

Fitting 7-th estimator

Accuracy is 0.463900

0.268328006913 0.366732647208

Fitting 8-th estimator

Accuracy is 0.470200

0.267180458007 0.364592430601

Fitting 9-th estimator

Accuracy is 0.483800

0.260863273245 0.352929659428

Fitting 10-th estimator

Accuracy is 0.469800

0.261700968945 0.354464733038

[0.91205632 1.00239187 0.98912432 0.99470102 0.93832181

0.98768739

 1.00312218 1.00897518 1.04148651 1.03714642]

Final accuracy is 0.558700

Process finished with exit code 0

24

APPENDIX 3 – OUTPUT OF ADABOOST PROGRAM ON HAAR LEVEL 1
DATA SET

Fitting 1-th estimator

Accuracy is 0.686100

0.0504095791351 0.0530856019896

Fitting 2-th estimator

Accuracy is 0.637000

0.0607932677578 0.0647283134489

Fitting 3-th estimator

Accuracy is 0.631800

0.0683382837181 0.0733509626121

Fitting 4-th estimator

Accuracy is 0.641100

0.0602554250285 0.0641189389471

Fitting 5-th estimator

Accuracy is 0.645100

0.0612167344739 0.0652085915056

Fitting 6-th estimator

Accuracy is 0.630000

0.0604638808931 0.0643550361327

Fitting 7-th estimator

Accuracy is 0.634900

0.0611015934134 0.0650779604957

Fitting 8-th estimator

Accuracy is 0.633400

0.0598257367351 0.0636326041594

Fitting 9-th estimator

Accuracy is 0.625700

0.0603047047659 0.0641747437406

Fitting 10-th estimator

Accuracy is 0.619700

0.0565608004455 0.0599517175799

[2.93584954 2.73755656 2.61249965 2.7470155 2.73016405

2.74334009

 2.73216934 2.7546293 2.74614555 2.81421575]

Final accuracy is 0.720500

Process finished with exit code 0

APPENDIX 4 – OUTPUT OF ADABOOST PROGRAM ON DIFFERENCE DATA
SET

Fitting 1-th estimator

Accuracy is 0.643500

0.0649786928684 0.0694943445383

25

Fitting 2-th estimator

Accuracy is 0.583100

0.0689700286351 0.0740792786015

Fitting 3-th estimator

Accuracy is 0.578000

0.0740303545849 0.0799490079956

Fitting 4-th estimator

Accuracy is 0.574700

0.0739570445929 0.0798635140639

Fitting 5-th estimator

Accuracy is 0.579900

0.0689202621934 0.0740218687991

Fitting 6-th estimator

Accuracy is 0.578100

0.0688842671736 0.0739803493219

Fitting 7-th estimator

Accuracy is 0.565700

0.0660541453759 0.0707258831428

Fitting 8-th estimator

Accuracy is 0.568500

0.0707516431421 0.0761385722342

Fitting 9-th estimator

Accuracy is 0.580400

0.066734912569 0.0715069206678

Fitting 10-th estimator

Accuracy is 0.569500

0.0624873317218 0.066652253176

[2.6665099 2.60261943 2.52636625 2.52743618 2.60339471

2.60395577

 2.64894367 2.57520028 2.63796104 2.70826643]

Final accuracy is 0.670800

Process finished with exit code 0

APPENDIX 5 – OUTPUT OF ADABOOST PROGRAM ON ORIGINAL DATA
SET

Fitting 1-th estimator

Accuracy is 0.741600

4.99829717168e-05 4.99854701392e-05

Fitting 2-th estimator

Accuracy is 0.678200

0.0499596914037 0.0525869175778

Fitting 3-th estimator

Accuracy is 0.665200

0.0498335826929 0.0524472153354

26

Fitting 4-th estimator

Accuracy is 0.674500

0.0503087887774 0.0529738384255

Fitting 5-th estimator

Accuracy is 0.679000

0.05042335551 0.0531008800634

Fitting 6-th estimator

Accuracy is 0.668000

0.0506258738288 0.0533255251362

Fitting 7-th estimator

Accuracy is 0.679800

0.0499913903163 0.0526220392181

Fitting 8-th estimator

Accuracy is 0.675200

0.0496624617305 0.0522577081622

Fitting 9-th estimator

Accuracy is 0.671500

0.0505178182493 0.0532056516913

Fitting 10-th estimator

Accuracy is 0.666800

0.051000476882 0.0537413092837

Final accuracy is 0.755400

Generating predictions

Writing to csv

Process finished with exit code 0

