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Modernit palvelurobotit operoivat jatkuvasti muuttuvissa ja monimutkaisissa ympäristöissä. 
Jotta robotin on mahdollista suorittaa konenäkö-perusteista manipuolointia näissä 
olosuhteissa, robotin konenäköjärjestelmä ja manipulaattorit on kalibroitava. 
 
Tämän lopputyöprojektin tavoitteena oli kehittää automaattinen kalibrointiproseduuri Care-
O-bot 4 -robotille, joka on Fraunhofer-Instituutissa kehitetty palvelurobotti. Työssä valittiin 
tämän projektin kannalta parhaiten soveltuvat kalibrointialgoritmit ja niitä sovellettiin 
automaattisen kalibroinnin kehittämiseksi. 
 
Tuloksena määriteltiin automaattinen kalibrointiproseduuri ja kehitettiin ohjelmistopaketti 
proseduurin suorittamiseksi. Ohjelmistopaketti tarjoaa suurimman osan automaatiselle 
kalibroinnille asetetuista vaatimuksista: kalibrointisijaintien laskenta, kalibrointidatan keräys 
ja kameran kalibrointi. Yhtä tärkeää toiminnallisuutta, kinemaattisten kalibrointiparametrien 
laskentaa, ei ehditty kehittää insinöörityön aikana johtuen aikataulurajoitteista. 

 
Kun automaattinen kalibrointiproseduuri saadaan valmiiksi, sitä voidaan käyttää kaikkien 
Fraunhofer-Instituutissa valmistettujen Care-O-bot 4 -palvelurobottien kalibrointiin. 
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1 Introduction 

Modern service robots consist of multiple sensors and manipulators, typically including 

machine vision systems and one or two robotic arms.  

 

For the robot to be able to perform vision-based manipulation tasks, such as object 

grasping in unstructured environment, the robot has to use its sensors and actuators, 

and the precise and safe use of these components in constantly changing environ-

ments requires their inter-relationships and the sensors’ so called intrinsic parameters 

to be well known. To obtain this information the robot must be calibrated. That is, the 

sensors’ and the actuators’ relative locations to each other must be known and possi-

ble optical errors in the camera must be corrected. The former is called extrinsic cali-

bration and the latter intrinsic camera calibration. [9] 

 

The aim of this study was to develop an automatic calibration procedure for a robot, 

namely, the Care-O-bot 4 service robot developed by Fraunhofer IPA. The project was 

carried out between March 2015 and July 2015 at Fraunhofer IPA in Stuttgart, an insti-

tute for manufacturing engineering and automation. 

 

One of the main requirements for the task is that the whole calibration procedure 

should be highly automated, requiring as little effort and expertise by the end user as 

possible. As the COB 4 is highly modular robot, the calibration should also be flexible; 

i.e. the calibration procedure shall be easily configurable for the different setups of 

COB 4. 

 

In this study, the most sufficient extrinsic and intrinsic calibration methods were select-

ed and implemented. A software package for automatic calibration procedure was de-

veloped as a result. 
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2 Care-O-bot Project 

Care-O-bot is the product vision of a mobile robot assistant to actively support humans 

in their daily life developed by the Fraunhofer IPA institute [3]. The first Care-O-bot pro-

totype was built in 1998, and it was already able to navigate safely and reliably by itself. 

The fourth and the latest generation, Care-O-bot 4, was completed in January 2015. 

Care-O-bot 3 was being used by numerous research institution and universities around 

the world and the Care-O-bot 4 is expected to follow its success [11]. 

 

2.1 Care-O-bot 4 

Care-O-bot 4 is a modular robot research platform, which potential applications include 

providing household assistance in daily life, providing room service in hotels or shelf 

picking in warehouses [3]. 

 

Figure 1. Front side of the Care-O-bot 4. [2] 
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The robot’s main parts, seen in figure 1, are: head, torso, base, and arms. Each of 

these are modularly connected to each other. 

The Care-O-bot 4 setup used in this project comprise two 7-DOF arms, a 3-DOF head, 

a 3-DOF torso and an omni-directional base. It includes the following sensors and ac-

tuators: 

Actuators: 

• Arms 

• The two robotic arms of Care-O-bot 4 are specifically designed for Care-O-bot 4 

by Schunk company. Each arm consists of seven Schunk Powerball joints, con-

nected to each other by lightweight carbon fiber links. 

• Neck 

• The spherical joint in the neck allows the Care-O-bot 4 to turn its head in three 

dimensions. 

• Hip 

• The hip joint between the base and the torso is also spherical, extending the 

working space and allowing the Care-O-bot 4 to reach the floor level with its 

arms. 

• Base 

• The mobile base platform comes with two possible configurations: an omnidirec-

tional drive system allowing movements in all directions or a car-like differential 

drive system. 

• Grippers 

• The grippers are custom design and have two joints each allowing the manipula-

tion of most everyday objects. 

  

Sensors: 

• Laser scanners 

• Laser scanners are used for simultaneous localization and mapping (SLAM). 

The three laser scanners are located on each three sides of the base, leaving no 

blind spots. 
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• Cameras and depth sensors 

• Several Asus depth sensors, each containing a point cloud sensor and an RGB 

camera. These sensors are used to obtain 3D information of the environment 

and for object detection in manipulation tasks. Three sensors are located at the 

torso, one at the head, and one at each gripper. 
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3 Motive for Calibration 

The need for calibrating a robot derives from the fact that the physical properties of a 

robot are not known in desirable precision, which can be result of, for example, inaccu-

racies in assembling the robot, deformations caused by transporting the robot or 

switching the robot’s sensors. Although these inaccuracies are not likely to be more 

than few millimeters or degrees, a small mounting angle error between the elbow and 

the torso can cause a significant misplacement at the end of the arm making it impos-

sible to manipulate small objects without calibration. 

If the robot is to be perform vision-based manipulation tasks, the mounting position of 

the camera or cameras must be calibrated as well. 

To perform vision based manipulation tasks, the object to be manipulated must be ob-

served by the sensors and be localized in the space with respect to the robot. If the 

cameras are attached to unknown places, no purposeful action for the robot can be 

calculated from the obtained data. 

3.1 Grasping Process 

A detected object will be localized with respect to the camera coordinate system. This 

position must then be converted to the robot coordinate system, namely, torso link as 

both the cameras and the arms are attached to the torso of the Care-O-bot 4. Part of 

this transformation is the unknown mounting position of the camera to the torso. In or-

der to finally grab the object, the object's position must be known relative to the first link 

of the arm, which requires the mounting position of the arm also to be known. The rest 

can be calculated by utilizing forward kinematics. Thereby, small errors can add up to 

large inaccuracies in the outcome of a grasping process. 
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4 ROS (Robot Operating System) 

ROS is a collection of open-source software frameworks for robot software develop-

ment. It is a meta-operating system in a sense that it provides standard operating sys-

tem services such as hardware abstraction, low-lever device control, implementation of 

commonly used functionalities, message passing between processes, and package 

management. [8,13] 

O’Kane [8] lists several specific issues in robot development that ROS can help to 

overcome: 

• Distributed computation 

• Many modern robot systems rely heavily on distributed processing where the ro-

bot’s software is divided into small stand-alone parts and in some cases, such 

as COB4, runs across several different computers. Inherently there has to be a 

way for the processes to communicate between each other, which ROS does 

provide. 

 

•  Software reuse 

• The progression in the robotics research continues to produce increasing 

amount of generally applicable algorithms, such as motion planning, mapping, 

navigation and many more. ROS’s standard packages provide stable implemen-

tations of many important robotics algorithms without the need to reimplement 

each algorithm for new systems. 

 

• Rapid testing 

• Developing software for a physical machine usually requires time-consuming 

testing. Physical robots may not always be available and when they are, the 

process may be slow and error-prone. ROS provides capabilities to overcome 

these challenges in forms of simulation tools, abilities to separate low-level con-

trol of the hardware and high-level decision making, and abilities to record and 

play back sensor data. 
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4.1 Basic ROS Concepts 

4.1.1 Nodes 

A node is a process that performs computation; i.e. a running instance of a ROS pro-

gram. A robot control system will usually comprise many nodes that communicate with 

each other using topics, services and the parameter server. [14] 

The use of nodes provides several benefits in comparison to monolithic systems, such 

as additional fault tolerance and reduced code complexity [14]. 

4.1.2 Messages 

A message is a strictly typed data structure that is used in communication between 

nodes. Standard primitive types, such as integer, floating point and boolean, are sup-

ported, as are arrays of primitive types. Messages also support compositions of other 

messages and arrays of other messages. [10] 

4.1.3 Topics 

Topics are buses over which nodes can exchange messages in a streaming manner. 

The concept is that a node willing to share data will publish messages to the relevant 

topic or topics and a node that is interested in a certain kind of data will subscribe to 

the appropriate topic or topics. As such, nodes do not have to be aware whom they are 

communicating with, but only the name of the relevant topic must be known. Multiple 

nodes can publish and subscribe to the same topic. Topics are intended for streaming 

communication such as sensor or control data. Each topic is strongly typed by the ROS 

message type, which is described in a .msg file. The description is composed of two 

parts: a type and a name, separated by a space. [8,18] See listing 1 as an example. 

 
Header header 

string chain_id 

float32[] translation 

float32[] rotation 

 
Listing 1. Message description. 
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4.1.4 Services 

While the publish/subscribe model is a flexible communication paradigm, its one-way 

transport is not ideal for request/reply type, or synchronous, transactions. This type of 

transaction in ROS are called a service, which is defined by a pair of strictly typed 

messages: one for the request and one for the response. See listing 2 as an example. 

The idea is that a providing node offers a service, and a client node sends a request to 

server node and waits for a reply. This is analogous to web services, but for the pro-

grammer it usually appears as if it were a remote procedure call. In contrast with topics, 

services are bi-directional and communication is of one-to-one type. Service descrip-

tions are stored in .srv files. [8,10,17] 

#request fields 

--- 

#response fields 

bool master 

bool every 

bool[] visibleImages 

string[] cameraTopicID 

 
Listing 2. Service message description. 

 

4.1.5 Parameter Server 

In addition to topics and services, ROS provides another method of data transfer 

across nodes called the parameter server. The centralized parameter server keeps 

track of a collection of values identified by a short string name, and is ideal for storing 

configuration parameters that will be globally viewable to and modifiable by nodes. 

[8,16] Parameters can be defined in a YAML file and be called at the program start-up, 

uploading the parameters to the parameter server. See listing 3 as an example of pa-

rameter definition in YAML file. 
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checkerboards: 

  cb_9x6: 

    corners_x: 9 

    corners_y: 6 

    spacing_x: 0.03 

    spacing_y: 0.03 

 
Listing 3. Parameter definition in YAML file. 

 

4.1.6 Bags 

A bag is a file format in ROS for storing message data published on one or more top-

ics. Bags are created by a tool called rosbag, which subscribe to a topic or topics, and 

records the serialized message data in a file. The bag files can then be replayed on 

those same topics or be remapped to replay on new topics. [8,12] In this project bags 

are used to store joint position data and image data for later processing by the calibra-

tion algorithm. 

4.2 Coordinate Frames and Transformations in ROS 

In ROS, every component (e.g. joint, link, sensor) that is involved in the operation of 

the robot has its own coordinate frame, usually forming a tree structure, with the base 

link as the root frame. 

The most popular way to handle transformations in ROS is by a package called tf. tf is 

a package that lets the user keep track of multiple coordinate frames over time and 

transform data within an entire system without requiring knowledge of all the coordinate 

frames in the system. [5] 
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5 Basic Concepts 

After the motive for the robot calibration have been explained, the fundamental con-

cepts and theory behind the calibration algorithms will be explained in this section. 

First, coordinate transformations needed in kinematic calculations will be explained, 

followed by the concept of camera calibration. Finally, the robot operating system ROS, 

with which Care-O-bot 4 is operated, will be presented. The automatic calibration will 

be implemented as a component for ROS. 

5.1 Coordinate Transformations 

An important concept in robotics is the transformation from one coordinate system to 

another. It is important especially in autonomous robotics. If a robot wants to localize 

an object, observed by a sensor, with respect to the robot coordinate system, the rela-

tionship between the coordinate frame of the sensor and the coordinate frame of the 

robot (base link) must be known. The same applies in manipulation tasks; if a sensor 

determines a position of an object relative to the sensor frame, the robot should be able 

to compute the transformation all the way from the sensor to the robotic arm’s gripper 

in order to accurately grasp the object. In a simple system this could require the follow-

ing transformations: 

camera -> base link -> arm’s mounting frame -> arm link 1 -> … -> arm link n -> gripper 

This results in a so-called kinematic chain between the camera, the object, and the 

end-effector. By forming a kinematic chain the robot can compare the gripper’s position 

with respect to the object in question and move the gripper accordingly to grasp the 

object.  

Robot tasks are often defined in Cartesian workspace using Cartesian coordinates. [19] 

Coordinate transformations allow for moving between different coordinate frames and it 

can be decomposed into a rotation and a translation [7]. There are many ways to rep-

resent rotation, but the most used one in robotics is homogeneous transformation [7]. 
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Homogeneous transformation combines rotation and displacement into a single trans-

formation matrix. Homogeneous transformation expressing the orientation and position 

of frame 𝑜𝑗𝑥𝑗𝑦𝑗𝑧𝑗 with respect to 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖 can be denoted as 

 

𝐻𝑗
𝑖 =  [

𝑛𝑥 𝑠𝑥 𝑎𝑥 𝑑𝑥

𝑛𝑦 𝑠𝑦 𝑎𝑦 𝑑𝑦

𝑛𝑧 𝑠𝑧 𝑎𝑧 𝑑𝑧

0 0 0 1

] =  [
𝑛 𝑠 𝑎 𝑑
0 0 0 1

] (1) 

 

where 𝑛 = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧)𝑇 , 𝑠 = (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧)𝑇 and 𝑎 = (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧)𝑇 are vectors representing 

the directions of 𝑥𝑗, 𝑦𝑗 and 𝑧𝑗, respectively, in the frame 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖. 

Each link in a robotic arm is assigned with its own coordinate frame (𝑜0𝑥0𝑦0𝑧0 … 

𝑜𝑛𝑥𝑛𝑦𝑛𝑧𝑛) with link 0 being attached to the base link and link n being the last link, thus 

forming a kinematic chain. See figure 2 as an example. 

 

 

Figure 2. Coordinate frames of the Care-O-bot 4’s left arm. 
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Now utilizing homogeneous transformation, it is convenient to carry out forward and 

inverse kinematic analysis. Forward kinematics refers to finding the pose of the end 

effector with respect to the base frame, provided the joint variables are known. Inverse 

kinematics is the opposite: finding the joint parameters that provide a desired pose of 

the end effector. [19] 

5.2 Camera Calibration 

One essential step in the robot calibration is camera calibration, or camera resection-

ing. All cameras come with some level of distortion in the output image, which will 

eventually affect negatively on the extrinsic robot calibration’s accuracy as the cameras 

will be utilized during the extrinsic calibration. Therefore, a successful extrinsic calibra-

tion requires that the cameras’ intrinsic parameters are well known, which means that 

the cameras’ must be calibrated before performing extrinsic robot calibration. 

A camera is usually modeled by the pinhole camera model (see figure 3): the relation-

ship between a 3D point 𝑀 and its image projection 𝑚 is given by 

𝑠𝑚̃ =  𝐴[𝑅 𝑡]𝑀̃ (2) 

or 

𝑠 [
𝑢
𝑣
1

] = [
𝛼 0 𝑢0

0 𝛽 𝑣0

0 0 1

 ] [
𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑋
𝑌
𝑍
1

] (3) 

where 

• (𝑋, 𝑌, 𝑍) are the coordinates of a 3D point in the world coordinate space 

• (𝑢, 𝑣) are the coordinates of the projection point in pixels 

• 𝐴 is a camera matrix, or a matrix of intrinsic parameters 

• (𝑢0, 𝑣0) is a principal point that is usually at the image center 

• 𝛼, 𝛽 are the scale factors in image 𝑢 and 𝑣 axes. [20] 
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The transformation includes the rotation-translation matrix [𝑅 𝑡], which transforms 

coordinates of a point (X, Y, Z) to the coordinate system of the camera [20]: 

[
𝑥
𝑦
𝑧

] = 𝑅 [
𝑋
𝑌
𝑍

 ] + 𝑡 (4) 

 

 

 

Figure 3. Pinhole camera model. 

The task of camera calibration is to determine the parameters of the transformation 

between an object in 3D space and the 2D image observed by the camera. The model 

described above is used by the camera calibration algorithm used in this project. The 

algorithm is implemented in ROS as a package called camera_calibration [15] and it is 

based on the work of Zhang and Bouguet. [20] 
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6 Choosing the Calibration Algorithms 

It is by no means sensible to develop robot calibration algorithms from the ground up 

for several reasons, but most importantly, robot calibration is a well-researched field 

and multiple solutions already exist in ROS. Therefore,  

6.1.1 Intrinsic Camera Calibration Algorithm 

Camera calibration is a well-researched topic in machine vision among other fields, and 

therefore many calibration methods exist for different purposes. In case the require-

ments were: already implemented in ROS, and automatable requiring not much effort 

by the end-user. 

The selected method is based on the work of Zhang and Bouguet and is implemented 

in ROS as a popular ROS package called camera_calibration [15]. The method re-

quires a planar calibration object to be observed by the camera at a few different pos-

es. The procedure is easily automatable: the calibration pattern can be attached to the 

robot hand and moved automatically to each calibration position. The method does not 

require effort by the end-user other than providing a calibration pattern and attaching it 

to the arm. 

6.1.2 Kinematic Calibration Algorithm 

A method developed by Pradeep, Konolige and Berger [9] was chosen as the kinemat-

ic calibration algorithm for the listed reasons: 

• It has already been successfully implemented for the Care-O-bot 3 [1,6], and some 

parts of the code can potentially be reused. The Care-O-bot 3 implementation ex-

ists as a ROS package 

• It allows for simultaneous calibration of both actors and sensors, i.e. it calculates 

the extrinsic calibration results for all the involved cameras and arms in a single 

run. 

It is a general-purpose framework for extrinsically calibrating all the sensors and actua-

tors of a robot. [9] 
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7 Implementing Automatic Calibration for Care-O-bot 4 

In this section, the development of the calibration procedure for the Care-O-bot 4 along 

with its functionality will be briefly explained.  

As stated in the previous chapter, an automatic calibration procedure for the Care-O-

bot 3 exists as a ROS stack called cob_calibration. The Care-O-bot 4’s calibration pro-

cedure was decided to be built on top of the cob_calibration stack, leveraging the exist-

ing code and likely reducing the amount of new code.  

There are however many differences between the Care-O-bot 4 and the Care-O-bot 3, 

which must be taken into consideration when re-implementing the existing code: Care-

O-bot 4’s kinematics are different to the ones of the Care-O-bot 3; for instance, Care-

O-bot 4 can have two arms compared to the one arm of the Care-O-bot 3. Care-O-bot 

4 can be equipped with several point cloud cameras whereas Care-O-bot 3 had a ste-

reo-pair camera as its sensor for manipulation tasks. The Care-O-bot 3’s calibration 

procedure was programmed only to work with the non-modular construct of the robot. 

The programming interfaces of the robot’s basic functionalities, such as actuator con-

trols, are also different in the new model. 

After gathering all the base information and achieving a general understanding main 

concepts, the programming part was done. Some parts of the Care-O-bot 3’s calibra-

tion code could be reused, but most of it had to be rewritten to account for the require-

ments of this project and the vastly different robot. The source code was programmed 

in Python programming language. Some configuration files were written in YAML and 

XML languages. 

The calibration procedure can be divided into the five major steps listed below: 

1. The user sets necessary parameters and attaches the checker boards to the end 

effectors 

2. Calculate calibration poses. That is, the robot will compute all the calibration poses 

for each arm in advance before moving the checkerboard. 

3. Move the arm to every calibration pose and by stopping the checkerboard at each 

pose and capturing the joint values and an image of the checkerboard at given 

pose. Repeat for each arm. Save the output into a bag file. 
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4. Calculate intrinsic camera calibration parameters from the data gathered in step 3. 

Upload the parameters to the camera driver. 

5. Calculate kinematic calibration parameters will be calculated using bundle adjust-

ment method. The bag file generated in the step 3 will be fed in as an input. The 

kinematic parameters will be written to the robot’s configuration description file and 

the camera correction parameters will be uploaded in to the cameras’ firmware. 

The parameters mentioned in the step 1 will be addressed in the following subsection. 

A more detailed explanation of the whole procedure will be given in the subsection 7.2. 

7.1 Parameter Configuration 

The variety of camera models must be considered when designing the automatic cali-

bration algorithm: the algorithm must be easy to use with as little configuration and ef-

fort by the user as possible. A configuration file was defined where the user fills neces-

sary parameters for each camera. Configuration of the left torso camera is shown in 

listing 4. 

 

name: torso_cam3d_left_link #identification of the camera 

topic: /torso_cam3d_left/rgb/image_raw #rostopic where the raw camera 

data is published 

cam_info_topic: /torso_cam3d_left/set_camera_info #rostopic that pub-

lishes the projection matrix to the camera driver 

file_prefix: left_kinect #calibration file pre-fix  

frame_id: /torso_cam3d_left_link #cameras tf frame id 

 
Listing 4. Configuration of a camera. 

 

Similiarly to the cameras, the arm configuration must be also configurable to account 

for the different configurations. Care-O-bot 4 uses a software called MoveIt! for ma-

nipulation tasks. MoveIt! has a ROS API, through which all the necessary information 

considering the robot’s arms can be retrieved. By utilizing this fact, the configuration of 

the arms can be made simple for the end-user: the user only has to give a name, called 

planning group, that a given arm is configured as in MoveIt!. 
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In addition to an arm’s name, more configuration parameters will be needed for the 

calibration. Namely, coordinates of an area inside which the calibration poses will be 

generated, discretization of the area, end-effector’s orientation at calibration poses, and 

a camera’s frame link that the arm is to be calibrated against. A sample configuration is 

shown in listing 5.  

 

arms: 

  arm_left: 

    name: arm_left  #Name of the planning group 

    limits_corner_1: [0.0, 0.30, 0.2] #x1, y1, z1 These are the limits 

for the end effector link 

    limits_corner_2: [-0.50, -0.30, 0.8] #x2, y2, z2 

    discritization: [3,3,3] #Discretization of x, y, z 

    hand_orientation: [0.5, 0.5, 0.5, 0.5] #Quaternion values. Use con-

verter to convert from Euler 

    arm_planning_reference_frame: torso_cam3d_left_link   #Relative to 

which frame the limits and the orientation is defined 

 

  arm_right: 

    name: arm_right 

    limits_corner_1: [0.0, 0.30, 0.2] 

    limits_corner_2: [-0.50, -0.30, 0.8] 

    discritization: [3,3,3] 

    hand_orientation: [0.5, 0.5, 0.5, 0.5] 

    arm_planning_reference_frame: torso_cam3d_right_link 

 
Listing 5. Configuration of the left and the right arms. 
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7.2 Functionality 

The description of the procedure presented at the beginning of this section was to offer 

a general view of the calibration procedure. Now the steps will be fractioned and ex-

plained to give a more in-depth look at the procedure and the program’s functionality: 

1. Let the user prepare the robot by attaching checkerboards to each arm and set the 

following parameters: 

 

- Defining which arms will be involved in the calibration by telling their planning 

group name 

 

- Limits for the area in Cartesian coordinates inside which the end-effector position 

generator will try to generate the calibration poses 

 

- Discretization of X, Y, Z axes, which defines into how many segments the posi-

tion generator will divide each axis. The larger the discretization, the more poses 

will be tried to generate among the axis. 

 

- Desired hand orientation in quaternion values with respect to the camera during 

the calibration. This will define the orientation of the checkerboard at the calibra-

tion poses. This parameter should optimally be defined so that the checkerboard 

orientation will be normal to the camera’s optical axis. The position generator will 

add some randomness to the orientation during the calibration. 

 

- Reference frame of the limits_corner and hand_orientation parameters. The ref-

erence frame should be one of the cameras’ frame so that the checkerboard will 

be moved in front of the camera during the calibration 

 

2. Calculate calibration poses for every arm using inverse kinematics. This will be done 

by the generate_positions script. 

 

- The script will calculate the poses using inverse kinematics and applying collision 

avoidance algorithms to prevent generating any poses that will result in a collision  
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3. Move arm (with a checkerboard attached to it) to every calibration pose generated in 

the step 1. At every pose, capture an image of the checkerboard with every camera 

that the checkerboard is fully visible for. If the checkerboard can be seen by at least 

one camera, save the current joint values and the image data (in a raw format) into 

a bag file at the given pose by calling services capture_image and cap-

ture_kinematics. 

 

- Repeat this step for each arm 

 

4. Calibrate cameras’ optics by calculating intrinsic calibration parameters: 

 

- The script will iterate through the images captured into the bag file 

 

- If image contains enough new and relevant information for intrinsic calibration, 

it will be added to a sample database  

 

- If the sample database is sufficient enough for each camera (enough images and 

enough variation among the images), the script will calculate the calibration pa-

rameters. New calibration parameters will be uploaded to the camera driver.  

 

- If there is not enough image data for intrinsic calibration of every camera, the us-

er will be given a decision to select between two options on how to proceed: 

 

a) Terminate the calibration procedure and let the user set parameters that will 

result in more calibration poses and thus more image data. This means that 

the user must increase the limits that restrict the area of the automatically 

generated poses and/or increase the discretization parameter that tells how 

many poses the generate_positions script will try to generate among the axes 

X, Y, Z. 

b) Proceed to extrinsic calibration with potentially insufficiently calibrated camer-

as. 
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The full source code for the project can be found on GitHub [4]. As stated before, the 

functional description above describes the calibration procedure’s current state. The 

last necessary step for a successful calibration, which will be described in the next 

subchapter, was not implemented due to the limited time spent on the thesis project. 

The procedure’s functionality until the step 4 was fully tested in Gazebo and RViz simu-

lation softwares and was observed to perform as expected. Screenshots from testing 

the robot in simulation environment are attached as appendices 1, 2 and 3. The pro-

gram was not tested on a real Care-O-bot 4 as no robot was available for testing at that 

time. 

7.3 Future Development 

The following step was not, but shall be implemented in the future to finalize the cali-

bration procedure: 

5. Calculate the kinematic calibration parameters by utilizing the calibration algorithm 

developed by Pradeep, Konolige and Berger [9]. The algorithm will take the bag file 

described in the step 3 as an input. The resulting output will be the extrinsic calibra-

tion parameters for both the cameras and the arms. The parameters will be written 

to the robot’s URDF description file which, among other things, describes the robot’s 

kinematic properties. 

As the development could not be finished on time, no measurable test results regarding 

the calibration performance could be produced. The implementation of the last final 

step of the robot calibration will be continued by another developer at Fraunhofer IPA. 
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8 Summary 

The goal of this thesis project was to develop an automatic calibration procedure for 

the Care-O-bot 4 robot. As a result, a ROS package called cob_calibration was devel-

oped comprising the functionalities described in the chapter 7.2. 

The task turned out to be bigger than what was expected, and thus the project could 

not be finished entirely during the limited time that I worked on it. However, most of the 

calibration procedure’s desired functionalities were developed and verified to perform 

correctly, forming a strong basis for the finalization of the project. The automatic cali-

bration procedure, when finished, can be used to calibrate all Care-O-bot 4 robots pro-

duced by Fraunhofer IPA in the future, despite the differing configurations it may come 

in. 

The future work on the project will consist of implementing the kinematic calibration 

parameter calculation algorithm, which will calculate the extrinsic calibration parame-

ters. 
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Care-O-bot 4 performing calibration in a simulation environment. 
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Simulated output from the Care-O-bot 4’s left camera while performing 

calibration in a simulation environment. 
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Automatically generated calibration poses visualized in a simulation. 

 


