

Heikki Laulajainen

ELECTRONIC GUIDANCE AND MONITORING APPLICATION

FOR MAINTENANCE PERSONNEL

ELECTRONIC GUIDANCE AND MONITORING APPLICATION

FOR MAINTENANCE PERSONNEL

 Heikki Laulajainen
 Bachelor’s Thesis
 Spring 2016
 Information Technology
 Oulu University of Applied Sciences

3

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tietotekniikan koulutusohjelma, Langattomat laitteet

Tekijä: Heikki Laulajainen
Opinnäytetyön nimi: Sähköinen huoltotyön ohjaus- ja valvontatyökalu
Työn ohjaajat: Kari Jyrkkä, Jouni Mäkinen, Tero Kulmala
Työn valmistumislukukausi: Kevät 2016, sivumäärä 23

Opinnäytetyön tilaajana toimi Oy L M Ericsson AB, ja työn tarkoituksena oli
tehdä Android-sovellus demojärjestelmään ylläpidon kenttätyöntekijää ja hänen
esimiestään helpottavasta järjestelmästä.

Tavoitteena oli tehdä demo, jolla voidaan näyttää asiakkaalle, että tällainen jär-
jestelmä on mahdollista toteuttaa. Tässä opinnäytetyössä pääpaino oli Android
sovelluksen puolella.

Työssä käytettävät laitteet ja työkalut olivat Android ohjelmistokehitykseen eri-
tyisesti sopivia. Ohjelmistokehitykseen käytettävä paketti oli Googlen toteuttama
ja laitteet Googlen suunnittelemia.

Projektin alusta asti oli tiedossa, että työtä ei ehdi saada täysin valmiiksi anne-
tussa ajassa. Tilanteesta, johon tämän opinnäytetyön aikana päästiin, on hyvä
jatkaa kehitystä eteenpäin, sillä tarvittavien ominaisuuksien suunnittelu ja koo-
din perustan luonti saatiin toteutettua.

Asiasanat: Android, Java, ohjelmisto

4

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Wireless Devices

Author: Heikki Laulajainen
Title of the bachelor’s thesis: Electronic Guidance and Monitoring Application for
Maintenance Personnel
Supervisors: Kari Jyrkkä, Jouni Mäkinen, Tero Kulmala
Term and year of completion: Spring 2016, number of pages 23

This Bachelor’s thesis was commissioned by Oy L M Ericsson Ab. The aim of
this theses was to create an Android application into a demo system to ease the
maintenance workforce and their managers in their daily tasks.

The aim was to create a demo that is capable of showing a customer that it is
possible to create this kind of system. In this thesis, the main focus was on the
Android application.

Tools and devices, which were used, were suitable for Android software devel-
opment. The development environment and devices were designed by Google.

From the beginning of this project it was known that the work will not be fully
completed within the given time. The project reached the point from where it will
be good to proceed with the development in future because research, planning
and base of code have been done.

Keywords: Android, Java, software

5

TABLE OF CONTENTS

TIIVISTELMÄ 3

ABSTRACT 4

TABLE OF CONTENTS 5

LIST OF ABBREVIATIONS 6

1 INTRODUCTION 7

2 PROJECT TEAM BRIEFLY 8

3 REQUIRED FEATURES 9

3.1 Task description 9

3.2 Map feature 10

3.3 User location 10

3.4 File uploading 10

3.5 File downloading 10

3.6 User profile and authentication 11

3.7 Barcode reading 11

4 APPLICATION CONCEPT IN DEPTH 12

4.1 Android in general and why API level 17 12

4.2 Barcode reading 13

4.2.1 Code 128 13

4.2.2 PDF417 14

4.3 File transfers 15

4.4 Security 15

5 MAKING OF ANDROID APPLICATION 16

5.1 Design planning 16

5.2 External libraries 18

5.3 Preparations and the basics 18

5.4 Programming process 19

6 TESTING OF APPLICATION 21

7 CONCLUSION 22

REFERENCES 23

6

LIST OF ABBREVIATIONS

RECA Region Northern Europe and Central Asia

POI Point of interest

API Application programming interface

OS Operating system

ASCII American Standard Code for Information Interchange

PDF417 Portable Data File (4 bars and 17 units per pattern)

HTTP Hypertext Transfer Protocol

IDE Integrated development environment

SDK Software development kit

NDK Native development kit

APK Android application package

AVD Android virtual device

7

1 INTRODUCTION

This Bachelor’s thesis work was commissioned by RECA (Region Northern Eu-

rope and Central Asia) unit at Oy L M Ericsson Ab. Ericsson was founded in

1876 and it used to be a small 2-man business in Stockholm. It has since ex-

panded their business to international levels. (1) Nowadays in 2017, Ericsson

can be considered to exist all around the globe because Ericsson does busi-

ness in every continent and in almost every country. Ericsson used to be mainly

known for their cellular phones in the past but there is a lot more than that in

their product and service catalogue. Most likely everyone in the world who uses

networked mobile devices has used Ericsson technology without being aware of

it.

The aim of this thesis was to create a mobile application for field engineer per-

sonnel to help their daily tasks during the maintenance on the site. Field engi-

neer personnel/maintenance personnel will be referred as a user in this docu-

ment after introduction. The idea was to eliminate the need of laptops and paper

manuals while working on site. Then application brings an easy access to this

information with their handheld mobile devices. On the background the applica-

tion communicates with a backend server, which holds the database and logics

for queries made by the application.

The application was one part of the project and starts almost from zero and only

preliminary studies were made. It was a good starting point for the participants

because they could be part of the planning process straight from the beginning

and it gave a more throughout vision of the project. A field engineer is not the

only person that benefits from this project. On the management side it is much

easier to follow which tasks are done.

8

2 PROJECT TEAM BRIEFLY

The solution consists from a backend server and an Android application and six

participants were involved in this project. The first unit had two members, the

second unit had only one and the rest were working with both as mentors. The

first team was responsible for the implementation of backend server and its

manager web interface. The role of the backend server is to handle the commu-

nication and forwarding of the fetched data to the Android application. All the

data is not stored into the backend server and the server needs to know where

to find it. The manager web interface also runs on this backend server and it is

the view that interacts with the manager. The web frontend shows the issues to

the manager and they can then be assigned to correct people as tasks.

The second unit was responsible for developing the Android application layout

design and programming it. This is the part that this thesis focuses on and it will

be explained more thorough.

Communication was an urgent part of the project to overcome its troubles. The

whole team could not gather around locally and meetings had to be kept as

conference call meetings. At the beginning of the project meetings were held on

the first working day of the week with the whole team. Short follow up meetings

with backend and application units were also kept every day and this was not a

big issue because of the size of the actual working team. Later on, follow up

meetings were kept only every second day because there was really no need to

keep them every day.

9

3 REQUIRED FEATURES

This application benefits the users and their managers. Managers can assign

tasks into the user profile at the web interface and the user can review those

tasks assigned to their profile from the application. (Figure 1.) The application

throws a notification to the user when new tasks are assigned to them.

FIGURE 1. Architecture of the solution

3.1 Task description

The task description contains information on the destination site and work tasks.

This contains all the data needed to access a site that needs maintenance or a

regular check-up.

The information that the task description contains is as follows:

- An address or coordinates of destination.

- A key pick up location.

- A to-do work list.

10

- Possible special tools and spare parts that are needed.

- A notification if there is something that needs attention, for example if

you need a car with a high ground clearance is needed.

3.2 Map feature

The task description contains a POI (point of interest) object. The application

uses Google Maps API (Application programming interface) for the navigation

and to show map locations. The benefit of this functionality is that the user does

not need to search for the location from the Google Maps application manually.

3.3 User location

The user’s location is sent to the backend server during working times. This

helps the manager to see which user is nearest to the site and they can then

assign the nearest suitable personnel to go to the destination. The user sets the

working hours into the application settings and this function is active only during

working hours. The user also has an option to disable this feature.

3.4 File uploading

Uploading files to the server is done via the application. The user can capture a

photo with their camera or select a file from a gallery and then send it to the

server. This is a handy tool when there is a need to create documentations or

reports after the work has been done.

The backend server needs to accept the image and document files. The file size

or extension type is not restricted. File types are described in the header of an

HTTP message and the backend server decides whether it accepts them or not.

3.5 File downloading

The application can download files from the backend server into the storage of

the used device. These files can be images or user and installation guides.

11

3.6 User profile and authentication

Managers assign tasks to user profiles. Each maintenance employee in the field

has their own personal account and by authentication they can access tasks as-

signed to them.

Each profile contains information on the user’s name, certificates and skills.

This enables managers to assign tasks to a suitable user.

3.7 Barcode reading

This is one of the main functions of this application. It helps the user to find a

correct and up-to-date installation and maintenance guide for the device. The

user reads the barcode by using the camera in their mobile device. After a suc-

cessful barcode reading, it converts the message to a more readable format

and the application delivers the code to the backend server, which replies by

sending a correct instruction file as a return.

12

4 APPLICATION CONCEPT IN DEPTH

This application is designed to work under Android devices with an API level 17

or higher. In the future, the roadmap of the application might contain developing

a support for another mobile platform, such as Apple iOS, but for now the appli-

cation is developed to work natively on Android mobile devices.

4.1 Android in general and why API level 17

Android is an open source mobile OS (Operating system), which is currently de-

veloped and maintained by Google. It is based on the Linux kernel, which

makes Android OS versatile. It can be deployed to multiple different platforms,

which usually are based on x86 or ARM. The devices that can currently be used

with Android OS are smartphones, televisions, wearables, cars, notebooks,

gaming consoles and cameras.

Android is well known across the world is the most sold mobile OS and the us-

age of it in smartphones is the most common. It has the largest set of different

applications and setups. Operators and smartphone manufacturers can custom-

ize the OS as they wish within the limits set by Google.

Developing for Android is easy and there is a lot of help available in different de-

veloper and programming communities. Google provides and maintains Android

Studio for Android developing purposes and it contains almost everything that is

needed for basic and advanced development.

Android has API levels and versions to specify which functions are available or

which updates are applied. When a larger update is applied, then the API level

number and version number increase and if it is a minor update, then only the

version number increases. Higher API levels support or have compatibility for

lower API levels.

13

The API level 17 which is used in this project, is enough to cover the needed

functionality and most of the used devices on the market. Before starting an An-

droid project, it is a good thing to plan which activities and functions the applica-

tion should have and which of them are necessary. Then the earliest suitable

version should be chosen. When choosing the earliest possible compatible

level, the application will support older devices that users may possibly have. If

the level is set too high it also makes the catalogue of supported devices more

restricted. If the API level is set too low and the functionality the developer

wants to use is not supported, then the developer is going to have some chal-

lenges bringing that functionality into the application.

4.2 Barcode reading

There are multiple applications made for barcode reading, which can be found

in Google Play Store. These scanner programs are able to read the barcode or

QR code using the camera of the phone. Then they convert the barcode to a

human readable format. The application in this project needs to be able to read

barcodes in Code 128 and PDF417 formats because the target products, which

have barcodes in them, use both formats and contain different information.

4.2.1 Code 128

Code 128 is a common and simple encoding method for converting an ASCII

(American Standard Code for Information Interchange) character set to a linear

one dimensional barcode. (2) (Figure 2.)

FIGURE 2. “android-is-cool” message encoded to Code 128 (3)

14

Code 128 barcode consists of two quiet zones in the beginning and in the end

of barcode, a start character, encoded data, a check character and a stop char-

acter.

Quiet zones are before the start character and after the stop character and their

width is 10 times of the minimum width of a module (bar). The start character in-

dicates when the message begins and the stop character indicates when the

message ends. Code 128 contains three set types, A, B and C, and a type

value is set in the start character. (2)

Between the start and stop character there is encoded data and the check char-

acter, also known as a checksum. Encoded data contains the message that is

written in the barcode. The checksum is a sum of start code value and values

multiplied with their positions in encoded message. The checksum value (table

1) is modulo 103 reminder of the sum of values. (2)

The current published revision of Code 128 bar code specification is ISO/IEC

15417:2007.

4.2.2 PDF417

PDF417 (Portable Data File) is a stacked two-dimensional linear barcode format

and it consists of 4 bars and spaces per pattern. (Figure 3.) Each pattern is 17

units long. The barcode is 3 to 90 rows long and each row has a quiet zone, a

start/stop pattern, a left and right row indicator and 1-30 data code words.

FIGURE 3 "android-is-cool" message in PDF417 format (4)

15

PDF417 can theoretically hold up to 1,850 characters, 2,710 digits or 1,108

bytes (5). The current published revision of the PDF417 standard specification

is ISO/IEC 15438:2015

4.3 File transfers

Files are transferred by using simple HTTP (Hypertext Transfer Protocol) GET

and POST methods. Later this may be changed with a more secure implemen-

tation but this will suit the needs of this application prototype.

HTTP is a way for a host and a client to communicate between each other. In

this case, the backend server is the host and the Android device with the appli-

cation is the client. Basically, HTTP transactions consist of requests and re-

sponses.

The client is the one who sends the requests to a server and the server sends a

response to the client. The message contains a request method, a URI and a

protocol version.

4.4 Security

Security needs to be taken into consideration to protect the data. As this project

is a demo, security was not the first concern. Specialists will later ensure that

data protection will meet the standards of the company.

16

5 MAKING OF ANDROID APPLICATION

5.1 Design planning

The planning of application was executed with a design first method. Since the

application is supposed to help the user, thus user experience is a top priority in

the layout design.

Two simple designs were made and from them the team had to choose one.

Both of them followed Google’s Material Design with their own colour palettes

and images and commonly used navigation styles. Material Design keeps the

application simple and it is visually simple and attractive.

First design was based on the TabLayout navigation with fixed tabs. It is a sim-

ple navigation style where the user swipes their way through a set of views one

view at a time.

FIGURE 4. Draft of TabLayout navigation style

17

What is good in this layout is that when the used features and settings can be

designed to be used sequentially and or the user interface only needs a few

views. The bad side is that when the application has multiple views it can be

painful to search through. Even though the user can just tap on the wanted tab

and it will switch its view, the tab carousel will get bloated easily when there are

lots of tabs.

The second design was based on Drawer Navigation. The navigation menu is in

a separate view and it can be swiped as an overlay on top of the current view.

FIGURE 5. Draft of drawer navigation style

With this design, there is more height for the content compared to the TabLay-

out and navigating through views is easy. It is also possible to make submenus

18

to have different content per view and to insert buttons and switches into the

view of drawer to serve a function.

The team chose the latter style because it is easier to move around with differ-

ent views compared to the TabLayout navigation style. Then next step is to con-

sider how to assemble the information in a view to keep it readable and clean.

There must be enough space between every object and lines of text. At the

same time creating a long wall of information, which needs to be scrolled all the

time, should be avoided. This can be solved by using descriptive icons for func-

tions and by only showing the relevant information for the user.

5.2 External libraries

As everything does not have to start from zero, few assets were used. Google

Maps API helped with the locating feature. Because barcode reading had al-

ready been done in another project, there was in-house code available, which

was also used in this application.

To use Google Maps API in the application, the developer needs to have a key

that is provided by Google. Each key can be used on only one application and it

is linked to a Google account. The key is put into google_maps_api.xml file in

project files.

5.3 Preparations and the basics

The language used was Java, which is a preferred native language for Android

development. The chosen development environment for coding was Android

Studio IDE (integrated development environment). Android Studio has SDK

(software development kit), NDK (native development kit), a layout editor and

testing and platform tools bundled which help and save time when configuring

the environment is configured.

An App Manifest “AndroidManifest.xml” is an essential file that defines the appli-

cation. (6) It must be located in a root directory of the application to work. It

holds the following information:

19

- an application and package name

- permissions, an SDK version, compatibilities and configuration

- activities and providers

A resources directory “res/” is used to keep configurations, images and values.

It can contain bitmap and vector images, animations, string values, colour val-

ues and layout XML files. (6)

A few good to know things are listed below:

- Every application must have an App Manifest.

- Landscape and portrait layouts have their own layout resource.

- Strings and images should always be used from resources.

- Some controls, such as lists, need adapter classes to create their item

collection.

- Each view needs to have an activity class and a layout resource. One ac-

tivity can have multiple layouts.

5.4 Programming process

As the planning process was UI (user interface) first, so was the programming

part too. The basis of the application, which holds navigation and frames, was

made by creating the layout first and programming activities after it. There are a

few good to know things. All the fields that contained a text or an image were

configured to show their content through resources. In this way language locali-

sations can be created and fixing misspells is easy. Used images were found

from Ericsson’s own resources and colouring was done by the Ericsson’s guide

instructing how the colour theming should be.

The basic activity used FrameLayouts. Each view was showed in a container in

the main activity and it was changed through the navigation menu. The first fea-

ture to be made was a locating service and it was done as a service. Services in

Android applications are components that perform long-running operations in

20

the background of the application. (6) The service polled the data through a lo-

cating provider of Android OS and delivered this information to the backend

server.

With the barcode reading the first challenge was to bring the camera functional-

ity into the application. It was solved in the way that the application launches an

action intent of an external camera application and the user chooses which one

to be used. Intents can be used, for example, to launch a camera application or

to dial to a phone number. The application received output data of a captured

image and converted and saved it into the storage memory as a bitmap file.

Soon after this functionality, it was time to show a proof of concept to a cus-

tomer and developing a file transferring began. The development of barcode

reading was not completely fulfilled and it ended up as a lacking functionality.

The file transfer feature communicates with the backend server. It is able to

send and receive files. The user can choose a file from their storage and then

send it to the backend server via an HTTP POST action. At this point, this was

restricted to images and documents. The application can receive files by send-

ing a GET command with a string to the server, and then receive the file as a

reply and save it into a storage.

Since there was a few features ready, it was time to create a settings activity to

control them. From the settings, the user can disable locating or setting up the

active working hours, and the application automatically saves it into a configura-

tion file to control the locating service. The IP address of the server was config-

urable by the user at this point for easy access.

21

6 TESTING OF APPLICATION

No automated test features were implemented to this application since it is

meant as a demo and not for the production. The program was tested and de-

bugged locally on a physical device and no AVDs (Android virtual device) were

used. The reason to test the application on a device was to save time because

launching the AVD takes more time than pushing and installing the APK (An-

droid application package) straight on to the device. Another benefit of testing

the application locally is that the developer can monitor the performance of the

application and fix possible slowdowns.

For testing the Motorola Moto 2nd gen, the Nexus 5X and Nexus 7 (2013) tablet

with an LTE connectivity were used. Nexus devices are designed by Google

therefore they are a perfect companion to be used as a debugging devices, alt-

hough they are not very common among target users and the devices that tar-

get users may have can use different ways of application handling, for example

the Samsung file management. Using devices with different configurations

helped to indicate issues in the layout scaling and performance. The application

performed well and stable overall on these devices without having any critical

issues in it. Views were made to be light so that the navigation was fast and

loading times were not noticeable.

The application required an Internet connection through a public network and it

brought some challenges between the communication with an Android client

and the backend server. The server was running in an unexposed internal net-

work. Accessing it through a public network had some restrictions and there

was no approved way of connecting the mobile device to an internal network.

After this issue had been solved, realistic testing was possible.

One live test with a possible customer gave more input to what features the ap-

plication should have. It also revealed some good points about the functionality.

This input was processed and applied to the application and it received a posi-

tive feedback.

22

7 CONCLUSION

This project gave a lot of experience of how to work efficiently in a small group.

It also showed that communication is a key element. Distances and own proto-

cols of the company brought some challenges but everything necessary was

solved. Every day we improved our team work, programming skills and the

ways of working.

What comes to all the planned features, we are satisfied with everything that

was done in given time. The application has now a specification, a locating ser-

vice, an image capturing and a processing capability without a working barcode

reading, an implemented basic Google Maps activity without the POI functional-

ity, a file handling and the base code. All the features were tested when a new

functionality was implemented to ensure that they will work together.

For the rest of the features that were not implemented, we had made a pretty

good research on how to implement them to the application and server. It was

already known that this whole project most likely will not get fully done but the

most important thing was that now there is a base for it.

23

REFERENCES

1. Wikipedia, Ericsson. Date of retrieval 1.8.2016.

https://en.wikipedia.org/wiki/Ericsson

2. IDAutomation, Code-128 Bar Code FAQ & Tutorial. Date of retrieval

1.8.2016.

http://www.idautomation.com/barcode-faq/code-128/

3. RACO Industries, RACO Resources Code 128 barcode generator.

https://racoindustries.com/barcodegenerator/1d/code-128/

4. RACO Industries, RACO Resource PDF417 barcode generator.

http://racoindustries.com/barcodegenerator/2d/pdf417/

5. TEC-IT, PDF417 (2D Barcode). Date of retrieval 1.8.2016

https://www.tec-it.com/en/support/knowbase/symbologies/pdf417/De-

fault.aspx

6. Android Developers, 2017. Date of retrieval 25.3.2017.
https://developer.android.com/studio/intro/index.html

https://en.wikipedia.org/wiki/Ericsson
http://www.idautomation.com/barcode-faq/code-128/
https://racoindustries.com/barcodegenerator/1d/code-128/
http://racoindustries.com/barcodegenerator/2d/pdf417/
https://www.tec-it.com/en/support/knowbase/symbologies/pdf417/Default.aspx
https://www.tec-it.com/en/support/knowbase/symbologies/pdf417/Default.aspx
https://developer.android.com/studio/intro/index.html

