

Daniil Galakhov

CREATION OF AN EDUCATIONAL
OPERATING SYSTEM

Using the C# and .NET Framework

Bachelor’s thesis
Information Technology

2017

Author (authors) Degree

Time

Daniil Galakhov Bachelor of Engineering May 2017

Title

Creation of an Educational Operating System
Using the C# and .NET Framework

63 pages
1 pages of appendices

Commissioned by

South-Eastern Finland University of Applied Sciences
Supervisor

Timo Mynttinen
Abstract

The purpose of this study was to conduct a research on Operating System fundamentals
and apply the knowledge gained to a real environment by creating Educational Operating
System. The outcome of this project may also serve as a starting point of the Information
Technology studies for beginner students. As a secondary objective, this project intended
to demonstrate the power of .NET Framework and C# Programming Language in a limited
execution environment.

Programming and Operating Systems are two fundamental disciplines of the Information
Technology. Therefore, techniques demonstrated in this project can be applied practically
in any environment and any area of IT. Results achieved here can later become part of a
bigger educational project as well.

This work is targeted towards students who want to learn the basics of Operating Systems
and software developers willing to explore different applications of the .NET Framework.

Theoretical part of the project includes:
♦ Prehistory – explanation of how Operating Systems came alive and what originally led to
their creation, interesting historical facts about different Operating Systems, development
of different kernels.
♦ Basic concepts – reflection of internal operation principle of the Operating Systems, their
main components and functions, different types of kernels, memory management, types of
file systems, bootloaders, etc.
♦ Definitions and environment – planning and defining the Operating System itself, project
hosting and version control environment, debugging, compiling and virtualization tools.

Practical part of the project consists of:
♦ Designing and building the core – creating the kernel and file system, building basic CLI,
implementing and connecting necessary plugs, structuring and optimizing the code, etc.
♦ Developing the shell – constructing the shell scripting language, virtual text screens and
command processor.
♦ Testing – running the system on real hardware, software debugging.

Keywords

Operating System, C#, .NET Framework, IL2CPU, Open-source, Education, Shell, DimOS.

CONTENTS

1 INTRODUCTION .. 1

2 MOTIVATION ... 2

2.1 Project Naming .. 2

2.2 Educational Operating System .. 3

2.3 Questionnaire Survey – Implementation ... 4

2.4 Questionnaire Survey – Results... 7

3 PREPARATION ... 13

3.1 Project Hosting and Source Control .. 13

3.2 Development and Testing Environment .. 15

3.3 Project Definitions ... 16

4 BRANDING ... 17

4.1 Mascot Character ... 17

4.2 Advertising .. 20

4.3 Copyright and Licensing ... 23

5 THEORETICAL BACKGROUND .. 24

5.1 Evolution of Operating Systems – Prehistory ... 24

5.2 Evolution of Operating Systems – Nowadays ... 25

5.3 Reflection of Operating System Concepts .. 26

5.4 Quick Introduction to Cosmos .. 27

5.5 Overview of the Booting Process .. 28

5.6 Basics of Command Shell ... 29

5.7 File Systems Explained ... 31

5.8 Artificial Intelligence – Virtual Personal Assistant ... 33

5.9 Artificial Intelligence – Implementation Methods .. 34

6 INITIAL PLANNING ... 35

6.1 Educational Process – Learning Flow ... 35

6.2 Educational Process – Study Tools ... 36

6.3 Command Line Interface ... 37

6.4 DimFS – Memory Based Pseudo File System ... 38

6.5 DimSH – Intelligent Command Shell ... 39

6.6 DimSH – Command Evaluation .. 40

6.7 Shell Scripting and Artificial Intelligence Tutor ... 41

7 ENVIRONMENT SETUP .. 42

7.1 Hosting the Project on CodePlex .. 42

7.2 Installing IDE and Supporting Tools ... 43

7.3 Creating the Visual Studio Solution .. 44

7.4 Configuring the Source Control .. 45

8 IMPLEMENTATION ... 46

8.1 DimFS – The Concept of Nodes ... 46

8.2 DimFS – Permissions .. 47

8.3 DimFS – Attributes ... 48

8.4 DimFS – Strict Paths ... 49

8.5 DimSH – Interactive Environment .. 50

8.6 DimSH – Command Journaling .. 51

8.7 DimSH – Input Processing .. 52

8.8 DimSH – Development Suite .. 53

8.9 Applications and Shell Commands ... 56

9 PLUGS .. 57

9.1 Mathematical Functions .. 57

9.2 Collections ... 58

9.3 Char and DateTime ... 59

9.4 Strings .. 60

10 TESTING .. 61

11 CONCLUSION ... 62

BIBLIOGRAPHY ... 63

APPENDIX .. 64

CODE REFERENCES

H Scripting Language’s Engine:

https://dimos.codeplex.com/SourceControl/latest#DimOS/H/Engine.cs

Main Shell Class:

https://dimos.codeplex.com/SourceControl/latest#DimOS/DimSH/Shell.cs

Implementation of Virtual Text Screens:

https://dimos.codeplex.com/SourceControl/latest#DimOS/VTS/Screen.cs

Brainfuck Interpreter:

https://dimos.codeplex.com/SourceControl/latest#DimOS/Brainfuck/Interpreter.cs

1

1 INTRODUCTION

An Operating System (OS) is a computer program, which

is, after being initially loaded by a boot program, capable of

managing hardware and software resources of the target

computer system, providing them a way to communicate

(Figure 1) through API and ABI interfaces and system calls.

Operating System is an essential part of computing, because

without it the computer would be simply useless and unable

to operate. Nowadays people tend to forget its importance,

having no clue of what happens behind the fancy buttons

they press to complete one action or another, which leads to

the serious decrease of computer literacy among students.

 Figure 1. Interaction Flow.

For Information Technology students Operating Systems are taught as the separate course that

extensively covers all the topics described in this project work. However, students tend not to

have enough motivation and will to study it seriously, skipping the technical details provided.

During my studies, I have encountered Information Technology students having no idea what

the Operating Systems are needed for and how they actually function, even after successfully

completing the dedicated university course. Moreover, they simply did not want to know this.

This gave me an inspiration to further investigate this issue and develop a solution that might

help students to learn Operating Systems in a way that will not require them to cram material.

Then I realized that the most interesting and exciting way to learn Operating Systems would

be to learn them from an Operating System itself. However, Windows is too simplified to be

used as a learning platform, meaning that most of the actions are tied to specific buttons and

cannot be traced in terms of their internal operation. Although Linux pays more attention to

user-OS interaction process, enforcing its users to think carefully before committing changes

or producing some action, it happens to be too advanced for beginners. During the laboratory

work, which involved working with the Unix Shell (Bash) I got feedbacks such as “I have no

idea what I am doing” from some students. Understanding that there is clearly a need for the

Operating System which is tailored for the educational needs and is, at the same time, capable

of providing a decent study material and assessing students’ knowledge, I started this research.

2

2 MOTIVATION

The most important thing needed for every project is motivation. Before starting to work on

the actual topic an assurance is needed that all the work done and efforts put into it will not

end up being worthless and unusable. This section describes the methods used to obtain such

an assurance, as well as the project’s main aims and goals, together with the proof of concept.

2.1 Project Naming

Being one of the most important parts of branding, name of the project defines its overall look

and feel, its direction and, in some cases, even its final outcome. In my case it will also reflect

my personal ambitions and thoughts about an IT industry and Operating Systems in particular.

With rough understanding of the concept and clear ideas in mind I have decided to name the

Operating System “DimOS”. This name happened to be perfectly fitting my initial intentions,

as it combines multiple meanings that are also based on my own experience and expectations:

1. “Dimos” is exactly how I was calling my Informatics teacher during the classes in the

middle and high school back then, so this name has some special moments of my life

and positive memories associated with it, as my Informatics teacher was the very first

person who introduced me to the world of programming and Information Technology.

2. The first programming language I learned was Visual Basic where the keyword “dim”

is used to declare variables, which originates from BASIC where it was brought from

FORTRAN and stands for “dimension” (because the keyword was used for defining

the dimensions of an array back then), but, more importantly, in the old programming

guides there was also an alternative interpretation of the “dim” keyword – “Declare In

Memory”, which perfectly fits my Operating System designed to work in the memory.

3. As an English word “dim” can mean something faint, unclear, obscure, something that

is not clearly recalled, which consummately describes the current situation of beginner

students, who are willing to learn Operating Systems, meaning that the subject may be

unclear to them first, but this may change significantly if they use DimOS to study the

OS fundamentals, just like any dim light has potential to become brighter and stronger.

4. The word “DIM” as an abbreviation can mean Diligence, Inspiration and Motivation –

three main fundamental concepts of a successful project, work or study, provided that

the diligence symbolizes persistence of students, inspiration – their desire or intention,

and motivation – their main driving force or willingness towards the studying process.

3

2.2 Educational Operating System

Educational Operating Systems are usually created with the strong academic purpose in mind,

mainly targeting Information Technology and Computer Literacy education in high schools or

colleges and universities. Depending on their scope, different Educational Operating Systems

can either contain a specific simple learning environment which is intended to provide various

knowledge assessment methods together with the study material, or consist of small parts and

modules with logically structured and documented open-source code which demonstrates the

basic working principle of Operating Systems. Two most noticeable examples of Educational

Operating Systems are MINIX (Figure 2) and Edubuntu (Figure 3). Ubuntu Education Edition

(Edubuntu) applies the first approach, providing special learning environment for classrooms.

MINIX, on the contrary, utilizes the second approach which turns the Operating System itself

into a complex learning instrument originally designed for educational and research purposes.

DimOS will employ both of those methods in order to guarantee a better learning experience.

Figure 2. Screenshot of MINIX’s CLI. Figure 3. Screenshot of Edubuntu’s GUI.

Furthermore, DimOS will combine the methods described above with a special functionality

for teachers, allowing them to customize the feature set of the Operating System and change

the study material according to their own needs. Such flexibility will lead to a better quality

and effectiveness of education if utilized properly. DimOS will also include a supporting set

of tools (bootable media or Virtual Machine creator, etc.) to provide the ease of deployment.

Being a student myself I feel very excited about this project. DimOS will pose an Educational

Operating System created by a student for other students. This aim puts some restrictions and

requirements on my coding style and my usual workflow. Nevertheless, it gives me the strong

motivation to move forward. This project possesses a great opportunity for me to improve my

project management and programming skills, as well as my knowledge of Operating Systems.

4

2.3 Questionnaire Survey – Implementation

To support my ambitions and expectations with the proof of concept and develop my ideas

further I have decided to conduct a questionnaire survey. In order to be able to address the

wider audience I made the survey available on three different languages – Russian, English

and Japanese. Technical part of the survey was made using common web development tools

and technologies (HTML, CSS, JavaScript, PHP) and is presented as a website hosted on the

Virtual Private Server. All answers for the questionnaire are sent to a special E-mail address

(hosted on the same server) in pre-defined format (Figure 4), which makes it easier to collect

results of the survey and present them in a well-structured human-readable form. The survey

itself is divided into three logically separated parts based on the type of the questions asked –

General, Conceptual and Targeted. The flow control between these parts is handled by PHP

script (Figure 5) in such a way that the respondent will be unable to change the answers after

moving to the next part. In addition, third part can be accessed only with the positive answer

to a question presented in the second part, which guarantees the validity of the survey results.

The whole questionnaire consists of 10 questions (Figure 6), but those respondents who gave

a negative answer to the fifth one will be presented with only a half of them, as stated above.

Figure 4. Format of Automatically Generated E-mail Message.

5

Figure 5. Flow Control of the Survey (PHP Script).

Figure 6. Questions of the Survey (Presented on Website).

General part (questions 1 to 4) is used to gather general information about the respondent and

includes two control questions (1 and 4), the main purpose of which is to identify whether the

respondent is answering honestly, taking the whole survey seriously. These control questions

can also show the level of respondent’s self-confidence. Conceptual part consists of the small

one-page description of DimOS supported by a short showcase video (hosted and embedded

from YouTube) and one question (5), which checks if the respondent is interested in DimOS.

Targeted part can only be viewed after answering “Yes” or “Maybe” for the question 5, as it

contains questions (6 to 10) about the concept and its future development concretely, making

this part the most valuable and important in the survey. When all the questions are answered

the PHP script generates an E-mail message with survey results and displays a gratitude page.

6

The completion flow of the survey (Figure 7) is quite straightforward and linear, which makes

it user-friendly and allows respondetns of all ages with different level of computer literacy to

take part in the questionnaire. Each part of it contains “Reset” and “Next” or “Send” buttons.

Figure 7. Completion Flow of the Survey.

7

2.4 Questionnaire Survey – Results

This questionnaire was targeting university students of various degree programs, as well as the

high school and college students. People of different nationalities from multiple international

universities took part in the survey during the one month period. In total, 50 unique entries of

respondents’ answers were collected, which allowed me to statistically analyze the concept of

this project and make significant improvements to its main definitions and objectives. Results

of the survey can also serve as the proof of concept, clearly showing its relevance by the level

of students’ interest in the project topic and their desire to study the Operating Systems better.

A small C# Console Application (Figure 8) was used to generate and show the statistical data

out of the survey results. This application uses TCP sockets to send IMAP commands directly

to the E-mail server. All messages in Inbox are downloaded from the E-mail server and then

parsed to Entries (Figure 9), which can later be easily queried against using LINQ. Data can be

represented either as the number of entries per answer for every question or in a form of useful

statistic statements, where percentages are calculated based on specific conditions (Figure 10).

Figure 8. C# Console Application – Generating Statistical Data out of Survey Results.

8

Figure 9. Classes for Storing and Processing Survey Results as Structured Data.

Figure 10. Useful Statistic Statements Generated by Application.

9

Upon closer inspection of generated statistics the following justified facts can be discovered:

1. Most of the students are willing to improve their knowledge of the Operating Systems.

2. Most of the students want or would probably use DimOS to study Operating Systems.

3. Students would equally want to use DimOS at home and in the classroom (Figure 11).

4. Many of the students would use DimOS in Virtual Machine and on the real hardware.

5. Students would equally want to exploit Games, Accessories and Scripting (Figure 12).

6. Students would use DimOS mostly for studying Operating Systems or playing around.

Figure 11. Number of Survey Entries per Answer for Question 7.

Figure 12. Number of Survey Entries per Answer for Question 9.

The distribution of answers for question 5 presented as a pie chart (Figure 13) clearly defines

the validity of my concept. There is no strong interest in it yet, but people want to try DimOS.

Figure 13. Distribution of Answers for Question 5.

10

Answers collected for the question 6, in turn, show that many people are equally interested in

both studying the Operating Systems and playing around. Moreover, only 16% of respondents

(or 17.7% of those who answered “Yes” or “Maybe” to the question 5) marked both of these

answers, which means that there are people who want or would like to use DimOS without a

particular purpose. Such people might be coming from the areas not related to IT, so DimOS

should not only take an education approach, but also has to have features that can make an OS

interesting and enjoyable. Some people would like to use DimOS for learning programming as

well, therefore my code has to fulfill the fundamental coding tone requirements and follow the

best coding practices and guidelines (Figure 15). The bar diagram of answers to the question 6

(Figure 14) illustrates the level of students’ concernment about different purposes of DimOS.

Figure 14. Distribution of Answers for Question 6.

Note: there was no “I don’t know” option, so it was inferred from the answers to question 10.

11

Figure 15. Best Coding Practices and Guidelines.

On the contrary, answers to the question 8 (Figure 16) show that the overwhelming number of

students would use DimOS in the virtualized environment only, which means that main effort

should be put on its stable operation in the Virtual Machines, rather than on the real hardware.

Figure 16. Distribution of Answers for Question 8.

12

Considering the huge diversity in the level of students’ knowledge and experience with the

Operating Systems (Figure 17), simple and user-friendly interface should be implemented in

DimOS, making it possible for every student to understand how it works and how to use it.

Additionally, an assistant system should be added to help users get used to the said interface.

Figure 17. Distribution of Answers for Questions 1 and 3.

Overall results of this questionnaitre survey gave me a clear understanding of what should be

done in this project and how it should be done. All the conclusions made here will be defined

more precisely in the next section. During this moderate research the concept of my Operating

System was proved and polished, allowing me to move forward to the first step of this project.

13

3 PREPARATION

The first step of every project is, without any doubt, preparation. Fundamental considerations,

such as the project’s vector, project hosting and source control systems, a working and testing

environment, skeleton (structure) of the project and outcome expectations will take place here.

3.1 Project Hosting and Source Control

Nowadays, when programming becomes more and more simplified through the use of various

complex development environments and frameworks, the need for source control and project

hosting solutions becomes vital. Such solutions usually tend to combine the hosting capability

with SCM (Software Configuration Management) functionality. SCM provides establishment

of baselines and revision control which ensures that all changes to the source are tracked and

recorded properly. Hosting site is usually unlimited in terms of storage space given, but there

may be certain limitations, such as public repositories only, shortened permission control and

collaboration functionality or blocked access to some services/parts of the system, which can

be partially or fully removed depending on the pricing plan. There are entirely free-of-charge

project hosting solutions as well, but they may lack some of the features that paid ones utilize.

Source control systems can differ in internal structure, the way how they treat changes in data

and the storage model applied to that data. Some systems treat data as the set of separate items

(files/documents, folders/directories, etc.), which is valuable for tracking and structuring small

changes, but turns out to be complicated with complex operations, such as renaming, splitting

or merging entities. Other systems employ generic approach, meaning that all data is treated as

a whole, which makes arrangement of simple changes less intuitive, but greatly simplifies this

process with the complex operations. There are two storage models typically used by common

source control systems: centralized and distributed (Figure 18). Centralized systems have only

one repository (the data store), which is used by multiple developers to commit (check-in) and

create local working copy (check-out). On the contrary, distributed systems have two or more

repositories, which can either be completely independent, or connected to the main data store.

Figure 18. Source Control Storage Models.

14

There are a lot of project hosting solutions available on the market, each of them having its

own set of features, advantages and disadvantages. In order to decide which one is better for

this project, quick comparison (Figure 19) of the main project hosting solutions was created.

Name Started Prices Ads Features Alexa

Assembla 2005 $24/M (12U) No CR, BT, WH, W, TS 12547

Bitbucket 2008 Free (private 5U) No CR, BT, WH, W 834

CloudForge 2012 $10/M (5U) No BT, WH, W 136654

CodePlex 2006 Free (only public) No BT, W, ML, F 2689

GitHub 2008 Free (public) No CR, BT, WH, W 60

GitLab 2011 Free No CR, BT, WH, W 4465

Launchpad 2004 Free No CR, BT, TS, ML 4985

SourceForge 1999 Free Yes CR, BT, WH, W, ML, F 320

M = Month, U = User, CR = Code Review, BT = Bug Tracking, WH = Web Hosting,
W = Wiki, TS = Translation System, ML = Mailing List, F = Forum, Alexa = Alexa Rank.
Alexa Rank shows the popularity of web resource, lower rank means higher traffic.

Figure 19. Comparison of Project Hosting Solutions.

As I am the only developer, this project does not require large feature set, meaning that in this

particular case code review, web hosting, translation system and mailing list will be of no use.

On the other hand, features like bug tracking and wiki are the most important for me, making

it much easier to track/fix bugs and write the technical documentation. Forum or a discussion

board might be an interesting addition, because it simplifies the process of getting a feedback.

Taking into account the required future set, pricing and the overall look-and-feel I decided to

use CodePlex. CodePlex is completely free to use with no subscription or registration charges.

Together with the project title it is possible to define a sub-domain name, which will be given

to the project, creating a unique project URL. The source control systems supported are: Team

Foundation Server, Git and Mercurial. However, Git is preferred over Mercurial, because the

interaction with the latter one appears to be slower and less reliable. CodePlex enforces users

to publish the project (make the source code publically available) within one month from the

date when it was created. Otherwise it will be deleted as seen on the control panel (Figure 20).

Figure 20. Project’s Control Panel on CodePlex.

15

3.2 Development and Testing Environment

When the main course of the project is well-defined, one of the most important things to think

about is the actual development environment. In most cases, development/programming tools,

various frameworks and libraries, debugging/testing platform determine the overall success of

the project. In this project the main emphasis will be put on the coding suite and testing tools.

The whole project is oriented exclusively towards Microsoft technologies, so the work will be

held in Windows 10, where these technologies are well-integrated, thus the main development

environment chosen is Visual Studio Ultimate 2013, which is a time-proven solution with the

full support of .NET Framework 4.5 and useful extensions, such as JetBrains ReSharper (R#).

Cosmos User-kit (108477) is an Operating System development kit, which is fully integrated

with the Visual Studio in the form of Project Templates, providing seamless compilation and

debugging interface through IL2CPU and VMware VIX API. Therefore, it was chosen to be

the base of my Operating System (together with the Syslinux bootloader) and part of its core.

VMware Player will serve as a primary testing environment during the development process.

However, the final product will be widely evaluated against all major virtualization software

(including the Microsoft Hyper-V, Oracle VM VirtualBox and Linux KVM) under different

platforms in order to ensure its stable and continuous operation in any required environment.

In contrast to an object-oriented approach, which will be utilized in the development process,

a low-level analysis of the generated CPU opcodes (Assembly instructions) will be applied to

guarantee smooth, efficient and steady execution flow. For the very same reason, all processor

registers and the state of the stack will be monitored accordingly during the debugging phase.

The Operating System will be tested on the real hardware as well. All major AMD and Intel

CPU models will be tried in order to fix possible compatibility issues and guarantee that the

generated instruction set is fully compliant with the coding standard of the x86 architecture.

Rufus 2.9 Portable (an advanced USB media formatting utility) will be used to assist testing

on the real hardware by providing fast and reliable bootable USB drive creation capabilities.

Serial cable can be used if the hardware debugging is needed, but this is not likely to happen.

16

3.3 Project Definitions

Now, when all fundamental considerations are made, the information provided earlier should

be summarized. For that reason, all significant definitions of the project will be listed below.

Educational Operating System

Project’s Name: DimOS

Kernel Type: Monolithic

User Interface: CLI/TUI

Target Architecture: x86

OS Bootloader: Syslinux

Model of Source: Open

License of Source: BSD

Language of Source: C#

Targeted Users: Students Figure 21. Official Logo of DimOS.

Note: the official logo (Figure 21) was designed exclusively for the DimOS by Zhang Yancan.

Hardware and Software Used

Development: Visual Studio Ultimate 2013, Cosmos User-kit (108477)

Debugging: VMware Player, VMware VIX API, serial cable (possibly)

VM testing: Microsoft Hyper-V, Oracle VM VirtualBox, Linux KVM

Hardware testing: major AMD and Intel CPU models, x86 architecture

Hardware testing assistance: Rufus (ver. 2.9) Portable, the USB drive

Main Objectives

1. Create a fully operational Educational Operating System for the Intel x86 architecture.

2. Design and build a simple and user-friendly interactive command-line interface (CLI).

3. Design and build several User Level applications introducing basic concepts of an OS.

4. Demonstrate the use of C# with .NET Framework in a limited execution environment.

5. Develop the shell scripting engine and scripting language for command-line interface.

Outcome Expectations

The outcome of this project should be applicable both theoretically and practically in various

areas of Information Technology, serving for different educational purposes and needs as well.

17

4 BRANDING

Based on results of a questionnaire survey I can conclude that people’s interest in this project

is a bit low. Even though it can be mostly explained by non-IT affiliation of respondents, this

is a nice opportunity for me to think about project’s branding. In this section all methods used

to build up the image of my Operating System and promote it will be described and explained.

4.1 Mascot Character

We live in the century where interesting and appealing characters are used in different spheres

of business and various public activities to represent and promote a certain party, entity or the

product. Sometimes an already existing character can become the mascot, but most of the time

original characters are created to serve that purpose. Such characters usually have personality.

In Operating Systems world those mascot characters are called OS-tans (-tan is an intentional

mispronunciation of a Japanese honorific diminutive suffix –chan, which is generally used to

address cute and attractive women, children, animals, etc.). Originating from Japanese image-

boards as an Internet phenomenon, personifications of Microsoft Windows Operating Systems

got quickly recognized by the Microsoft itself. Although anthromorphized versions of OSs do

exist for a long time already (various characters for DOS family and BSD distributions started

to appear in 1990s and early 2000s), Microsoft began to utilize the concept officially only with

Windows 7. Madobe (Figure 22) and Aizawa (Figure 23) families were created for advertising

Microsoft’s OSs and other products on Singaporean, Taiwanese and mainly Japanese markets.

Figure 22. Madobe Sisters – Microsoft’s Operating Systems.

18

Figure 23. Aizawa Sisters – Microsoft’s Software Products.

With the very same idea in mind, I wanted to have something unique that could represent, and

increase the interest in my Operating System. Thereafter I found an artist capable of doing that

kind of commission and wrote a technical task (Figure 24) for original anime character design.

Figure 24. Technical Task for OS-tan Design Commission.

The whole process took one week and involved close collaboration with the artist. Every step

was thoroughly discussed and negotiated in order to make right decisions. Furthermore, I was

able to easily track the progress through WIPs (Work In Progress reports) constantly received

from the artist. The work was handled in a very professional way, allowing me to concentrate

on the actual personality of the OS-tan, entrusting her appearance to the artist. As a result, all

the conditions were perfectly met and all my requests were fulfilled, which led to the creation

of a truly astonishing piece of art. By this delicate work my own OS-tan (Figure 25) was born.

19

Figure 25. DimOS-tan Character Reference.

20

4.2 Advertising

A mascot character on its own will not advertise my Operating System. For that reason, I need

a clear idea of the character’s proper usage. OS-tans are usually used together with the various

forms of merchandise on different public events and advertising campaigns. However, as I am

the only creator and developer of the DimOS, I took a simple and inexpensive approach to this

issue and decided to create a multi-purpose multi-functional business card. The back side of a

business card would contain a short description of the Operating System, its official web page

at CodePlex and my contact E-mail address, whereas the front side can have an OS-tan image

and the bootable USB flash drive (with DimOS itself) on it. Such card will serve as a product

and its promotional merchandise at the same time. The overall design (Figure 26) of the actual

card was made by me, with the chibi (special Japanese caricature style which assumes that the

characters are drawn in a very exaggerated way, usually with the oversized heads and/or other

deformed parts, making those characters look cute or resemble small children) version of the

OS-tan created by the same artist, who is also referenced on the front side of the business card.

Figure 26. Business Card Design.

21

In addition to USB flash drive, an alternative removable media for the Operating System must

always be available, as some of the old but potentially still usable computers do not have USB

interfaces. Floppy disks are too old and have a very low capacity, which made them unusable

for most of the current technological needs and purposes. On the contrary, CD and DVD disks

have been widely used since 1996 and are still supported in modern laptops and workstations,

which consequently makes them the best choice in my case. With the use of background made

by the same artist (referenced here too), I designed a custom CD/DVD cover print (Figure 27).

Figure 27. CD/DVD Disk Design.

In order to demonstrate how both of the designs will look on the real physical products, I have

looked through different printing services and ordered two low-cost custom prints: on a DVD

(Figure 28), and a business card with the flash drive embedded in it (Figure 29). The products

created are fully functional and are ready to be used for educational and promotional purposes.

22

Figure 28. Custom Printed DimOS DVD Disk.

Figure 29. Custom Printed DimOS USB Business Card.

23

4.3 Copyright and Licensing

Copyright is a legal “instrument” which protects the ownership of an intellectual property and

grants an owner the exclusive right to use and distribute that property. Not to be confused with

license, in software development copyright is used to uniquely specify the entity which has the

ownership or in some cases authorship of a certain code, piece of software, product or a brand.

All original designs, artworks, mascot character and code created for this project are subject to

copyright, thus contain an appropriate copyright notice, which includes the “Copyright” word,

an ubiquitously recognized © symbol, years during which the product was released or updated

and the copyright holder’s name with “All rights reserved” statement (not necessarily present).

On the other hand, license is usually a permissive document that gives others the rights to use,

change/modify or redistribute the product when certain conditions are met. Software licenses

are usually perpetual and require users to follow a set of rules. Common open-source licenses:

1. GNU GPLv3 (General Public License Version 3) – one of the most popular free/open

licenses, which allows others to modify and redistribute the code, if the GPL’s terms

and conditions are not violated, but the code should be opened under the same license.

2. Apache 2.0 – one of the most recent permissive licenses designed with patent relations

and “human readability” in mind but requires certain references to be attached to work.

3. New BSD – the most plain (along with MIT), consistent and permissive of all licenses.

I decided on the New BSD license for its simplicity and clear definition of the responsibilities.

Consequently, LICENSE file with a textual notice (Figure 30) should be added to the project.

Figure 30. Contents of LICENSE.TXT.

24

5 THEORETICAL BACKGROUND

The whole process of creating an Operating System involves a lot of theoretical considerations

to be made and many potential issues or limitations to be taken into account. This section will

accordingly introduce the reader to the actual theoretical background needed to understand the

rest of the report, as well as an educational material that will be used in the Operating System.

5.1 Evolution of Operating Systems – Prehistory

Back in the 1950s computer programs were written on punch cards (medium for storing the

instructions of a program in the form of 0s and 1s represented by holes or their absence on a

special paper card) and every program could have a full control over the system’s resources.

Because each program or even each version of one program were completely different (they

had to be written from scratch), there was no support for software, so it made portability and

compatibility impossible. This issue was later solved by creating code libraries but the actual

programs still had to work with hardware directly, thus requiring all programs to be rewritten

completely for different hardware. To solve this problem, specialists came up with idea of an

interface between hardware and software. With such an abstraction layer there is no need for

programs to take a full control over hardware, because they can communicate with it through

a single unified, consolidated interface. This interface is now known as the Operating System.

The first Operating System known to exist was developed in 1956 for the IBM 704 computer

system by General Motors and North American Aviation, and was designed for general access

to the input/output and batch processing, hence the name “GM-NAA I/O”. It also became the

first OS capable of executing programs written on Assembly language. In 1959 the improved

version of it was created by SHARE Inc. under the name of SHARE Operating System (SOS).

In 1970 the first UNIX came alive. Developed by Bell Laboratories (AT&T) and written in C

programming language (created at Bell Labs as well) the system offered multitasking support

and allowed multi-user. Possessing an interactive command shell, modular kernel and unified

filesystem, UNIX has quickly spread across a variety of machine systems and became popular.

After the initial release of Microsoft Disk Operating System (MS-DOS) in August 1981, many

GUIs for it started to appear, causing Microsoft to come up with a Windows 1.0 shell in 1985.

25

5.2 Evolution of Operating Systems – Nowadays

30 years of development turned Windows 1.0 into Windows 10 – the most popular Operating

System for desktop computers with a steadily growing market share (as the users switch from

Windows 7, which still has the highest market share among systems in the Windows family).

Windows 10 features an interactive, responsive and visually attractive GUI (Figure 31) which

appears to be one of the main reasons of its indisputable popularity on the desktop computers.

Figure 31. Screenshot of Windows 10’s GUI.

Unlike the straight-forward and direct development path of Windows, original UNIX became

a predecessor of numerous completely different (besides the modular architecture or so-called

“UNIX-philosophy” that they all follow) Operating System distributions and kernels, the most

noticeable of which are Linux, FreeBSD, OpenBSD, NetBSD, Solaris, HP-UX and MacOS/X.

Linux, in turn, became a base for hundreds of distributions, which are typically derived either

from Debian, Slackware or Red Hat. Although not being popular on desktop systems, Linux

has the greatest influence on mobile market (Android is based on Linux), server environment

and the world of supercomputing. Linux kernel is also widely used in the embedded systems.

Although taking fundamentally different development and design approaches, both Windows

and UNIX had a tremendous impact on computing and IT, turning it into what it is nowadays.

26

5.3 Reflection of Operating System Concepts

Kernel is the core of any Operating System; it provides programs with an access to hardware

resources, implements memory management and program execution, works with file systems.

Memory Management is an essential process in the Operating System and is responsible for:

1. Dynamically allocating the memory for high priority processes and freeing it for reuse.

2. Providing paging (uses a secondary data storage) and virtual memory (implements the

address translation, which maps all virtual addresses to the physical ones) capabilities,

allowing programs to use more memory than it is physically available in the computer.

3. Controlling the Kernel’s Read/Write operations and handling Memory Fragmentation.

Program Management, being closely related to Memory Management, is similarly used for:

1. Abstraction of programs by implementing different levels of access to OS’s resources.

2. Handling requests of the programs for OS’s resources, such as memory allocation, etc.

3. Preventing the programs from damaging the OS’s data or overwriting other programs.

Multitasking is the ability of an OS to execute multiple processes concurrently, as it includes:

1. Capability of providing certain execution timeframes to many simultaneous processes.

2. Task State Management (special segment of memory holding information about tasks).

Multiuser capability allows multiple-user concurrent access to OS and programs and ensures:

1. Separation and protection of user accounts and user-specific data, such as user settings.

2. Availability of specific roles or groups and clear management of system’s permissions.

File System is a set of rules, regulations and components that describe how binary data should

be represented in the Operating System and provide mechanisms for interacting with that data.

Bootloader is a small program, which gets loaded by the BIOS and executes either the Kernel

of the Operating System or a Second-Stage Bootloader (has a simple UI and an actual loader).

Interrupt is a certain signal generated by an event and sent to the CPU in order to temporarily

switch its execution flow to that high-priority event using an interrupt handler (function that is

called by hardware interrupt request or software exception) which then resumes the execution.

27

5.4 Quick Introduction to Cosmos

Cosmos (C# Open-Source Managed Operating System) is an OS Construction Kit created by a

former Microsoft Developer Chad Hower a.k.a. Kudzu. A small team of C# programmers and

OS engineers, together with the Open-Source community, is responsible for development and

improvement of User-kit and Dev-kit which, alongside with the logo (Figure 32), make up the

Cosmos Project. Source code was released on CodePlex (now on GitHub) under BSD license.

Figure 32. Official Logo of Cosmos.

Cosmos has the microkernel structure (implements basic inter-process communication, virtual

memory and scheduling), which acts as OS’s basis. The kernel is split into four levels (Rings):

1. Core (Ring 0) – provides direct hardware access and is intended only for the code that

requires special permissions and can only exist in the Ring 0, such as Assembly code.

2. HAL (Ring 1) – provides wrapping and encapsulation of functions that perform tasks,

which involve direct interactions with hardware, and acts as a sub-level for the Ring 0,

having no special permissions, as it is mostly intended for implementation of various

hardware-specific drivers and any other code that needs to access hardware via Ring 0.

3. System (Ring 2) – provides higher level of functionality and exists specifically for the

code that implements system functionality, such as the file systems or a network stack.

4. User (Ring 4) – provides an extensive functionality of all user and system applications

via the .NET Framework’s methods/functions wrapped into plugs, and OOP structures.

The whole Cosmos Project is built around the IL2CPU. IL2CPU is an AOT (Ahead-Of-Time)

compiler, which takes the IL (Intermediate Language) byte code produced from the C# (or any

other .NET compatible language) code by Visual Studio, and translates it to the CPU opcodes

(Assembler). The output .ASM file is then assembled by NASM into an ELF (Executable and

Linkable Format) object. Finally, tools like ld.exe and objdump are used for retrieval of object

information, and mkisofs.exe is used to produce the final ISO image, which contains Syslinux

bootloader as well. With the help of Visual Studio the compilation process becomes seamless.

28

5.5 Overview of the Booting Process

For an ordinary user the whole process happening between the press of a power button and the

actual appearance of an Operating System’s logo on the screen is nearly seamless. In practice,

the booting process is a bit more complex. When the user presses the power button, two wires

get connected, resulting in a current flowing through the motherboard to a PSU (Power Supply

Unit), which, in turn, recognizes it as a signal to start supplying the power to the motherboard

and connected devices. When a sufficient amount of power is provided to all the components,

meaning that PSU has passed its self-tests and entered its normal operation mode, it sends the

Power Good signal back to the motherboard, where it then reaches BIOS (Basic Input/Output

System), which is stored either in ROM (Read-Only Memory) or in the flash chip (EEPROM).

After receiving the Power Good signal, BIOS starts to initialize a POST (Power-On Self-Test)

process, which ensures that enough power is being supplied to all devices, itemizes hardware

and checks if the critical components (CPU and RAM) are operating properly. Depending on

the BIOS, on some computer systems POST sequence shows its output on the monitor, while

on the other systems errors are reported through the motherboard speaker/buzzer using special

beep codes or via an I/O port 80 which requires special POST card connected to motherboard.

When the POST procedure successfully finishes, it gives control to the main pre-boot routines

of the BIOS. Those routines include initialization of an Interrupt Vector Table (list of the most

common interrupts stored in the first 1024 bytes of memory) and usage of default/pre-defined

boot order to determine which mass-storage device should be assumed as bootable in the first

place. BIOS then calls an INT 19h (0x19) interrupt to read the first sector of this device, trying

to find the bootloader. In case of a failure BIOS tries the next available entry in the boot order.

When the bootloader is found, BIOS loads it into memory and passes the execution to the boot

code, which initializes the memory and loads the Operating System’s kernel or a second stage

bootloader (GRUB, NTLDR/BOOTMGR, Syslinux, LILO, etc.). Second stage bootloaders are

usually much more advanced as they tend to provide multi-boot functionality (presenting a list

of different OSs that might be located on different bootable devices), different loading options

(such as safe-mode or CLI-mode) and even various programs (like memtest86+ – the memory

testing utility). Some second stage bootloaders include a GUI and contain games like snake or

tetris. Once the actual Operating System is loaded, bootloaders are removed from the memory.

29

5.6 Basics of Command Shell

Today we tend to use Graphical User Interface for all daily tasks, as well as in the professional

working environment. Even such complex activities as programming and web design can now

be easily handled without the use of Command Line Interface, because many IDEs (Integrated

Development Environments) are so powerful that there is a GUI available for almost any task.

However, there are areas where command shell is not only an essential user interface, but also

the most efficient, consistent and fast way of a human-machine interaction. Such areas include

server technologies, embedded systems, administration and maintenance of computer systems,

automation, networking and so on. Command line is also widely used in all UNIX-based OSs.

Being a “blast from the past”, command shell remains one the most stable and common means

of communication between applications and different parts of the OS as well. For example, in

Windows many Installation Wizards and device driver packages rely on the Command Prompt

for configuration of various system components, installation of services, cleanup of temporary

files and directories, etc. For server environment and remote administration Command Prompt

was quickly superseded by PowerShell (Figure 33), which is an extandable shell together with

the corresponding scripting language and full access to COM (Component Object Model) and

WMI (Windows Management Instrumentation). PowerShell is based on .NET Framework and

is, therefore, cross-platform and open-source (released as “PowerShell Core”, by analogy with

the .NET Core). Linux, FreeBSD and other POSIX-compliant OSs generally use Bourne again

shell or shortly Bash (Figure 34), which is a powerful command processor and an easy-to-use

scripting language that provides virtually full access to OS. Bash is available on Windows 10.

Figure 33. Setting Working Location and Listing Directory Contents – PowerShell.

Figure 34. Setting Working Location and Listing Directory Contents – Bash.

30

Even though the major command shells are significantly different in scripting capabilities and

interface interactivity, they all have a set of basic features in common. Those features include:

1. Filename Globbing – a process of dynamically generating directory and file names (or

extensions) based on the wildcard matching, which implies a set of special symbols to

be used instead of the usual characters (allowed in the filename) in the bulk operations.

2. Command Piping – usage of a special delimiter/separator character to type a sequence

of commands represented as one command line entry where an output of the command

serves as an input of the next command in the sequence, creating the software pipeline.

3. Here Document/String – an input redirection method, which uses a certain pre-defined

keyword(s) passed to the shell at both the beginning and the end of a user input, stating

that everything entered in between should be treated as plain text, instead of command.

4. Command Substitution – technique similar to the command piping, that provides more

flexibility and control over the piping process, as the output of a command (or multiple

commands) can be fed to the input of another command or serve as its option/flag, etc.

5. Scripting Engine – a built-in interpreter capable of executing the shell commands from

the text file, recognizing and interpreting all keywords and syntax of the shell scripting

language with support for variables and control structures (condition-testing, iteration).

6. Command History – a set of previosly entered commands displayed to the user, or the

substitution of current command line entry by the last command submitted to the shell,

triggered with the press of a pre-defined shortcut (typically F7 or an UP ARROW key).

Demonstration of described functionality (Figure 35) shows the usage of here document input

for creation of the shell script, which accepts 2 arguments and uses file globbing together with

the pipelines and command substitution to archive the files with a given “type” and extension.

Figure 35. Demonstration of Basic Shell Functionality – Bash.

31

5.7 File Systems Explained

File system is a software facility that defines and controls the means, by which the data should

be stored, structured and ordered on a certain readable and/or writable media. File systems are

used to logically separate and/or isolate the information, making the data properly identifiable

and accessible for both the user and an Operating System. Depending on actual storage media

and the functionality required, file systems can greatly vary in flexibility, speed of data access,

security features, capacity limits, overall complexity, internal structure, design limitations, etc.

However, regardless of their application, all file systems provide following base functionality:

1. Effectively tracking and reporting the available storage space left on the storage media.

2. Safely (with no occasional overwrites of the data) creating new directories and/or files.

3. Reading the data from existing files into memory (in non-memory-based file systems).

4. Updating and modifying data in the existing files, if those files are not write-protected.

5. Deleting directories and/or files (if these are not write-protected) from a storage media.

Additionally, besides CRUD (Create, Read, Update and Delete) operations listed above (2 to

5), most of the general-purpose file systems have the following features implemented as well:

1. Consistent file and directory naming/addressing scheme with a hierarchical structure.

2. Human-readable typization of files (such as the file extensions and related metadata).

3. Access permissions and advanced file attributes (executable, read-only, hidden, etc.).

4. File caching and read/write bufferization, that greatly reduces performance overhead.

5. Built-in support for advanced file operations, such as renaming, copying and moving.

6. Automatic encryption mechanisms (NTFS) and transaction logging/journaling (ext3).

For simplicity, file systems’ internal structure can be logically divided into layers (Figure 36).

Figure 36. Common File System Layers.

32

Different computer systems are used for different tasks. Depending on the particular operating

environment, target architecture and the actual purpose file systems are generally divided into:

1. Disk FS – the largest group of file systems designed to operate on a disk storage media

and allow multiple processes to access data seamlessly (regardless its actual placement

on the media); most notable disk file systems: NTFS, FAT32, FAT16, ext3, ext4, ZFS.

2. Optical Disk FS – basically the same as disk file systems, but designed specifically for

the use with CD, DVD and Blu-ray disks; known file systems: ISO 9660, Joliet, UDF.

3. Flash FS – file systems designed specifically for the use on flash memory-based media

to avoid the contradiction of utilizing a block-based data access on non-block devices

and related drawbacks (such as write amplification); flash file systems: JFFS2, LogFS.

Note: USB sticks, MMC and SD cards, SSD disks, etc. have built-in Flash Translation

Layer (TrueFFS or ExtremeFFS), and therefore are represented as usual block devices.

4. Tape FS – file systems intended to be used on magnetic tapes, allowing the files to be

stored in a self-describing form (meaning that it also contains index metadata), as well

as reducing performance overhead resulting from sequential nature of a magnetic tape.

Many implementations (IBM, Oracle, Quantum, HP) of Linear Tape File System exist.

5. Database FS – file systems with built-in support for rich metadata and hierarchical file

management features based on the database concepts, which allows files to be indexed

and queried fast by their attributes; popular file systems: Apache Hadoop, GFS, BeFS.

6. Network FS – an abstraction layer (used on top of general-purpose file systems), which

provides seamless access to remote files via network protocols: NFS, SMB, AFS, FTP.

7. Virtual FS – a high level abstraction layer that provides an Operating System with the

uniform access (path disambiguation, abstracted file management operations, etc.) to

the underlying general-purpose file systems (may be located on different devices or in

memory), transparently integrating them into file tree through the use of mount points.

VFS also allows non-file entities (I/O devices, processes, etc.) to be presented as files.

8. Shared Disk FS – centrallized way of providing multiple machines or machine clusters

with a direct concurrent access to the same shared block storage device, preventing the

write collisions through the use of a lock manager; variations: GFS2, StorNext, CXFS.

9. Flat FS – type of file systems that do not support sub-directories (resulting in the non-

hierarchical structure and absence of file paths); common examples: MFS, VTOC, S3.

In addition to the types described above, for special cases (like with DimOS) a memory-based

pseudo-filesystem can be used. Such a file system works entirely in RAM, and thus is volatile.

33

5.8 Artificial Intelligence – Virtual Personal Assistant

As the age of computing constantly brings us new technological flavors all big players (Apple,

Google, Microsoft) on the OS market start to take advantage of the AI (Artificial Intelligence),

integrating their IPAs (Intelligent Personal Assistant) – Siri, Google Now and Cortana into the

iOS, Android and Windows respectively, reaching out to numerous users all around the world.

IPA is a software agent that tries to mimic the human behavior and perform respective actions,

such as holding a conversation, making various decisions on user’s behalf, storing information

obtained from the user in order to customize and personalize the user experience. IPA is often

capable of machine learning and reasoning, which allows it to perform autonomous activities.

Such advanced and powerful assistants as Cortana and Siri can control almost all functionality

of their Operating Systems by using the API provided by applications and system components.

For example, they can automatically manage user’s daily schedule, send E-mail messages, add

calendar events, look for the information, start/stop the programs, control media playback, etc.

IPAs are usually controlled by voice commands or textual input (just as if you would talk with

a real person), and therefore have little or no GUI. Most of the implementations posess only a

text field, voice input button and an answer output area as the interactive interface (Figure 37).

Figure 37. Interactive User Interface of Microsoft’s Cortana and Apple’s Siri.

34

5.9 Artificial Intelligence – Implementation Methods

People have been trying to create program that will be able to pass the Turing test for decades.

There are many different mathematical, statistical, logical, linguistic and symbolic approaches

to AI, but none of them proved to be exclusively right or the most appropriate, as intelligence

itself is something yet to be defined. Therefore, I chose two approaches that would fit an IPA.

AIML (Artificial Intelligence Markup Language) is an XML-based open standard used in the

natural language processing software to describe the behavioral patterns and question-answer

relations that together make up an AI. AIML is one of the most simple and dull approaches to

implement. Nevertheless, it was able to achieve quite good results with an acceptable quality

of responses and, even though not being “clever” enough to pass the Turing test, AIML gave

birth to numerous chatterbots and won the annual Loebner Prize AI Competition three times.

AIML specification includes the mandatory <aiml>, <category>, <pattern>, <template> tags,

which define the start and the end of an AIML document, unit of knowledge (particular topic

or question to be processed, etc.), a certain pattern matching the user input and the actual set

of slightly different responses (or just one specific response) to that pattern respectively. The

common example of an AIML file (Figure 38) would also contain some of the additional tags.

Figure 38. AIML File Example – Remembering User’s Name.

AIML interpreters are capable of processing only the pre-defined patterns, which makes them

predictable and not truly intelligent. However, their functionality can be extended through the

use of an artificial neural network (machine learning model that operates similarly to a human

brain). In RNN (Recurrent Neural Network) input layer of nodes (neural units) adds an output

of the previous iteration, which becomes a context layer, to the processing model, making the

algorithm literally learn the information retrieved from the user input. Combined with AIML,

RNN can be used to populate the knowledge base of an AI with the new words and sentences

provided by user. This technique can help the AI to resemble a real person in the conversation.

35

6 INITIAL PLANNING

Being the starting point of an actual development process, this section represents the transition

from theoretical part of the project to a practical one. All substantial components of the system

(User Interface, Command Shell, File System and Applications) will be briefly explained here.

Furthermore, practical aspects of the concept, such as the educational process, will be defined.

6.1 Educational Process – Learning Flow

The whole studying process in DimOS revolves around the Operating System itself. Different

components together should create a comfortable learning environment, where user can study

the basics naturally, just by using the built-in knowledge base and educational tools provided.

Such tools will utilize various self-assessment methods and practical tasks that should ideally

familiarize user with the Command Shell and common design concepts of Operating Systems.

Learning flow in DimOS will be based on repetition

of material and absolute freedom of

actions given to user. Such an

approach (Figure 49),

despite being the

most straight

and simple,

is rather

one of the

most useful

ways to learn

the OS elements.

It makes use of the

theoretical learning and

its practical application in a

real functioning environment, which

is, quite reasonably, the Operating System itself.

Figure 39. Learning Flow in DimOS.

36

6.2 Educational Process – Study Tools

DimOS will have the special set of tools, which are supposed to track user’s learning progress

and provide different assessment methods, including traditional multiple-choice, short-answer,

matching and true/false questions. Each tool will have its own dedicated question bank, which

should contain questions of the corresponding type, logically divided into topics or categories.

“Quizzes” tool (Figure 40) is responsible for handling multiple-choice questions that have the

number of answer options, only one of which is correct. User should select the correct answer.

Figure 40. Conceptual Screenshot of Quizzes Tool.

“Guesses” tool (Figure 41) is used to provide short-answer questions, where an answer can be

“guessed”, as there are no hints or options provided. User should type answer into the prompt.

Figure 41. Conceptual Screenshot of Guesses Tool.

“Targets” tool (Figure 42) manages a set of specific actions or small tasks to be accomplished

by the user. The “target” will be marked as complete when user performs the required actions.

Figure 42. Conceptual Screenshot of Targets Tool.

Other tools, such as “Scripts”, “Matches” and “Options”, where user will need to write certain

scripts, match the terms with their corresponding definitions and select all answer options that

apply respectively, will be implemented as well, providing a rich set of generic study features

and possibilities that should together guarantee the smooth and enjoyable learning experience.

37

6.3 Command Line Interface

DimOS will feature a simple yet powerful Command Line Interface consisting of four sections

(Figure 43), into which the text screen will be logically divided based on desired functionality.

Figure 43. Logical Text Screen Separation.

All sections should be visually separated from one another and each of them should be serving

its own dedicated purpose. Apart from self-descriptive command input and output sections, an

“Information” section and the special prompt separator line will form the vivid UI (Figure 44).

Figure 44. Conceptual Screenshot of DimOS User Interface.

38

6.4 DimFS – Memory Based Pseudo File System

DimFS (not to be confused with the DFS) is the controversial part of an Operating System that

aims to provide the virtual directory and file management interface, which allows user to store

data in the tree-like folder structure where pieces of that data are logically represented as files.

The controversy lies in the file system’s final purpose – showing the basic operating principles

of file systems (common operations with files and directories, difference between the absolute

and relative paths, etc.), instead of concentrating on the actual implementation (stability, speed

of file access, efficiency of file grouping and enumeration, access permissions, etc.). DimFS is

called a pseudo file system because it only mimics the operation of a real disk FS, whereas the

inner structure may resemble that of a VFS, and thus contain no physical storage management.

Unlike complex and cumbersome directory structure of modern Operating Systems, DimFS is

fairly simple and easy to understand, as it has logically organized hierarchy (Figure 45), which

consists of the four main top-level directories residing inside the top-most root directory. Both

“temp” and “user” directories are writable for the “user” account, while “data” and “conf” are

writable only by “root”, and therefore, along with the contents, appear as read-only for “user”.

Figure 45. Default Directory Structure in DimFS.

39

6.5 DimSH – Intelligent Command Shell

DimSH is the only interaction interface between the user and OS. Being an irreplaceable and

vital component of the system, it must possess a high degree of both stability and consistency.

Comparing to modern command shells, which are designed solely for computer professionals

and IT specialists, DimSH is absolutely unique, because it targets intermediate students, total

beginners and experienced computer users at the same time. The shell aims to provide smooth

and continuous operation through the use of advanced input processing and modular structure.

The prompt line (Figure 46), which constantly accepts and processes user input, consists of an

OS identifier (“DimOS”) and an access-mode identifier (“user” or “root”) separated by the dot

and enclosed in square brackets followed by the home directory identifier (“$” for user-access

mode or “#” for root-access mode) and a colon. Submitted input is not projected to the output.

Figure 46. Conceptual Screenshot of DimSH Prompt.

The command output (Figure 47) is completely isolated from the prompt input and consists of

submitted command with its parameter/arguments enclosed in square brackets followed by the

home directory identifier and a colon, after which an actual output from the shell is presented.

Figure 47. Conceptual Screenshot of DimSH Command Output.

Input Processing Modules (Figure 48) are responsible for executing and showing the output of

an appropriate system instruction selected on the basis of user input. The IPMs are extendable.

Figure 48. Main Input Processing Modules of DimSH.

40

6.6 DimSH – Command Evaluation

Command evaluation in DimSH is based on advanced string processing mechanism, which is

responsible for a proper recognition and execution of all shell commands (Figure 49) and user

aliases. The corresponding IPM will be tightly integrated with the main shell scripting engine,

enhancing its functionality. Commands are organized hierarchically based on the target usage.

Figure 49. DimSH Built-in Shell Commands.

41

6.7 Shell Scripting and Artificial Intelligence Tutor

Scripting is one of the most valuable capabilities of every shell, as it provides all facilities and

instruments needed for efficient task automation and quick problem solving. DimSH will take

the modular approach to scripting, which allows different programming/scripting languages to

be used in DimOS. Based on the language declaration statement (found in the beginning of the

script file) “dim” command should pass its source code to a right language interpreter. Each of

the interpreters will be implemented as a separate module. Prospectively DimSH will support:

1. H (Figure 50) – the main scripting language of DimOS, which features simple yet very

powerful syntax, fully dynamic and modular structure, high-level data abstractions and

full access to all functions and capabilities of the shell and the Operating System itself.

2. Brainfuck (Figure 51) – the most famous of all esoteric languages, which contains only

8 commands that make it easy to implement and mind-blowing to use, hence the name.

3. Cat (Figure 52) – functional stack-based interpreted programming language created by

Christopher Diggins and released to public domain in the form of C#-based interpreter.

Figure 50. H Syntax (concept). Figure 51. Brainfuck Syntax. Figure 52. Cat Syntax.

The most interesting feature of DimOS is an Artificial Intelligence Tutor (AIT), which will be

implemented as the “last resort” Input Processing Module, meaning that the input not accepted

by any of the IPMs will be directed to it. AIT will also stay active while

the user interacts with other parts of the Operating System, showing the

output in a small container (Figure 53), which consists of a plain border

and the name of DimOS-tan, who will be acting as a tutor as well. Text

screen of the container is 12 characters wide and 4 characters high, as it

is intended for short comments, explanations or expressions that should

not be displayed in the “Command Output” section, where the AIT will

provide learning material or attempt to evaluate the user input properly. Figure 53. AI Tutor.

42

7 ENVIRONMENT SETUP

Practical implementation of every project starts with an environment setup – the section where

all necessary preparations and configurations (hosting the project, installing the software, etc.)

are done. These processes might significantly change over time, making the material outdated.

Note: proper operation of a source code is guaranteed only with software versions shown here.

7.1 Hosting the Project on CodePlex

Hosting a project on CodePlex is as easy as clicking the “Create Project” button and following

the simple steps provided by the system. After the project is created the user is given an ability

to edit its home page (Figure 54), modify various project settings, add the source code, release

a particular version of the project, write its documentation, specify the license (Figure 55), etc.

Figure 54. Writing the Project’s Home Page.

Figure 55. Selecting the Project’s License.

43

7.2 Installing IDE and Supporting Tools

Practical implementation of the project will be held in Visual Studio Ultimate 2013. However,

Ultimate Edition requires a paid subscription, which is offered for free of charge by Microsoft

DreamSpark (now known as Microsoft Imagine) program. Therefore, Community Edition can

be used as well, as it contains all features needed for regular development and is provided free

of charge, with the only restriction being the limited number (five) of developers, who can use

the IDE concurrently for commercial purposes. It has different installation options (Figure 56).

Figure 56. Visual Studio Community 2013 Installation Options.

In order to debug and test the Operating System efficiently, VMware Workstation 12 Player or

any other compatible version can be used. Additionally, VMware VIX 1.15 API (scripting and

task automation engine for VMware products with the bindings for C, Perl, VB, VBS and C #)

can be used to integrate it with Visual Studio. Both products are available for free (Figure 57).

Figure 57. VMware Download Center.

The most important component to be installed is Cosmos User-kit version 108477, which can

be downloaded from the project’s page on CodePlex. An installation is quite straight-forward.

44

7.3 Creating the Visual Studio Solution

When all required software packages are installed and configured, the working environment is

ready for use. First of all, a new Solution (Figure 58) should be created in Visual Studio. Note

that an “Add to source control” option was selected. This will automatically configure the Git.

Figure 58. Visual Studio Solution Creation Process.

When the Solution is generated, developer is presented with the neat VS interface (Figure 59).

Figure 59. User Interface of Visual Studio.

45

7.4 Configuring the Source Control

Finally, the project can be published on CodePlex and synchronized with its remote repository

that is displayed (Figure 60) under the “Clone” button, which is located on “Source Code” tab.

Figure 60. Project’s Git Repository on CodePlex.

CodePlex suggests installing 3rd-party Git tools (either Git BASH or Git GUI). This might be

a good choice for those who are already familiar with Git and/or want to have granular control

over synchronization process and the repository. However, as everything is now configured to

work seamlessly through the Visual Studio, a better approach would be to use tools integrated

into the IDE and available straight out of the box. VS provides the Team Explorer (Figure 61).

Figure 61. Visual Studio Team Explorer.

“Settings” => “Git Settings” menu allows the developer to configure a User Name and E-mail

Address. When this is done developer can start committing. After the first local commit Team

Explorer will suggest publishing it to the remote repository. This can be easily done by setting

the link to it and entering log-in credentials. CodePlex will now show the commit (Figure 62).

Figure 62. Publishing to Remote Repository.

46

8 IMPLEMENTATION

This part contains an actual implementation of an Operating System and its main components.

With the emphasis put on conceptual logic of various solutions and considerations, the source

code will be shown and described in short. Please refer to project’s page for a full code listing.

8.1 DimFS – The Concept of Nodes

Instead of files and/or directories, DimFS will store the information in nodes. A single node is

self-consistent, as it contains all properties needed by the Operating System, including the link

to its parent, a set of permissions, attributes and timestamps. Node in DimFS is different from

an inode, which is used to store information about (and link to) the file in all UNIX-based file

systems. Any given node has exactly the same implementation and is stored in the OS’s RAM

exactly the same way as all other nodes, which allows the system to perform complex file and

directory operations easily. Functions of a particular node will be defined solely by its Content

property, which stores the actual data (list of the child nodes or contents of the file) that can be

accessed directly. Due to the memory-based nature of nodes and target architecture (x86) of an

Operating System, files larger than 2GB (although such files can be created) can easily cause a

heap overflow, which might eventually lead to a page fault, finally resulting in a Kernel Crash.

Size property of the node class (Figure 63) will be controlled by DimFS, thus having no setter.

Figure 63. Node Implementation.

47

8.2 DimFS – Permissions

Permissions in DimFS (Figure 64) are applied to the “user” account only. The Owner property

is determined during the node creation based on the current access-mode (account) in use. The

“user” account by default has full access to the nodes created by it. However, all nodes created

under the “root” account can only be read by “user”, unless needed permissions are configured

explicitly. All permissions are enforced on a file system level, meaning that DimOS itself does

not need to be aware of them. Default directory layout will be initialized statically (Figure 65).

Figure 64. Permissions Implementation.

Figure 65. Permissions of Default Directory Layout.

48

8.3 DimFS – Attributes

Attributes are special properties assigned to the nodes and used by the system for specific data

operations, such as the execution of search queries, creation of temporary files, detection of all

changes in system settings and so on. Implemented as Boolean fields (Figure 66), all attributes

can be either enabled or disabled. They are assigned to the default nodes statically (Figure 67).

Figure 66. Attributes Implementation.

Figure 67. Attributes of Default Nodes.

49

8.4 DimFS – Strict Paths

Paths in DimFS are thoroughly designed to utilize the full potential of nodes and their mutual

similarity. Unlike other Operating Systems, DimOS attempts to evaluate and resolve any path,

as long as it starts with one of the special symbols – path delimiters (#, $, @, >, ^ and <). The

path can contain wildcard symbols (* or ?) that will get matched either against any number of

characters or just one single character. Such path, after expansion, can point to multiple nodes,

allowing any operation to succeed if at least one of resolved nodes possesses all attributes and

permissions needed for that operation. Paths starting with # (root/top of the directory tree) are

considered absolute, whereas all other paths should be identified and treated as relative. Node

starting with a dot (.) is considered hidden, which means that it will not be resolved during the

path expansion or listing operations. Hidden nodes should be addressed explicitly via the path.

In order to facilitate an educational process and boost capabilities of the file system Strict Path

Enforcement (Figure 68) was applied. This feature ensures that the path can solely identify the

purpose (whether it should act as a file or a folder) of all nodes it resolves by enforcing the use

of path delimiter (>) after traversable nodes (directories) and disallowing its use after the non-

traversable ones (files), which provides a logical separation between two behaviours, allowing

both the user and the shell to take advantage (Figure 69) of the concept of nodes. By default, a

particular node must be utilized either as a file or a directory. However, with “Advanced Path”

setting switched on, any node can be used naturally as both file and directory at the same time.

Figure 68. Strict Path Enforcement Rules.

Figure 69. Command Convergence of File Operations.

50

8.5 DimSH – Interactive Environment

High degree of interactivity and a natural ease of use are two distinctive properties of DimSH.

Text-based user interface of the shell incorporates a variety of useful indicators (Figure 70) to

supplement the command prompt. “Command Output” section can be scrolled vertically using

PAGE UP and PAGE DOWN keys, which is immediately reflected on the Scrolling indicator

in the form of an arrow showing the current position of on-screen data in the buffer. Similarly,

“Command Input” section can be scrolled horizontally (LEFT ARROW and RIGHT ARROW

keys) with the scrolling status displayed on Input-fit indicator. Input validity indicator is rather

special, since it can show in real time (as the user types) whether the command entered will be

executed with (red) or without (green) errors. It also aims to warn (yellow) user about possible

syntax mistakes, such as unmatched parenthesis, unclosed brackets, wrong/invalid statements.

Figure 70. Prompt Indicators.

Current screen indicator is paired with 6 virtual text screens, which the user can easily switch

between by pressing F1-F6 functional keys, and shows the screen that is currently active. The

actual data to be projected to the real screen is stored in the linear text buffers (one per virtual

screen) located in VGA Display Memory. When a certain virtual screen is activated, contents

of its buffer are copied over the real screen’s memory block, which is used by VGA controller

to render ASCII characters on 80x25 grid (VGA Mode 3) using 16-colour palette (Figure 71).

Figure 71. Enabling 16-Colour Palette (Bright-bit Mode).

51

8.6 DimSH – Command Journaling

Analogously to other shells, DimSH records all submitted commands in a Journal, which can

be seamlessly scrolled back/forth using UP ARROW and DOWN ARROW keys respectively.

Each Journal Entry (Figure 72) consists of the command itself (stored as a colored string), its

timestamp, comment from the AI Tutor and a link to the parent entry (with a multi-line input).

Figure 72. JournalEntry Implementation.

Journal can be accessed (Figure 73) by the user through the Journal Node (#>data>history.txt),

which acts as a normal text file and gets updated at command submissions, reflecting changes.

Figure 73. Contents of Journal Node.

52

8.7 DimSH – Input Processing

As it was mentioned earlier, DimSH supports here-input and character- or token- based syntax

highlighting. Both of these features (Figure 74) require some input processing to be done. This

task will be handled by the InputProcessor, which performs lexical analysis of a raw input and

determines how exactly it should be treated. Priority-based lexer/tokenizer (Figure 75) divides

the string into tokens that can later be parsed by the analyzer. By default, all input is treated as

a shell script, which should be passed to an H interpreter for execution and then, together with

the outcome produced by scripting engine, forwarded to an AI Tutor for evaluation. However,

special cases (advanced token-based syntax highlighting, natural language input, study flow or

interaction with the tutor) might provoke an entirely different behaviour involving other IPMs.

Figure 74. Multi-line Input and Character-based Syntax Highlighting.

Figure 75. Priority-based Tokenizer.

53

8.8 DimSH – Development Suite

H is a general programming/scripting language designed specifically for DimSH. H interpreter

is built directly into the shell, which allows it to perform system-specific actions (changing the

prompt, manipulating the file system, accessing VTS memory, etc.) directly without the use of

API calls. There is no standard language specification, as H is genuinely dynamic (to an extent

that the way source code is interpreted, including the behaviour of operators, functions and the

actual data types, can be changed freely during the runtime of a program by that very program)

and highly modular (additional functionality in the form of reusable code libraries, source files

or scripts written on another language can be plugged in anywhere inside the program), but the

main language constructs (Figure 76) will be documented and described in general user guide.

Figure 76. H Language Constructs.

54

H source code may contain both symbolic (special characters that are present on the keyboard

act as language keywords) and natural (English words are used as language constructs) syntax

forms. Syntax comparison (Figure 77) shows the difference between DimSH and major shells.

Figure 77. PowerShell, BASH and DimSH Syntax Comparison Table.

55

Due to the modular structure of the kernel, it is extremely easy to implement other interpreters

and seamlessly plug them to the shell. For academic purposes H is accompanied by Brainfuck.

Being probably the most popular of esoteric programming languages, Brainfuck still has some

educational value, because its working principle is similar to that of a Turing machine that can

be used as a mechanism to describe the general principles of computation and programming as

a whole, including the Turing completeness, halting problem and sequential access memory. It

is clear that Brainfuck, as a language, is inapplicable for any practical task, but a vast adoption

of its theoretical use and the technical simplicity of its implementation make it an excellent, or

at least relevant (in the context of its ethically questionable name) tool for programming study.

Brainfuck interpreter in DimOS is slightly more interactive than other non-GUI interpreters in

that it utilizes unique features of DimSH to visualize (Figure 78) the memory (buffer) contents

at runtime. Implementation preserves the original instruction set of Urban Müller’s Brainfuck,

but two additional instructions were added to allow the use of breakpoints (#) and inline input

(!) in the source code, which enables the programmer to debug the program by feeding it with

specific input or pausing its execution at certain places to observe the current state of memory.

Figure 78. Visualization of Factorial Program (Brainfuck).

Input/output facilities are provided by the shell, but only one-line input is allowed (Figure 79).

Figure 79. Single-line Input in Brainfuck (¶ as NewLine).

56

8.9 Applications and Shell Commands

Command (Figure 80) in DimSH is a special container type for self-consistent function, which

accepts parameters separated by space and produces a fairly descriptive and verbose output for

both the user (by writing it directly to the “Command Output” section) and interpreter that was

used to call/invoke it. Every command must be able to work in a silent mode and report errors.

Figure 80. Command Implementation.

Applications are similar to shell commands, but they cannot be considered a part of the system

command tree. Binary execution is not yet implemented in DimOS, so applications are textual

files containing a simple header (tells the shell which interpreter to use) and the source code to

be interpreted. The header must start with the “#” symbol followed by a string literal (between

“ and ”) containing either a path to another application or one of the built-in interpreters’ name

(“H”, “Brainfuck” or “Cat”) and end with the semi-colon. Files without headers will be treated

as H scripts. Applications can be started with the stand-alone “dim” command. For example, a

typical stopwatch/timer application (Figure 81) written on H scripting language and located at

#>user>home>stopwatch.h would be started with the command: dim $>home>stopwatch.h 10

Figure 81. Timer Example Application.

57

9 PLUGS

.NET Framework was originally designed to be a monolithic set of the platform-specific code,

which sometimes opts for excessive use of the native calls (WinAPI) or constructs that in turn

require or partially depend on system libraries. DimOS runs on bare hardware, where all these

dependencies simply do not exist, so the code containing them will not compile. This part will

demonstrate how to overcome such obstacles and ensure that the whole system will build fine.

9.1 Mathematical Functions

Most of the methods and functions in System.Math namespace use a double-precision (64-bit)

floating-point data type for the calculations. However, DimOS is built for the x86 architecture,

and therefore is unable to utilize 64-bit types. Such functions/methods must be reimplemented

(Figure 82) using the “float” data type. They can be used as System.Single extension methods.

Figure 82. Plug for System.Math.

There is no special Boolean data type in H, so boolean values are stored in floating-point data

type variables, which requires generic conversion functions (Figure 83) to be designed as well.

Figure 83. Float-Boolean Conversion Functions.

58

9.2 Collections

Neither IEnumerable<T>, nor IEnumerator<T> interfaces are supported, as both of them need

classes from System.Threading namespace to be present. DimOS is a single-process Operating

System, so it completely lacks the implementation of any of those classes, making it infeasible

to plug the interfaces mentioned above. Instead, higher-level abstractions, such as List<T> and

Array<T> (uses non-generic version of an IEnumerable) should be plugged. Most of extension

methods (Figure 84) and type-specific functions (Figure 85) do not require any complex logic.

Figure 84. Plug for Array’s Extension Methods.

Figure 85. Plug for List’s Functions.

59

9.3 Char and DateTime

Most of the functions in System.Char make use of System.Globalization.CultureInfo for some

language-specific operations, which are valid only for the Unicode-based character sets. These

functions can be safely implemented (Figure 86) without the CultureInfo calls, because ASCII

is the only encoding supported in DimOS. However, Strings are stored in memory in Unicode.

Figure 86. Plug for Char’s Functions.

System.DateTime utilizes CultureInfo as well, but it also stores date and time in 64-bit integer

data type as the number of 100 nanosecond intervals passed since the 12 AM January 1st, year

1 A.D. in Gregorian Calendar. For that reason, a new DateTime should be created (Figure 87).

Figure 87. Plug for System.DateTime.

60

9.4 Strings

String operations require CultureInfo class too and also have to be reimplemented (Figure 88).

Figure 88. Plug for String’s Functions and Extension Methods.

61

10 TESTING

Every commit to the Git repository is thoroughly and carefully tested to ensure stability of the

system. Uncovered bugs are then inspected further during the debugging phase (Figure 89) by

using software breakpoints (step-by-step debugging) and observing an Assembly listing along

with the state of CPU registers and the stack. In addition to manual testing, unit tests are used.

Figure 89. Testing/Debugging Environment.

Occasionally DimOS is also tested on real hardware (Figure 90) to ensure stable and swift run.

Figure 90. DimOS Running on Real Hardware.

62

11 CONCLUSION

Due to the time constraints, the project, at the time of this writing, still remains unfinished. An

actual state of the system can be classified as the early alpha. However, despite the fact that all

key functionality has not yet been implemented, DimOS was proved to be a fairly stable piece

of software with rich set of features and high degree of usability. During this project, 10 major

commits (Figure 91) with important changes were pushed to a remote repository on CodePlex.

Figure 91. Git Repository Commit History.

Considering complexity of the project topic, there is a huge room for future improvements and

modifications in both hardware- and software- related aspects. The most significant challenges

to tackle in the near (provided that there is enough time and motivation) future would include:

1. Adding support for real file systems (FAT, Ext2) to store data in non-volatile memory.

2. Implementing binary execution to run pre-compiled instructions without an interpreter.

3. Designing Artificial Intelligence engine to provide comprehensive support for the user.

4. Creating a Grapical User Interface with frame buffer rendering and support for mouse.

During this research project I was able to accomplish all main objectives and gain tremendous

amout of knowledge about Operating Systems, computing and software development with C#.

63

BIBLIOGRAPHY

BrokenThorn Entertainment Co., 2008. Operating System Development Series. WWW page.

http://www.brokenthorn.com/Resources/OSDevIndex.html

Fountain Computer. BIOS Key Codes. WWW page.

http://www.fountainware.com/EXPL/bios_key_codes.htm

Kevin Matz, 1997. Atrevida Game Programming Tutorial #6: Hardware Ports. WWW page.

http://atrevida.comprenica.com/atrtut06.html

K. G. Finogenov, 12.02.1990. Working with MS-DOS. Booklet. ISBN: 5-03-002346-1.

J. D. Neal, 1998. Hardware Level VGA and SVGA Video Programming Information Page.

Attribute Control Registers. WWW page.

http://www.osdever.net/FreeVGA/vga/attrreg.htm#10

McGraw-Hill Education, Herbert Schildt, 18.05.2010. C# 4.0 The Complete Reference. Book.

https://www.amazon.com/4-0-Complete-Reference-Herbert-Schildt/dp/007174116X

Microsoft Corporation. .NET Framework 4.5 Development Guide. WWW page.

https://msdn.microsoft.com/en-us/library/hh156542(v=vs.110).aspx

Paul Krzyzanowski, 26.01.2014. Operating System Concepts. WWW page.

https://www.cs.rutgers.edu/~pxk/416/notes/03-concepts.html

RSSING.COM, 25.12.12. Archived Cosmos RSS Channel. WWW page.

http://cosmos343.rssing.com/chan-7149039/all_p1.html

SPDX Workgroup. BSD 3-clause "New" or "Revised" License. WWW page.

https://spdx.org/licenses/BSD-3-Clause.html

Wikipedia Foundation Inc., 2017. Artificial Intelligence Markup Language. WWW page.

https://en.wikipedia.org/wiki/AIML

64

APPENDIX

Microsoft Corporation, Microsoft Windows 10. Operating System.

https://www.microsoft.com/en-us/windows/get-windows-10

Microsoft Corporation, Microsoft Visual Studio Ultimate 2013. Software Package.

https://www.microsoft.com/en-US/download/details.aspx?id=44915

Jetbrains, S.R.O, JetBrains ReSharper. Software Package.

https://www.jetbrains.com/resharper/

The Cosmos Project, Cosmos User-kit Release 108477. Software Package.

http://cosmos.codeplex.com/releases/view/123476

VMware Inc., VMware Workstation Player 12.5.2. Software Package.

https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_worksta

tion_player/12_0|PLAYER-1252|product_downloads

VMware Inc., VMware VIX API 1.15.6. Software Package.

https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_worksta

tion_player/12_0|PLAYER-1252|drivers_tools

Microsoft Corporation, Client Hyper-V. Software Component.

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/index

Oracle Corporation, Oracle VM VirtualBox. Software Package.

https://www.virtualbox.org/wiki/Downloads

Pete Batard, Rufus 2.9 Portable. Portable Executable.

http://rufus.akeo.ie/downloads/rufus-2.9p.exe

Microsoft Corporation, CodePlex Project Hosting Service: http://www.codeplex.com/

Daniil Galakhov, DimOS Project Link: https://dimos.codeplex.com/

