

Aurangzeb Lodhi

E-Acquisition System For Images in Mobile
Environment

Helsinki Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

18 April 2017

 Abstract

Author(s)
Title

Number of Pages
Date

Aurangzeb Lodhi
E-Acquisition System For Images In Mobile Environment

50 pages
18 April 2017

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Ville Jääskeläinen, Principal Lecturer

The main goal of the project was to create a new mobile application for the employees and
sub-contractors of the case company. It allows storing of files and images directly into the
company’s database from a project location.

The case company provides planning and consulting services for constructions projects of
bridges and concrete structures, railways, urban planning and land use. The rapid expan-
sion of the company’s construction business has caused the need for a mobile software
application that allows its subcontractors to communicate with the company’s database on-
site and remotely. This thesis focuses on a mobile software design to facilitate the man-
agement of useful data to and from the company’s construction project at particular sites
as well as a tool for users to interact with the company’s database.

Previously, the company used its own website as a way to communicate with their contrac-
tors and sub-contractors and to inform and update its customers. With the latest trends on
the market, some customers are active users of interactive websites that may not be user
friendly for mobile phones whereas others need a mobile solution for interaction when they
are on the field. Ignoring a group that does not use interactive websites or do not have the
time to use laptops and PCs that use interactive websites would result in a huge loss for
the growing business.

This thesis addresses and tackles these issues in three steps. First, the purpose was to
create a mobile software application to interact remotely with the employees and clients of
the company. This included a careful selection of the elements of the company’s website
that can actually be utilized by mobile customers and employees. This directly provides an
alternative to the website the company has long relied on for interaction with its employees
and clients. The next phase included the design and development of a custom Windows
Phone application for the company’s extranet.

In the last phase of the project, Windows phone built-in features were utilized to show their
interaction with the application and the results were analyzed.

Keywords API, JSON, REST, C#, Windows Phone 7/8

Contents

1 Introduction 1

1.1 Background 1

1.2 Technology Problem 2

1.3 Research Plan and Scope 2

2 Theoretical Background 5

2.1 Technical Background 5

2.2 API Theory 5

2.3 Types of Application Programmable Interface (API) 6

2.4 API documentation 7

2.5 REST and Other Open Source Application Programming Interfaces 7

2.6 A REST Design 8

2.7 Features of REST 9

2.8 JSON Approach in Programming 11

2.9 Structure of XML 12

2.10 XAML 13

2.11 Security Considerations 14

3 Introduction to Windows Phone Platform 15

3.1 Standard Hardware 16

3.2 Optional Hardware 16

3.3 Platform Architecture 17

3.4 Platform Features 18

4 Application Development Plan 23

4.1 Choosing Implementation Tools and Technology 24

4.2 Simulation Dashboard for Windows Phone 28

4.3 Test Phase 28

4.4 Implementation 29

4.5 Basic HTTP Authentication 30

5 Testing and Results 41

5.1 Unit Testing 41

5.2 Integration Testing 41

5.3 Simulation Testing 42

5.4 Application Performance Testing 43

5.5 Results 43

6 Conclusion 46

References 48

1 (50)

1 Introduction

Technology has transformed human lives. As enterprises strive to make their business

more approachable by allowing their customers to manage user data and information

seamlessly – business apps in a way are helping them to work smarter and emphasize

on what actually matters. In fact, in many ways, the mobile application today is what

the website was ten years ago — one of those tools that has transferred from being a

luxury into a necessity for businesses of all sizes. Some of the most preferred mobile

apps for business include Evernote (helps people to store everything virtually), Google

Drive (lets users port and edit files from PC to mobile devices - seamlessly), and Pro-

toPrompt (the database program that supports uploaded photographs - to provide visu-

al means of searching through personnel photos in order to identify people quickly in a

business setting).

1.1 Background

The case company operates in the field of infrastructure, traffic solutions, logistics, land

use, environment and digital services. It has got projects all over Finland with sub-

contractors working in various places and projects. Project information has been

shared between sub-contractors and employees on the company’s webpage and

stored in the company’s database. Using the company software, a user/sub-contractor

has the option to add a project, join an existing project, to see the documents and pag-

es attached to a project and also the articles related to a particular project.

The company was looking for a mobile software application that is user friendly and

allows sharing of information between employees and sub-contractors directly from the

project site hence eliminating the need to use a web-based application while on the

move.

The aim of the project was to develop an application for e-acquisition of images in the

mobile environment. The developed application helps the end user interact with the

company’s extranet to extract data, articles and documents related to a project on-site

and off-site. It allows getting images related to a project and read documents of im-

2 (50)

portance. A user also gets an option to capture an image on-site and store it directly on

to the company’s database. It is a useful hands-on tool for company’s projects spread

across various locations.

1.2 Technology Problem

The company software has a number of users, which include employees and external

users that use mobile phones on the go. Ignoring a group that does not have the time

or access to use laptops and PC’s is reducing the efficiency of the business.

The company’s internal database can handle huge amounts of data at a time. The

company needs a mobile software application that can interact with the database in a

form of an intermediate connection such that not all the elements of the actual web

application are utilized. In fact, the company required a custom built mobile application

that utilizes only the main elements of the actual web based application and information

associated to it. By focusing on an application that includes only its core functionality

helps to minimize the time the user needs to spend using the mobile application, thus,

increasing the value of the application to the user.

1.3 Research Plan and Scope

This thesis addresses and tackles the targets of the development project in order to

provide a cost effective solution. The users are involved in one or more projects such

as construction or railway projects. Each individual’s information, the number of pro-

jects and resource material are available in the company’s dashboard. The company

has expanded in recent years and needs a solution through which a customer or com-

pany sub-contractor goes to a site or a location of interest, takes information from on-

site in the form of a photo or a file and uploads it in their project space to be viewed as

a single picture or a collection of pictures. Thus, it saves time and energy as a user can

interact with certain database features anywhere by using their mobile phone. The so-

lution serves as a data acquisition tool in the form of a mobile application that is easy to

use, reliable and efficient.

3 (50)

The application is targeted for company employees and also the guest users with login

credentials. It is a native application and the company plans to design and publish it for

windows platform in the first phase. Native applications are faster and more efficient, as

they work in tandem with the mobile device they are developed for. Also, they have

guaranteed quality, as users can access them only via an online store available for a

particular platform.

The project included following steps:

1. Researching different design implementation strategies for the company’s inter-

nal software application, ‘Kaiku Mobiili’.

2. Analysing the API access points and their role in application design

3. Identifying the resources that are going to be accessible through the API

4. Performance analysis of test cases according to previously established re-

quirements.

5. Analyzing measures of Mobile Security throughout the entire software develop-

ment life cycle (SDLC) so that vulnerabilities may be addressed in a timely and

thorough manner.

The project was scoped with a high-level system architecture design and mobile soft-

ware implementation as an alternative tool to the company’s website. The purpose of

the study was to make a first version (prototype) of the application and get initial feed-

back with it. The prototype was developed for Windows Platform as a native applica-

tion. Although, the application is not designed for other platforms such as iOS and An-

droid platform, it does provide a base to expand the application further to other plat-

forms.

This thesis consists of six chapters.

Chapter one includes a brief introduction of the project, its background, challenges and

scope of the study. Chapter two gives a deep insight on the technical background of

the project discussing API concepts and their use in commercial projects. Chapter

three focuses on the Windows platform architecture and features utilized in mobile

software development. Chapter four describes the application development plan. Chap-

4 (50)

ter five focuses on the testing of the application and the results of the project. Chapter

six gives the final conclusion of the project and introduces some ideas about potential

future steps.

5 (50)

2 Theoretical Background

This chapter describes the application-programming interface (API), different types of

APIs, their usage in commercial applications, different types of languages and their

approach in programming. It also provides a deep insight into the REST architectures,

its different forms and its use in the API development.

2.1 Technical Background

The need to efficiently share vast amounts of data across various departments and

with clients and employees is an issue that most organizations face today.

A key tool to tackle this challenge is the Application Programming Interface (API),

which at its most basic acts as a door or window into a software program, allowing oth-

er programs to interact with it without the need for a developer to share its entire code.

For example, an API would allow a mobile app, set top box or other connected device

in a home to communicate with a service. The company exposes an API that tells a

programmer how they will interact with the service. The API can be opened to custom-

ers or just people inside their own company.

The recent development of apps for mobile devices means organizations need to allow

users to access information through apps and not just through the Internet.

Within the public sector, APIs are used to allow agencies to easily share information

and also let the public interact with government as well.

In order to understand the concept of APIs, it is important to look back at the period

when this concept was introduced sometime before the year 2000, slightly before the

.COM bubble. Software developers were in a need of standard ways to create a bridge

between applications and allowing them to communicate with each other lead to the

developments of APIs.

2.2 API Theory

An application-programming interface (API) is a set of routines, protocols, and tools for

building software applications. In its simplest form, API is defined as an interface that

6 (50)

enables a software program to interact with other programs. A software company re-

leases its API to the public so that other software developers can design products that

are powered by its service.

For example, Amazon.com released its API so that Web site developers could more

easily access Amazon's product information. Using the Amazon API, a third party Web

site can post direct links to Amazon products with updated prices and an option to "buy

now." [1]

An API is a software-to-software interface, not a user interface. With APIs, applications

talk to each other without any user knowledge or intervention. When one buys movie

tickets online and enters the credit card information, the movie ticket Web site uses an

API to send the credit card information to a remote application that verifies whether the

information is correct. Once the payment is confirmed, the remote application sends a

response back to the movie ticket Web site saying it is alright to issue the tickets.

As a user, one only sees one interface -- the movie ticket Web site -- but behind the

scenes, many applications are working together using APIs. This type of integration is

called ’seamless’, since the user never notices when software functions are handed

from one application to another. An API resembles Software as a Service (SaaS). In-

stead of building one core application that tries to do everything, such as e-mail, billing,

tracking, etcetera, the same application can contract out certain responsibilities to re-

mote software that does it better.

2.3 Types of Application Programmable Interface (API)

There are several classifications of APIs based on how they are used:

 Internal APIs are used exclusively within an organization or company.

 External APIs are primarily available externally to consumers. At this stage

of maturity, the growing trend for external APIs are written based

on REST/JSON technologies. They provide access and integration capabili-

ties that are easier to use than the more industrial-strength capabilities leverag-

ing web services (for example, WSDLs).

7 (50)

 Partner APIs are specifically designed for partners to be able to ac-

cess business functions in relation to the business relationship of the partner-

ship. Examples include online catalogue, ordering, and reconciliation. Over

time, other categories of APIs might come available. [2]

2.4 API documentation

API documentation provides information about services an API offers and knowledge of

how to use those services. It aims to cover everything a client would need to know to

use the API. Documentation is an integral part of development and maintenance of

applications that use the API. Traditionally, API documentation is found in documenta-

tion files, however it can also be found in social media sites such as blogs, forums, and

other Q&A websites. Documentation files are often presented via a documentation

system, such as Javadoc pr Pydoc that has a consistent structure and appearance.

The type of content included in the documentation however differs from API to API [3].

API documentation can include description of classes and methods used in the API as

well as typical usage scenarios, code snippets, design rationales, contracts and per-

formance discussions. Details of implementation of the API services are usually omit-

ted by the case company to keep the process confidential. There are also restrictions

and limitations on how the API can be used. Since API documentation is quite compre-

hensive, it may be difficult for the writers to keep the documentation updated and for

the users to follow it. This can potentially result in bugs which may be difficult to fix.

2.5 REST and Other Open Source Application Programming Interfaces

According to ProgrammableWeb.com [4], out of 30861 APIs, 73% are implemented

with the REST architectural style. The percentages in Figure 1 below need to be han-

dled with care. On one hand they just represent the percentages of APIs listed on Pro-

grammableWeb.com. Therefore only the APIs which are indexed by Programmable-

Web.com and which are also publicly available are listed. On the other hand it could

well be that some of these REST APIs are GET-only APIs, which are of course imple-

mented according to REST principles but are not real APIs. They may lack data opera-

tions such as updating or deleting resources. Also, many of the private APIs, which are

used in internal business environments, are implemented in a SOAP style. Neverthe-

8 (50)

less, the figure below emphasizes the importance of REST in the context of public web

services.

Figure1. Protocol Usage by API’s. [5]

REST in the context of web services defines concrete design principles which describe

a resource-oriented web service. A resource-oriented architecture serves the purpose

of making resources accessible. In the context of REST: resources are data entities.

Some architecture might fulfill the REST criteria better than another but there is no

such thing as one true REST architecture.

2.6 A REST Design

REST is a software design pattern typically used for web applications. In layman's

terms this means that it is a commonly used idea in many different projects. It stands

for REpresentational State Transfer. The basic idea of REST is treating objects on the

server-side (as in rows in a database table) as resources than can be created or de-

stroyed.

The most basic way of thinking about REST is as a way of formatting the URL's of the

web applications in use. For example, if the resource was called "posts", then:

 /posts is how a user would access ALL the posts, for displaying.

 /posts/ :id is how a user would access and view an individual post, retrieved

based on their unique id.

.

REST=73%
SOAP=17%
Javascript=6%
XML-RPC=2%
Atom=1%

9 (50)

 /posts/new is how a user would display a form for creating a new post.Sending

a POST request to /users is how a user would actually create a new post on the

database level.

 Sending a PUT request to /users/ :id is how a user would update the attributes

of a given post, again identified by a unique id.

 Sending a DELETE request to /users/ :id is how a user would delete a given

post, again identified by a unique id.

When the term "RESTful API," is used, it generally means an API that uses REST-

ful URL’S for retrieving data.

2.7 Features of REST

REST is typically used over HTTP, primarily due to the simplicity of HTTP and its

very natural mapping to RESTful principles. REST, however, is not tied to any spe-

cific protocol. It includes the following features:

Statelessness

Statelessness means that the REST server can fulfill the client request in complete

isolation. As a result the client sends all the information the server needs with the re-

quest. The server does not need to maintain a session. This is one of the reasons why

the architectural style of REST can build highly scalable solutions. The server can pro-

cess information without storing sessions, which need a lot of memory and calcula-

tions.

Addressability

This principle says that every resource should be made available through a unique

address. In a real world this address is described by the use of Unique Resource Iden-

tifiers (URI). This principle is also crucial for the web. Resources, for example an im-

age, should be available through an URI. On the web this is not always the case, due

to Asynchronous Java script and XML (AJAX) applications, which can load content

dynamically without changing the URI. To get a resource of a REST service, one can

10 (50)

request a URI. In a real world, APIs try to keep the URI design as logical as possible.

Therefore the URI’s are often hierarchically designed. Hierarchies increase the reada-

bility and make it easier for developers to address the resources. Also, it is possible to

guess resources, which make it easier for clients to discover resources deductively.

Uniform Interface

A uniform interface only offers a set of operations. But it still offers enough operations

to retrieve, change or create data. The simplicity of the uniform interface is important to

REST, because it keeps the interaction between client and server as simple as possi-

ble. In practice HTTP is used as the uniform interface of REST services. But REST

does not dictate a particular protocol. Technically, REST can use any uniformed proto-

col. But because the HTTP offers all the necessary operations, is well known and wide-

ly spread, it has become the de-facto standard for REST services. All the interaction

between clients and resources are based on a few basic HTTP methods.

GET

The GET method of HTTP describes a request for information about a resource. To a

GET request, the server will respond with a set of headers and a representation con-

taining the requested resource.

POST

Like a PUT request, a POST request can create a resource. The difference is that it is

not bound to a specified URI. Normally, POST is used when the client sends data to

the server and the server then tells the client where it put the data. But the server can

do anything with the POST request. As mentioned, it can store it under the given URI

(like PUT) but it can also send back a HTTP header or do nothing at all [6].

Client-server architecture

The client-server style is the most frequently encountered of the architectural styles for

network-based applications. A server component, offering a set of services, listens for

requests upon those services. A client component, desiring that a service be per-

formed, sends a request to the server via a connector. The server either rejects or per-

forms the request and sends a response back to the client. A client is a triggering pro-

cess; a server is a reactive process. Clients make requests that trigger reactions from

11 (50)

servers. Thus, a client initiates activity at times of its choosing. It often then delays until

its request has been serviced. On the other hand, a server waits for requests to be

made and then reacts to them. A server is usually a non-terminating process and often

provides service to more than one client. Separation of concerns is the principle behind

the client-server constraints. By separating the user interface concerns from the data

storage concerns, one improves the portability of the user interface across multiple

platforms and improves scalability by simplifying the server components [7].

Representation Oriented Architectural Style

Representations describe the format in which data is being exchanged between server

and client. Common are XML, JSON and HTML. But because there is a strict differ-

ence between the resource and its representation, the resource can be converted to

any representation. This is one of the reasons why REST architectures are said to be

loosely coupled. The representation can also handle the language of the content. Prac-

tically speaking, the representation oriented architectural style allows servers to give

the client exactly the format it demands. It is easy to extend the REST API with a new

representation.

2.8 JSON Approach in Programming

JSON stands for JavaScript Object Notation and it is a type of format, which stores

various types of information, and allows this information to be shared between client

and server applications. Because JSON is a lightweight data-interchange format, it is

easy to read and write. It is also easy for computers to parse and generate. JSON is a

text format that is completely language independent but uses conventions that are fa-

miliar to programmers of the C-family of languages, including C, C++, C#, Java, Ja-

vaScript, Perl, Python, and many others. These properties make JSON an ideal data-

interchange language. A JSON object is a collection of key and value pairs. The keys

are strings and the types of values presented in JSON can be strings, numbers, Boole-

ans, object, arrays, or even NULL. A colon separates the keys from the values, and a

comma separates the pairs. The pairs of keys and values are wrapped in curly braces

and the four arrays are wrapped in square brackets [8].

As a simple example, information about the author might be written in JSON as follows

12 (50)

var jason = {

 "age" : "24",

 "hometown" : "Missoula, MT",

 "gender" : "male"

};

This creates an object that can be accessed using the variable jason. By enclosing the

variable's value in curly braces indicate that the value is an object. Inside the object,

any number of properties can be declared using a “name”: “value” pairing, separated

by commas. To access the information stored in jason, name of the property can be

referred. For instance, the following snippets can be used:

document.write('Jason is ' jason.age); // Output: Jason is 24

document.write('Jason is a ' jason.gender); // Output: Jason is a male

The JSON format is often used for serializing and transmitting structured data over a

network connection. It is used primarily to transmit data between a server and web ap-

plication, serving as an alternative to XML. JSON libraries or built-in JSON support

exists for many programming languages and systems [9].

2.9 Structure of XML

Extensible Markup Language (XML) describes a class of data objects called XML doc-

uments and partially describes the behavior of computer programs which process

them. XML is in a format that is both human readable and machine-readable. XML is

are created to store and transport data. The design goals of XML emphasize simplicity,

generality, and usability over the Internet. Similarly to JSON, the XML has a basic for-

mat of key and value pairs and they are designed to be self-descriptive with information

wrapped in tags. However, XML is designed to store data rather than displaying data.

By definition, an XML document is a string of characters. The characters making up an

XML document are divided into markup and content, which may be distinguished by

the application of simple syntactic rules. Generally, strings that constitute markup begin

with the character \<" and end with a \>”. These strings are called tags. There are start-

tags and end-tags. The strings in the tags are the \keys", i.e., they can be referred to as

13 (50)

the names of the variables. The end-tags start with \/" and the strings in the end-tags

must match those in the start tags. Between the start-tag and the end-tag, there can be

one value or other pairs of keys and values. If an XML object consists of key/value

pairs within a start-tag, the contents within the start-tag are describing the attributes of

the XML object.

XML has many advantages, for instance, it is highly versatile making it adaptable to

every kind of situation; one can use xml by creating new tags and nesting them regard-

less of the type of a project one is working on. A large number of developers know this

language and in almost all cases it is quite easy to manipulate. Sometimes, it’s possi-

ble that too many tags can make a document hard to read, especially for developers.

JSON has a very simple structure, which a developer can read easily even upon first

sight; this is not something one want to underestimate, especially when one’s working

on large projects involving a lot of people [10].

2.10 XAML

Extensible Application Markup Language, or XAML (pronounced "zammel"), is an XML-

based markup language developed by Microsoft. XAML is the language behind the

visual presentation of an application that one develops in Microsoft Expression Blend,

just as HTML is the language behind the visual presentation of a Web page. Creating

an application in Expression Blend means writing XAML code either by hand or visually

by working in the design view of Expression Blend. XAML is a declarative markup lan-

guage. It simplifies creating a UI for a .NET Framework application. One can create

visible UI elements in the declarative XAML markup, and then separate the UI defini-

tion from the run-time logic by using code-behind files, joined to the markup through

partial class definitions. XAML directly represents the instantiation of objects in a spe-

cific set of backing types defined in assemblies. This is unlike most other markup lan-

guages, which are typically an interpreted language without such a direct tie to a back-

ing type system. XAML enables a workflow where separate parties can work on the UI

and the logic of an application, using potentially different tools [11].

When represented as text, XAML files are XML files that generally have

the .xaml extension. The files can be encoded by any XML encoding, but encoding as

UTF-8 is typical.

14 (50)

2.11 Security Considerations

Security when building client-web services covers a wide range of issues and different

aspects. Authenticating users to access a resource, confidentiality of information, pre-

venting unauthorized agents form accessing resources and following the laws of the

country must be considered carefully. There is no single conventional method to follow

but each application requires a specific analysis in the architecture and design pattern.

When a client accesses a protected resource, the sever uses an authenticate header to

challenge the client to provide the expected information. The client uses authorization

header to provide the proper answer. This kind of authentication schema can be used

when a client accesses a protected resource on behalf of itself or user. Developed in

2007 OAuth is an authorization protocol that allows user to give permission for clients

to access their data on the server without revealing their identity. OAuth protocol can

be categorized as two-legged or three-legged authentication solution depending on the

number of parties involved in the authentication process. The name three-legged au-

thentication is given to OAuth because there are three parties involved in the authenti-

cation process: the service provider (the server), the OAuth consumer (the client) and

the user. For two-legged OAuth, the parties involved in the authentication process are

only the service provider (the server) and the OAuth consumer (the client).

The following list shows the steps in the authentication of three-legged OAuth:

 Client request authorization to access resource from the user

 The user grant authorization for the client

 The client request access token from the server

 The server issues access token to the client

 The client request resource from the server

 The server provides the resource for the client

A token based authentication is modelled like the Facebook or twitter API. It means

that authorization data is also encrypted. If one can afford the performance cost, a

HTTPS connection is used to perform authentication and authorization.

15 (50)

3 Introduction to Windows Phone Platform

Microsoft developed a series of mobile operating systems such as Windows Phone

platform. It was a sequence of the previous Windows Mobile platform. Mobile phone

industry was revolutionized in 2008 when Microsoft discarded the old Symbian operat-

ing system and started developing Windows Phone platform. It was to cope up with a

huge demand of touchscreen phones and use of social media applications and re-

sources over the internet.

The old windows phone interface consisted of icons and was replaced by an interface

that was based upon a fresh and new design style called ‘Metro’. The metro design

consisted of new coloured icons/tiles and instructions in the form of text to navigate

between different screens in the Windows Phone user interface. The design was fo-

cused more on the typography and there was less emphasis on the graphical design.

Products like Zune, Windows Phone, Xbox and the soon to be released Windows 8

follow the Metro design style. The design style's main objective is to remove any

chrome and extra decoration and allow users to interact directly with content [12].

“Windows Phone 7 is the first generation of the Windows Phone mobile operating sys-

tem released on October 2012. Windows Mobile 7 development is done using the .NET

framework. The .NET framework is a software framework created by Microsoft for use

in creating Windows applications. Programmers write applications using one of the

several languages supported by the .NET framework, like C#, and the applications then

execute inside of a runtime environment called the Common Language Runtime. For

Windows Phone 7, there are two distinct development approaches when creating an

application.

The first approach is to use Silverlight for Windows Phone. Silverlight was originally

envisioned as a way for developers to create rich internet applications. It has seen a

sharp increase in market adoption in recent years, driven mostly by the fact that Netflix

uses Silverlight to stream videos and NBC used Silverlight for its online broadcast of

the Olympic games. A Silverlight application combines declarative markup (called

XAML) to construct the user interface and code written in a .NET framework language

to control an application’s behavior. Silverlight is often used for developing a data driv-

en application for Windows Phone 7” [21].

16 (50)

Alternatively, the XNA framework is an alternative to Silverlight to develop a Windows

Phone 7 app. XNA is Microsoft’s game development framework and has been used in

recent years to create both Windows and Xbox 360 applications. When creating a

game for Windows Phone 7, the XNA framework is utilized. The XNA framework is

quite powerful, but that power comes with a considerable learning curve and longer

development cycles [13].

3.1 Standard Hardware

In order to provide a more consistent experience between devices, Windows Phone

devices are required to meet a certain set of hardware requirements. These are:

 A common set of hardware controls and buttons that include “Start”, “Search”,

and “Back” buttons.

 A large WVGA (800 x 480) format display capable of rendering most web con-

tent in full-page width and displaying movies in widescreen.

 At least a 1 GHz ARMv7 Cortex/Scorpion or better processor.

 Capacitive multi-point multi-touch screens for a quick touch response and use

of phone and its features

 Data connectivity support using mobile networks and Wi-Fi to connect to a fixed

network.

 At least 256 MB of RAM to run phone applications and hardware.

 A-GPS system to support current maps.

 Accelerometer.

3.2 Optional Hardware

Here are some features that Microsoft does not explicitly require its phone makers to

include with a Windows Phone:

 Compass.

 Gyro.

 Removable storage

17 (50)

 Camera with video recording capabilities.

 Ultra high resolution screens and custom resolutions.

 Front-facing Camera [14].

“The first major update to Windows Phone 7, called “Mango”, was released in May

2011. Although the operating system internally identifies itself as version 7.1, it was

marketed as version 7.5 in all published materials. Mango update introduced back-

ground agents along with multi-tasking of third-party apps.

Windows Phone 8 is the second generation of the Windows Phone mobile operating

system released on October 29, 2012. It introduced major changes in architecture, new

features and many existing ones were improved. Windows Phone 8 is designed to run

existing Windows Phone apps unchanged. Unfortunately, current Windows Phone 7

platform devices are not updatable to Windows Phone 8.” [21]

3.3 Platform Architecture

This chapter discusses the major changes that have occurred in Windows Platform

Architecture since the previous generation of architecture and the opportunities it pro-

vides from a developer’s perspective.

Shared code

“In Windows Phone 8 Windows CE-based architecture is replaced with Windows NT

kernel. Moving to a common Windows core meant that every major underlying subsys-

tem had to change. Windows Phone 8 now shares the same file system (NTFS), net-

working stack, security elements, graphics engine (DirectX), device driver framework

and hardware abstraction layer (HAL) as Windows 8. The shared basis of the two plat-

forms means that an application can be ported between these two platforms with much

less effort. This change also brought support for multi-core processors.”[21]

CoreCLR engine and garbage collector

“Windows Phone 8 includes the CoreCLR engine previously maintained by .NET Com-

pact Framework. The CoreCLR includes many of the same features and optimizations

18 (50)

as the CLR in the .NET Framework 4.5. The CoreCLR includes an auto-tuning garbage

collector. These changes resulted in reduced startup time and higher responsiveness

in apps.”[21]

Async programming model

“Windows Phone 8 introduced the new task-based async programming model across

the CoreCLR and the .NET Framework libraries and enabled asynchronous code with-

out much effort. Using the new async and await language keywords, it is now much

easier to provide a highly responsive UI experience.”[21]

Native code support

“Windows Phone 8 has full C and C++ support, making it easier to write apps for multi-

ple platforms more quickly. It means support for gaming middleware such as Havok

Vision Engine as well as native DirectX-based game development.”[21]

3.4 Platform Features

This chapter describes the most important features of Windows Phone platform from

the developer’s point of view. Also, attention to the features that have been either add-

ed or improved along with Windows Phone 8 is discussed.

Resolutions and scaling

“Windows Phone 8 supports three different screen resolutions WVGA (800 x 480),

WXVGA (1280 x 768), and 720p (1280 x 720). One problem faced by mobile develop-

ers is the multitude of different screen resolutions that are available. Therefore, applica-

tions must be customized for each resolution. The Windows Phone screen hardware is

able to scale the screen of an application to fit whatever screen size the device sup-

ports. This makes it possible to create games or applications that will work on any

screen size, including ones that have not been made yet. Existing Windows Phone 7

based applications run without changes and scale automatically with crisper text and

vector art on the higher-resolution displays. But in order to truly get the best of this fea-

ture, developers should use high resolution graphics” [14] [21].

19 (50)

“The phone contains an accelerometer that detects how the phone is being held. The

Windows Phone operating system can then adjust the display to match the orientation.

A Developer may design an application to work in both landscape and portrait mode or

just either one of them.”[21]

Multi-tasking

“Multitasking is a controversial and debatable topic. Applications running in the back-

ground often consume resources and drain the battery. Balancing resources and multi-

tasking has been a difficult issue for any mobile operating system. In situations where

the application is deactivated, the application is put into a dormant state. The applica-

tion’s state is completely preserved, but the main thread is paused. However, if the

operating system determines that it is running low on RAM, it may take some dormant

applications and tombstone them (see below).”[21]

Tombstoning

“It is similar to the hibernate-state on a desktop environment, but it applies for every

background-app. When a user changes to other applications, the current app status will

save the necessary data to the memory and the application is “put into a grave”. The

app will not be running and it will not consume any resources. When the user comes

back, it will be loaded from scratch. But it also uses the previous data and the applica-

tion “returns from the grave”. Developers must handle tombstoning in the code” [15]

[21].

Localization

Localization refers making an app to adapt a new market. To localize an app, one has

to remove all the hard coded strings and images and instead mark such elements with

a unique identifier.

In a data acquisition app for this thesis, a lot of text data is used. When building the

app, text is put directly into the XAML and C# code. But when there is a need to trans-

late app to another language, one has to move all the strings to separate files called

resource files. A resource file has the extension .resw and is placed in a special direc-

tory called Strings inside the project. This folder must contain a subfolder for every

20 (50)

supported language. The subfolders follow the naming convention for the lan-

guage/region pattern. For example, en-US means English language in the United

States, and fi-FI means Finnish language in Finland. This pattern is called the BCP-47

language tag. One can also use just the language to force the runtime to use localized

resources for every region. For example, if a folder named en is used, the English lan-

guage will be used for United States as well as Great Britain (and Australia, and so on).

In this subfolder, one creates a file called Resources.resw. This is the new naming

convention for Windows Store apps. If there is a .resx file from a .NET project, then that

file is copied into the new folder structure and is renamed for the file extension to .resw.

The format is compatible because the defined schema is same [16].

Scheduled Tasks and background agents

“Scheduled Tasks and background agents allow an application to execute code in a

separated thread even if the application is paused. The application must first register

the agent on the Scheduled Action Service. Background agents can only be scheduled

to run in two ways:

Periodic Tasks: Periodic agents can run for a very short period of time and perform

lightweight tasks on a regular recurring interval. Typical scenarios for this type of a task

include uploading the device’s location and performing small amounts of data synchro-

nization.

Resource Intensive Task: Resource-intensive agents can run for a relatively long peri-

od of time when the phone meets a set of requirements. A typical scenario for this type

of a task is synchronizing large amounts of data to the phone while it is not being ac-

tively used by the user.

Windows Phone 8 introduced two new background agents, giving both VOIP and loca-

tion-based applications the option of working with background services. The VOIP

agent handled incoming voice, video and chat sessions, while the background location

agent worked with location data.

Microsoft recommends using a mutex for synchronizing access to resources that are

shared between the foreground application and the background agent, such as files in

21 (50)

isolated storage. A file in isolated storage can be used for one-directional communica-

tion, where the foreground app writes and the agent only reads.”[17] [21]

Live Tiles and Live Apps

“Windows Phone uses Live Tiles to display interactive content on the start screen. The

user does not need to navigate in and out of apps manually to find out what’s going on.

The user can choose which tiles to see and arrange them to any order. Windows

Phone 8 adds support for small tile size, previously supporting only medium and large

tile size. Live Tiles can now be resized by the user (as shown in Figure 2 below).

Figure 2.The title in the app list and title on the app Tile pinned to the Start screen.

Windows Phone 8 brought a new feature called Live Apps. It includes Live Apps for

many built-in apps such as email, messaging and calendar. Live Apps are basically just

versions of Live Tiles for apps to display interactive content (Figure 2). They can be

integrated with the lock screen. Third-party developers are able to create Live

Apps.”[21]

22 (50)

Lock screen

“Windows Phone 8 lock screen supports Live Apps and Windows 8-like basic and de-

tailed notification options. Third party applications can now register as the lock screen

wallpaper provider, and can be included in the lock screen notification area. These noti-

fications can include a 24 x 24 applications icon and an information text which are tak-

en from the app’s tile.”[21]

Camera

“Windows Phone 8 introduced a new Camera API that can be easily used by develop-

ers. It offers following functionalities: Camera parameter configuration: ISO speed

and exposure.

 Real-time access to the phone’s video stream.

 Multi-frame capture for creating new types of camera experiences and imagery.

 Custom lenses that integrate with the built-in camera app offering effects, filters

and computational photography.”[21]

 Images can be captured using phone feature and can be saved into company’s

database on-site.

Windows Phone Maps

“Nokia’s Maps solution replaced Bing Maps in Windows Phone 8. It offers more com-

plete and accurate map data, a new 3D mode, and hardware-accelerated rendering. A

new WinPRT -based location API also accompanies the new Nokia Maps control and

provides functionality new to the Windows Phone platform such as generating driving

directions with an API call so that they can be included in an app where geo location is

required. Existing apps that include the Bing Maps control will continue to be in use for

business applications.”[21]

23 (50)

4 Application Development Plan

The development of the application consisted of six steps:

1. Creating a REST API Interface for company’s database (managed by the com-

pany developers)

2. Creating access points to be implemented (managed by the company develop-

ers)

3. Designing a UI appropriate for mobile devices, taking into account platform

constraints

4. Developing a Client that uses the REST API

5. Creating user interface for the relevant access points

6. Implementing the access points for the user interface

As a summary, the development included the design and development of a custom

mobile Windows Phone application for the company’s extranet. The mobile application

used a REST API with end-points to connect to extranet server. The goal was to im-

plement the client-side end points within the API. In the mobile application, all of these

assets are on the mobile phone as they are not pulled in from the website. The only

thing that is extracted from the website is the data through the REST API.

The aim of this project was to develop an application for e-acquisition of images in the

mobile environment. It allowed sharing of information between the company employees

and clients in a fast, reliable and efficient manner as shown in Figure 3 below. The ap-

plication should show how an application would respond to the company’s extranet.

The development plan included creating a login page with a username and password

unique to a user. Upon login, user would connect to company’s internal data base us-

ing a REST Interface. The first page of application would include list of projects and

articles related to the company’s projects. It would also show projects assigned to the

user or related to the user. Upon selecting a project, it would navigate a user to sub-

pages in the application which includes documents and articles and images related to

that project.

24 (50)

Figure3. Types of Contents (RESOURCES) in the Software Application

The user also had an option to capture an image from his windows phone camera and

save it as a file attached to his projects. The company intended to develop the project

further to include cloud services for data storage and add security and social media

features to application. Social media features included navigation to different social

media forums, search engine, company information, news feeds from various internet

resources and individual blogs.

4.1 Choosing Implementation Tools and Technology

“The Windows Phone SDK 8.0 provides the tools that are needed to develop applica-

tions and games for Windows Phone 8 and Windows Phone 7.1. The most important

tools used were:

 Visual Studio Express 2012 edition for Windows Phone

 Windows Phone Developer Registration tool

 Windows Phone Connect tool

 Emulators for Windows Phone 7.1 and 8.0

 Windows Phone Application Analysis tool

25 (50)

 Simulation Dashboard for Windows Phone

Microsoft is slowly deprecating Silverlight and XNA in Windows Phone platform. The

SDK still allows creating Silverlight and XNA based apps, but only if the build target is

set to Windows Phone 7.1.”[21]

Visual Studio Express 2012 edition for Windows Phone

Visual Studio Express 2012 is a revised version of the Integrated Development Envi-

ronment (IDE) for Visual Studios that provides features specific to Windows Phone

development. The Software Development Kit (SDK) provides an add-in tool with other

versions of Visual Studios 2012.

Blend for Visual Studio 2012

“Blend for Visual Studio 2012 is a user interface design tool for creating graphical inter-

faces. One of the key ideas behind Blend is that it allows animators and UI designers to

create the interface while developers write the code-behind. Blend offers dynamic flow

and elements layout and positioning that are based on relevance to its parent. One can

still specify width and height, but in most cases this will be a minimum width and a min-

imum height value. It handles data bindings giving an accurate depiction of the XAML

live in the design-time environment.”[21]

Connect phone to development environment

“In order to deploy an application from the development environment directly to a de-

vice, it must first be registered using Windows Phone Developer Registration tool. Reg-

istration requires the following things:

 Installation of the Zune software.

 A Microsoft account (formerly known as a Windows Live ID).

 A valid and current Windows Phone Dev Center account.

After successful registration, the phone can be connected to the development environ-

ment using either the Windows Phone Connect tool or Zune software.”[21]

26 (50)

The case company’s custom Application Programmable Interface

There are dozens of programming or scripting languages capable of implementing a

REST API. If a programming or scripting language can support the key principles of

REST mentioned in the Chapter two, it is technically possible to implement the API with

that particular language. PHP and Ruby language were selected in this case. The

REST API was designed by the case company’s hired developers. Microsoft software

development platforms and libraries are then extensively utilized for the entire coding

process of application

Windows Phone Software Development Toolkit (SDK 8.0)

The Windows Phone SDK 8.0 is a windows development environment for creating ap-

plications for Windows Phone 8.0 and Windows Phone 7.5. The Windows Phone SDK

provides a stand-alone Visual Studio Express 2012 edition for Windows Phone or

works as an add-in to Visual Studio 2012 various editions (Professional, Premium or

Ultimate). Developers can use their existing programming skills using SDK and code to

build managed applications or applications in native code. SDK also features multiple

emulators and testing tools for debugging and testing coded apps for the real applica-

tion scenario. [18]

C# and .NET Framework

C# is an object-oriented programming language developed by Microsoft as a part of

.NET platform. It inherits many features of C, C++, Visual Basic and Java. The most

recent version is C# 7.0, which was released in March, 2017. Windows Phone 8 sup-

ports the new C# 5.0 language features. Programs in C# run on the .NET framework.

For managing the executions of these programs is responsible Common Language

Runtime (CLR). CLR allows managing the execution of .NET programs. The CLR is

created by Microsoft and provides type safety and memory management. C# code is

compiled into an intermediate language (IL), hence the code is stored in a file with an

extension .exe or .dll.

27 (50)

Silverlight

Silverlight is a software plugin based on the .NET framework. It brings advanced func-

tions for multimedia and better interaction features. The plugin is compatible with many

internet browsers and operating systems. Windows Phone 7 Operating System is com-

patible with Silverlight 3 and supports Silverlight 4’s features and some other perfor-

mance improvements in storyboard animations and interfacing. [19].

Windows Phone Application Analysis tool

“Windows Phone apps must meet a set of certain performance criteria to be published

in the Windows Phone Store. There are certification requirements regarding:

 App launch time.

 App responsiveness.

 Maximum memory usage by the app.

The Windows Phone Application Analysis tool provides monitoring and profiling options

to evaluate and improve the quality and performance.”[21]. Profiling option in the tool

allows one to evaluate either execution-related or memory usage aspects such as:

 Application memory consumption.

 App monitoring generates a detailed analysis page displaying graphs and moni-

toring warnings [20].

“The app monitoring option helps one to identify problems such as:

 Slow startup time.

 Slow response time to input, such as scrolling or zooming.

 High battery drain.

 Network latency.

 High cost of network data

 Poor performance as the quality of the network signal changes.

 Out of memory errors caused by high resource usage.” [21]

28 (50)

One can use the Windows Phone Store Test Kit to identify some of these issues. How-

ever the Application Analysis tool helps one to identify, understand, and troubleshoot

the source of these issues in the actual application.

4.2 Simulation Dashboard for Windows Phone

“Often a developer tests an application under optimal conditions. The Simulation Dash-

board offers simulation options to ensure that the app performs well under unexpected

scenarios that might occur in real life. Currently simulation dashboard offers the follow-

ing settings:

 Network simulation for network speed and signal strength.

 Lock screen simulation.

 Reminder simulation.”[21]

4.3 Test Phase

The test phase of app testing is an essential part of Application Development to make

the app work as efficiently as possible. It includes the following phases:

1. Concretizing the app concept before it goes into the design process. Once the

design process starts, it is much harder to change things around, so clearer the

prototype from the start, the better.

1. Polishing the app to make it work excellently, fixing the bugs in windows phone

application development environment through simulation testing using Microsoft

Visual Studio

2. Performing unit tests which are automated tests that verify functionality at the

component, class, method, or property level. Unit tests are the foundation of au-

tomated and regression testing, which provides a long-term stability and a fu-

ture maintainability of the project.

3. Integration testing which was performed as soon as access to back-end ser-

vices, web services and APIs were available. Integration testing ensured that

the API worked as expected, that all areas of the system communicated with

29 (50)

each other correctly and that there were no gaps in the data flow. The final inte-

gration test proved that the system works as an integrated unit when all the fix-

es were complete.

4. Functional testing assures that each element of the service meets the functional

requirements of the business as outlined in the requirements docu-

ment/functional brief, use cases, system design specification, other functional

documents produced and user interface testing. Functional testing also includes

device and OS specific testing.

5. Enabling and configuring security for the application that typically requires con-

figuring the login server and testing it on a real device to ensure and make sure

that user identity is established each time the application allows data excess to

the user.

4.4 Implementation

This chapter introduces examples of programming codes used that utilize some of the

most popular and familiar features of mobile devices. The examples were created bear-

ing in mind their purpose as introduction material. They are hands on examples, which

were kept user-friendly and easily understandable for a reader. All the programming

was done by using programming languages C#, XAML and the Visual Studio 2012 Ex-

press for Windows Phone 8 as a development environment.

The KaikuMobiili application was made for Windows phone 7.0/7.5 (Mango) and Win-

dows Phone 8 in Visual studio Express 2012. At first, radio buttons were created for the

user interface and to interact with other elements in the application. The source code

was written in C# language and XAML. This client application uses the company’s cus-

tom designed REST architecture and JSON API. For de-serializing, The JSON objects

used were Json.NET framework. For a better user experience, there are also control

elements from Windows phone toolkit in use.

The application utilizes windows phone camera features and implements the Cam-

eraCaptureTask class for taking pictures. CameraCaptureTask class handles all cam-

era related work and uses the built-in camera software. When a user taps on windows

phone camera icon, a request is sent from the user to start the application and would

wait for the user to capture an image.

30 (50)

4.5 Basic HTTP Authentication

Authentication is the verification of credentials of the connection attempt that is part

of the login process. This process consists of sending the credentials from the remote

access client to the remote access server in an either plaintext or encrypted form by

using an authentication protocol. Here is an example of adding basic HTTP access

authorization to a REST endpoint that was used in the implementation. In the "config-

ure" method, one can see that the application shows a basic auth module and passing

in the "realm" (part of the basic authentication standard) and the path to the Apache-

style credential file.

Later on in the code, one uses the "onAuthenticate" point in the endpoint request

lifecycle. This method is called between the "preProcess" and the "handleRequest"

point cuts. One thing to note is that in the REST endpoint, one can mark REST meth-

ods with rest:authenticate and use that annotation in our "onAuthenticate" method to

determine if authentication is needed. Some REST APIs have public methods without

authentication and some methods with authentication. One can also de-

fine rest:authenticate="true" on thecfcomponentto to indicate a global default which is

available by callinggetAutenticationDefault().

The REST endpoint will programmatically call onAuthenticate() if one or more of the

following is true:

 The REST method has rest:authenticate="true" metadata on the method defini-

tion.

 The REST CFC has rest:authenticate="true" metadata on the CFC. This is a

global flag and sets that all REST methods must be authenticated unless oth-

erwise stated differently on the CFC REST method directly.

Firstly, a user interface is created with Radio buttons that allows users to select one

option from two or more choices of buttons. Each option is represented by one radio

button as shown in Figure 4. To select multiple options, a checkbox or a list box control

is added.

31 (50)

Figure 4. UI Kaiku Mobilli User Login Page showing Radio Buttons.

In the end, the basic HTTP access authentication module takes care of checking the

headers, decoding the auth, checking the credential file and ultimately setting other

header if the authentication request fails. This module returns a Boolean so one can

customize the exception output if the authentication fails. Getting back to the code be-

low if the authentication fails, an exception is thrown out. By default, the base REST

endpoint handles all exceptions except in this case one defined special logic in

the onException() point-cut to provide the correct data back to the client. The applica-

tion authorization coding is shown below in Listing 1 as follows:

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Windows;
using Microsoft.Phone.Controls;
using System.Device.Location;
using System.Text.RegularExpressions;
using System.Runtime.Serialization.Json;
using System.Json;
using System.IO.IsolatedStorage;
using Microsoft.Phone.Shell;

namespace Kaiku
{
 public partial class MainPage : PhoneApplicationPage
 {
 String strUserToken;
 string strUsername;
 string strPasswd;

32 (50)

 static string strAcceptHeader = "application/json";

 //Ugly Code: Change this to use resource file or a UI setting
 string strUrl = "https://kaikutest.sito.fi";

 // Constructor
 GeoCoordinateWatcher watcher;
 public MainPage()
 {
 strUserToken = "";
 InitializeComponent();
 // The watcher variable was previously declared as type GeoCoordi-
nateWatcher.
 if (watcher == null)
 {
 watcher = new GeoCoordinateWatcher(GeoPositionAccuracy.High); //
Use high accuracy.
 watcher.MovementThreshold = 20; // Use MovementThreshold to ig-
nore noise in the signal.
 watcher.StatusChanged += new
EventHandler<GeoPositionStatusChangedEventArgs>(watcher_StatusChanged);
 }
 watcher.Start();

 }

 private void radioButton1_Checked(object sender, RoutedEventArgs e)
 {

 }
 void watcher_StatusChanged(object sender, GeoPositionStatusChangedEven-
tArgs e)
 {
 if (e.Status == GeoPositionStatus.Ready)
 {
 // Use the Position property of the GeoCoordinateWatcher object
to get the current location.
 GeoCoordinate co = watcher.Position.Location;
 //textBox1.Text =
co.Latitude.ToString("0.000")+co.Longitude.ToString("0.000");
 //textBox1.Text = ;
 //Stop the Location Service to conserve battery power.
 watcher.Stop();
 }
 }

 private void btnLogin_Click(object sender, RoutedEventArgs e)
 {
 /*
 * UGLY FIX: Replace these static creds after testing.
 * */
 strUsername = txtUserName.Text;
 strPasswd = txtPassword.Password;
 strUsername = HttpUtility.UrlEncode("aurangzeb.lodhi@sito.fi");
 strPasswd = HttpUtility.UrlEncode("cnn420AA111");

 string strAuthEndPoint =
"/api/authentication/token_exchange?user_name="+strUsername+"&password="+strPassw
d;

33 (50)

 // Get token
 HttpWebRequest reqAuthToken = (HttpWebRe-
quest)WebRequest.Create(strUrl + strAuthEndPoint);
 reqAuthToken.Accept = strAcceptHeader;
 reqAuthToken.BeginGetResponse(new Async-
Callback(AuthResponseReceivedCallBack), reqAuthToken);

 }

 void AuthResponseReceivedCallBack(IAsyncResult result)
 {
 HttpWebRequest request = result.AsyncState as HttpWebRequest;
 if (request != null && result.IsCompleted)
 {
 try
 {
 HttpWebResponse response = (HttpWebRe-
sponse)request.EndGetResponse(result);
 if (response.StatusCode == HttpStatusCode.OK)
 {

 using (var reader = new StreamRead-
er(response.GetResponseStream()))
 {
 String respData = reader.ReadToEnd();
 Match match = Regex.Match(respData,
@"authentication_token\""\:\""([A-Za-z0-9]+)\""\,");
 if (match.Success)
 {
 strUserToken = match.Groups[1].Value;

 /*
 * TODO
 * 1. Use Isolated Storage AppSettings to save
strUserToken and strUserName.
 * We need these values in other pages.
 * 2. Use Navigation Service to Navigate to the
ProjectsPage.
 * */

 IsolatedStorageSettings settings = IsolatedStor-
ageSettings.ApplicationSettings;
 try
 {
 settings.Add("username", strUsername);
 settings.Add("token", strUserToken);

 }
 catch (Exception ex) {
 settings["username"] = strUsername;
 settings["token"] = strUserToken;
 }
 settings.Save();
 Dispatcher.BeginInvoke(() =>
 {
 NavigationService.Navigate(new
Uri("/ProjectsPage.xaml", UriKind.Relative));
 });

34 (50)

 }
 else
 Dispatcher.BeginInvoke(() => Message-
Box.Show("Failed to get user token"));
 }
 }

 }
 catch (WebException ex)
 {
 if (ex.Response.Headers["Status"] == "403")
 Dispatcher.BeginInvoke(() => MessageBox.Show("Login
Failed"));
 else
 Dispatcher.BeginInvoke(() => Message-
Box.Show(ex.Response.ToString()));
 }

 }
 }

 private void checkBox1_Checked(object sender, RoutedEventArgs e)
 {

 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {

 }

 private void button1_Click_1(object sender, RoutedEventArgs e)
 {
 CreateTile();
 }

 private void CreateTile()
 {
 /**
 * http://msdn.microsoft.com/en-
us/library/windowsphone/develop/hh202979(v=vs.105).aspx
 */
 // Look to see whether the Tile already exists and if so, don't try
to create it again.
 // need to use the reference Microsoft.Phone.Shell and System.Linq
 ShellTile TileToFind = ShellTile.ActiveTiles.FirstOrDefault(x =>
x.NavigationUri.ToString().Contains("pinned=MyImage.jpg"));

 // Create the Tile if we didn't find that it already exists.
 if (TileToFind == null)
 {

 // Create the Tile object and set some initial properties for the
Tile.
 // A Count value of 0 indicates that the Count should not be dis-
played.
 StandardTileData NewTileData = new StandardTileData
 {

35 (50)

 BackgroundImage = new
Uri("http://d1045bjs8msx9s.cloudfront.net/assets/work/kaiku-
96ea8c0dd1551fe88380324908de582e.png", UriKind.Absolute),
 //Title = " SITO OY",
 //BackTitle = "KAIKU MOBIILI",
 BackBackgroundImage = new
Uri("http://sito.fi/media/sito_logo_large1.jpg", UriKind.Absolute),
 Count = 0
 };

 // Create the Tile and pin it to Start. This will cause a naviga-
tion to Start and a deactivation of our application.
 ShellTile.Create(new Uri("/MainPage.xaml?pinned=MyImage.jpg",
UriKind.Relative), NewTileData);
 }
 else
 {
 System.Diagnostics.Debug.WriteLine("--- A tile is already exist-
ed.---");
 MessageBox.Show("A tile already exists!");
 }
 }

 private void txtUserName_TextChanged(object sender, Sys-
tem.Windows.Controls.TextChangedEventArgs e)
 {

 }

 }
}

Listing 1.Step by Step coding for Authentication

Once the authentication process is completed, the projects list is loaded through the

API. A user can then tap or click on the project list or list of own projects to view pages

related to it.

Get Projects List from Company’s Extranet

After pressing the login button and following the authentication, the application sends

a web request to get the user data for projects. When projects are downloaded, three

more requests are sent: get pages, documents and articles as shown in Figure 5. As

soon as the user authentication process is completed and the user is logged in, he/she

is able to see all the current projects found on company’s data base as well as the pro-

jects assigned to the user. The user can then select a particular project from the app

and is able to see the relevant pages, documents and articles related to the project.

36 (50)

Figure 5. Get Projects Page that displays all projects as well as user’s own projects.

Coding to get the projects involves getting projects data from company’s API once the

authentication process is completed. The list of projects related to ‘my projects’ or ‘all

projects’ would be loaded in the projects list box as shown in the Listing 2 below:

namespace Kaiku
{
 public partial class ProjectsPage : PhoneApplicationPage
 {
 String strUserToken;
 string strUsername;
 static string strAcceptHeader = "application/json";

 //Ugly Code: Change this to use resource file or a UI setting
 string strUrl = "https://kaikutest.sito.fi";

 // Constructor GeoCoordinateWatcher watcher;

 public ProjectsPage()
 {
 InitializeComponent();
 IsolatedStorageSettings settings = IsolatedStorageSet-
tings.ApplicationSettings;
 strUsername = settings["username"].ToString();
 strUserToken = settings["token"].ToString();
 }

 private void GetProjects(bool all = false)
 {
 string strGetProjects = "/api/projects?user_name=" + strUsername +
"&user_token=" + strUserToken;
 if(all)
 strGetProjects += "&all=true";

37 (50)

 // Get list of projects for this user
 HttpWebRequest reqGetProjects = (HttpWebRe-
quest)WebRequest.Create(strUrl + strGetProjects);
 reqGetProjects.Accept = strAcceptHeader;

 reqGetProjects.BeginGetResponse(new Async-
Callback(GetProjectsRespReceivedCallback), reqGetProjects);
 }

 void GetProjectsRespReceivedCallback(IAsyncResult result)
 {
 HttpWebRequest request = result.AsyncState as HttpWebRequest;
 if (request != null && result.IsCompleted)
 {
 try
 {
 HttpWebResponse response = (HttpWebRe-
sponse)request.EndGetResponse(result);
 if (response.StatusCode == HttpStatusCode.OK)
 {

 DataContractJsonSerializer serializer = new DataCon-
tractJsonSerializer(typeof(Projects));
 Projects returnedProjects = (Pro-
jects)serializer.ReadObject(response.GetResponseStream());
 Dispatcher.BeginInvoke(() => lstProjects.ItemsSource =
returnedProjects.projects);
 }

 }
 catch (WebException ex)
 {
 if (ex.Response.Headers["Status"] == "403")
 Dispatcher.BeginInvoke(() => MessageBox.Show("Login
Failed"));
 else
 Dispatcher.BeginInvoke(() => Message-
Box.Show(ex.Response.ToString()));
 }

 }

 }

 private void btnMyProjects_Click(object sender, RoutedEventArgs e)
 {
 GetProjects();
 }

 private void btnAllProjects_Click(object sender, RoutedEventArgs e)
 {
 GetProjects(true);
 }

 private void btnShowPages_Click(object sender, RoutedEventArgs e)
 {
 // TODO Navigate to ArticlesPage

38 (50)

 // In the articles pages button click, load the articles from API and
show in list box.
 // ERR handle if no itemks are selected
 Project selectedProject = (Project)lstProjects.SelectedItem;
 // pass the selected Project ID as a parameter to the PagesPage.

 NavigationService.Navigate(new
Uri("/PagesList.xaml?id="+selectedProject.id+"&name="+HttpUtility.UrlEncode(selec
tedProject.name), UriKind.Relative));
 }

 private void button2_Click(object sender, RoutedEventArgs e)
 {

 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {

 }

 private void image2_ImageFailed(object sender, ExceptionRoutedEventArgs
e)
 {

 }

 private void lstProjects_SelectionChanged(object sender, Selection-
ChangedEventArgs e)
 {

 }
 }

 }

Listing 2. Step by Step coding to Load Project Pages.

Once a relevant page is chosen related to a particular project, the user interface pro-

vides an option to select a page and article/articles related to the page as shown in

Figure 6 and uses the windows phone camera feature to capture an image/photo, up-

load it and attach it to an article. The UI provides a smooth navigation from one page to

another. It is possible to jump to the previous page by using the back button on the

phone.

39 (50)

Figure 6. Pages List and Articles related to a project.

Get Images from Company’s Database

The user has an option to search for a project in the text box and then click on the im-

age box one or two to view up the pictures related to the project. It means that two im-

ages from the project can be viewed at the same time, as shown in Figure 7.

Figure 7. Get images related to a project search.

40 (50)

Images are displayed in a separate image box in the application and the image resolu-

tion depends on the size of image.

41 (50)

5 Testing and Results

Windows Phone Store Test Kit provides tests which help to determine whether or not

an app will pass the store certification. The tests are categorized according to the way

they run: automatically or manually. Automated tests evaluate the basic criteria of the

app. The manual tests require navigating through the app and observing its behaviour

in several different conditions, in order to ensure it meets the app certification require-

ments.

5.1 Unit Testing

In unit testing, individual units of source code for all radio buttons were tested in the

windows phone emulator for Visual Studios to see if they performed individual tasks

correctly and met the purpose. Unit testing found problems associated with individual

buttons early in the development cycle. Each unit of ‘Kaiku Mobiili’ application was

tested by running the emulator on Visual Studios and looked for any errors related to

the program.

Errors were highlighted automatically in the coding and they were corrected unit by

unit. This included both bugs in the programs implementation and flaws or missing

parts of the specification for the unit. The cost of finding a bug before the coding begun

or when the code was first written was considerably lower than the cost of detecting,

identifying, and correcting the bug later. It would have been difficult to test a poorly writ-

ten code at a later stage in the testing. Thus, unit testing helped the application to

structure functions and objects in better ways.

5.2 Integration Testing

Integration testing was a logical extension of unit testing. Two units from the application

that had already been tested were combined into a component and the interface be-

tween them was tested by running the windows phone emulator. A component, in this

sense, referred to an integrated aggregate of more than one unit. Many units were

therefore combined into components, which are in turn aggregated into even larger

parts of the program. The idea was to test combinations of pieces and eventually ex-

42 (50)

pand the process to test other buttons of the app. All the individual buttons making up a

process were tested together.

Integration testing identified problems that occurred when units were combined. By

using a test plan that required one to test each unit and ensure the viability of each

before combining units, any errors discovered when combining units were likely related

to the interface between units. This method of testing reduced the number of possibili-

ties and made the analysis easier.

For all input modules that had been unit tested, the integrated testing phase grouped

them in larger aggregates, applied the tests defined in an integration test plan to those

aggregates, and delivered the app for system testing [26]. Integration testing verified

the functional, performance, and reliability requirements placed on major design items.

There was a continuous integration with Visual Studio Application life cycle manage-

ment to ensure that whenever the code was developed and checked in, it worked cor-

rectly with the existing code [41]. After integration testing, the app was delivered to

simulation testing and performance testing.

5.3 Simulation Testing

Simulation testing was performed to simulate a slow network speed, a weak signal, or

the absence of a network connection while running Kaiku Mobiili app on the emulator

and also on an actual windows phone to test how the app handled these conditions.

Simulation Dashboard was used in Visual Studio to test the app for these connection

problems, and to prevent users from encountering scenarios such as the following:

 Calls to a web service fail with a timeout.

 The app crashes when no network is available.

 Data transfer does not resume when the network connection is lost and then

restored.

 The user’s battery is drained by streaming app that uses the network inefficient-

ly.

Network Simulation that was available in the Simulation Dashboard in Visual Studio for

network simulation was enabled to simulate a 3G or 4G connection. To simulate the

43 (50)

behavior of mobile network signal, good, average and poor signal strength options

were chosen on the simulation dashboard.

5.4 Application Performance Testing

When running the app in Windows Phone Emulator, frame rate counters were used to

monitor and test the performance of Kaiku mobiili app. Frame rate counters were first

enabled in the application code which tested the following:

 The rate at which the screen is updated.

 The rate at which the UI thread is running.

 The number of pixels per frame used on the screen.

 The video memory and system memory copies of textures being used in the

app.

Images in JPG and PNG image formats were used in the app to improve the perfor-

mance of the app. JPG worked well for continuous tone images, including photographs.

However, it did cause ringing and blocking artefacts in images with varying colours and

gradients. Hence the logo of the company was added in PNG format to keep up with

varying colour pattern. With the ‘app monitoring’ option, one could evaluate and test the

most important behaviours of mobile app that contributed to a good user experience,

such as start time and responsiveness, maximum memory usage by the app and the

approximate rate of battery consumption while the app was running.

5.5 Results

The test scenarios with their respective test steps, expected results and actual results

are shown in Table 1 below:

Table 1.Results of Testing

Scenario Test Step Expected Result Test Result

Login request Provide coding val-

ues to the login

page using Radio

Login should be

successful only for

the registered users

Login page test

passed and user

was authenticated

44 (50)

buttons of the application for logging in to the

application

Responsive layout Run the application

on different Win-

dows phone devic-

es and the windows

phone emulator.

Display should be

responsive and

show all the re-

quired fields.

Application worked

fine with all screen

resolutions.

Projects list Page Provide coding val-

ues to the get pro-

jects list button and

run it on windows

emulator.

Projects list should

be loaded from the

company’s data-

base.

List of projects is

displayed in a sepa-

rate list box in the

application.

Documents and

Articles List Page

Test and display all

the values through

a simulation on

actual windows

phone.

Document and Arti-

cles related to a

particular project

should be loaded.

List of Documents

and Articles related

to it were displayed

in a separate list

box.

Tombstoning the

app

Testing storage

options on windows

phone that puts

application in the

background to be

retrieved later.

App is not dumped

out of a memory or

exited upon press-

ing start button from

a phone. It does a

last-moment save

of state to avoid a

re-launch from

scratch.

When the user re-

launches the appli-

cation (or returns to

it via the Back but-

ton), applications

state was re-

loaded.

Localization of UI

and a content that

is culture and lan-

guage specific

Application re-

course .resx con-

taining name and

value of resources

in Finnish language

in a string format.

Validation of all

application re-

sources and verifi-

cation of linguistic

accuracy and re-

source attributes.

Upon launch, appli-

cation contents in

English language

are localized and

displayed in Finnish

language.

45 (50)

Navigation be-

tween Application

pages

Navigation class

method to navigate

to a specific page

and come back to a

specific page using

a Windows phone

back button.

The Back button on

a phone automati-

cally navigates

backward without

any special han-

dling.

Smooth navigation

between user inter-

face pages with no

delay or crash.

The results were achieved from the first version of a Kaiku Mobiili API service that pro-

vided an API solution on Windows platform. The work on the application still continues,

and with cooperation with professional developers in the company, the application will

be further developed.

The project provides room to expand it to other platforms such as the Android and iOS

platform. The prototype forms a basis to all other future developments with the applica-

tion.

46 (50)

6 Conclusion

The subject of this thesis came into existence after the case company decided to de-

velop a mobile application customised for efficient use in Windows Phone Platform.

This was a perfect opportunity for the author to familiarize himself with the platform.

Despite the fact Windows Phone being the youngest mobile platform, it provides an

excellent development environment within the SDK. Visual Studio is maybe the best

IDE and forms the basis for many IDE’s currently available and Blend introduces a

unique way of creating a user interface. One could argue that C# combined with .NET

libraries offer easy first steps into programming. As proved in Chapter four discussing

the implementation, it takes only a few lines of code to do rather impressive things such

as controlling the camera. Moreover, the SDK offers ways for testing and quality assur-

ance that have never been seen before. At the time of working on this thesis, the Win-

dows Phone 10 SDK was just about to get released. After the actual release, there

were no published books available, only online documentation. Together with the time

restriction, this was maybe the biggest challenge in the process. The new “customized”

user interface offered a unique option for a sub-contractor of the company. It can be

praised for simplicity as well. Windows Phone runs surprisingly well on the cheapest

hardware allowed. One reason for this is the tight conditions set for applications. Unfor-

tunately, this comes with a price; when an application gets paused, there are only a few

limited options left for the developer.

The battle between the different mobile platforms is fierce. Since all employees and

sub-contractors of the case company were given a Windows phone to access the com-

pany data, development of applications on Windows Phone 7 and 8 was a success

story.

The case company plans to further develop the Kaiku Mobiili Application by using addi-

tional features such as cloud services and also to expand to other mobile platforms

such as the Android and the iOS. Future work could focus on the areas that need to be

developed further so the mobile application would be more efficient for the case com-

pany. Such features, amongst others include graphic and user interface improvements.

47 (50)

A native mobile application can be made in future across all platforms to enable users

to use the application easily and more effectively. Improvements can also be made to

data backup so it would work properly and on daily basis to make sure that the user will

not lose any data in case of system crash.

48 (50)

References

[1] Application Program Interface by Vangie Beal.

http://www.webopedia.com/TERM/A/API.html

[2] IBM Developer Works, API Connect

https://developer.ibm.com/apiconnect/documentation/api-101/types-apis/

Accessed 23.05.2016

[3] Patterns of Knowledge in API Reference by Maalej, Waleed, Robillard, Martin P.

Accessed 01.04.2012

[4] Internet-Based Application Programming Interfaces, API’s by David Berlind.

www.programmableweb.com Accessed 01.05.2014

[5] Building Flexible API’s for web 2.X/Cloud Applications by Raymond Feng.

https://www.slideshare.net/rfeng/building-flexible-apis-for-web-2xcloud-applications-

javaone-2011-session-25208 Accessed 05.04.2011

[6] Learn Rest: A Restful Tutorial by Todd Fredrich.

www.restapitutorial.com/lessons/whatisrest.html Accessed 30.05.2012

[7] Architectural Styles and the design of Network based Software Architectures by Roy

Thomas Fielding.

https://www.ics.uci.edu/~fielding/pubs/dissertation/net_arch_styles.htm#sec_3_4_1

Accessed 03.01.2000

[8] Introducing JSON.

http://www.json.org/ Accessed 06.10.2013

[9] Copter Labs by Jason Lengstorf

https://www.copterlabs.com/json-what-it-is-how-it-works-how-to-use-it/

Accessed 05.06.2009

49 (50)

[10] XML Syntax and Parsing concepts by Kenneth.B.Sall.

http://www.informit.com/articles/article.aspx?p=27006&seqNum=3

Accessed 31.05.2002

[11] Microsoft Developer Network Documentation.

https://msdn.microsoft.com/en-us/library/cc295302.aspx Accessed 03.05.2016

[12] Blinks Guide to metro.

http://blinkux.com/metro/ Accessed 10.01.2014

[13] Introduction to Windows Mobile 7 Development by Nick Ohrn.

https://code.tutsplus.com/tutorials/introduction-to-windows-mobile-7-development--

mobile-91 Accessed 19.05.2010

[14] Windows Phone 7 Feature focus: Hardware by Paul Thurrott.

http://winsupersite.com/article/windows-7/windows-phone-7-feature-focus-hardware

Accessed 01.11.2010

[15] Windows Phone 7 tombstoning explained by Justin James.

http://www.techrepublic.com/blog/smartphones/windows-phone-7-tombstoning-

explained/ Accessed 23.05.2011

[16] How to build a Localized app for Windows 8 by Microsoft Corporation.

https://msdn.microsoft.com/en-us/library/windows/apps/ff637520(v=vs.105).aspx

Accessed 01.07.2016

[17] Background agents for Windows Phone 8, Microsoft Tutorials.

https://msdn.microsoft.com/en-us/library/windows/apps/hh202942(v=vs.105).aspx

Accessed 03.04.2015

[18] Windows Phone SDK 8.0 by Microsoft.

https://www.microsoft.com/en-GB/download/details.aspx?id=35471

Accessed 05.03.2016

50 (50)

[19] About Silverlight by Microsoft.

https://www.microsoft.com/silverlight/what-is-silverlight/ Accessed 10.07.2014

[20] Windows Phone Application Performance Analysis by Dhananjay Kumar

http://www.c-sharpcorner.com/uploadfile/dhananjaycoder/windows-phone-application-

performance-analysis/ Accessed 17.09.2011

[21] Introduction to Windows Phone 8 by Pahkala, Jan

http://www.theseus.fi/bitstream/handle/10024/51260/Pahkala_Jan.pdf?sequence=1

Accessed 2012

