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The aim of this Bachelor’s thesis was to develop a new and rapid method for the detection 
of Streptococcus agalactiae by using the isothermal SIBA®-method. S. agalactiae, i.e. 
group B streptococcus (GBS), is the leading cause of severe neonatal infections. In addi-
tion, it causes infections for pregnant women, the elderly and people, who have some 
chronic disease. 
 
The experimental part of this thesis was executed at Orion Diagnostica’s Research and 
Development laboratory. The thesis was started by conducting oligoscreening to find the 
most suitable primer combinations. Along with the screening, GBS was grown on blood 
agar plate and LB broth. The genomic DNA was extracted from LB broth and quantified 
with qPCR. Primer combinations that passed the oligoscreening were tested with the ge-
nomic DNA. Suitable assays were optimized, the sensitivity and specificity of the assays 
were tested, and the best assay was freeze-dried. In addition, the effect of different lytic 
enzymes to SIBA® reaction and GBS cells was tested. Lastly, the developed SIBA GBS 
assay was tested with clinical samples by using freeze-dried reagents. 
 
A rapid method for the detection of Streptococcus agalactiae was successfully developed 
during this thesis. With freeze-dried reagents, the assay detected GBS in 5.7 minutes at its 
best, when genomic DNA was used as a template. Clinical samples were tested with both 
qPCR and freeze-dried SIBA®-reagents, and in both tests 1/3 GBS positive samples was 
detected. Samples that were not detected could have been low positive samples, or the 
sample preparation method may not have been optimal. 
 
On the basis of the results of this thesis, the assay could be further developed by optimiz-
ing the reaction conditions of freeze-drying. In addition, sample preparation methods 
should be developed further. Also, testing the sensitivity of the qPCR method and possible 
optimization of it should be done, since there was not enough time to do these during this 
thesis. 

Keywords Streptococcus agalactiae, SIBA, qPCR, diagnostics 
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Tämän insinöörityön tavoitteena oli kehittää uusi ja nopea tapa Streptococcus agalacitaen 
tunnistamiseksi isotermaalista SIBA®- teknologiaa hyödyntäen. S. agalactiae eli B-ryhmän 
streptokokki (GBS) on beetahemolyytinen bakteeri, joka on merkittävä vastasyntyneiden 
infektioiden aiheuttaja. Lisäksi se voi aiheuttaa infektioita raskaana oleville naisille, van-
huksille sekä henkilöille, joilla on jokin perussairaus. 
 
Tämän insinöörityön kokeellinen osuus suoritettiin Orion Diagnostica Oy:n tuotekehitysla-
boratoriossa. Työ aloitettiin oligoseulonnalla sopivan alukeparin löytämiseksi. Seulonnan 
ohella S.agalactiaea kasvatettiin verimaljalla ja LB-liemessä sekä pystytettiin kirjallisuuteen 
perustuva qPCR-menetelmä GBS:n tunnistamiseksi. LB-liemestä eristettiin genomista 
DNA:ta, joka kvantitoitiin qPCR:n avulla. Seulonnasta läpi päässeet alukeparit testattiin ge-
nomisella DNA:lla, ja jatkoon päässeet menetelmät optimoitiin. Optimoitujen menetelmien 
herkkyys ja spesifisyys testattiin sekä toimiva menetelmä kylmäkuivattiin. Lisäksi testattiin 
erilaisten lyysaysentsyymien vaikutusta SIBA®-reaktioon sekä entsyymien lyysaystehoa 
GBS-soluihin. Lopuksi menetelmää testattiin kliinisillä näytteillä kylmäkuivattuja reagens-
seja käyttäen. 
 
Insinöörityön aikana onnistuttiin kehittämään nopea menetelmä S.agalactiaen tunnista-
miseksi. Kylmäkuivatuilla reagensseilla menetelmä tunnisti GBS:n nopeimmillaan 5,7 mi-
nuutissa, kun templaattina käytettiin genomista DNA:ta. Kliiniset näytteet testattiin sekä 
qPCR:llä että kylmäkuivatuilla SIBA®-reagensseilla, ja molemmissa testeissä positiivisista 
näytteistä 1/3 detektoitui. Näytteet, jotka eivät detektoituneet, saattoivat olla heikkoja posi-
tiivisia tai käytetty näytteenkäsittelymenetelmä ei soveltunut testiasetelmaan. 
 
Insinöörityön tulosten pohjalta menetelmän kehittämistä voi jatkaa kylmäkuivatun SIBA®-
reaktion olosuhteiden optimoinnilla. Lisäksi näytteenkäsittelymenetelmiä tulee kehittää. 
Myös qPCR-menetelmän herkkyyden testaus ja mahdollinen optimointi olisi hyvä tehdä, 
sillä niitä ei ehditty tämän insinöörityön aikana suorittaa. 

Avainsanat Streptococcus agalactiae, SIBA, qPCR, diagnostiikka 
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1 Introduction 

Streptococcus agalactiae, i.e. group B streptococcus (GBS), is a leading cause of seri-

ous neonatal infections, which may lead to death [2]. There is no vaccine available for 

GBS [23]. GBS is usually transferred to a newborn from the GBS colonized mother during 

the labor. However, it is possible to try to prevent the GBS disease in newborns by giving 

intrapartum antibiotic prophylaxis (IAP) to the colonized mother during the labor. Current 

methods for GBS diagnosis include for example culturing and PCR. Pregnant women 

can be screened for GBS during pregnancy weeks 35- 37 with cultivation. However, GBS 

colonization is a dynamic state, which may come and go, therefore, the result of screen-

ing might not be accurate at the time of the labor. [8, 11, 12] 

The experimental part of this thesis lasted nine weeks and was executed at Orion Diag-

nostica’s research and development laboratory. The aim of this thesis was to develop a 

rapid and accurate method for the detection of GBS using strand based invasion ampli-

fication (SIBA®) technology owned by Orion Diagnostica. SIBA® is an isothermal nucleic 

acid amplification method that can be performed on relatively small and low cost devices 

[22].  

2 Theory 

2.1 Streptococci 

Streptococci are gram-positive, catalase-negative, spherical bacteria that often occur as 

chain or pairs. Some of the streptococci species are facultative anaerobic and some 

obligate anaerobic. They usually belong to a normal flora of humans and different animal 

species. Streptococci appear, for example, on the skin, in the mouth, in intestines, and 

in the respiratory tract. Most of the streptococci cause opportunistic infections, but some 

streptococci species are virulent, which means they can cause serious infections regard-

less of the defense mechanism of the host organism. [1, 2]  

Streptococci can be divided into alpha-, beta- and gamma-hemolytic groups based on 

their hemolytic activity, i.e. red blood cell lysing activity (Figure 1).  Alpha-hemolytic strep-

tococci lyse red blood cells and hemoglobin partially. Alpha hemolysis can be seen on 
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the blood agar plate as a greenish area under and around the colonies. [1, 2] Greenish 

color is caused by the oxidation of hemoglobin to methemoglobin [28]. Beta-hemolytic 

streptococci lyse red blood cells and hemoglobin completely, which can be seen on the 

blood agar plate as lightened or transparent area under and around the colonies. 

Gamma-hemolytic, i.e. non-hemolytic streptococci, do not cause hemolysis. [1, 2]  

 

 

Figure 1. Beta, alpha and gamma hemolysis on blood agar plates [3]. 

Streptococci can also be classified serologically by using Lancefield grouping, in which 

bacteria are divided into groups from A to V, excluding I and J, based on the carbohy-

drate antigens on their cell wall [26]. Streptococcus pneumoniae and Viridans strepto-

cocci cannot be classified by Lancefield grouping since they lack the carbohydrate anti-

gen [33]. 

On the basis of 16s rRNA sequences, streptococci can be divided into six groups: the S. 

pyogenes group, the S. anginosus group, the S. bovis group, the S. mitis group, the S. 

mutans group and the S. salivarus group [29]. 

2.2 Streptococcus agalactiae 

Streptococcus agalactiae, also known as group B streptococcus or GBS, is a weak beta-

hemolytic (Figure 2) and facultative anaerobic bacterium. It has the Lancefield group B 

antigen, hence the name group B streptococcus. [1, 2] GBS can be divided in ten differ-
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ent serotypes Ia, Ib, and III to IX based on the capsular polysaccharide (CPS) compo-

nents on their cell wall [26]. It has numerous virulence factors, such as the pore-forming 

toxin and sialic acid-rich capsular polysaccharide [27]. GBS was first found in the 1930s 

and discovered as a human pathogen in 1938 [16].  

 

Figure 2. Streptoccus agalactiae (ATCC 12386) pure culture on a blood agar plate. Weak hemol-
ysis is seen around the colonies. 

GBS bacterium causes infections in both humans and animals. It is a significant veteri-

nary pathogen since it causes bovine mastitis in dairy cows. GBS is the main cause of 

severe neonatal infections. [2] It also causes infections for pregnant women, the elderly, 

and people with some chronic disease. It is common to be an asymptotic carrier of GBS. 

[14] GBS-bacterium can be found on the skin, in the throat, in gastrointestinal tract, in 

bladder, and in vagina without it causing any symptoms. Around 10-30 % of pregnant 

women have GBS in their rectum or vagina. [9]  

2.2.1 Group B Streptococcus in newborns 

In newborns, GBS causes two types of infection; the early-onset disease (EOD) and the 

late onset disease (LOD). The early-onset disease appears at the latest within six days 

of birth, but mostly within the first 24 hours of birth. In the early-onset disease, the source 
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of bacteria is in most cases a GBS colonized mother. GBS is transferred from the mother 

to the baby in uterus or during the labor. The EOD causes, for example, sepsis, pneu-

monia, and meningitis. [11,12] The early-onset disease may also cause long-term prob-

lems, such as deafness or learning difficulties, especially in the case of meningitis. EOD 

may also lead to death. [11] Fever, difficulties in feeding, difficulties in breathing, irritabil-

ity, lethargy, and blueish skin color are symptoms of the early-onset disease [9]. In 2015, 

13 EOD cases were detected in Finland and 840 cases in the USA. [10,12] The amount 

of EOD cases in the UK in 2015 was 517 [35]. 

There are several risk factors for the early-onset disease. GBS colonized mother, pre-

term delivery and prolonged (>18 hours) rupture of membranes expose the infant to 

EOD. In addition, mother’s GBS bacteriuria during pregnancy and fever during labor are 

risk factors. Demographic risk factors for EOD include mother’s young age and African 

American race. However, over half of the EOD cases are with newborns, who do not 

have any risk factors. [8, 12] 

It is possible to try to prevent the early-onset disease in newborns by giving intrapartum 

antibiotic prophylaxis (IAP) to the mother. IAP should be given at latest 4 hours after 

labor has been induced, and it should last at least 4 hours. The challenge is to identify 

the women, who IAP should be given to. There are two prevention strategies for GBS; 

screening-based and risk-based approach. In screening-based approach, the mother is 

tested for GBS colonization either during pregnancy weeks 35-37 with cultivation or dur-

ing the labor with a PCR-test. In the risk-based approach, IAP is targeted to the women, 

who, on the basis of the risk factors, have higher risk for having GBS colonized newborn. 

[8, 11, 12] USA, Australia and most of the EU-countries use screening-based GBS pre-

vention approach. The risk-based prevention approach is used in the Netherlands, Great 

Britain, Sweden, and Finland. [8] 

The late onset disease occurs between the 7th and 89th days of life. The source of bac-

teria in LOD is, in most cases, unknown. The late onset disease causes the same con-

ditions as the early-onset disease even though meningitis and pneumonia are more com-

mon in LOD than in EOD. [34] In 2015, 11 LOD cases were detected in Finland and 1265 

cases in the USA. [10,12] The amount of the LOD cases in the UK was 339 in 2015 [35]. 

The late onset disease can’t usually be prevented by IAP [14]. The early- and late onset 

diseases are treated with antibiotics, such as penicillin or ampicillin, through a vein [12]. 
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2.2.2 GBS in adults 

Although infections caused by GBS are notably more common in newborns, it can also 

cause infections in adults. In adults, it can cause, for instance, a urinary tract infection, 

sepsis, arthritis, pneumonia, and meningitis. For pregnant women, GBS can cause 

uterus infection and premature labor. [2] 

The elderly and people with some chronic disease, such as diabetes, cancer, or HIV, are 

more exposed to severe infections caused by GBS. GBS is not a sexually transmitted 

disease, and the sources of diseases caused by GBS are mostly unknown with adults. 

Symptoms of the disease depend significantly on which part of the body is infected. The 

treatment depends on the disease that is caused by GBS. GBS itself is treated by using 

antibiotics, such as penicillin or ampicillin. [9, 12] 

2.3 Diagnosis of GBS 

GBS can be diagnosed from a clinical sample in several different ways. Cultivation is still 

the most commonly used and reliable way to identify GBS. It can also be identified by 

nucleic acid testing techniques, such as PCR, LAMP, or probe hybridization methods. 

Immunological assays can be used mostly for presumptive identification of GBS. [2, 16] 

2.3.1 Clinical specimens 

Vaginal and rectal swabs are used for testing GBS colonization of pregnant women dur-

ing 35 to 37 weeks of pregnancy. Vaginal sample should be taken from the lower third 

of vagina and rectal swab should pass through the anal sphincter. The sample should 

not be taken with speculum, but with swab. Swabs are then transported in a nonnutritive 

transport medium, which keeps the sample viable up to 4 days. However, the results are 

more sensitive when the sample is tested within 24 hours of collection. [9, 11, 12] 

GBS colonization of infants or adults can be tested from urine or from sterile body fluid, 

such as blood or spinal fluid [9, 12]. 
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2.3.2 Current methods of GBS detection 

GBS bacterium is generally detected from cultivated samples. It can be grown either on 

an agar plate or in liquid growth medium. It is usually grown on a blood agar medium to 

see the possible hemolytic reaction. Optimum temperature for growth is around 37°C [1.]  

GBS can be growth from sterile samples on nonselective blood agar. The use of selective 

broth medium that contains antibiotics, which inhibit the growth of other bacteria, in-

creases the specificity with genital and rectal samples. [30] 

Cultivation is usually done by using a streak plate method, which is used to isolate indi-

vidual colonies [4]. After inoculating the growth medium is incubated at 35°C to 37°C for 

18 to 24 hours [1]. 

Special procedures are followed when screening GBS in pregnant women. According to 

the recommendation given by a group of experts in Finland, the samples should be in-

oculated on a selective blood agar plate, which contains colisitin and oxcolinic acid. Se-

lective growth medium prevents the growth of gram-negative rods, staphylococci, and 

bacilli. Culture is incubated at 37°C for 18 to 24 hours and after that GBS is identified 

from the culture. If there is not any growth on the plate after 24 hours of incubation, the 

plate is further incubated for 24 hours before giving a GBS negative result. If there still is 

not any growth on the plate after 48 hours of incubations, the result is GBS negative. [5] 

GBS can be identified from culture plates, for example, by enzyme immunoassay test 

(ELISA), Lancefield antigen immunoassay, CAMP, catalase, Hippurate, and latex agglu-

nation tests. Lancefield grouping is a reliable way to identify GBS, since GBS is the only 

Streptococcus species having Lancefield group B antigen on the surface of the bacteria. 

[1, 12] CAMP test can be used for presumptive identification of GBS. Most GBS isolates 

produce extracellular protein called the CAMP factor. Beta hemolysin of Staphylococcus 

aureus and CAMP factor of GBS lyse erythrocytes synergistically, which can be seen on 

a blood agar plate as enhanced beta-hemolysis. [1, 16] GBS bacterium has the ability to 

hydrolyze Hippurate, but so does also some other Streptococci species, therefore, Hip-

purate test can be used only for presumptive identification [1]. 

Even though culturing is the current gold standard method for the diagnosis of GBS, it is 

not 100 % sensitive and false negative results can occur since other possible bacteria of 

the sample can inhibit the growth of GBS, even in selective medium [14, 25]. In addition, 
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culture has rather a long turnaround time (24 to 72 hours), therefore, other ways for the 

diagnosis has been developed [14].  

Currently, there is no vaccine available for GBS [23]. Especially with EOD (early-onset 

disease), fast diagnosis is important and therefore there is a need for a specific and rapid 

method for GBS diagnosing. Number of various nucleic acid based test have been de-

veloped for the detection of GBS. There are multiple commercial PCR assays targeting 

different genes, such as dltR, sip, cfb and cylB, available for detection of GBS. Their 

sensitivity and specificity are in most cases above 90 %. [14, 17, 24] In most PCR assays, 

DNA should be extracted before PCR, which takes an hour. Nevertheless, PCR is much 

faster than culturing since it gives the result within 2 hours of receiving the sample. At its 

best PCR can give a result within 45 minutes of receiving the sample when one-step 

lysis is performed to the sample instead of DNA extraction. [17] However, PCR requires 

heavy and special equipment for performing the reactions. Most of the PCR assays are 

designed for vaginal samples rather than blood samples. [24]  

Another nucleic acid based test developed for detection of GBS is a loop- mediated iso-

thermal amplification assay (LAMP), where DNA target is amplified at 60 – 65 °C without 

thermal cycles. Assay can target different genes, such as cfb and sip. Sensitivity and 

specificity of LAMP assay are above 95 % and it takes 45 to 75 minutes to get a result. 

[31, 32] 

2.3.3 Challenges of GBS diagnosis 

In treatment of diseases caused by GBS, a fast and accurate diagnosis is important. In 

prevention of EOD pregnant women are screened for GBS colonization during 35 to 37 

weeks of pregnancy. However, GBS colonization is a dynamic state, which means colo-

nization may come and go during months. Therefore, even with screening during preg-

nancy weeks 35 to 37, there still is not 100 % reliable knowledge of mother’s GBS colo-

nization stage during the labor. The current standard method for diagnosing of GBS, i.e. 

culturing, takes several days to get the result. As a result, some women and newborn 

infants may get antibiotics treatment unnecessarily since treatment is started if there is 

even a slightly suspicion of GBS colonization. [8,11, 12] 
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2.4 SIBA 

SIBA®, i.e. Strand Invasion Based Amplification, is an isothermal nucleic acid amplifica-

tion technology, which is owned by Orion Diagnostica. SIBA technology is highly sensi-

tive and does not require target-specific probes, and, at its best, it can detect target an-

alyte with the accuracy of one molecule. In SIBA reaction, a single stranded invasion 

oligonucleotide (IO) recognizes the complementary area of the target sequence and pen-

etrates double stranded target DNA with the help of recombinase enzyme and adenosine 

triphosphate (Figure 3). The penetration dissociates flanking areas and single stranded 

target DNA is exposed. Amplification primers, which are specific to target sequence, an-

neal to single stranded target DNA. After this, DNA polymerase synthesizes complemen-

tary strands from free nucleotides. The invasion oligo dissociates and the process starts 

over. This leads to the exponential amplification of the target DNA. [21, 22] 

 

Figure 3. SIBA reaction 
A: Invasion oligo (yellow) penetrates dsDNA. 
B: The penetration dissociates flanking areas and ssDNA is exposed. 
C: Amplification primers bind to ssDNA. 
D: DNA polymerase synthesizes complementary strands. IO dissociates and process 
starts over. [7] 

In SIBA reaction, primers are not substrates for the recombinase, therefore, they are 

unable to attach the target sequence in the absence of the IO. This guarantees that 

amplification is possible only with the right target DNA. 2`-O- methyl RNA is added to the 

IO to ensure, that the IO cannot act as a template or substrate for the polymerase. [21, 

22]  

The SIBA reaction consist of a recombinase, recombinase cofactors, a system producing 

ATP, polymerase, and nucleic acid components. UvsX can be used as a recombinase 

A

B

C

D
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since it ensures efficient turnover of ATP. However, it also produces inorganic phos-

phate, which inhibits the reaction. Sucrose and sucrose phosphorylase added to the re-

action remove inorganic phosphate produced by UvsX. Creatine phosphokinase and 

phosphocreatine are needed in ATP regeneration system. Polyethylene glycol (PEG) 

and gp32-protein improve the functioning of recombinase enzyme in SIBA reaction. Con-

centrations of recombinase, UvsX, and other components used in SIBA depend on the 

target analyte. SIBA can be performed by using wet mix reagents or by using freeze-

dried reagents. [21, 22] 

SIBA reaction is isothermal, i.e. the temperature of the reaction stays the same at 40°C 

during whole amplification reaction. SIBA can, therefore, be performed, for example, in 

an incubator set at 40°C. Real-time progress of the reaction can be monitored by using 

fluorescent dyes and qPCR equipment. [22] 

3 Materials and methods 

3.1 Materials 

Primers and qPCR probe used in this thesis were ordered from Eurofins Genomic (Ger-

many). Invasive oligonucleotides were ordered from Integrated DNA Technologies (IDT, 

USA). Primers and IOs used in oligoscreening are presented in Table 1. 

 Primers and IOs used in oligoscreening. 
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The synthetic template used in oligoscreening and double stranded synthetic DNA tem-

plate used in qPCR quantification were ordered from Invitrogen (Thermo Fischer Scien-

tific, USA). Three clinical samples (serum, sputum, and throat swab) used in this study 

were ordered from Discovery Life Sciences (USA). Table 2 lists materials used in this 

thesis. 

 Reagents used in this thesis. 

 

Product Manufacturer

SIBA regent kit Orion Diagnostica Oy, Finland

Water- Molecular Biology Reagent Sigma Aldrich, USA

Magnesium acetate solution Sigma Aldrich, USA

iTaq Universal Probe Supermix Bio-rad, USA

Qiagen EZ1 DNA Tissue kit Qiagen, Germany

QIAmp DNA mini kit Qiagen, Germany

Ethanol Altia, Finland

Luria broth Sigma Aldrich, USA

Blood agar COH Biomerieux, France

PBS Orion Diagnostica Oy, Finland

Enzyme 1 Sigma Aldrich, USA

Enzyme 2 Sigma Aldrich, USA

Enzyme 3 Sigma Aldrich, USA

Enzyme 4 Sigma Aldrich, USA

Enzyme 5 Orion Diagnostica Oy, Finland

PEG-400 Sigma Aldrich, USA

DMSO Sigma Aldrich, USA

Triton X-100 Sigma Aldrich, USA
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3.2 Methods 

The workflow of this thesis is presented in Figure 4.  

 

Figure 4. Workflow of this thesis. 

3.2.1 Bacterial strains and cultivation 

ATCC’s strain 12386 was used in this thesis. Str. Agalactiae strain was cultured to two 

COH blood agar plates. The plates were incubated at 37˚C for 24 hours. 

One bacterial colony was suspended to 5 ml of Luria broth. Part of the same bacterial 

colony was subcultured to a new blood agar plate to make a pure culture. Suspension 

was incubated in a mixer at 37˚C for 16.5 hours. Pure culture was incubated at 37˚C for 

23 hours and then transferred into fridge for later use. 

Ten different Streptococcus strains from ATCC were used for specificity testing (Table 

3). 
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 Streptococcus strains used in this thesis. 

 

 

 

3.2.2 DNA templates and genome extraction 

In this thesis, the genomic DNA of Streptococcus agalactiae was extracted from bacterial 

suspension culture and from clinical samples. 

Str. agalactiae from bacterial suspension culture was extracted by using Qiagen EZ1 

Advanced XL- robot. Qiagen EZ1 Advanced XL is an automated technique for purifica-

tion of genomic DNA from any biological sample. Qiagen EZ1 Advanced XL is used for 

both diagnostic and scientific use. [19] EZ1® DNA Tissue Kit contains all the reagents 

needed for the bacterial DNA isolation, and it was used in this experiment. Extraction 

was made according to the instructions in EZ1® Advanced XL user manual. 200 µl of 

bacterial suspension culture was used for isolation. Elution volume used in first extraction 

was 200 µl and in second extraction 50 µl to increase the final DNA concentration. 

One extraction of Str. agalactiae from bacterial suspension culture was made manually 

with QIAmp® DNA mini kit. Protocol used was DNA Purification from Tissues (Spin pro-

tocol). Extraction was made as per instructions in QIAmp® DNA Mini and Blood Mini 

Handbook [20]. 

DNA extraction from clinical samples 

DNA was extracted from three Streptococcus agalactiae positive clinical samples. There 

were one throat swab, one serum sample and one sputum sample, all from different 

Species Strain name

S.pyogenes ATCC 19615

S.dysgalactiae ATCC 9926

S.dysgalactiae ATCC 12388

S.dysgalactiae ATCC 12394

S.agalactiae ATCC 13813

S.agalactiae ATTC 12386

S.agalactiae ATCC 27956

S.intermedius ATCC 27335

S.mutans ATCC 31377

S.pneumoniae ATCC 6305
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people. QIAmp® DNA Mini Kit was used for the extraction, and the extraction was made 

as per instructions in QIAmp® DNA Mini and Blood Mini Handbook following protocol 

DNA Purification from Blood or Body Fluids. Throat swab was dipped in 200 µl of PBS 

and used for extraction. In addition, 150 µl of serum and sputum were used for extraction. 

Elution volume used with all three samples was 100 µl. One negative extraction control 

was made. 

3.2.3 qPCR quantification 

PCR method for detection of GBS was set up to determine the copy number of extracted 

gDNA. All qPCR quantifications were made using Bio-rad’s CFX96™ Real Time System 

C1000™ Thermal Cycler. The PCR program, probe and primers were designed based 

on an article [15]. Primers and probes used are presented in Table 4. Used PCR assay 

targets cfb gene, which encodes a diffusible extracellular protein called the CAMP factor 

[16].  

 Probe and primers used in this study and their sequences. 

 

The PCR reaction was performed in a 20 µl volume containing 10 µl iTaq Universal 

Probes Supermix, 2 µl DNA template, 0,4 µM both primers and 0,2 µM probe. The reac-

tion volume was completed to 20 µl with a molecular grade water. The PCR program 

consisted of one cycle of 45°C for 10 min and 94°C for 10 min and 45 cycles of 94°C for 

30 s, and 60°C for 60 s. 

Synthetic double stranded DNA template ordered from a subcontractor was used for 

quantification. Sequence length and quantity of the synthetic dsDNA was known, and 

the copy number (cp) was calculated by using Formula 1. 

𝑎𝑚𝑜𝑢𝑛𝑡 (𝑛𝑔) ∗ 6.022∗1023

𝑙𝑒𝑛𝑔𝑡ℎ (𝑏𝑝) ∗ 1∗109 ∗ 650
.  [1] 

Oligos Sequence

strepB-Forward GGGAACAGATTATGAAAACCG

strepB-Reverse AAGGCTTCTACACGACTACCAA

strepB-probe FAM-AGACTTCATTGCGTGCCAACCCTGAGAC-BHQ1
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DNA concentrations used in quantification were 106 cp/µl, 105 cp/µl, 104 cp/µl, 103 cp/µl, 

102 cp/µl, 10 cp/µl and 1 cp/µl. Two replicates were made of each synthetic dsDNA re-

action. Extracted gDNA concentrations used were stock GBS gDNA, and dilutions 1:10, 

1:100, 1:103, 1:104, 1:105, 1:106, 1:107 and 1:108. Four replicates were made of each 

gDNA reaction.  

3.2.4 SIBA® 

Oligo screening 

SIBA® reactions were performed using the SIBA® reagent kit. Forward and reverse pri-

mer concentrations used were 200 nM and IO concentration used was 200 nM. Uvsx- 

and Gp32- concentrations used were 0.25 mg/ml. Total volume of reaction was 20 µl. 

In this thesis, five different assays were screened. The first step of oligo screening is to 

screen assay oligos for self-priming and unspecific oligo-oligo interactions in SIBA reac-

tion. Forward and reverse primers were screened individually in the presence of IO using 

SYBR Green detection. If an unspecific signal was detected, the primer in question was 

discarded. 

Primers without unspecific signal were taken further to be screened together in the pres-

ence of IO. Primer combinations that caused unspecific signal, were discarded and com-

binations without unspecific signal were taken further to be screened with template.  

Primer combinations were tested with a template to see if they can amplify the specific 

target. First the combinations were tested with a synthetic DNA template. Fastest and 

most specific combinations with synthetic DNA template were then tested with gDNA, 

which was extracted from Streptococcus agalactiae. In screening, amplification time was 

90 min at 41 °C with SYBR Green detection. 

Melt curve analysis was used to confirm that the amplification product was correct. The 

melt curve analysis was run straight after SIBA run. Temperature was increased from 

41°C gradually to 95°C and kept at 95°C for 15 seconds to denature amplicons. It was 

known that the correct product has a melting temperature around 70 °C, and if the Tm of 

amplification product differed from that, it was considered unspecific.  
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Assay optimization 

Assay optimization was done by using SIBA® reagent kit. SIBA reactions were per-

formed in a 20 µl volume containing 2 µl gDNA template and 18 µl mastermix (SIBA® 

reagent kit). Primer-, IO-, Uvsx/Gp32-, and magnesium concentrations varied depending 

on what component was optimized. Amplification time with assay optimization tests was 

60 minutes at 41°C with SYBR Green detection and melt curve analysis was run straight 

after SIBA run. 

Primer and IO concentrations used in oligo screening were 200 nM in one reaction. The 

aim was to get the assay faster and more specific without unspecific amplification. Oligo 

concentrations of the assay were optimized by increasing simultaneously both forward 

and reverse primer concentrations from 200 nM to 400 nM and by changing forward and 

reverse primer concentrations between 300 nM and 400 nM. IO concentration was in-

creased gradually from 200 nM to 400 nM. The tested concentration mixes are presented 

in Table 5. The template concentration used was 1000 cp GBS gDNA per reaction. 

 Oligo concentrations used in optimizing tests. 

 

Best assays from previous test were then optimized by titrating Uvsx and Gp32 concen-

trations. In this experiment, Uvsx and Gp32 concentrations of 0.25 mg/ml, 0.3 mg/ml and 

0.35 mg/ml were tested. 

F R IO

200 nM 200 nM 200 nM

200 nM 200 nM 300 nM

200 nM 200 nM 400 nM

400 nM 400 nM 200 nM

400 nM 400 nM 300 nM

400 nM 400 nM 400 nM

300 nM 300 nM 300 nM

350 nM 300 nM 300 nM

400 nM 300 nM 300 nM

300 nM 350 nM 300 nM

350 nM 350 nM 300 nM

400 nM 350 nM 300 nM

300 nM 400 nM 300 nM

350 nM 400 nM 300 nM

400 nM 400 nM 300 nM



16 

  

Increasing magnesium concentration usually fastens SIBA reaction, but if the amount of 

magnesium is too high, false positives can occur. Magnesium concentrations of 8 mM, 

10 mM, 12.5 mM, 15 mM, 17.5 mM, 20 mM and 50 mM were tested. The primer concen-

trations used were F350/R300 nM with IO concentration of 300 nM. Str.agalactiae gDNA 

was used as template with 100 cp per reaction. 

Sensitivity and specificity 

SIBA reactions were performed in a 20 µl volume containing 2 µl gDNA template and 18 

µl mastermix (SIBA® reagent kit). Optimized primer-, IO-, Uvsx/Gp32-, and magnesium 

concentrations were used. The amplification time was 60 minutes at 41°C with SYBR 

Green detection and melt curve analysis was run straight after SIBA run. 

After oligo and enzyme optimizations, the sensitivity of F17/R7 and F11/R17 assays were 

determined. Assays were tested with template concentrations of 105 cp, 104 cp, 103, 100 

cp, 10 cp and 1 cp per reaction. Four replicates were tested at each template concentra-

tion. Extracted and quantified Str. agalactiae gDNA was used as template. 

The specificity of the F17/R7 assay was determined by testing the assay with ten differ-

ent Streptococcus strains, which are shown in Table 2. Templates used in this experi-

ment were extracted gDNA from each Streptococcus strain with concentration 5 ng/ml in 

one reaction. There were also one gDNA template, from which the copy number was 

known to be 10 000 cp/reaction. Four replicates of each template were tested. 

Enzymatic cell lysis 

SIBA reactions were performed in a 20 µl volume containing 2 µl gDNA template, 2 µl 

lytic enzyme and 16 µl mastermix (SIBA® reagent kit). Optimized primer-, IO-, 

Uvsx/Gp32-, and magnesium concentrations were used. Amplification time was 60 

minutes at 41°C with SYBR Green detection and melt curve analysis was run straight 

after SIBA run. 

The tolerance of SIBA reaction towards lytic enzymes was tested with five different en-

zymes. Enzymes 1, 2, 3, 4 and 5 were tested. The experiment was done by adding 2 µl 

of lytic enzyme straight to the SIBA reaction. Different concentrations of the enzymes 

were used to see if there is a limit where enzyme does not inhibit SIBA reaction. Enzyme 
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concentrations used were enzyme stock and stock dilutions 1:2, 1:4, 1:8, 1:16, 1:32 and 

1:64. The stock concentration of the enzymes was 10 mg/ml except for Enzyme 5, which 

had the stock concentration of 4.5 mg/ml. Also, the control reaction without an enzyme 

was made. Three replicates of each enzyme concentrations were tested and 100 cp 

gDNA per reaction was used as template. 

Enzymes that did not inhibit SIBA reaction, were tested with GBS cells. One colony of 

Str. agalactiae from pure culture was suspended in 100 µl of molecular grade water and 

used as a template. Lysis efficiency was tested by comparing enzymes effect on cells 

with and without incubation. Cells with enzyme were incubated at 37°C for 10 minutes 

and then added to SIBA reaction. Since SIBA itself is basically a one hour incubation at 

41°C, it was tested if pre-incubation at 37°C was necessary by adding cells and enzyme 

straight to SIBA reaction without incubation. Control reactions without enzymes were 

also made with and without incubation. Two replicates were made of each reaction. 

GBS cells used as a template were diluted to see at which cell concentration the lysis 

enzyme is required. Enzymes were added straight to mastermix and cells were heated 

at 95°C for 5 minutes and then added to SIBA reaction. Reactions were also made with-

out heating the cells. Cell concentrations used in this experiment were 1:10, 1:102, 1:103, 

1:104, 1:105 and 1:106. Control reactions without enzymes were also made with and with-

out heating in every cell concentration. Two replicates were made of each reaction. 

Freeze drying 

A freeze-dried trial batch was made of the assay which had been developed in this thesis. 

Mastermix was prepared and pipetted to a 96-well reaction plate 70 µl/well. Concentra-

tions of IO, primers, Uvsx and Gp32 are found in Table 6. After pipetting mastermix to 

wells, it was made sure that there weren’t any bubbles. Plate was moved to pre-cooled 

Julabo-dryer and drying protocol was started.  
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 Concentrations used in freeze-drying. 

 

After drying was done, freeze-dried reagents were tested with two different buffers and 

extracted GBS gDNA. Freeze-dried SIBA reaction was performed in a 41 µl volume con-

taining 40 µl buffer and 1 µl DNA template. 100 000 cp and 10 000 cp of gDNA per 

reaction were used as template. Three replicates were made of each copy number with 

both buffers. NTCs had 1 µl molecular grade water instead of template. Two replicates 

of NTC were made with both buffers. Amplification time was 60 minutes at 41 °C and 

melt curve analysis was done straight after SIBA run. 

Clinical samples 

Three GBS positive clinical samples were tested with freeze-dried reagents. All three 

samples had different matrixes; there were one serum sample, one sputum sample and 

one throat swab sample. Throat swab was dipped to 200 µl of PBS and then tested with 

freeze-dried (FD) reagents. All samples were first heated at 95˚C for 5 min. Four different 

sample preparation styles were tested with the samples. Sample preparation styles are 

presented in Figure 5.  

Reagent Conc.

Forward primer 350 nM

Reverse primer 300 nM

IO 300 nM

Uvsx 300 nM

Gp32 300nM
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Figure 5. Sample preparation styles tested with clinical samples.  

In each condition, there was also one positive control, where the growth GBS cells were 

used as a template. Also, NTC reaction was made in each condition. All reactions were 

made with two replicates. 

Extracted gDNAs from clinical samples were tested with both SIBA freeze-dried reagents 

(without heating) and qPCR. In SIBA reaction and qPCR extracted GBS gDNA from bac-

terial suspension culture was used as a positive control. In addition, qPCR had also syn-

thetic dsDNA as another positive control.  

4 Results 

4.1 qPCR quantification 

GBS gDNA was extracted twice using EZ1 Advanced XL- robot. Copy numbers of ex-

tracted GBS gDNA were 2,3*103 cp/µl and 5,0*103 cp/µl. Elution volume used in first 

extraction was 200 µl and in second extraction 50 µl to increase the final DNA concen-

tration. Copy number of extracted gDNA was quite low and therefore more GBS gDNA 
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was extracted manually by using QIAmp® DNA mini kit instead of EZ1 Advanced XL 

robot. 

The sensitivity of the qPCR quantification was 2 cp/reaction since all replicates of all 

dilutions from 2*106 cp/reaction to 2 cp/reaction amplified (Figure 6). Extracted GBS 

gDNA amplified from stock to 1:105 dilution. One replicate of 1:106 gDNA dilution ampli-

fied. NTCs did not amplify (Figure 6). 

The copy number of GBS gDNA from extraction was 4,9 * 105 cp/µl. Concentration was 

calculated based on samples 1- 1:105, because all their replicates amplified. 
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Figure 6.  A: Amplification plots of synthetic dsDNA used as a standard. All replicates from 2*106 
cp/reaction to 2 cp/reaction amplified. 
B: Standard curve used in quantification. 
C: Amplification plots of extracted GBS gDNA. All replicates from stock to 1:105 dilution 
amplified. 

A

B

C
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4.2 Oligo screening 

In total, five different assays for detection of GBS were screened during this thesis and 

the results are presented in Table 7. Assays 1 and 2 were screened by testing primers 

individually and together in the presence of IO and the combinations, which passed, were 

tested with synthetic template. After that, the most promising combinations were tested 

with gDNA. The fastest combination of Assay 1 detected GBS around 20 minutes and 

the fastest combination of Assay 2 detected GBS around 25 minutes. 

 Number of screening passed oligo combinations. 

 

To speed up the screening, Assay 3 was screened by testing primers individually in the 

presence of IO and then primer combinations straight with the template. None of the 

combinations tested with template passed, therefore, Assay 3 was discarded. 
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Six primer combinations with IO1 and template passed screening in Assay 4. The fastest 

combination detected GBS at 22 minutes and other combinations around 25 minutes. In 

Assay 5, seven primer combinations with IO1 and template passed the screening. All 

seven primer combinations detected GBS under 20 minutes, at fastest at 14.5 minutes. 

Assay 5 seemed to be the most promising assay for the detection of GBS based on the 

detection times and the fact, that there was not any unspecific amplification with these 

primer combinations. Therefore, the 7 primer combinations that passed screening in As-

say 5 were taken further for assay optimization. 

4.3 Assay optimization 

Seven primer combinations were tested, but only the results of primer combination B5- 

F17/R7 are presented and results of other combinations are not shown.  

Primer and oligo concentrations were optimized by increasing simultaneously both for-

ward and reverse primer concentrations and by gradually increasing IO concentration 

from 200 nM. Tested concentration mixes and detection times of the B5-F17/R7 assay 

are presented in Table 8.  

 Used primer and oligo concentrations and detection times of B5-F17/R7 assay. 

 

It seems that higher primer concentration fastens the detection time, but there was also 

some unspecific amplification after 40 minutes. With IO concentration 300 nM, there was 

some unspecific amplification, but not as much as with IO concentrations 200 nM and 

400 nM. On the basis of these results, the IO concentration was set to 300 nM and the 

primer concentrations to 400 nM. 

F R IO Average detection time (min)

200 nM 200 nM 200 nM 17.33

200 nM 200 nM 300 nM 16.13

200 nM 200 nM 400 nM 16.98

400 nM 400 nM 200 nM 12.01

400 nM 400 nM 300 nM 12.08

400 nM 400 nM 400 nM 11.47
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Uvsx and Gp32 concentrations were optimized by testing three different concentrations 

0.25 mg/ml, 0.30 mg/ml, and 0.35 mg/ml (Table 9). Primer concentrations used were 400 

nM and IO concetration was 300 nM. 

 Used Uvsx- and Gp32 concentrations and detection times of B5- F17/R7 assay. 

 

It seems that the assay is fastest with Uvsx/Gp32 concentration 0.3 mg/ml. There was 

not any unspecific amplification with any of the enzyme concentrations. On the basis of 

these results Uvsx/Gp32 concentrations were set to 0.3 mg/ml. 

Primer concentrations were further optimized by changing the forward and reverse pri-

mer concentrations between 300 nM and 400 nM while the IO concentration was 300 

nM and Uvsx/Gp32 concentrations were 0.3 mg/ml. The tested concentration mixes and 

detection times are presented in Table 10.  

 Used primer and IO concentrations and detection times of B5-F17/R7 assay. 

 

On the basis of these results primer concentrations F350/R300 nM and F300/R350 nM 

are the best, since there was not any unspecific amplification with them. With other con-

centration mixes, there was some unspecific amplification around 30 minutes. Primer 

concentration was set to F350/R300, since the detection time is slightly faster with it than 

with F300/R350. 

Uvsx Gp32 Average detection time (min)

0.25 mg/ml 0.25 mg/ml 13.85

0.3 mg/ml 0.3 mg/ml 10.9

0.35 mg/ml 0.35 mg/ml 12

F R IO Average detection time (min)

300 nM 300 nM 300 nM 11.98

350 nM 300 nM 300 nM 11.53

400 nM 300 nM 300 nM 11.75

300 nM 350 nM 300 nM 11.58

350 nM 350 nM 300 nM 11

400 nM 350 nM 300 nM 10.9

300 nM 400 nM 300 nM 11.65

350 nM 400 nM 300 nM 11.06

400 nM 400 nM 300 nM 10.85
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Magnesium concentration was optimized after IO concentration was set to 300 nM and 

primer concentrations were set to F350 nM and R300 nM. Magnesium concentrations 8 

mM, 10 mM, 12.5 mM, 15 mM, 17.5 mM and 20 mM were tested with the template con-

centration 100 cp per reaction. The results are shown in Table 11. 

 MgAc concentrations used and corresponding detection times. 

 

The detection time seems to be faster as the magnesium concentration increases, how-

ever, 50 mM is too high since there was nothing amplifying in that concentration. Detec-

tion times were at their fastest with MgAc concentrations 17.5 mM and 20 mM, but there 

was also substantial unspecific amplification occuring around 27 minutes. With MgAc 

concentrations 8 mM and 10 mM there was not any unspecific amplification. With MgAc 

concentrations 12.5 mM and 15 mM, there was some unspecific amplification after 40 

minutes. The optimal magnesium concentration of this assay is probably somewhere 

between 10 to 15 mM, and it should be further optimized. 

4.4 Sensitivity and specificity 

Sensitivity test was done for two GBS assays after optimization. B5-F17/R7 assay de-

tected all replicates from 100 000 cp to 100 cp per reaction (Figure 7). In addition, three 

of four replicates amplified with 10 cp/reaction. One replicate of 1cp/reaction was de-

tected. None of the NTCs amplified. 

MgAc concentration Average detection time (min)

8 mM 17.7

10 mM 16.18

12.5 mM 15.08

15 mM 12.13

17.5 mM 11.06

20 mM 10.61

50 mM -
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Figure 7.  Amplification plots and NTCs of the B5-F17/R7 assay in sensitivity test. 100 000 cp, 
10 000 cp, 1000 cp, 100 cp, 10 cp and 1 cp per reaction amplified. There wasn’t any 
unspecific amplification. 

B5-F11/R17 assay was more sensitive than B5-F17/R7 assay. It detected all replicates 

from 100 000 cp to 10 cp per reaction (Figure 8). In addition, 1 cp/reaction was detected 

in two replicates of four. There was quite a much unspecific amplification and therefore 

specificity test was done only for the B5-F17/R7 assay, which also had faster detection 

times than B5-F11/R17 assay. 

 

Figure 8.  Amplification plots of the B5-F11/R17 assay in sensitivity test. 100 000 cp, 10 000 cp, 
1000 cp, 100 cp,and 10 cp per reaction amplified. In addition, there was some unspe-
cific amplification after 45 minutes. 
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Specificity was tested with ten different Streptococcus strains. Four of the strains were 

Str.agalactiae and the assay detected all replicates of them all (Figure 9.). Also, extracted 

GBS gDNA was detected. None of the other Streptococcus strains or unspecific amplifi-

cation was detected. 

 

Figure 9.  Amplification plots in specificity test. All Streptococcus agalactiae strains and extracted 
GBS gDNA amplified. 

4.5 Enzymatic cell lysis 

Impact of different enzymes and their concentrations on SIBA reaction is presented in 

Table 12. Used template was extracted GBS gDNA in concentration 100 cp/reaction. 

Enzyme 3 inhibited SIBA with all dilutions. Enzymes 2 and 5 inhibited SIBA with higher 

concentrations, but when they were diluted the inhibition faded. With enzymes 2 and 3 

the detection time fastend the more the enzyme was diluted. Enzyme 2 worked fine in 

SIBA with dilutions 1:16 – 1:64 and enzyme 3 with dilution 1:64. With enzymes 1 and 4 

the dilution of enzyme had no significant effect on detection time. Average detection time 

without any enzyme was 15.46 min. 

ATCC 27956 Extr.gDNA ATCC 12386 ATCC 13813 Extr.gDNA 10 000 cp
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 Impact of enzyme concentrations on detection time. Stock concentration of enzymes 

1, 2, 3 and 4 was 10 mg/ml and stock concentration of enzyme 5 was 4.5 mg/ml. GBS 

gDNA 100 cp/reaction was used as a template. 

 

 

The effect of lytic enzymes to GBS cells was tested with and without incubation (Figure 

10). With all tested enzymes, the detection time was faster when the cells and enzymes 

were not incubated for 10 min at 37˚C. SIBA itself is basically an hour incubation at 41˚C 

and on the basis of these results a pre-incubation with enzyme before the SIBA run slows 

down the detection time. 

 

Figure 10. Impact of incubation on detection time. Cells were incubated with different enzymes at 
37 °C for 10 minutes before SIBA run.   

Enzyme dilution Enzyme 1 Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 5

without enzyme

stock 15.73 40.37 - 17.27 -

1:2 16 21.1 - 17.03 -

1:4 17.67 21.47 - 19.4 -

1:8 17.63 17.43 - 17.4 31.33

1:16 18.23 17.67 - 19.3 18.1

1:32 16.43 16.87 - 17.27 17.37

1:64 17.36 17.4 - 17.33 18.03

Average detection times (min)

15.46
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The effect of heating the cells before adding them to the SIBA reaction was tested by 

heating the cells for 5 minutes at 95°C. With enzyme 4 heating the sample seems to 

improve the sensitivity of the assay and speed up detection times (Figure 11). With en-

zyme 4 dilution 1:8 and heating the assay detected cells until dilution 1:104, but without 

heating it only detected cells until dilution 1:102. With enzyme 4 dilution 1:64 and heating, 

the assay detected all replicates of cells until dilution 1:100 and some replicates of cell 

dilution 1:103 and 1:104. Without heating, it detected all replicates of cells until dilution 

1:100 and some replicates of cell dilution 1:103. Without enzyme 4, the assay detected 

the same cell dilutions as with enzyme 4. 

 

Figure 11. Impact of heating on detection limit with enzyme 4. 

With enzyme 1, the detection times were faster when the cells were first heated (Figure 

12). Heating did not seem to have any effect on the sensitivity of the assay with enzyme 

1, since the assay detected only cell dilutions 1:10 and 1:100 with and without heating. 

There was not significant difference between enzyme 1 concentrations 1:8 and 1:64. 

With 1:8 dilution of enzyme 1, the detection times were slightly faster than with 1:64 

dilution. Without enzyme 1, the assay detected same cell dilution as with enzyme 1. 
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Figure 12. Impact of heating on detection limit with enzyme 1. 

With enzyme 5 heating the cells seems to improve the sensitivity of the assay (Figure 

13). Without heating, the cells assay detected all replicates until cell dilution 1:100, but 

with heating, it detected also all replicates of 1:1000 cell dilution and one replicate of 1:10 

000 cell dilution. Also with enzyme 2, the sensitivity is improved when cells are heated. 

The assay detected all replicates until cell dilution 1:1000 and one replicate of 1:10 000 

cell dilution when cells were heated first. Without heating, the cells assay detected only 

all replicates until cell dilutions 1:100. 
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Figure 13. Impact of heating on detection limit with enzymes 2 and 5. Used concentration with 
both enzymes is 1:64. 

When cells were heated, and there was not any lytic enzyme in the SIBA reaction, the 

assay detected all replicates until cell dilution 1:103 and one replicate of 1:104 cell dilution. 

Without heating, the cells and without any lytic enzyme the assay detected all replicates 

until cell dilution 1:100 and one replicate of 1:1000 cell dilution. 

On the basis of these results, enzyme 5 with dilution 1:64, enzyme 2 with dilution 1:64 

and enzyme 4 with dilution 1:8 seem to be the best. With each enzyme, it was seen that 

the assay detected cells also without the enzyme, thus, the enzymes did not really im-

prove the sensitivity of the assay. Lytic enzymes should be tested more to find out at 

which cell concentration the lysis enzyme is required. 

4.6 Freeze drying 

Freeze drying was successful. All replicates of 100 000 cp and 10 000 cp amplified with 

both SIBA 1 and SIBA 2 buffers and there wasn’t any unspecific amplification (Figure 

14).  
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Figure 14.  Amplification plots of freeze-dried trial batch testing. One cycle was 30 s. 

Detection times were faster with SIBA 1 buffer than with SIBA 2 buffer, but signal levels 

were higher with SIBA 2 buffer. Average detection times (min) are presented in Table 

13. 

 Average detection times (min) of GBS gDNA with freeze-dried reagents. 

 

4.7 Clinical samples 

qPCR 

Extracted gDNA from serum and throat swab samples did not amplify at all in qPCR, 

which could mean they were low positive samples and qPCR was not sensitive enough 

to detect them, or the sample preparation method was not proper. Extracted gDNA from 

sputum sample amplified in all replicates around 24 cycles (Figure 15). All replicates of 

both positive controls amplified around 20 cycles. Negative control from extraction didn’t 

amplify. None of NTC reactions amplified.  

100 000 cp 100 000 cp 10 000 cp 10 000 cp

SIBA 1 buffer

SIBA 2 buffer

NTC

SIBA 1 buffer SIBA 2 buffer

100 000 cp 5,69 min 7,29 min

10 000 cp 7,05 min 8,3 min
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Figure 15.  qPCR amplification plots of extracted gDNA from sputum sample and positive control. 

Freeze-dried SIBA reagents 

Likewise, extracted gDNA from throat swab sample did not amplify at all in FD-SIBA 

reaction. 1/2 replicate of gDNA from serum sample amplified at 22.7 min with Sample 

Prep 2. All replicates of gDNA from sputum sample amplified in all sample prep condi-

tions (Figure 16). There was not significant difference between Sample Prep 1 and Sam-

ple Prep 3 when comparing detection times and signal levels. With Sample Prep 4 de-

tection times were slowest and signal levels weakest. Sample Preparation Style 2 gave 

the highest signal levels. Sample preparation styles are presented in Figure 5. All control 

GBS gDNAs amplified between 7 and 10 min (Figure 16). PCR took over an hour to 

detect GBS, but SIBA took only 10 mins.  

None of the throat swab samples amplified in FD-SIBA reaction or in qPCR. It may be 

that swab sample was not handled correctly, therefore, it did not amplify in both SIBA 

and qPCR. Only one replicate of the serum sample amplified with sample prep 2 at 13.8 

min. After heating the serum sample, it became clumpy and therefore pipetting the sam-

ple to wells was challenging. It is possible that there was not enough serum sample in 

the wells, which would explain that only one of the replicates amplified. Sputum sample 

Positive control gDNA from sputum sample
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amplified in all other sample prep conditions except in Sample Prep 1. Signal levels were 

highest and detection times fastest with Sample Preparation Style 2. With Sample Prep 

4 the detection times and signal levels were the weakest. 

Both NTC reactions with Sample Prep 1 amplified between 23 and 29 min. Also with 

sample prep 3 one NTC reaction amplified at 25.9 min. Other NTC reactions didn’t am-

plify. The melt analysis of amplified NTCs suggests that there is some unspecific ampli-

fication. NTCs have not appeared in any of the previous experiments with this assay, so 

it is possible that the unspecific amplification in NTCs is caused by the buffers that were 

used in sample preparation. Optimization of the freeze-drying for this assay has not been 

done yet, so specificity could be improved by optimization. 

All replicates of GBS cell controls amplified in all sample preparation conditions between 

7 and 9 min (Figure 16). There was not significant difference between sample prepara-

tion styles, when looking at the detection times and signal levels of cell controls. 
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Figure 16.  A: Amplification of extracted gDNA from sputum sample in different sample prep (SP) 
conditions. 
B: Amplification of the sputum sample in different sample prep conditions. 
C: Amplification of GBS cell controls in different sample prep conditions. 
Two replicates were made of each reaction. 

A

B

C
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5 Discussion  

The aim of this thesis was to develop a rapid and specific method for detection of Strep-

tococcus agalactiae by using isothermal SIBA®-technology. SIBA is a nucleic acid 

method that is fast and can be performed on relatively small and low cost devices. Unlike 

PCR, SIBA does not require special equipment, which allows molecular diagnostic to be 

performed at the point of care. 

Another aim was to study the effect of different lytic enzymes to SIBA® reactions and 

evaluate the lysis efficiency. The aim was to perform lysis and SIBA assay at the same 

time without separate lysis step. 

As a result of the experimental part of this thesis, a rapid and specific assay for detection 

of GBS was successfully developed. The best developed SIBA assay detected 100 cop-

ies of GBS in 10.9 minutes in a wet mix. For PCR, it took over an hour to detect the same 

amount of GBS, thus, SIBA is significantly faster than PCR. 

SIBA assay is specific, and it does not detect any other species than Str.agalactiae from 

Streptococcus genus. The sensitivity of the assay was 10 copies, and it should be further 

optimized so that also lower copy numbers could be detected.  

When the effect of lytic enzymes on SIBA reactions was studied, it was noticed that 

enzymes 2, 4 and 5 work the best with SIBA®. On the basis of the experiments, it was 

discovered that heating the sample at 95°C was enough for cell lysis, at least in higher 

concentrations. Lytic enzyme testing should be continued to find at which cell concen-

tration the lysis enzyme is required. Also, the need for lytic enzymes with clinical samples 

should be further studied. Growth cells may function better than clinical samples that 

have more cells and other components, which may inhibit SIBA. 

The original aims of this thesis did not include freeze-drying, but because a good assay 

was successfully developed, freeze-drying was also done. Freeze-drying of the assay 

was successful, and with freeze-dried reagents, the assay detected GBS in 5.7 minutes 

at its best. Freeze-dried reagents were also tested with three GBS positive clinical sam-

ples and four different sample preparation methods. The assay detected part of the clin-

ical samples, and there was some unspecific amplification. Sample preparation should 
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be developed further, since not all positive samples were detected. Also sample prepa-

ration buffers may have caused unspecific amplification.  

In conclusion, the developed SIBA assay for the detection of GBS displays good analyt-

ical sensitivity and specificity. It is significantly faster than culturing or PCR. The assay 

could be suitable for screening GBS at the point of care or, for example, in the maternity 

or pediatric wards. 
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Appendix 1. qPCR raw data 

 Raw data from first qPCR quantification 

 

Well Content Cq Cq Mean Cq Std. Dev Starting Quantity (SQ) Log SQ SQ Mean SQ Std. Dev

A01 Unkn-1 28,91 28,73 0,14 1,43E+03 3,155 1,60E+03 1,39E+02

B01 Unkn-1 28,78 28,73 0,14 1,55E+03 3,19 1,60E+03 1,39E+02

C01 Unkn-1 28,61 28,73 0,14 1,72E+03 3,236 1,60E+03 1,39E+02

D01 Unkn-1 28,63 28,73 0,14 1,70E+03 3,231 1,60E+03 1,39E+02

E01 Unkn-2 32,02 32,03 0,197 2,03E+02 2,307 2,03E+02 2,47E+01

F01 Unkn-2 32 32,03 0,197 2,05E+02 2,311 2,03E+02 2,47E+01

G01 Unkn-2 31,8 32,03 0,197 2,32E+02 2,365 2,03E+02 2,47E+01

H01 Unkn-2 32,28 32,03 0,197 1,72E+02 2,235 2,03E+02 2,47E+01

A02 Unkn-3 35,45 35,38 0,494 2,35E+01 1,371 2,55E+01 8,21E+00

B02 Unkn-3 35,39 35,38 0,494 2,43E+01 1,386 2,55E+01 8,21E+00

C02 Unkn-3 35,93 35,38 0,494 1,73E+01 1,239 2,55E+01 8,21E+00

D02 Unkn-3 34,73 35,38 0,494 3,69E+01 1,567 2,55E+01 8,21E+00

E02 Unkn-4 38,35 38,35 0 3,80E+00 0,58 3,80E+00 0,00E+00

F02 Unkn-4 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

G02 Unkn-4 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

H02 Unkn-4 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

A03 Unkn-5 42,82 40,81 2,833 2,29E-01 -0,641 1,53E+00 1,84E+00

B03 Unkn-5 38,81 40,81 2,833 2,84E+00 0,453 1,53E+00 1,84E+00

C03 Unkn-5 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

D03 Unkn-5 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

E03 Unkn-6 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

F03 Unkn-6 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

G03 Unkn-6 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

H03 Unkn-6 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

A04 Unkn-7 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

B04 Unkn-7 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

C04 Unkn-7 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

D04 Unkn-7 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

E04 Unkn-8 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

F04 Unkn-8 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

G04 Unkn-8 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

H04 Unkn-8 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

A05 Unkn-9 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

B05 Unkn-9 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

C05 Unkn-9 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

D05 Unkn-9 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

E12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

F12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

G12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

H12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

A06 Std 17,52 17,52 0 2,00E+06 6,301 2,00E+06 0,00E+00

A07 Std 21,12 21,12 0 2,00E+05 5,301 2,00E+05 0,00E+00

A08 Std 24,63 24,63 0 2,00E+04 4,301 2,00E+04 0,00E+00

A09 Std 28,26 28,26 0 2,00E+03 3,301 2,00E+03 0,00E+00

A10 Std 32,34 32,34 0 2,00E+02 2,301 2,00E+02 0,00E+00

A11 Std 36,17 36,17 0 2,00E+01 1,301 2,00E+01 0,00E+00

A12 Std N/A 0 0 2,00E+00 0,301 0,00E+00 0,00E+00

B06 Std 17,2 17,2 0 2,00E+06 6,301 2,00E+06 0,00E+00

B07 Std 21,5 21,5 0 2,00E+05 5,301 2,00E+05 0,00E+00

B08 Std 24,39 24,39 0 2,00E+04 4,301 2,00E+04 0,00E+00

B09 Std 28,14 28,14 0 2,00E+03 3,301 2,00E+03 0,00E+00

B10 Std 31,72 31,72 0 2,00E+02 2,301 2,00E+02 0,00E+00

B11 Std 35,51 35,51 0 2,00E+01 1,301 2,00E+01 0,00E+00

B12 Std N/A 0 0 2,00E+00 0,301 0,00E+00 0,00E+00

GBS 1:106

GBS 1:107

GBS 1:108

Standards

NTC

GBS 1:105

GBS stock

GBS 1:10

GBS 1:100

GBS 1:103

GBS 1:104
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 Raw data from second qPCR quantification. 

 

Well Content Cq Cq Mean Cq Std. Dev Starting Quantity (SQ) Log SQ SQ Mean SQ Std. Dev

A01 Unkn-1 27,97 27,64 0,222 3,15E+03 3,499 3,94E+03 5,31E+02

B01 Unkn-1 27,5 27,64 0,222 4,29E+03 3,633 3,94E+03 5,31E+02

C01 Unkn-1 27,55 27,64 0,222 4,15E+03 3,618 3,94E+03 5,31E+02

D01 Unkn-1 27,54 27,64 0,222 4,18E+03 3,622 3,94E+03 5,31E+02

E01 Unkn-2 31,1 31,07 0,268 4,08E+02 2,611 4,22E+02 7,74E+01

F01 Unkn-2 31,14 31,07 0,268 3,98E+02 2,599 4,22E+02 7,74E+01

G01 Unkn-2 30,69 31,07 0,268 5,32E+02 2,726 4,22E+02 7,74E+01

H01 Unkn-2 31,33 31,07 0,268 3,50E+02 2,544 4,22E+02 7,74E+01

A02 Unkn-3 35,62 34,5 0,795 2,13E+01 1,329 4,84E+01 2,08E+01

B02 Unkn-3 33,78 34,5 0,795 7,09E+01 1,851 4,84E+01 2,08E+01

C02 Unkn-3 34,45 34,5 0,795 4,57E+01 1,66 4,84E+01 2,08E+01

D02 Unkn-3 34,15 34,5 0,795 5,56E+01 1,745 4,84E+01 2,08E+01

E02 Unkn-4 38,33 37,49 0,733 3,64E+00 0,561 6,82E+00 3,13E+00

F02 Unkn-4 37,85 37,49 0,733 4,98E+00 0,697 6,82E+00 3,13E+00

G02 Unkn-4 36,69 37,49 0,733 1,06E+01 1,025 6,82E+00 3,13E+00

H02 Unkn-4 37,11 37,49 0,733 8,05E+00 0,906 6,82E+00 3,13E+00

A03 Unkn-5 3,63 3,63 0 2,53E+10 10,403 2,53E+10 0,00E+00

B03 Unkn-5 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

C03 Unkn-5 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

D03 Unkn-5 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

E03 Unkn-6 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

F03 Unkn-6 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

G03 Unkn-6 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

H03 Unkn-6 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

A04 Unkn-7 6,31 6,31 0 4,40E+09 9,644 4,40E+09 0,00E+00

B04 Unkn-7 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

C04 Unkn-7 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

D04 Unkn-7 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

E04 Unkn-8 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

F04 Unkn-8 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

G04 Unkn-8 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

H04 Unkn-8 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

A05 Unkn-9 4,25 4,25 0 1,68E+10 10,226 1,68E+10 0,00E+00

B05 Unkn-9 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

C05 Unkn-9 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

D05 Unkn-9 N/A 0 0 N/A N/A 0,00E+00 0,00E+00

E12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

F12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

G12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

H12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

A06 Std 18,6 18,6 0 2,00E+06 6,301 2,00E+06 0,00E+00

A07 Std 21,38 21,38 0 2,00E+05 5,301 2,00E+05 0,00E+00

A08 Std 25,32 25,32 0 2,00E+04 4,301 2,00E+04 0,00E+00

A09 Std 29,09 29,09 0 2,00E+03 3,301 2,00E+03 0,00E+00

A10 Std 31,42 31,42 0 2,00E+02 2,301 2,00E+02 0,00E+00

A11 Std 35,29 35,29 0 2,00E+01 1,301 2,00E+01 0,00E+00

A12 Std N/A 0 0 2,00E+00 0,301 0,00E+00 0,00E+00

B06 Std 17,79 17,79 0 2,00E+06 6,301 2,00E+06 0,00E+00

B07 Std 21,51 21,51 0 2,00E+05 5,301 2,00E+05 0,00E+00

B08 Std 25,01 25,01 0 2,00E+04 4,301 2,00E+04 0,00E+00

B09 Std 28,48 28,48 0 2,00E+03 3,301 2,00E+03 0,00E+00

B10 Std 32,6 32,6 0 2,00E+02 2,301 2,00E+02 0,00E+00

B11 Std 36,39 36,39 0 2,00E+01 1,301 2,00E+01 0,00E+00

B12 Std 39,19 39,19 0 2,00E+00 0,301 2,00E+00 0,00E+00
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  3 (3) 

 

  

 Raw data from third qPCR quantification. 

 

Well Content Cq Cq Mean Cq Std. Dev Starting Quantity (SQ) Log SQ SQ Mean SQ Std. Dev

A01 Unkn-1 2,04E+01 2,02E+01 0,134 2,93E+05 5,47E+00 3,35E+05 2,76E+04

B01 Unkn-1 2,01E+01 2,02E+01 0,134 3,51E+05 5,55E+00 3,35E+05 2,76E+04

C01 Unkn-1 2,01E+01 2,02E+01 0,134 3,50E+05 5,54E+00 3,35E+05 2,76E+04

D01 Unkn-1 2,01E+01 2,02E+01 0,134 3,45E+05 5,54E+00 3,35E+05 2,76E+04

E01 Unkn-2 2,29E+01 2,31E+01 0,128 5,74E+04 4,76E+00 5,14E+04 4,34E+03

F01 Unkn-2 2,31E+01 2,31E+01 0,128 5,17E+04 4,71E+00 5,14E+04 4,34E+03

G01 Unkn-2 2,32E+01 2,31E+01 0,128 4,88E+04 4,69E+00 5,14E+04 4,34E+03

H01 Unkn-2 2,32E+01 2,31E+01 0,128 4,77E+04 4,68E+00 5,14E+04 4,34E+03

A02 Unkn-3 2,69E+01 2,66E+01 0,229 4,38E+03 3,64E+00 5,39E+03 7,64E+02

B02 Unkn-3 2,64E+01 2,66E+01 0,229 6,14E+03 3,79E+00 5,39E+03 7,64E+02

C02 Unkn-3 2,65E+01 2,66E+01 0,229 5,77E+03 3,76E+00 5,39E+03 7,64E+02

D02 Unkn-3 2,66E+01 2,66E+01 0,229 5,25E+03 3,72E+00 5,39E+03 7,64E+02

E02 Unkn-4 3,03E+01 3,03E+01 0,077 4,88E+02 2,69E+00 4,98E+02 2,54E+01

F02 Unkn-4 3,02E+01 3,03E+01 0,077 5,35E+02 2,73E+00 4,98E+02 2,54E+01

G02 Unkn-4 3,03E+01 3,03E+01 0,077 4,90E+02 2,69E+00 4,98E+02 2,54E+01

H02 Unkn-4 3,03E+01 3,03E+01 0,077 4,77E+02 2,68E+00 4,98E+02 2,54E+01

A03 Unkn-5 3,40E+01 3,38E+01 0,365 4,49E+01 1,65E+00 5,27E+01 1,37E+01

B03 Unkn-5 3,40E+01 3,38E+01 0,365 4,48E+01 1,65E+00 5,27E+01 1,37E+01

C03 Unkn-5 3,33E+01 3,38E+01 0,365 7,32E+01 1,86E+00 5,27E+01 1,37E+01

D03 Unkn-5 3,39E+01 3,38E+01 0,365 4,81E+01 1,68E+00 5,27E+01 1,37E+01

E03 Unkn-6 3,74E+01 3,74E+01 0,093 5,05E+00 7,03E-01 5,00E+00 3,04E-01

F03 Unkn-6 3,75E+01 3,74E+01 0,093 4,69E+00 6,71E-01 5,00E+00 3,04E-01

G03 Unkn-6 3,75E+01 3,74E+01 0,093 4,87E+00 6,87E-01 5,00E+00 3,04E-01

H03 Unkn-6 3,73E+01 3,74E+01 0,093 5,40E+00 7,33E-01 5,00E+00 3,04E-01

A04 Unkn-7 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

B04 Unkn-7 3,88E+01 3,88E+01 0 2,05E+00 3,12E-01 2,05E+00 0,00E+00

C04 Unkn-7 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

D04 Unkn-7 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

E04 Unkn-8 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

F04 Unkn-8 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

G04 Unkn-8 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

H04 Unkn-8 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

A05 Unkn-9 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

B05 Unkn-9 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

C05 Unkn-9 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

D05 Unkn-9 N/A 0,00E+00 0 N/A N/A 0,00E+00 0,00E+00

E12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

F12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

G12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

H12 NTC N/A 0 0 N/A N/A 0,00E+00 0,00E+00

A06 Std-1 18,05 1,77E+01 0,506 2,00E+06 6,30E+00 2,00E+06 0,00E+00

B06 Std-1 17,34 1,77E+01 0,506 2,00E+06 6,30E+00 2,00E+06 0,00E+00

A07 Std-2 21,48 2,11E+01 0,547 2,00E+05 5,30E+00 2,00E+05 0,00E+00

B07 Std-2 20,71 2,11E+01 0,547 2,00E+05 5,30E+00 2,00E+05 0,00E+00

A08 Std-3 24,58 2,45E+01 0,115 2,00E+04 4,30E+00 2,00E+04 0,00E+00

B08 Std-3 24,42 2,45E+01 0,115 2,00E+04 4,30E+00 2,00E+04 0,00E+00

A09 Std-4 27,91 2,79E+01 0,032 2,00E+03 3,30E+00 2,00E+03 0,00E+00

B09 Std-4 27,86 2,79E+01 0,032 2,00E+03 3,30E+00 2,00E+03 0,00E+00

A10 Std-5 31,32 3,12E+01 0,144 2,00E+02 2,30E+00 2,00E+02 0,00E+00

B10 Std-5 31,11 3,12E+01 0,144 2,00E+02 2,30E+00 2,00E+02 0,00E+00

A11 Std-6 35,02 3,49E+01 0,148 2,00E+01 1,30E+00 2,00E+01 0,00E+00

B11 Std-6 34,81 3,49E+01 0,148 2,00E+01 1,30E+00 2,00E+01 0,00E+00

A12 Std-7 40,21 3,96E+01 0,932 2,00E+00 3,01E-01 2,00E+00 0,00E+00

B12 Std-7 38,89 3,96E+01 0,932 2,00E+00 3,01E-01 2,00E+00 0,00E+00
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