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Construction and Demolition Waste represents approximately one fourth of the total solid 
waste generated inside the European Union. Its proper management is a key issue due to 
the EU recycling target, rising raw material prices and landfill space scarcity. The most de-
sirable management options are the re-use, material recycling, energy recovery and even-
tually landfilling. However, prioritization can be neglected if there are sufficient evidence that 
originally less desirable options can bring more environmental benefits.  
 
This thesis aimed to analyse different waste management options for the combustible frac-
tion of demolition waste, with emphasize on energy recovery technologies. The chosen tech-
nologies were the combustion with energy recovery and gasification. A simplified Life Cycle 
Analysis has been carried out in order to ease the comparison of these technologies in the 
case of two buildings situated in the Great Helsinki area, that are going to be demolished. 
The system boundaries include transportation and the selected thermochemical treatments. 
Two different scenarios have been built up, one with mainly wood containing demolition 
waste and the second having as subject mixed demolition waste based on fossil carbon. 
Three environmental impacts and energy recovery have been included in the analysis. Cal-
culations were based on emission limit values, average energy content of certain materials, 
and assumptions. Results of the analysis should be treated by keeping in mind the uncer-
tainty about the data quality, the amount of assumptions and the site-specific nature of study.  
 
The results of the analysis show that each technology and the accompanying logistics have 
their advantages and drawbacks. Plant efficiency plays a dominant role in energy recovery, 
meanwhile transportation distance has its own important share in environmental burdens.  
Final decision regarding the most suitable energy recovery technology for demolition waste 
should be based on factors such as distance between demolition site and waste treatment 
facilities, composition, quality, level of contamination and energy content of the waste. Fur-
ther data collection and studies are needed lower the uncertainty of the results and to facil-
itate the decision making.  
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 Introduction 

 

 

The way as we treat our waste is in change due to more and more strict regulations but 

also due rising landfilling prices, and cost of raw materials and energy. While in devel-

oped countries the transition from landfilling to selective waste collection and recycling 

is fully developed or at least it is in final implementation phase, developing and undevel-

oped countries are yet landfilling their waste or are at an early stage of development.   

 

 Legal framework 

 

Inside the European Union, the Waste Framework Directive from 2008 specifies the main 

aspects which should be followed in the national waste chain management. This guid-

ance sets up also the priority order of waste management preference as follows: preven-

tion, (preparing for) reuse, recycling, other recovery, and disposal being the least desired 

option.  

 

 Background  

 

The quantity of the waste the humanity produces grows year after year. A large part of 

this waste comes from the construction industry. It has been estimated that about 25 % 

of the waste generated comes from construction and demolition. In many countries Con-

struction and Demolition Waste have risen due to urbanisation, however in others, mainly 

developed western countries, the trend is to renovate and extend the life of old buildings. 

Considering that about half of all natural resources extracted yearly in Europe, are used 

in the fabrication of construction materials, it is understandable the concern and current 

focus on the Construction and Demolition Waste (C&DW) generation and management. 

[1] 

 

Until recently, C&DW has been considered to have no substantial negative impact on 

the environment or human health, and its management has been confined to landfilling 

it. In the last years, this attitude slowly has been changed for many reasons. Firstly, we 

should mention the increasingly stringent regulations regarding waste management. 

Secondly a large part of this waste could be easily recycled or re-used, rather than being 



2 (55) 

 

 

simply dumped into landfills, depleting the already meagre available landfill areas that 

we have. Thirdly, many materials are contaminated therefore they require proper waste 

treatment and management. Last, but not least construction and Demolition Waste can 

be energy carrier thereby, from the power production industry point of view, it can be 

considered as possible raw material.  

 

 Justification of the thesis 

 

The EU Waste Framework Directive sets up a 70 % recycling target for non-hazardous 

Construction and Demolition Waste by 2020. [2] In some EU countries, the target has 

been already achieved meanwhile in others a systematic waste management approach 

is needed to accomplish the goal. Finland, having a wood bases construction legacy, 

phases big challenge to fulfil the EU requirements, because energy recovery is located 

on an inferior level in the waste management hierarchy. However, the same directive 

states that in cases where it can be proved that inferior waste management option brings 

more environmental benefits or cause less environmental burdens. 

   

 Goal and scope of the thesis 

 

The aim of this thesis is to contribute to the decision making regarding combustible Dem-

olition Waste management options at two buildings, planned to be demolished, in the 

Helsinki Metropolitan Area. The goal was to analyse energy recovery potential of two 

waste-to-energy technologies and to compare their environmental burdens together with 

accompanying transportation. One of the considered options was the incineration with 

energy recovery at WtE power plant located in Vantaa, the second option being the gas-

ification of Demolition Waste followed by combustion of generated syngas at Kymijärvi II 

Lahti power station.  

 

To facilitate the comparison of these two thermochemical treatments and associated 

transportations of the waste from the sites to the waste treatment plants, a simplified 

Life-Cycle Assessment (LCA) had been conducted. As functional unit, the “energy re-

covery of 1 tonne solid waste” was chosen and the system boundaries include logistics 

(transportation, pre-treatment of Demolition Waste), thermal conversion processes, but 

does not consider bottom and fly ash handling, neither final disposal of them.  
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 Methodology 

 Legal framework 

 

The EU’s and Finland’s nationally waste management regulatory framework was shortly 

reviewed. The emphasize had been put on directives regarding Construction and Dem-

olition Waste management and waste transportation.  

 Construction and Demolition Waste data review in EU and Finland 

 

This review part seeks to provide a general overview about amount and type of waste 

generated during construction and demolition works. Demolition Waste (DW) has been 

highlighted since the aim of this thesis is to analyse solutions and environmental impacts 

of different DW management techniques with emphasize on combustible fraction.  

Figure 1, gives us an image about the share of C&DW and makes it understandable why 

its correct management is so vital both virgin material and environmental wise.   

 

 

 

Figure 1. Amounts of waste by sector in Finland 2011 [3] 
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 Stakeholder identification 

 

A range of stakeholders were identified and the key organisations were highlighted.   

 Waste generators 

 Waste transporters 

 Reprocessing facilities 

 Energy recovery power plants 

 Landfills i.e. disposal sites 

 

 Demolition and energy recovery process description 

 

Short description of demolition and waste treatment (mainly thermochemical energy re-

covery) techniques. Two distinctive demolition techniques were considered, the conven-

tional which is more mechanical and restrict the segregation process, and the combined 

which integrates the selective, primarily manual deconstruction and the mechanical dem-

olition. During manual deconstruction, i.e. disassembly both the potentially hazardous 

components and very clean parts of the building are removed, while during mechanical 

demolition, the generated waste goes to the mixed waste container which afterwards is 

taken to further treatment.  

 

 Construction and Demolition Waste 

 

The Construction and Demolition Waste (C&D waste) definition is widely used for waste 

which has been created during construction, renovation, or demolition of a building or 

any construction structure (bridge, road). In most of the cases there is no clear distinction 

between waste coming from new constructions and waste from renovations or demoli-

tions. This fact is true also in Finland’s case. Even though quantity of C&D waste was 

somehow monitored, clear regulation or legislation regarding the recycling or reuse of 

C&D waste has not been in force. The only restriction in respect of landfilling of C&D 

waste was related to its hazardous or non-hazardous nature.  

 

The composition of the C&D waste is diverse, including mainly concrete, bricks, tiles, 

mortar, ceramics, wood, metals, plastics, gypsum, and others some of them classified 

as dangerous substances like asbestos, PCB, PAH, or lead based paints. [4] However 
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different countries have different ways of defining what it is considered construction or 

Demolition Waste. There are countries where soil is considered construction waste 

meanwhile in others it is not included in statistics. The European Union Waste Frame-

work Directive 2008/98/EC refers as waste any material or product that is going to be 

discarded by holders. [5] 

 Legal framework of C&D waste management in Finland 

 

Waste management practices in Finland are regulated by national legislation which 

largely follows the EU legislation. The legislative framework regarding C&DW is based 

on the following acts: 

 Waste Act 646/2011 

 Government Decree on Waste 179/2012 

 Land use and building Act 132/1999 

 Land use and building Decree 859/1999 

 Environmental Protection Act 527/2014 

 Environmental protection Decree 713/2014 

 Government Decree concerning the recovery of certain wastes in earth construc-

tion 591/2006 [6] 

 

According to the Government Decree on Waste (2012)  

‘construction and Demolition Waste means waste from new construc-

tion and repairs and demolition of buildings or other fixed structures, 

civil engineering work or other corresponding construction’ 

 [7, Section 1] 

 

Based on the same document, companies engaged in construction or demolition projects 

have the obligation to make a separate collection of C&D waste to facilitate recycling, 

recovery or other treatment. Furthermore, requires that all usable parts are reclaimed 

and re-used. [7, Section 15] Special care is required for asbestos waste.  

 

Transportation of the waste should be done in a manner that no waste is released into 

the environment. In Section 16 the minimum sorting requirements define the main waste 

types as follow: 

 Concrete, brick, mineral tile and ceramic waste types 

 Gypsum-based waste 

 No-impregnated wood waste 
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 Metal waste 

 Glass waste 

 Plastic waste 

 Paper and cardboard waste 

 Soil and waste rock material 

 Constituents of Construction and Demolition Waste 

 

Based on the European Union (EU) Waste Framework Directive [2] waste classification, 

soil that cannot be reused onsite or as aggregate in roads, it will be classified as C&DW.  

While during construction and renovation the amount of waste is relatively modest, dem-

olition of old buildings produces large volumes of waste. Values regarding quantity and 

composition of the C&DW show high geographical variations. These variations are un-

fortunately also due to poor solid waste management practices and levels of control and 

reporting [4]. Some countries lack completely data about C&D waste, and most probably 

the waste ends up in landfills or illegal dumps. However, some estimations have been 

done based on national statistical data concerning demolition of old buildings and ques-

tionnaires. These estimations are far to be accurate but they can give an approximate 

idea about the quantity of C&DW generated, which is estimated to be just in the EU 

somewhere between 800-1000 million tonnes per year. [8] A breakdown of generated 

waste amount based on economic activities can be seen in Figure 1.  

 

Figure2. Waste generation by economic activities [8] 
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Based on data published by Eurostat Waste statistic section, construction and Demoli-

tion Waste accounts to about one third of the total waste generated in the European 

Union. Because of its huge amount, C&D waste became a priority waste stream in the 

European Union. The objective of the EU is that up to 70% of the C&D waste (by weight) 

should be recycled, reused or undergo material recovery. 

 

Because C&D waste management is only in its infancy, detailed data about the compo-

sition of waste is rarely available even in developed countries. The composition of C&D 

waste is dependent on construction typology in specific areas. In some areas wood is 

the preferred construction material (see Finland), meanwhile in others concrete or bricks 

are the dominant construction materials.  

 

 Construction and Demolition Waste in Finland 

 Quantity and quality of C&DW in Finland 

 

Quantity and quality of C&DW generated in Finland varies from year to year and depends 

mainly on factors like economic situation, social-demographic evaluation, etc. Waste 

generated by construction industry falls in certain categories based on material compo-

sition. The main categories and the associated amounts can be seen in Table 1. Unfor-

tunately, waste generated during construction and demolition works are registered to-

gether, therefore a distinction between these two is impossible.  

 

Table 1. Amount and waste types generated by the construction industry [3] 

Type of waste 2011 

(1000 

tonnes) 

2012 

(1000 

tonnes) 

Mineral 17815 15682 

Metallic waste 265 78 

Glass waste 1 1 

Paper and cardboard waste 6 5 

Plastic and rubber waste 0 14 

Wood waste 253 238 

Sludges 

Household and mixed waste 

14 

70 

0 

5 

 



8 (55) 

 

 

In Figure 3. It can be clearly seen that wood generally represents one of the dominant 

waste fraction, and its yearly variation is almost insignificant. Disregarding soil waste, in 

2013 approximately 224000 tonnes of construction waste had been generated, out of 

which about 63% was wood waste. [9] 

 

 

Figure 3. Amount of construction waste generated in 2011 and 2012 [10] 

 

As we can see in Figure 4. the dominant waste fraction is the mineral because it includes 

heavy soil materials resulting from excavation. If we remove the mineral waste the situ-

ation is completely changed.  

 

 

Figure 4. Components of C&D waste in 2011 [3] 
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Figure 5. C&D waste in 2011 without soil fraction  

 

 Logistics and Demolition Waste management plan  

The operational chain for Demolition Waste can be divided in three phases: generation 

of the waste, recycling processes and final utilisation of the recycled waste. Each section 

comprises some sub-sections like materials, technologies involved, services, and stake-

holders. A visualisation of this structure can be seen in Figure 5.  
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Figure 6. Operational chain for Demolition Waste  

 

Material part tells us about the kind of waste fractions that have been generated, fractions 

that have been recycled and rejected, and finally their classification as final products.  

 

In the technologies subsection, we define the technologies involved in segregation, re-

cycling and final use phases. In the first phase, waste is generated by mechanical and 

manual demolition and segregated in the aforementioned ways. Nowadays, manual seg-

regation is crucial to disassembly and remove electrical equipment which can be reused, 

sold or recycled.  

 

Generally, there is an onsite segregation where the main fractions of waste are sepa-

rated from mixture. After onsite segregation, different waste fractions are transported to 

recycling facilities. In the recycling facilities, certain technologies such like: further sort-

ing, crushing, separation of recovered materials and rejects, mechanical processing and 

incineration are applied to the incoming waste stream.  

 

In the last phase, namely utilisation of recovered waste materials, technologies involved 

are the manufacturing and energy recovery ones, where the recovered waste fractions 
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are reused as raw materials for new products and in the latter, they go through a ther-

mochemical process where energy content of the waste is recovered.  

 

Stakeholders are all companies or organizations that are involved in the C&D waste gen-

eration, recycling or are final users of the recycled materials. [11] 

 

 Before demolition 

Demolition of buildings can be conducted in two main ways, namely selectively or in 

conventional way. If a selective demolition is carried out, then re-use of materials is more 

likely possible than is case of conventional demolition when recycling or energy recov-

eries are the only possible steps before landfilling. Usually conventional demolition is 

implemented by mechanized methods (e.g. excavator, hydraulic hammer, etc.) or using 

explosives without any prior disassembly. In contrast, during selective demolition mate-

rial is dismantled from buildings into different fractions.  

 

 Estimation of the amount and type of waste 

A proper estimation of the type and amount of waste that is going to be generated is 

crucial, to achieve an efficient and sustainable waste management. A good estimation 

helps both time scheduling, waste storage and transportation processes. Before demo-

lition work, an environmental inventory should be carried out to investigate whether the 

building contains any hazardous materials that must be removed or treated before dem-

olition work starts. [12]  

 

 Identification of waste streams  

Identification of all possible waste streams that are likely to be generated 

The number of waste streams vary in function of demolition technique applied and extent 

of segregation. If the goal is to recycle as much as possible out of recyclable C&D waste 

than a selective demolition should be applied. This technique increases the rate of recy-

clability but also the cost of demolition is increased. As the number of waste fractions 

increases the storage and transportation cost escalate. The main recyclable C&D waste 

fractions, disregarding soil, concrete, metal and bricks, are uncontaminated wood, plas-

tics, insulating materials, and plasterboards.  
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 Segregation of waste 

Proper segregation increases the quality of recycled material thereby the profitability of 

material recovery is supported. Degree of separation should be based on available op-

tions and on an analysis of the costs and revenues of separated materials. [13] 

A good segregation plan follows the following basic guidelines:  

 Reuse - maximize the amount 

 Recycling - maximize the amount 

 Disposal at authorized waste facilities - minimize the amount 

 

 On-site planning and organization  

A good material recovery is achieved if employees are well prepared and trained profes-

sionals, who understand how the waste management will work.  A good understanding 

about the importance of segregation and pollution prevention are ineluctable for sustain-

able demolition processes. Well-grounded knowledge helps both employees in their daily 

work and management to maintain quality. Well organized waste collection system on 

demolition sites are more aesthetical, easy to use, safe, and not least strengthen the 

trust between company and stakeholders.  

 

 Waste management contractor 

After the amount and type of waste is defined, the next step is to find a proper waste 

management contractor both for pre-treatment processes and landfilling. There should 

be clear plan about who will be in charge with waste collection, transportation, waste 

processing and eventually landfilling.  

 

 Off-site sorting  

The off-site sorting is possible however is not recommended because contamination of 

clean waste due to mixed storage is highly probably. Therefore, wherever is possible on-

site sorting i.e. segregation is recommended. Off-site sorting might be more sustainable 

when there is a strong space scarcity.  
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 During demolition 

Demolition usually starts and should be started with selective removal of materials which 

have sales values or had been identified as potentially harmful materials. Another option 

is the chemical treatment of such parts of buildings which had been contaminated during 

their life time. [14] Each of these operations can be treated as clearly distinguishable 

steps in the selective demolition process phase.   

 

Hazardous waste needs to be removed before the actual demolition starts. Its identifica-

tion is part of the planning stage, prior demolition work. The most important dangerous 

substances containing parts are the following: 

 Mineral oil containing components 

 Isolations and electrical equipment’s containing PCB 

 Asbestos containing flooring 

 Detectors with radioactive components 

 

To achieve high as possible segregation rate, selective demolition and dismantling 

should be carried out. Proper segregation reduces transportation and other management 

costs.  

 Monitoring 

All necessary documentation must be done in order to contribute to transparency and 

trust. [13] Records must be maintained on site.  

 

 Transportation 

 

Demolition Waste can be very bulky; therefore, segregation practices and proximity of 

recycling plants is very important. [13] Finding the nearest plant and best transport net-

work is essential to reduce environmental burdens associated with transportation emis-

sions.   

 Post-demolition 

 Evaluation 

After demolition, had been carried out, one should evaluate the whole process to improve 

both planning, segregation, transportation, choosing the waste management contractor 

processes.  
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 Waste treatment methods 

 Re-use, recovery and recycling of Construction and Demolition Waste  

 

Before any kind of recycling process, one should think about how C&D waste could be 

reduced. The amount of C&D waste can be reduced in many ways. Using life-cycle ap-

proach, opportunities to reduce the amount of waste and environmental impacts can be 

easily identified. Life cycle thinking also helps finding the best solution and supports de-

cision making to achieve a sustainable waste management. The first step all the time 

should be the source reduction. This step will diminish material and energy use, further-

more prevents waste from being generated.   

 

Other benefits associated with source reduction are:   

 fewer disposal facilities 

 conservation of landfill spaces 

 reduction of associated environmental issues, such as air pollutant emissions, ex-

traction of virgin sources 

 reduction of the life-cycle material cost 

 onsite reuse reduces transportation costs 

 

Prior starting a recovery or recycling process the hazardousness of the raw waste must 

be assessed. If the waste is free of hazardous materials or the hazardous fraction can 

be easily located and eliminated, then the recovery process can be started. Materials 

recovery from Demolition Waste stream involves the sorting and separation of useful 

fractions from the waste. [15]  

 

 Recovery of combustible Demolition Waste fraction 

 

There are couple of recovery techniques that can be considered in the DW management. 

The first and most environmentally friendly option is the re-use of construction elements, 

followed by material recycling, and based on the EU waste directive hierarchy the last 

choice should be the energy recovery. However, as we will see there might be some 

derogations from this hierarchy, when through Life-Cycle Assessment analysis it can be 

proved that any of the subordinate options would bring more environmental benefits than 

some superior.   
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 Re-use of wood waste generated from end-of-life products 

 

When a building element is re-used, we generally refer to its recovery as it is, or with 

some minor remanufacturing, having the same grade and function like before its recov-

ery. [16] The re-use of products usually brings the highest environmental benefits, both 

because of avoided pollution associated with its management as a waste and energy 

and raw material savings due to avoided extraction and production processes. 

 

The possibility of reusing wood waste arising from demolished buildings is highly de-

pendent on proper deconstruction planning and its implementation. Reusing wood based 

structural elements is possible, and can be also economically feasible. The profitability 

of it can be increased by the reusability in mind already during the construction planning 

phase. In Finland, guidelines for designing for deconstruction have been already pub-

lished, recommending that components with dissimilar service life are separated in a way 

that they can be easily removed separately. [16] However, re-use of timber materials is 

hindered by quality requirements set for construction materials [9], and CE labelling re-

quirements. CE labelling allows traceability of the construction products and attests that 

their characteristics are declared as it is required.  CE marking of material constructions 

it is mandatory since 2013.  

 

 Recovered wood is perceived as a lower quality and dirty as compared to virgin wood. 

It is also much easier for constructors to use standard sized new products than odd sized 

and processing requiring recycled timber products. In lack of market for recycled wood 

elements, proper regulations and legislations that would facilitate the re-use of demolition 

materials, the selective demolition is unsustainable.  

 

To foster the re-use of wooden materials, timber elements should be removed selectively 

and sometimes even manually. Therefore, this type of demolition is perceived as costlier 

than the conventional one. During timber i.e. engineered wood recovery, the manual 

labor is even more emphasized than in the case of steel or concrete elements. [16] 

Re-use of timber materials is only feasible and should be considered, if it has environ-

mental benefits (creates less pollution, CO2 emissions, and other environmental burdens 

compared to other waste management options like recycling or energy recovery pro-

cesses). Another aspect that should be considered is the demand for recycled materials 

for re-use.  
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 Recycling of wood waste generated from end-of-life products 

 

Wood is one of the major constituent of C&D waste and there are several waste man-

agement options for it, such like re-use, recycling, combustion with energy recovery, and 

the last desirable being the landfilling. Its reusability and market value is varying per its 

origin, type, quality, and age. The challenge does not lie just in recycling but also in 

finding demand for the recycled wood.  

 

Quality based classification define waste wood as Grade A, B, C, D, where Grade A 

stands for high quality and clean wood waste and all the others contain different and 

increasing number of contaminants. High quality i.e. Grade A type wood waste can be 

achieved by in situ segregation or by thoroughly processing the waste stream after it has 

been collected. To achieve a good segregation practice, the process needs to be also 

financially viable.  

 

Large part of wood waste coming from demolition sites is contaminated with hazardous 

substances (chemical agents which are used to extend the service life time of timber 

products [17]), gypsum wall board, metals, plastics or concrete. Therefore, its direct re-

use is not feasible neither environmentally friendly. While plasterboard is highly recycla-

ble, it represents the major hindering factor in recycling of wood originating from demoli-

tion works.  

 

Its level of contamination with different surface coating like paints or preservatives, 

makes the demolition wood waste stream difficult or even impossible to be recycled in 

other way than energy recovery. Untreated timber and organolhalogen free timber is 

suitable for recycling but organolhalohen containing and preservative treated timber 

qualify just for energy recovery in specialized power plants. [15] 

Three trace elements: Cr, Cu, As are the main component associated with the so called 

CCA preservative.  
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Table 2. Contamination limits for recycled wood use 

Elements Limit values for recycled wood 
(mg/kg) 

Arsenic 25 

Cadmium 50 

Chromium 25 

Copper 40 

Lead 90 

Mercury 25 

Fluorine 100 

Chlorine 1000 

Pentachlorophenol 5 

Creosote 0.5 

 

A study made by Myllymaa and Dahlbo [18] identified in Finland only a few processes 

that use recycled wood such like particle board production (e.g. MDF or fibreboards), 

material for compost, plastic composite material or manure. The rate of use of recycled 

wood is quite low due to its low value and due to competition with other waste sources 

that represent much less contamination. [19] 

 

The use of C&D wood waste in particle board production seems to have little climate 

change or environmental benefits, since these boards are made out anyway from waste 

wood side products resulting from other wood processing industries, therefore no pro-

cesses or use of virgin materials are avoided [18] Myllymaa and Dahlbo state that, by 

recycling demolition waste wood, carbon is “tied in long term storage” therefore, for short 

term the climate impacts are reduced. However, recycling of demolition wood is a 

downcycling solution i.e. the new products are less valuable than the old ones which 

have been used as raw materials. [18] 

Another very important virgin wood user is the paper industry, but despite this pulp in-

dustry avoids using recycled wood, primarily because of purity requirements, i.e. con-

tamination by non-biomass materials. [20]  

 

However, wood waste is heavily used in energy recovery processes. Justification for this 

practice among others, mainly financial, has been the promotion of renewable energy 

sources and reduction of fossil fuels. [18]  
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The wood section of demolition wood waste is recycled in a very simple, efficient, and 

well known process, and its steps can be seen in Figure 4. First, the materials are sorted, 

preferably already at the demolition site, after which the wood waste is transported to the 

processing facility where it is shredded and after that magnetic separation the ferrous 

metal parts are removed. Depending on the choice of its end use, after the primary shred-

ding the wood particles size is further reduced in a hammer mill or it is used as it is.  

 

 

Figure 7. Recycling pathway of wood waste arising at construction sites 

 

Other recycling outlets than energy recovery are panel board manufacturing, animal bed-

ding or other agricultural and horticultural fields. The main barrier to use C&D wood 

waste for other recycling or re-use processes than energy recovery is the uncertainty of 

the type and grade of the wood. [21] 

 

 Plastics recycling 

 

Plastics used in construction industry are classifiable in two categories: packaging and 

durables, the latter being the type which is generated during demolition. [22] Plastic is 

another Demolition Waste fraction that can be used for thermal power or electricity pro-

duction through energy recovery processes. However, plastics are generally part of a 

mixed waste, and commonly by plastics we refer to some quite different plastic types 

Shredding 

Ferrous metals Wood chips 

Magnetic separation 
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such like polypropylene (PP), polyurethane (PU), polystyrene (PS), polyethylene (PE), 

polyvinyl chloride, which complicates the recycling or energy recovery processes.  

 

Polyvinyl chloride (PVC) is a widely used synthetic plastic polymer in construction for 

windows or doors frame, flooring and pipes. PVC can be recycled up to six to seven 

times, which if we consider the lifetime of PVC products (up to 100) years, would mean 

a lifespan of about 600 years. Though the cost of recycled material is approximately the 

same as in the case of virgin materials, there is clear environmental benefit owing to 

avoided prime material extraction. [22] However, its energy recovery is difficult due to 

the high Chlorine content, which upon combustion produces HCl and can be source for 

dioxins in the flue gas.   

   

 

 

Figure 8. Plastic waste management options [23] 

 

 

 Recovery of non-combustible Demolition Waste fraction  

 Metals recycling 

 

Perhaps metal is the most economically promising waste stream that can be recycled 

from demolition sites. The price per tonne that re-processors pay for it combined with the 

cost of avoided landfill taxes represents a very motivating factor for recycling process. 
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Based on reports and studies, in Finland the metal recovery rate is very good and there 

are no significate improvement possibilities.    

 

 Concrete and bricks recycling 

 

Brick, concrete and masonry can be recycled on site as fill, subbase material or driveway 

bedding. Concrete reprocessing relies on a comparatively uncomplicated and technically 

mature crushing. Where landfill taxes are in force and they are based on weight, there 

are strong driving forces to avoid as much as possible heavy waste disposal. The first 

step towards this goal is recovery of these heavy components of C&D waste stream. 

Crushed concrete and brick can be re-used in all-weather applications (such as low-

grade roads) and pavement sub-bases (roads and non-structural applications) as a sub-

stitute for virgin crushed rock.  

 

 Contamination of C&DW 

 Asbestos 

 

Asbestos had been banned from being used in construction materials because it has 

been proved to be a dangerous carcinogenic material. Very strict measures must be 

undertaken in demolition of buildings built before its ban from construction materials. 

Asbestos containing materials disposal falls under hazardous waste management regu-

lations.  

 

In order to prevent contamination of other materials with asbestos, a thorough examina-

tion of asbestos contaminated materials has to be carried out. [24] If there is evidence of 

asbestos contamination, before the actual demolition, contaminated materials must be 

removed.  

 Chlorine content 

The presence of Chlorine (Cl) is unwanted in combustion processes, because of its cor-

rosion and fouling potential in boilers, and its fostering nature in PCDD and PCDF for-

mation.  

 



21 (55) 

 

 

 CCA  

 

Since wood is sensitive to parasite attacks and environmental effects there was an effort 

to confer to it a longer service time. This has been achieved by impregnating the wood 

with preservative. The most common such chemical is the CCA, which is considered as 

a harmful chemical mostly due to its Arsenic content. Nowadays, CCA treated waste 

wood is treated as hazardous waste and its disposal at landfill sites has been forbidden, 

and since 2006 the use of CCA as wood preservative is prohibited in the EU. [25]  

 

Due to the landfill ban, incineration of CCA treated wood gain some interest however, 

owing to its high concentration of heavy metals and above all its Arsenic content, the flue 

gas arising from CCA treated waste wood incineration facilities needs special treatment. 

The issue with Arsenic it is that during combustion forms oxides which can escape the 

incineration plants particulate filtering system, and destroy catalysts in the selective cat-

alytic reduction equipment.  [25] 

 

 Energy content of Demolition Waste 

 

It would be very difficult to define by a single value the calorific value of demolition waste, 

since this waste stream, such like in the case of Municipal Waste, is a complex combi-

nation of materials having different energy content.  Literature gives an average value of 

9.8 MJ/kg LHV for untreated DW. As we mentioned already earlier, the quality of DW is 

a key factor not just when the goal is the material recycling but also in the case of energy 

recovery processes. As the purity of waste increases and the moisture content of it de-

creasing, the calorific value of DW is higher and higher. The best ways to increase the 

energy density of DW is the appropriate segregation followed by pre-treatment of the 

waste stream. Through increased energy content per volume, the transportation cost 

and transportation related environmental burdens can be significantly reduced. This is 

very important when distance between demolition site and nearest energy recovery fa-

cility is big. In such situations, segregation and pre-treatment of generated waste is rec-

ommended to be carried out on-site with the use of mobile waste shredders and selec-

tors. This mobile DW shredding technology helps in situations where transportation is a 

sensitive issue.  
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Through pre-treatment of DW a much higher energy per volume bearing so called Re-

fuse-Derived Fuel (RDF) or Solid Recovered Fuel (SRF) can be obtained. Although there 

is no clear regulation about energy content of these fuels, generally SRF has a 15 to 20 

MJ/kg Net Calorific Value.  

This value is much lower than for mainly wood comprising DW.  

 Energy recovery alternatives 

 

A considerable part of the Demolition Waste which is not suitable for re-use or recycling 

processes to produce new products, can be subject of so called energy recovery pro-

cesses. These processes are based on thermochemical treatments, namely incineration 

with energy recovery and gasification.  

The above-mentioned thermochemical conversion processes differ in many aspects 

such us: process conditions and steps, and each of the alternatives produces different 

useful and waste products. Through these waste management methods, the amount of 

combustible waste fraction can be reduced considerably and allows significant energy 

recovery. [26] 

 

The EU Waste Management Protocol defines the following materials as possible energy 

recovery fuels [13]: 

 Contaminated wood-products which are not suitable for recycling 

 Plastics 

 Organic insulation materials 

 Bitumen based membranes  

 

 Thermal treatment of Demolition Waste 

 

Thermal treatment with energy recovery of C&DW is considered one of the waste treat-

ment methods. In this thesis, the focus is on thermochemical treatment of wood and 

plastic waste streams with energy recovery, especially in WtE plant and gasification CHP 

plants. Both combustion and gasification technologies are thermochemical  

 

Studies suggest that combustible fraction of Demolition Waste can be up to 10 to 15 % 

of the whole C&D waste that has been generated. The main components of this com-

bustible waste fraction are: wood, plastics, paper, and rubber. The last 20 years have 
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seen an increasing rate of waste combustion with energy recovery. Therefore, the waste 

has changed its status and nowadays it is considered a fuel. This is the reason why the 

waste treatment industry has defined a new name for this type of fuel, namely Solid 

Recovered Fuel (SRF), and the European Standard (EN 15359) outline some specifica-

tions for its quality requirement.  

 

The quality of SRF depends on certain factors such like NCV, moisture content, its haz-

ardous material concentration, etc. Table 3. represents a short summary about the main 

requirements and values, the qualification of waste derived fuel is based on.  

 

 

Table 3. Characterization of waste derived fuels [27] 

 

 

Muhammad Nasrullah states in his doctoral dissertation [28], that SRF produced from 

untreated C&DW was measured to have approximately 18.0 MJ/kg net calorific value 

(NCV) and ash content of 9.0 wt.%. The incoming, unprocessed C&DW stream was 

measured to have almost 10.0 MJ/kg NCV. He suggests that he quite high calorific value 

of C&DW, compared to other parts of Europe is due to its high wood content. [28] 

 

 

 Thermal treatment and energy recovery from demolition waste 

 

Usually wood waste recovered from demolition sites, can be combusted without any kind 

of chemical pretreatment in WtE power plants however, typically requires physical re-

moval of non-wood materials and size reduction. The extent of size reduction is deter-

mined by the boiler type in which the wood will be burned. The useful products of this 

thermochemical treatment in specialized power plants are electricity and heat.  
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Genuinely, the fuel potential of different biomasses strongly depends on their moisture 

content, which in the case of wood stream from demolition sites is quite low i.e. about 

20%, making it a valuable fuel. Wood based fuel can have a higher heating value (HHV) 

up to 20 MJ/kg, however this value is highly dependent on the moisture content and the 

fuel particles size. Moisture content (MC) of waste wood depends on the type of wood, 

humidity of the environment wood is originated from, and possibly drying prior combus-

tion. Table 5 shows a list of average calorific values of wood based fuels, based on their 

moisture content.  

 

Table 4. Calorific value of wood in function of its moisture content 

Moisture content (MC) of wood Calorific value MJ/kg 

0% 19.8 

10% 17.8 

20% 15.9 

30% 14.5 

40% 12 

50% 10 

 

During combined heat and power production processes, two types of wastes are gener-

ated. One of them is the bottom ash and the other is the flue-gas treatment waste. In 

fluidised bed boilers, the ash content of combusted Demolition Waste is 1-5 %. [29] 

 

   

Figure 9. Energy recovery process of combustible C&D waste 
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Since wood coming from construction sites is considered waste, its thermal treatment is 

governed by The Industrial Emissions Directive (IED) 2010/75/EU [53] which is a recast 

of 7 (seven) previous directives including the Waste Incineration Directive 2000/76/EC 

(WID). This IED sets both emission limit values and monitoring requirements further-

more, defines concepts such us pollution, biomass, fuel, combustion plant, etc. If the 

wood waste is free of contamination it can be considered biomass and it can be burnt in 

facilities which are no compliant with IED requirements. [53] Generally wood originating 

from demolition has its surface treated (contains paint, varnish or preservatives), there-

fore in energy recovery processes must be thermally treated in WID compliant power 

plants or wood waste gasifiers.  

Combustion of wood is considered carbon neutral what’s more produces negative CO2 

emission because of the displacement of fossil fuels from energy production. [30] 

 

The main environmental impacts are lower when waste wood is used in energy recovery 

processes however, they are heavily dependent on what extent the heat (which other-

wise is just a by-product of the electricity production) is used as energy source for district 

heating or other industrial processes. In case of Finland, due to significant need of ther-

mal energy for space heating, energy recovery of wood waste emerging from demolition 

sites, tends to be the most environmentally friendly and economically feasible material 

recovery solution. [9]  

8.1.1.1 Emissions limit values resulting from combustion of DW 

 

Table 5 represents average emission values the waste incineration plants must comply 

with. NOx emissions vary in function of catalytic or non-catalytic reduction type.  

Table 5. Emission limits from combustion 

Pollutants Mg/m3 

CO 17,5 

NOx 70-100 

PM 1 

SO2 10 

VOC 17,5 

Ammonia 3,5 

Opacity  

HCL 3,5 
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CO2 emissions from wood firing power plants are usually not considered in climate 

change calculations because of the relatively quick cycling of carbon. 

“The critical element in minimizing air emissions, especially air toxics, is the elimination 

of CCA- and penta-treated wood from the fuel and minimizing C&D fines.” [31] 

 

 Gasification of combustible DW 

 

The restricted oxygen availability during combustion is called gasification. By gasification 

embodied energy in carbon-based material is transformed into other forms of energy 

without actual combustion of the fuel. This results in formation of syngas or synthetic 

gas, containing mainly CO, water and H2. As main by-product, we should mention the 

smoke.  Gasification has the advantage over combustion, of both better process control 

and less particulate emissions. The outstanding feature of gasification is the possibility 

of cleaning the syngas before its combustion. In this way contaminants, do not end up in 

flue gas thereby the energy conversion through gasification of waste and syngas burn-

ing, does not require as complicated emission control systems as waste incineration 

plants do. Furthermore, formation of dioxins and furans which need sufficient oxygen is 

impeded, since the oxygen scarce process in the gasifier does not provide the proper 

conditions required for their formation or reformation.   

 

Generally, the incoming raw material requires some pre-treatment with prime goal to 

remove the inorganic materials such like metals, glass. Figure 9. represents a simplified 

gasification process flow-chart. The incoming fuel has a kind of flexibility however, it has 

quite strict requirements regarding its quality. This can be viewed as a drawback com-

pared with energy recovery of wastes at WtE power plants.  
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Figure 10. Simplified flowchart of gasification process 

 

 Kymijärvi SRF gas-fired power plant 

The world first waste gasification plant had been built in 2012 in Lahti (Finland). A sim-

plified representation of the Kymijärvi II gasification plant can be seen in Figure 11. The 

figure rather seeks to represent the main parts and process steps of the gasification than 

to be technical layout plan. The plant has a 160 MW total fuel power, having 50 MW 

electricity and 90 MW district heat capacity. This means that the maximum efficiency of 

the plant is 87.5%. The gasification takes place in two parallel 80 MW CFB gasifiers at 

approximately 850 °C. The heat required for the gasification process, which has more 

than 95% carbon conversion efficiency, is obtained by burning some of the SRF.  [32] 
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Figure 11. Kymijärvi II gasification and gas boiler plan [32] 

 

Table 6 shows values of two flue gas measurements taken in two different day. The 

values show constancy in process conditions. These are the values which have been 

used to calculate the environmental burdens caused by the gasification process.  

 

Table 6. Emission values measured at Kymäjärvi II plant [32] 
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 Life-cycle Assessment (LCA) 

 

 

LCA is an evaluation process through which the environmental performance and burdens 

associated with a product or process can be analysed. Furthermore, LCA can be used 

as a tool to achieve sustainable development and support decision-making. LCA and life 

cycle thinking are widely utilised by institutions in modern environmental policy makings, 

and by companies to optimise their raw material consumption, waste generation and 

emission control. LCA enables quantification of impacts and trade-offs between different 

waste management options. [30] 

 

LCA is an iterative process due to the strong correlation between its components. New 

information, and improvements in the process requires new iteration and re-evaluation 

of components to have a real and holistic view about its environmental impact. Generally, 

three distinctive however strongly interrelated components can be distinguished. 

 Life Cycle Inventory (LCI) 

 

LCI is a data-based and objective process of quantifying raw material inputs, waste, and 

environmental releases i.e. outputs, throughout the whole lifecycle of a product or pro-

cess. There are different methods to build up the inventory and one should select the 

most suitable one since they can produce different results. [33] This part of the LCA 

refers mainly to mass and energy inputs and outputs over the system boundaries.  

 

 Life Cycle Impact Assessment  

 

This component of a LCA is meant to quantify and/or qualify the environmental loadings 

already identified in the previous component. Because of the tremendous amount, and 

distinct nature the impacts there is a need to convert i.e. to transform these flows into 

indicators or impact categories. Number and type of impact categories vary and depends 

on LCA method. Usually there are about 10 to 15 different categories such as: acidifica-

tion, climate change, global impact, and regional impact.  

Using the below formula, where of each element of impact categories can be calculated. 
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Where IS is impact score, CFx,i is the characterization factor of substance x to compart-

ment I, and Mx,I  stand for emission of x to compartment i. 

 

 Life Cycle Improvement Assessment 

 

The final component is no other than a systematic evaluation of the opportunities, and 

the needs to reduce the environmental burdens. This process step identifies the possi-

bilities to improve the raw material use, production process, consumer use (in case of a 

product), and eventually the final disposal and waste management.  

 Life cycle of buildings 

 

Life cycle of buildings generally is much longer than in the case of other everyday prod-

ucts therefore, the re-use of materials from demolished buildings is a key element to 

lower environmental burdens caused by the production of new construction materials 

and elements. However, the re-use of building materials rises many so far unsolved is-

sues. Above all, old buildings have not been design for disassembly in mind. The list of 

barriers is long, just to mention a few: there is a lack of regulations about the use of 

construction materials, deconstruction has much higher cost than traditional demolition, 

additional time, logistics and transportation cost, etc. [34] 

 

 Life cycle of wood used in construction  

 

 

Figure 12. Life cycle of wood in construction being burnt for energy recovery purpose [30] 

 

Jungmeier et. al. [29] define a set of distinct criteria which has to be taken into account 

when one is considering waste management options of wood waste. The criteria are the 

following: 
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 Quality of recovered material  

 Quantity of recovered material 

 Availability and state of infrastructure 

 State of current and available waste management technologies, furthermore yet 

not mature but developing technologies  

 Legislation 

 Market conditions 

 Costs and benefits 

 Socio-economic and other factors [33] 

 

The same paper [33] sets the main considerations in wood product LCA. The main as-

pects, that should be considered when waste wood is subject of energy recovery process 

are the technology involved and its energy efficiency, ratio of electricity and heat that can 

be generated by different thermochemical processes, emissions to air and eventually the 

bottom and fly ash treatment and disposal.  

 

 Environmental impacts related to incineration of wood 

 

Co-utilization of waste wood in energy production contributes to reduction of emission of 

CO2 into atmosphere because the amount of fossil fuel used in the power production 

could be reduced. However, the use of waste wood entails some environmental risks 

because usually timber is treated with preservatives. During combustion processes, dif-

ferent toxic compounds are forming which represent environmental and health risk. Over-

all advantages and drawbacks can be analysed by LCA. 
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 LCA of energy recovery from the combustible fraction of Demolition 
Waste 

 

This section describes the goal and scope of the LCA. This LCA analyses the energy 

recovery efficiency and environmental burdens for gasification and combustion of the 

combustible construction products originating from two demolition sites.   

 

 Goal and scope 

 

The aim of this LCA was to compare two energy recovery processes of the combustible 

fraction of Demolition Waste, and accompanying logistics. The chosen technologies 

were the combustion with energy recovery in WtE power plant, and gasification followed 

by combustion of syngas to produce electricity and thermal energy i.e. heat. The goal 

was to evaluate environmental impacts, efficiency and amount of recovered energy. The 

simplified process steps of each technologies are listed below: 

 

A. Incineration 

 Selective demolition 

 Material segregation 

 Transportation 

 Incineration 

 Landfilling of ash products 

 

B. Gasification 

 Selective demolition 

 Material segregation 

 Transportation 

 Gasification 

 Syngas cleaning 

 Combustion of syngas  

 Landfilling of side products 

 

 

 



33 (55) 

 

 

 Functional unit 

 

Since the aim of the study was to assess different energy recovery methods of Demoli-

tion Waste, the function is the energy recovery and the functional unit is “energy recovery 

of one tonne of combustible Demolition Waste”. In the thesis two distinct energy recovery 

methods had been considered, namely the incineration of waste with energy recovery in 

the WtE power plant located in Vantaa, and waste gasification at Kymijärvi II plant in 

Lahti.  

 

 Environmental impact categories 

 

This LCA concentrates just on the following environmental impact categories:  

 global warming, in kg CO2 equivalent 

 acidification, in kg PO4 equivalent 

 human toxicity, in 1,4 DCB kg equivalent 

Another factor considered was the recovered embodied energy. 

For the calculation of different environmental impacts the following characterization fac-

tors have been use: 

 

 System boundaries 

 

System boundaries are narrow, due to limited time and data availability, and include en-

ergy input for transportation and emissions related to it, energy input for waste treatment 

prior to gasification, energy input for syngas clean up and the related emissions, and 

eventually energy output and landfilling the waste.  

 

Exact amount of energy input for demolition work would be very difficult to estimate and 

it is largely dependent on the demolition method carried out. Different demolition meth-

ods have also different types and amount of emissions depending mainly at what extent 

demolition is mechanized or it is more manual. It was assumed that conventional and 

selective demolition consume approximately the same amount of energy. Both energy 

recovery process (incineration and gasification + incineration) need approximately the 

same selective demolition therefore emissions and energy inputs were set to be zero 

when comparing them.   
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A. Energy recovery through gasification 

 

 

 

 

 

 

Figure 13. Process steps and system boundaries of gasification 

 

The energy recovery from DW through combustion in WtE plant is slightly simpler than 

through gasification. The generated syngas is cleaned before its combustion resulting in 

less flue gas cleaning requirements. During energy balance calculations, it was assumed 

that the energy requirement for syngas cleaning after the gasification is approximately 

the same as the energy need for the extra flue gas cleaning in case of combustion.  
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B. Energy recovery through incineration in WtE power plant 

 

 

Figure 14. Process steps and system boundaries of waste incineration 

 

 Limitations and general assumptions 

 

Several generalizations and assumptions had been made to simplify calculations and to 

overcome lack of data. Composition of the generated waste at our specified locations 

would be difficult to estimate without a thorough material analysis therefore, average 

values have been used throughout the calculations.  

 

At transportation phase, it was assumed that the earth moving lorry will transport its 

maximum capacity. However, in real conditions this is hardly possible to be achievable 

therefore, the emissions and energy used by lorry’s will be probably much higher than 

the calculated in this thesis. Situations when both electricity and heat produced during 

incineration and gasification of DW can be utilized, will only occur at low outside temper-

atures i.e. late autumn or winter. Emission values used for estimation of environmental 

impacts were average limitation values that must be respected due to legislations.  

 

 Geographical limitations 

 

The legal framework of waste management practicalities considered is one from Finland, 

and transportation data are based on Finland’s traffic data. Distances from demolitions 

sites to waste treatment facilities vary, therefore the most suitable waste management 

options and steps might be totally different than the analysed possibilities in this thesis.  
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 Case study 

 

 Demolition sites 

 

As case study, two different locations for DW generation have been considered, one of 

them is in Helsinki, and the other location is in Vantaa. The two buildings had completely 

different destination therefore, also the used materials are dissimilar. The one from Hel-

sinki is an industrial building, while the Vantaa’s location is a residential dwelling.  Disre-

garding the non-combustible waste fraction two different DW types had been estimated 

to arise from the two locations. During calculations, it has been assumed that the DW 

generated at Helsinki’s site is mainly mixed demolition waste, while DW originating from 

Vantaa’s site is primarily wood waste. Based on these facts, two scenarios have been 

built up.  

 

In Scenario 1, the analysed DW is mixed demolition waste from Helsinki, energy recov-

ery methods are combustion with energy recovery in Vantaa’s WtE plant, and gasification 

in Lahti’s Kymijärvi II plant. 

Scenario 2 wastes contains mostly wood and comes from Vantaa’s site. The energy 

recovery processes take place in the same locations as in Scenario 1. Distance from 

the two demolition sites to the chosen energy recovery facilities is approximately the 

same therefore, it was assumed that when comparing same type of thermochemical 

treatment, the environmental burden and energy efficiency differences between Sce-

nario 1 and Scenario 2 will originate principally from differences in technologies and the 

waste types. 

 

 Distance and transportation 

 

For the estimation of distances, the Google Maps software has been used and route has 

been chosen without taking into consideration any sort of weight or height restriction that 

could occur. The total distance that was used for emission and energy calculations, in-

cludes both the way when waste is transported from demolition site to waste treatment 

facility, and the way back to the demolition site.  
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Distances from Helsinki’s site: 

 Rorokuja  WtE Vantaa: 16 km (10 km urban, and 6 km highway) 

 Rorokuja  Kymijärvi II, Lahti: 107 km (10 km urban, and 97 km highway)  

 

Distances for Vantaa’s site: 

 Orvokkirinne  WtE Vantaa: 9 km (5 km urban, and 4 km highway) 

 Orvokkirinne  WtE Kymijärvi II, Lahti: 95 km ( 3 km urban, and 92 highway) 

 

 Results and calculations 

 Energy analysis of incineration and gasification 

 

For the calculations of energy recovery rate, it has been supposed that there is a demand 

both for the electricity and heat produced during thermochemical treatment of DW. It is 

easy to see that the highest energy recovery can be obtained when the heat gained 

through combustion of waste it is supplied as district heat. [35] Therefore, the location of 

WtE plants is crucial in the efficient utilization of recovered thermal energy. When only 

electricity it is produced during combustion, the efficiency of the process usually ranges 

between 20-35 %.  

 

Recovered energy i.e. the output from the gasification process was calculated separately 

for electricity, having a share of 31.25 % from the total energy potential stored in the 

waste, and for generated heat which stands for 56.25 % from the same available energy 

feedstock. Efficiency values used for the gasification and WtE plants were 87.5% for the 

former, and 95.5 % for the latter. The maximum 95.5% efficiency is a combination of the 

38.5% electricity and 57% thermal energy efficiency [36]. 

 

Figure 15 shows the energy input and output analysis of gasification and combustion 

processes. The waste was supposed that is transported without any pre-treatment to the 

WTE plant located in Vantaa having 9.8 MJ/kg NCV. In the case of gasification, it was 

supposed that the energy upgrading to 18 MJ/kg takes place after its transportation to 

Lahti. The assumptions regarding NCV of DW were based on measurements done by 

Nasrullah, M.  [28] Literature give approximately similar NCV values, being between 14-

26 MJ/kg. Nasrullah [28] found that about 44% of the shredded and sorted DW has been 

recovered as SRF, which means that after pre-treatment of raw DW the remaining SRF 

mass is 440 kg, which means  
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0.44* 18000 MJ = 7920 MJ heating value  

 

 

Figure 15. Energy balance for Scenario 1 

 

 

In Scenario 2, the NCV of mainly wood containing DW was assumed to be 16.25 MJ/kg, 

which corresponds to an average 15-20% moisture content. The 16.25 MJ/kg NCV was 

obtained by calculating the flue gas volume and dividing it by the Fuel Factor, the result 

being the heating value of the fuel.  

To calculate the flue gas volume generated during combustion of mainly wood containing 

demolition waste the following formula was used:  

[37] 

 

where VGod is the volume of the flue gas generated by burning the fuel, ɤC is the Carbon 

content of the fuel (by mass), ɤH stands for Hydrogen content, ɤS represents the mass 

of Sulphur in the fuel, ɤO is the oxygen content of fuel, and eventually ɤN is the Nitrogen 

content.  
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The Carbon, Hydrogen, Sulphur, Nitrogen, and Oxygen content of the fuel was assumed 

to correspond to average mixed waste wood (see Table 7).  The result obtained was  

VGod = 4.78 m^3/kg of fuel,  

which divided by the afferent 0.294 MJ/kg Fuel Factor value gives about  

NCV = 16.25 MJ/kg of fuel. 

It was also assumed that pre-treatment of the waste takes place after its transportation 

to Lahti. Pre-treatment was assumed to cause small increase in energy density due to 

the reasonably clean nature of demolition wood waste. Energy balance of Scenario 2 

can be seen in Figure 16. The 16200 MJ energy input into the gasification process is the 

result of the assumption that about 90% of the raw wood based DW is recovered as SRF.  

 

 

Figure 16. Energy balance for Scenario 2 

 

 Emissions from combustion and gasification processes and related logistics 

 

Calculations of the flue gas volumes, emitted during incineration of the waste and com-

bustion of syngas, had been carried out using average Fuel Factor conversion values 
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and Formula 1. The reference values for Fuel Factor can be found in Table 7 and Table 

8.  

Table 7. Fuel factors using measured H(N) values [37]  

 

 

 Flue gas volume generated by thermochemical treatment of wood based DW  

 

A. Combustion at WtE 

Fuel Factor values are 0.294 m^3/MJ in case of the mixed wood waste (Table 7), and 

0.240 m^3/MJ (Table 8) for fuel in gaseous phase. After the volume of flue gas had been 

found, the amount of pollutants was calculated. For combustion of mostly wood waste 

containing DW the flue gas volume for one tonne of waste was found to be  

VGod = 4780 m^3/tonne of wood based DW.  

The values are informative and highly fuel type dependent. More exact values can be 

obtained by analysing a sample of as homogeneous as possible fuel.  

 

B. Gasification at Kymijärvi 

The gasification of mostly wood containing DW has been carried out in the similar way 

as in the case of mixed waste gasification (see Figure17). With a material recovery effi-

ciency of 90% during SRF production, about 900 kg of SRF is generated from 1000 kg 

of DW. This gives as a 2700 kg mass of syngas, with 6 MJ assumed heating value. The 

total volume of flue gas obtained and used in emission calculations was  

 VGod = 3888 m^3/tonne of raw DW 
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Table 8. Average fuel factor (S) for fuels in different phase [37] 

 

 

 Flue gas volume generated by mixed DW thermochemical treatment 

 

The average syngas NCV is about 5 MJ/kg [32] of syngas and the SRF produced from 

mixed DW has a NCV of 18 MJ/kg. Based on the assumption that the Carbon conversion 

during the gasification is about 97% [32] thereby, it was assumed that there is insignifi-

cant energy loss and the produced syngas contains almost the entire 18000 MJ heating 

value. According to Nasrullah [28], from one tonne of mixed DW about 440 kg of SRF is 

produced (44% recovered material), which means that from the original one tonne of DW 

remains 440 kg of SRF which contains 7920 MJ energy. Now, if one kilogram syngas 

has about 6 MJ energy, it means that about 1320 kg of syngas has been generated. By 

multiplying the mass of syngas with the VGod (see calculation in Figure17) we get the total 

amount of flue gas. The flow chart for flue gas calculation can be seen in Figure17.  

 

Figure 17. Flow chart of flue gas calculation 

 

7920 MJ/6(MJ/kg) 

= 1320 kg (syngas) 

1 tonne of mixed  

DW 

440 kg*18 MJ/kg 

= 7920 MJ 

 (energy) 

440 kg of 

SRF 

1320 

kg*01.44m^3/k= 

1900 m^3 total 

flue gas 

6 (MJ/kg)/0.240 

(m^3/MJ) = 

1.44 m^3/kg  
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Based on this calculation the emissions and environmental impacts have been computed 

for  

 VGod = 1900 m^3/tonne of raw mixed DW  

 Environmental impacts  

 

Three environmental impact categories had been selected, namely: Global Warming Po-

tential (GWP), Acidification, and Human Toxicity. The pollutants that have been used to 

compute the impact categories are represented in Table 9.  

 

Table 9. Impact categories and afferent pollutants    

Pollutants CO2 CH4 N2O SO2 NOx PM NH3 

Impact 
categories 

Global 
warming 

x x x     

Acidifica-
tion 

 x x x    

Human 
Toxicity 

   x x x x 
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 Global Warming 

   

Figure 18 shows GWP for both scenarios but only for the transportation. A significant 

difference can be noticed when the transportation route is mainly in urban area. In this 

case, even for short distance, routes from the two demolition sites to Vantaa’s WtE power 

plant, the GWP is almost doubled from 1 kg to almost 2 kg (Figure 18). 

 

 

Figure 18. Global Warming Potential of transportation for Scenario 1 (Helsinki site) 

 

The overwhelming part in GWP comes from the CO2 emission, which in case of trans-

portation originates from fossil fuel therefore it had been included in both scenarios. Just 

to emphasize the share of CO2 from the overall GWP, its contribution to the GW impact 

categories it is separately shown in Table 19. CO2 emission was split for urban and high-

way transportation distances as well. The small difference between GWP value and 

merged urban and highway CO2 sum comes from CH4 and N2O emissions. 
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Figure 19. Contribution of CO2 to GWP 

 

In Scenario 2 the CO2 emission had been disregarded due to the nature of the fuel, 

which had been considered to contain mainly bio Carbon hence, the energy recovery of 

DW processes was assumed to be carbon neutral. The situation in Scenario 1 is differ-

ent since the waste in this case is a mixed DW, and based on the type and construction 

material of the building situated at Rorokuja (Helsinki), for the calculations, we assumed 

that mixed DW has none or just insignificant amount of bio carbon content. Another as-

sumption was that the Carbon content of the raw mixed DW was 30 w%, and after it has 

been upgraded to SRF was about 53 w%. The Carbon content assumptions were based 

on the NCV value of the combusted (9.8 MJ/kg), respectively gasified (18 MJ/kg) DW. 

The CO2 emission calculation for Scenario 1 was carried out in the following way: 

 

Step1: 53 w% means 530 g/1000 g of SRF 

Step2: C content of CO2 is about 27.3% 

Step3: oxidation of 530 g of Carbon generates 1941 g of CO2 

Step4: 1 kg of mixed DW gives 440 g of SRF 

Step5: 440 kg of SRF generates 440*1.95 kg = 854 kg of CO2 

Result: 854 kg *87.5% efficiency = 747 kg of CO2 

 

Calculations for the raw mixed DW had been carried out in the similar way resulting in 

1049 kg of CO2 for every kilogram of DW burned. 

 

As we can see in Figure 20, when the Carbon content of the waste is not bio but has 

fissile origins, just as in Scenario 1 the GWP of the energy recovery processes is huge 

compared to Scenario 2.  

1.2

1.2

0.6

0.4

0.5

7.9

0.3

7.5

1.8

9.3

1.0

8.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Helsinki -->WtE Vantaa

Helsinki -->Lahti

Vantaa-->WtE

Vantaa-->Lahti

Contribution of CO2 to GWP

GWP CO2 highway CO2 urban



45 (55) 

 

 

 

Figure 20. GWP of Scenario 1 

 Acidification 

 

If for Global Warming Potential the transportation completely dominates, the situation is 

dramatically changed when we study the Acidification and Human Toxicity categories. 

For these categories, the thermochemical energy recovery processes generate much of 

the environmental burdens. The results for the Acidification can be seen in Figure 21.  
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Figure 21. Combined Acidification potential of transportation and thermochemical processes 

 

 Human Toxicity 

 

As we can see, combustion has larger impact both in Acidification and Human Toxicity 

case when the fuel is mixed waste, meanwhile when the DW contains mainly wood gas-

ification causes less environmental burdens for these two categories. This can be ex-

plained by the higher energy density of the transported DW.  

Human Toxicity values are represented and compared in Figure 22.  
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Figure 22. Human Toxicity potential arising from combined impact of transportation and thermal 
treatment of DW 

 

 Conclusion 

 

 

Compared with other European countries, in Finland wood represents the largest part of 

the combustible and one of the most significant part of the demolition waste. This fact 

faces Finland with the difficulty, to be in compliance with the EU demolition waste recy-

cling target.  Due to other industrial processes, which side products is wood waste, ma-

terial recycling of demolition wood waste is hindered. Generally, the quality of wood 

waste generated at demolition sites is lower and there is an extra cost associated with 

its recycling compared with other wood wastes.  

 

Studies suggests that one of the most feasible demolition waste management is the en-

ergy recovery. However, in order to increase the energy recovery rate and in the same 

time to decrease the environmental burdens related to energy recovery processes a 

careful segregation should be carried out.  

 

Each analysed energy recovery technique (combustion and gasification), has its ad-

vantages and drawbacks. If generated Demolition Waste is going to be incinerated with 

energy recovery at Vantaa’s WtE plant, the waste does not have to be pre-treated and 

due to the unnecessary pre-treatment, pollution related to treatment can be avoided and 
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energy saved. In case of both analysed demolition sites the transportation distance is 

shorter to WtE which results in lower environmental impacts and energy efficiency. Due 

to the extremely high efficiency of the WtE plant, the amount of recovered energy is 

higher when the thermal treatment with energy recovery takes place in Vantaa’s WtE 

plant.   

 

Owing to the quite big distance from demolition sites to Kymijärvi II gasification plant, the 

treatment of DW before its transportation to Lahti bear obvious benefits due to mass and 

volume reduction. Nasrullah [28] found that about 44% of the shredded and sorted DW 

has been recovered as SRF, which means that emissions due to transportation can be 

halved. Literature associates a higher material recovery rate and more flexible energy 

management options with the gasification technology since, DW is not directly com-

busted but gasified, having the syngas as useful product, which can have multiple use. 

Syngas can be used in internal combustion engines or transformed into biofuel. Com-

bustion with the goal of energy recovery can take place onsite or somewhere else and 

at some other time, when the largest amount of its energy can be utilized.  

 

Assessment of energy recovery options needs further studies and a more reliable data 

base regarding quantity, quality and origin of Demolition Waste. By the help of these well 

documented data bases more trustworthy Life Cycle Analysis can be carried out, con-

tributing to the decision making in the DW recycling options.  
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Appendix2 Chemical composition of different materials arising at demoli-
tion sites 
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Appendix3 Urban driving emissions and energy consumption 
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Appendix4 Highway driving 
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Global Warming Potential 

Pollutant CO2 CH4 N2O 

Characterization 

factor values 

1 21 310 

 

Acidification 

Pollutant SO2 NOx NH3 

Characterization 

factor values 

1 0.7 1.88 

 

Human Toxicity 

Pollutant SO2 NOx PM NH3 

Characteriza-

tion factor val-

ues 

0.096 1.2 0.246 0.1 
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