

Joonas Känsälä

FURTHER DEVELOPMENT OF SETTINGS FEATURE

ON THE SPENT IOS APPLICATION

FURTHER DEVELOPMENT OF SETTINGS FEATURE

ON THE SPENT IOS APPLICATION

 Joonas Känsälä
 Bachelor’s thesis
 Spring 2017
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Information Technology, Software Development

Author: Joonas Känsälä
Title of the bachelor’s thesis: Further Development of Settings Feature on the
SPENT iOS Application
Supervisor: Veikko Tapaninen
Term and year of completion: Spring 2017 Number of pages: 41

This thesis was commissioned by the firm Receiptless Software Oy and the aim
of this thesis was to create a new settings feature for an application called the
SPENT on iOS mobile platform. The purpose of this new settings feature was to
improve on the old feature that the previous version had and to add new func-
tionalities, for example, security settings and a new user interface.

The new feature was created by using an Xcode development environment,
which then had necessary components for developing the new settings feature.
The components the project used were two major frameworks within the Cocoa
Touch Framework: UIKit and Foundation. After the new settings feature had
been created, it was tested thoroughly by testers within the firm and by an out-
side testing firm.

The project was a success and it was released into the App Store as a version
update. Although the decisions for creating this new application were appropri-
ate, storing user details should be done in a way that the user details will be en-
crypted.

Keywords: Swift Programming Language, iOS, Security

4

CONTENTS

ABSTRACT 3

CONTENTS 4

VOCABULARY 6

1 INTRODUCTION 7

2 IOS AND FREQUENTLY USED TOOLS 8

2.1 History of iOS 8

2.2 Technical structure of iOS 8

2.3 Cocoa Touch Framework 10

2.4 Xcode 10

2.5 Version handling 11

2.6 MVC 12

3 SWIFT 3.0 14

3.1.1 History 14

3.1.2 Features 15

4 OLD SETTINGS VIEW 17

4.1 Functionality 18

4.2 UI 19

4.3 Limitations 20

5 NEW SETTINGS VIEW 21

5.1 Concept and design 21

5.1.1 Goals 21

5.1.2 New design 23

5.2 Implementation 24

5.2.1 New UI 25

5.2.2 Functionality 28

6 TESTING 32

6.1 Testing practices 32

6.2 Bug management 35

7 CONCLUSION 37

5

REFERENCES 39

6

VOCABULARY

ARC Automatic Reference Counting

Framework A structure which supports or guides
the developer to build features that ex-
pands the structure into something
useful.

Heap In memory management, heap is the
memory set aside for dynamic alloca-
tion.

IDE Intelligent Development Environment

iOS An operating system for iPhone, iPad
and iPod Touch

MVC An abbreviation for Model View Con-
troller

Realm A mobile database which is an alterna-
tive for SQLite and Core Data solu-
tions

Refactoring Process of restructuring the code with-
out changing its external behaviour

REPL Read-Evaluate-Print loop

SDK Software Development Kit

SnapKit An auto layout definitive software li-
brary for iOS and OSX

Trello A web-based project management ap-
plication

UI An abbreviation for User Interface

UX An abbreviation for User Experience

7

1 INTRODUCTION

This project was done for the company called Receiptless Software Oy. The

project handled a feature which is a new settings view for an iOS application

called SPENT. The phases of the project were designing the feature, imple-

menting those designs into the development describing the testing practices

and finding possible bugs during the testing phase of the development.

Receiptless Software Oy company calls themselves SPENT, which is also the

name of their app. The goal of SPENT is to create an application which makes

expense management easier. The CEO, who founded the startup company was

unimpressed of the applications that were available on Google Play and App

Store. At first the outsourcing of the product did not succeed favourably and

thus SPENT, the startup company, was founded in August 2015. Now the com-

pany has increased their staff from three people into 30 people. (1.) SPENT has

offices located in New York, Silicon Valley, Moscow and in Oulu, Finland (2.)

8

2 IOS AND FREQUENTLY USED TOOLS

2.1 History of iOS

On January 9th 2007 at the Macworld conference and expo, Steve Jobs dis-

played the first version of the iPhone to the world. Even though it was told that

iPhone would run all the OS X applications which run on Mac OS, this was not

the case at all. Later on October 17th 2007 Apple announced that the SDK was

under development. On March 6th 2008 Apple released the first beta of the SDK

and gave the iPhone operation system a name iPhone OS. In June 2010 Apple

rebranded iPhone OS into iOS, which required them to acquire the IOS trade-

mark from Cisco just to avoid possible lawsuit cases. (3.)

At the moment iOS has been developed up to the version 10.3.1, which was re-

leased on April 3rd 2017 with various bug fixes, security improvements and a fix

for a Wi-Fi vulnerability. (3.)

2.2 Technical structure of iOS

The iOS architecture is divided into four layers. This layered structure allows the

developer to create applications with ease because iOS communicates with the

underlying hardware by using a set of well-defined system interfaces. These in-

terfaces make app development very scalable between different devices with

different hardware. (4.) Figure 1 below shows the architecture of iOS.

9

FIGURE 1. Layers of iOS (4.)

It is preferable that the developer uses higher-level frameworks over lower level

frameworks. Higher-level frameworks provide object-oriented abstractions for

lower-lever constructs. This reduces the amount of lines of code that the devel-

oper must write. However, if there are cases where there is not a higher-level

framework application of a lower-level function, then developer may use lower-

level frameworks if necessary. (4.)

The Cocoa Touch Layer is a layer which contains the important frameworks for

creating iOS applications. These frameworks define the appearance of the app.

These frameworks support multitasking, touch-based input, push notifications

and other high-level system services. (5.)

The Media Layer contains the graphics, audio and video technologies that the

developer uses to implement multimedia experiences into an application. This

layer is developed in a way that makes using multimedia technologies easy to

implement while building apps. (6.)

The Core Services layer is reserved for important systems services for apps.

The most important frameworks in this layer are the Core Foundation and Foun-

dation frameworks, which define the basic types that every application utilizes.

10

This layer also supports features, such as location, iCloud, social media and

networking. (7.)

The Core OS layer contains the low-level features that most other technologies

are built upon. In situations where developers must handle security or communi-

cation with an external hardware accessory, it is executed by using the frame-

works in this layer. (8.)

2.3 Cocoa Touch Framework

Cocoa Touch is an application framework for iOS and it includes an Objective-C

runtime and two core frameworks: Foundation and UIKit. The term “Cocoa” has

been used to refer generically to any class or object that is based on the Objec-

tive-C runtime and inherits from the root class, NSObject. The term “Cocoa

Touch” is also used when referring to application development using any pro-

grammatic interface of the respective platforms. (9.)

The purpose of the Foundation framework is to provide a small set of basic util-

ity classes, to make software development easier by introducing consistent con-

ventions for such things as deallocation, to support Unicode string, object per-

sistence and object distribution and to provide a level of OS independence, to

enhance portability. (10.)

UIKit is a framework which contains a crucial infrastructure for constructing and

managing iOS and tvOS applications. This framework provides the architec-

tures needed to manage the UI, the handling event infrastructure needed for the

user input responsivity and the app model needed to drive the main run loop

and interact with the system. Other additional UIKit features, for example, are

the foreground and background execution of the application, the PDF creation

and animation. (11.)

2.4 Xcode

Xcode is an IDE (Integrated Development Environment) created for macOS. It

enbles to create applications for iOS, macOS, watchOS and for tvOS. The first

11

version of Xcode was released in 2003. The latest version of Xcode is Xcode

8.X, which is also the one that was used for this thesis. The reason why the ver-

sion 8.X was used is that it was the only IDE version supporting the Swift 3.0

programming language and the iOS SDK 10.2 version. (12.) Figure 2 shows

how the Xcode development environment looks like.

FIGURE 2. A screenshot of Xcode IDE

2.5 Version handling

In a software development project, using a VCS (version control system) is ben-

eficial. The source code of the project alters all the time and there are times

when the code might break. Without using a VCS, it is very difficult to fix this is-

sue. The VCS allows developers to view the version history, to do the neces-

sary changes into the code, to make sure everything works and then to upload

the changes into the repository of the VCS. The VCS has features called

branching and merging. These allow developers to work on different features in-

12

dependently in their own branches. When the development is done, then devel-

opers can merge these branches into a branch which is deemed as the main

application. (13.)

Bitbucket was used as a version handling platform in this project. Bitbucket is a

web-based hosting service which allows the developers revision control over

their projects by using Git as a version control system. Bitbucket has tailored it-

self towards helping professional developers with private proprietary code, es-

pecially since being acquired by Atlassian in 2010. (14.)

2.6 MVC

SPENT’s application architecture follows the MVC based architectural pattern.

The acronym MVC stands for Model, View and Controller. FIGURE 3 shows

what type of interactions these layers have.

The model layer in this pattern means all the classes that handle the data, any-

thing from persistence, model objects, parsers and networking management

classes. (15.)

The view layer includes everything that is on the screen. View layer classes are

easily reusable since they themselves do not have much logic behind them.

(15.)

The controller layer includes classes that link the view layer components and

the model layer components to each other. In the iOS application development,

and in ideal case, the controller does not know the view that it is dealing with.

Instead, it will communicate with an abstraction via a protocol. A classic exam-

ple is the way a UITableView communicates with its data source via the UITa-

bleViewDataSource protocol. (15.)

13

FIGURE 3: MVC architecture (15.)

The reason why the application architecture follows the MVC framework is that

the idea behind the MVC architecture makes it easy to differentiate data man-

agement, views and controllers into different classes. If one logic is modified,

such as a model-based class, then it will not break the logic in another class,

which is either a view or a controller. This also means that the code is easy to

maintain and a parallel development of the project is possible too. (16.)

14

3 SWIFT 3.0

Swift is a powerful and intuitive programming language for macOS, iOS,

watchOS and tvOS. Swift code is safe by design, yet it also produces a soft-

ware that runs lightning-fast. Swift eliminates entire classes of unsafe code.

Variables are always initialized before use, arrays and integers are checked for

an overflow, and memory is managed automatically. Another safety measure is

that Swift objects by default cannot be nil. In fact, the Swift compiler will stop the

user from trying to make or use a nil object with a compile-time error. However,

if there is a case where the nil object is being used, Swift uses a feature called

optionals. This means that when an object returns a nil value, then instead of

using nil as a value, a default value can be used instead. This makes the com-

piling of the code even more safe. (17.)

3.1.1 History

The development of Swift was started in July 2010 by Chris Lattner, with the

eventual collaboration of many other programmers working for Apple. Swift took

language ideas, e.g. from Objective-C, Rust, Haskell, Ruby, Python and C# pro-

gramming languages. On June 2nd 2014, at the Apple Worldwide Developers

Conference (WWDC), a beta version of the programming language was re-

leased to registered Apple developers. During WWDC, The Swift Programming

Language manual was released on the iBooks Store and on the official website

for free. (18.)

During WWDC 2016, Apple announced an iPad exclusive app, named Swift

Playgrounds, intended to teach people how to code in Swift. The application

presents the feedback of the code structure in a 3D video game-like manner

and tells the developer in what order certain lines of code should be placed.

(18.)

15

Today, the latest stable release of Swift is the version 3.1.1, which was released

on April 21st 2017 and is still open-source software under the Apache Licence

2.0. (18.)

3.1.2 Features

Swift is an alternative to the Objective-C language. The syntax of Swift lan-

guage is presented in a simpler manner. The majority of people may think that

Swift is easier to read compared to Objective-C. (19.) This chapter presents the

features that are relevant for the project. These features are access control, op-

tionals and chaining, memory management and debugging.

Swift provides five different access control levels for handling classes, struc-

tures and enumerations, and to properties, methods, initializers and subscripts

belonging to those types. These access control levels are open, public, private,

fileprivate and internal. Open, which is only for classes and their methods, indi-

cates that the class can be subclassed outside of the module. Public means

that it is accessible from a different module. Private means that a symbol is only

accessible in the immediate scope. Fileprivate means that it is only accessible

within the file and internal indicates that it is only accessible within a containing

module. (20.)

One of the more important features in the Swift language are optionals. They

are represented in the Swift by ? operator. To access the value inside, only if

the value is not nil, it must be unwrapped to expose the instance inside. For un-

wrapping, the developer has to use the ! operator. However, if the value turns

out to be nil, then the null-pointer error occurs. For these cases there is the ?

operator. The ? operator checks whether the instance within the value is nil or

not. If the instance value is nil, then the ? operator will not unwrap the value.

Swift 2 introduced a new keyword called guard. Guard is good for situations

where a value must meet a certain condition in order to be executed. (18.)

16

Swift uses the ARC system to manage the memory. In Swift references to ob-

jects are strong, unless they are declared weak or unowned. In Swift, it is re-

quired that values are handled in a way that they receive a nil value. These val-

ues must be handled by unwrapping them with a conditional statement, thus al-

lowing a safe usage of the value. A strong reference to an object cannot be of

type optional as the object will be kept in the heap until the reference is deallo-

cated. A weak reference is of type optional as the object can be deallocated and

the reference can be set to nil. Unowned references are neither strong or op-

tional type. The object, which has unowned reference points, is not deallocated

as long as the reference itself remains allocated. (21.)

For debugging Swift uses REPL and gives it interactive properties which are

similar compared to Python. This makes the Swift system to debug cleanly and

run within the development environment. REPL is further enhanced to an alter-

native development environment called playgrounds. Playgrounds is an interac-

tive view which debugs the code on the fly. (18.)

17

4 OLD SETTINGS VIEW

SPENT is an expense management application mainly meant for people who

travel a lot and have a lot of expenses to manage. The way it works is that the

user first links their bank account and card to receive the expenses for a pre-

view, then the user can swipe the expenses into different folders. These folders

can either be for the user’s own expenses or for business expenses. Folders

can be created e.g. for budgeting traveling expenses and such. If services or

products are bought from retailers that are in cooperation with SPENT, the user

gets cash back from the purchases the user has made. The user can also scan

receipts or create receipts if necessary. (22.)

SPENT’s version 1.5.4 settings had a simplistic design and its functionality was

limited. The main settings view appeared from the left side of the screen and did

not cover the screen completely. This meant that there were two view control-

lers active on the screen. Figure 4 shows how the old main settings view was

executed before.

FIGURE 4. Old main settings view

18

The view hierarchy was portrayed in Xcode IDE. One can assume that there are

too many UI components active in the application at the same time when the

user has opened settings view. In figure 5, there are three different active view

controllers: UITimelineViewController, UISettingsViewController and UIGal-

leryViewController.

FIGURE 5. View hierarchy.

4.1 Functionality

The functionality of the old settings view was simple. There were three different

list buttons which would take the user to the profile view, receipt view and sup-

port view. In the main view (UITimelineViewController), there was a button on

the top left part of the screen. It opened the settings view which covered about

75% of the screen. This was executed by using a third-party library called iOS-

Slide-Menu.

19

4.2 UI

The main view of old settings view was executed by using iOS-Slide-Menu,

which is a custom-made navigation controller created by a third-party devel-

oper. Within the navigation controller, mainly normal UIKit components were

used, for example UIKit view classes: UITableView, UIImageView and UILabel.

The support view and the profile view used these same classes in their views,

but the UI was modified to fit into the SPENT design template. In the receipt

view, however, the collection view class was also used (Figure 6). The collec-

tion view shows all the receipt images that the user has taken. When the user

chooses an image, the image will be portrayed in the image view which is

above the collection view. The user may also delete images by pressing the de-

lete button below the collection view.

FIGURE 6. Receipt view

20

4.3 Limitations

The settings view does the bare minimum that it is required to do. The user can

change the profile information in the profile view, change the passcode and

password. In the support view, the user can find frequently asked questions,

contact customer service, check terms and conditions and delete the account.

Here are the problems that the old settings feature had:

- The user could not deactivate the passcode prompt.

- There was no option to change the security settings.

o The user could not turn the automatic screen-lock on or off.

o The user could not change the duration of the automatic screen-

lock.

o The user could not enable or disable the passcode prompt when

the screen went to sleep mode.

o The user should be able to enable or disable the Touch ID if the

device has that feature.

▪ By using the Touch ID, the user should be able to bypass

the passcode screen.

- The view that lists and presents the open-source licenses was missing

completely.

21

5 NEW SETTINGS VIEW

The new settings view was developed for the release of SPENT version 1.6.0.

The new design and functionality were developed according to the graphic de-

signs and requirements were figured out by the people responsible for the prod-

uct development.

5.1 Concept and design

For the concept creation and design, Confluence created by Atlassian was

used. Confluence is a tool for the team collaboration. A user can create a new

page in Confluence for a specific feature and document requirements, instruc-

tions and specifications, add wireframes or add a fully drawn version of the user

interface instead.

5.1.1 Goals

The requirements for the new settings view were determined as follows:

1. The main settings view.

a. The user can see the first and the last name.

b. The user can manage user details in the profile view.

c. The user can access the receipt view to manage all the images of

the receipts.

d. The user can see which expenses, reports or folders have been

shared to other users.

e. The user has access to the support view.

f. The user has access to the security settings view.

g. The user can leave a rating of the app in the App Store.

h. The user can sign out from the account.

i. The user can see the version number of the application.

22

2. Changes in the profile view.

a. The profile deletion button changes the location from the support

view to the profile view.

3. Shared links view.

a. Lists all the expenses, reports and folders that are being shared

with other users.

4. Security settings view.

a. The user must be able to change the passcode and turn it on or

off.

b. The user must be able to disable the automatic screen-lock and, if

the user enables the automatic screen-lock, the user must be able

to change the duration before the screen will lock itself.

c. When The user enables the sleep-lock, the application must be

able to lock itself when screen turns off. If The user disables the

sleep-lock function, the screen will not lock itself.

d. If The user enables the Touch ID function, the user can bypass

the auto-lock by using the Touch ID functionality. However, if the

user does not have an iPhone with a Touch ID button, the option

for Touch ID does not show at all.

e. Status labels should show what happens when the user has ena-

bled or disabled some functions in the settings. For example, if the

user decides to set the passcode on, to set the automatic screen-

lock to 30 minutes and to enable the sleep-lock, the status label

should say: “A passcode will be required after 30 minutes of inac-

tivity or when the device screen awakes form sleep mode” and

“You will always be required to input your passcode after the app

restarts.”

5. Changes for the support view

a. Remove the delete button from the view and add a button which

directs users to the list of open-source licenses.

23

5.1.2 New design

The UX designer of the company designed the user flow for the settings view

alongside with the head designer. The head designer then designed the look of

the settings view to start out with. The first view, which is represented to the

user, is the main settings view. This is the view that has gone through the most

changes in the new version of the new settings views (Figure 7).

FIGURE 7. New main settings view

As mentioned in the last chapter, the design portion of this project was quite

straight-forward. Another view that had to be created from scratch was the view

for security settings (Figure 8).

24

FIGURE 8. Security settings view

5.2 Implementation

The implementation process was straight-forward. At first, it seemed to be a

good idea to disable the iOS-Slide-Menu navigation controller, which was at-

tached to the top left button on the home view. After disabling the link, the at-

tachment of the settings view controller was created for this thesis. Then, the

rest of the required view controllers were added to the main settings view and

after that the next step would be to work on the UI. After the basic structure of

the UI had been created, then the UI elements were connected to all the neces-

sary model classes. After that, the functionalities for the settings were created.

For example, security settings should always remember the state they are in

when the user goes back to the home view to swipe expenses.

25

5.2.1 New UI

Developing the new UI of the new settings feature can be divided into the fol-

lowing steps:

1. Unlinking the old settings view controller class of the top left navigation

button.

2. Linking the new settings view controller class to the previously mentioned

navigation button.

3. Creating the basic structure of the main settings view.

4. Linking all the necessary view controllers to the new settings view.

5. Adding the minor changes to the old view controllers.

6. Creating the basic view for the security settings view.

7. Creating the open-source licenses list.

8. Adding finishing touches to the UI.

The SPENT application has a file filled with localizable strings. However, now

there are no different languages available for the application since the applica-

tion is only available for downloading in the USA market.

The first thing to do was to disable the left navigation controller from the old set-

tings view and to link it to the new settings view controller. Since the creation of

new settings feature meant that the iOS-Slide-Menu library was not necessary

anymore, it would have been more beneficial to remove the library altogether

and refactor the code. But this would have slowed down the development pro-

cess even further.

After this procedure, a view controller was created. Its purpose was to manage

the new settings view. The way how the settings view was designed was that it

uses UILabels, and UImageView and a UICollectionView with six collection view

cells. The UI was developed by coding, which means that Storyboard compo-

nents were not utilized while developing the UI. This meant that the UI had to be

created by using Swift for every separate view controller. Basing on experience,

the danger for this practice is that there is a high chance of writing messy code

26

because the amount of view objects can become quite huge and their initializa-

tions and implementations might end up in lines upon lines of code. In the end,

the written code was readable and accepted by colleagues with more experi-

ence in the software development.

Assigning the UI elements to the view controller followed a basic structure: a

class, which inherits a UIViewController class, has a viewDidLoad() -function

which has a custom function added into it. The purpose for this custom function

is to initialize UI elements and give them locations, sizes and constraints. Figure

9 represents a piece of test code, which introduces how view controllers were

developed in this project:

FIGURE 9. Example code of a view controller written in Swift 3.0

One of the most important components in the view was the collection view. The

collection view shows six cells: profile, receipts, shared links, security, support

and for app rating. To use the collection view class properly, UICollec-

tionViewDelegate and UICollectionViewDataSource classes were required to be

inherited. This enables various collectionView()-functions that alter the size, the

contents, what actions are executed when user presses a cell and the number

of cells displayed in the view. The easiest way to determine what contents

27

would be displayed within the cells was to create a new separate class which

determines the dimensions and the constraints of the UILabel and the

UIImageView. After this procedure, the class was implemented in the view con-

troller and it worked as it was supposed to.

After adding all the necessary UI elements into their place in the settings view,

the next thing was to add all the view controllers, which were linked to the old

settings view, to the new settings view. In the collectionView()-function, which

has a didSelectRow parameter included in it, cases were added for different in-

dexes. For example, if the index value is four, then the user will be directed to

the settings view and if the index value is six, then the user will be directed to

the App Store page of the application. Previously developed view controllers,

which were used in the older version of the settings view, were the profile view

controller, the support view controller and the gallery view controller for receipt

snapshots.

After determining the contents and the amount of collection view cells, the cells

and UI components lacked constrains. Constraints are required for ensuring

that the UI does not break or do anything else which might be unthinkable. In

the custom collection view cell class, the constraints of the UI components in

the collection view cell were created by using SnapKit. The constraints for the

collection view were made by using the screens size as parameters for views

width and height of the menu.

The next task was to alter the contents of the old view controllers. The change

passcode button from the profile view was removed and the delete account but-

ton was added to the view. In the support view the delete account button was

removed and the open-source licenses button was added instead. The sign out

button from the profile view was removed and it was added onto the top right

side of the main settings view.

After linking the view controllers to the new settings view, the previously devel-

oped view controllers were decided to be altered by removing the buttons that

28

were assigned to different locations in the new designs. The change passcode

button was removed from the profile view and the delete button was moved

from the support view to the profile view.

The next step in the settings view was to create the security settings view. The

older SPENT version did not have any means to protect the application other

than changing the user’s passcode. The structure of the UI consisted of an

UITableView, which listed the custom cells. For these custom cells, an alterna-

tive class, which inherits an UIView class, was created. In this class, the dimen-

sions and locations for the UIlabels, UIImageViews and UISwitches were deter-

mined. In the security settings view controller, certain components that were

needed, were set as enabled or visible and the components that had no pur-

pose for certain parts were disabled or hidden.

5.2.2 Functionality

For determining how to develop the functional side of the settings feature, it was

listed out in a similar manner as it was sorted out in the beginning of the chapter

4. Here is the list of functions that were necessary for the improved feature:

1. Displaying the first name and the last name of the user in the main view

and changing it dynamically when the user has changed the name in the

profile view.

2. Directing the user to SPENT’s home page when the user taps on the

SPENT logo.

3. When the user taps on an open-license link, which is in the table view

component, creating a way to display the correct license file in a new

view controller.

4. Directing the user to the application page on App Store when the user

taps on the “Rate SPENT” button.

5. Adding the sign out functionality into the sign out button.

6. Adding the delete account functionality into the delete account button.

29

7. Security settings:

a. Adding ON/OFF functionality for the passcode.

b. Adding the Auto-lock functionality for the sleep-lock.

c. Adding the Sleep-lock functionality for the application.

d. Adding the Touch ID locking mechanism for the application and

disabling it if the user does not have an iPhone with the Touch ID

option.

e. Changing the string values in the label components depending on

the states of the passcode, sleep-lock, auto-lock and Touch ID.

The dynamic change of the first name and last name labels was executed by

creating variables that received their value from a model class receiving and

changing the user information from a Realm database, which then receives its

contents from the backend. In addition to this, a NotificationCenter-class was re-

quired. The purpose of this class is to post and observe data when the code is

executed. When the user decides to change the values in the first name and

last name fields in the profile view controller, this sends a que to an observer in

the settings view controller, which then obtains new values from the Realm da-

tabase for the first name and last name values.

The way to direct the user to SPENT’s home page was to first create an object

of the UITapGestureRecognizer class and then to add the object into the

spentLogo class which is an object created out of an UIImageView class. For

the gesture recognizer action, the author created a function, which opens

SPENT’s home page on the Safari mobile browser.

For open-licences, two separate view controllers were created: one that lists all

the licenses and one that displays the contents of those licenses. For the view

controller that displays all the licenses, an UITableView object was created, and

for the other view controller, an UIWebView object was used. UIWebView has

an ability to view webpages and for these licenses, raw text pages were found

in their respective repositories. (23.) To create a proper user experience, when-

ever the user selects a row on the list, the row gets highlighted.

30

For the “Rate SPENT” -button, a function was created. This function opens

SPENT’s app store page where the user can rate the app. This procedure func-

tions in the same manner as opening SPENT’s website launch does.

The sign out functionality for the button was easy to handle since it was already

created. An object was created from a class, which has a function, that exe-

cutes the logout action and which was added into the sign out navigation but-

ton’s navigation action.

The delete button, which was created before in the profile view controller, had a

function which deletes the user profile. When the button was moved to the pro-

file view controller, the delete profile function was also relocated in the profile

view controller as well.

The security settings view was the task that required more work. The older ver-

sion of the application only had a view where the user could change their

passcode. The user had no way to turn off the passcode and had no functionali-

ties for the auto-lock, sleep-mode or touch ID. Because of the strict project

deadline, the new settings feature from this point onwards was developed by an

experienced iOS developer.

For the security settings, ensuring that the details that were set in the security

settings were stored somewhere when exiting from the security settings menu.

For this purpose, the userDefaults-class was used. This class allows the user to

store information locally without using any kinds of databases. Only a value and

an ID are needed to distinguish the set data from each other.

An important feature added into this application was a timer, which starts to

count down the duration when there are no actions happening on the screen. In

the end, the developers created a class which handles whether there should be

a passcode visible or not. It also sets the auto-lock value and handles whether

the Touch ID is being enabled or not.

31

A co-worker implemented a timer, which runs on the background of the applica-

tion. First a Timer object was created. It then calls a function that starts to count

from 0 every time the user stops to touch the screen. The value can be changed

in the security settings view. The timer object gets its value for the duration from

the list of user default values. The user can also toggle the timer on or off. If the

user turns off the timer, then the timer’s default value gets multiplied by -1,

which was enough for not launching the timer. Encapsulating the timer with a

Boolean if-statement was not necessary because of this possibility.

Instead of directing the user to another view controller while setting a new value

for the timer, the last developer had created a custom class for handling dialog

pop ups. For the dialog pop up function, a custom class was used. This class

was created by previous developer for prompting “ok” or “cancel” dialogues.

This class also functions in a way that it is scalable. The way it scaled was to

create an object of the custom UIDialogViewController class. Then it adds those

dialogue messages, for example, “5 minutes” or “10 minutes”, into the dialogue

popup window. Every time the UIDialogViewController class’ addAction function

is called, the function adds the dialogue option into popup and does not over-

write the previous function of the similar name. Instead, it stacks up.

The touch ID gets handled in the security settings view controller by a function,

which enables the Touch ID feature. This is then encapsulated by a clause that

checks if the device supports the Touch ID feature. If not, then the Touch ID row

will not be shown at all. The function which enables the Touch ID feature, gets

its value from userDefaults.

The labels, which portray the state of security settings on the bottom part of the

screen, were executed by taking information from the state of UI components in

the security settings. Using these states as flags for changing the contents in

the labels worked appropriately. The text contents were derived from a file filled

with localizable strings.

32

6 TESTING

Testing was a significant part of the development process of the settings view.

The firm had two parties reserved for testing: inner testers and outside testers.

In inner testing, there were developers and a designated tester performing vari-

ous testing tasks on the new feature. There were also outside testers perform-

ing their own testing tasks on the new feature. The following chapters will de-

scribe several different methods of testing that were used for testing the new

feature.

6.1 Testing practices

Since the company employed their own dedicated tester in January 2017, no

automated testing was implemented in the testing routines. This meant that

those routines had to be performed manually. This did not justify leaving out au-

tomated testing, but at the time the company lacked resources and tools in the

testing department. Figure 10 shows the testing methods SPENT uses in the

product testing:

33

FIGURE 10. Testing methods. Q1 – Q4 mean what testing processes are

meant to be done first. (24.)

Here are the explanations for the different testing methods. It is necessary to

point out that every type of testing which is categorized to be automated, was

executed manually.

In the first quarter, program developers usually perform unit testing and integra-

tion testing. In unit testing the developer ensures that the code has been coded

correctly. This includes the new lines of code and the old, possibly refactored

code. The unit testing happens immediately when coding has been finished and

the application in the client device has been decided to build. (24.)

Integration testing means that the developers test that all the software compo-

nents in the application work together as intended. Testing is executed when

the developer has finished developing the new component for the application,

for example the new settings view works as a great example of a software com-

ponent. (24.)

34

In the second quarter, the functional testing was executed by developers and in-

ternal testers and the regression testing was executed by internal testers. Func-

tional testing is a practice where testers ensure that all the features function as

intended. At this phase, if the tester has any automated testing tools, a partial

test (also known as a smoke test) or a complete test will be executed. Since the

internal tester was recruited in January 2017, which is also the month when the

author worked on the settings view, the tester did not have enough time to cre-

ate sufficient scripts for the automation testing tools. Regression testing means

that the tester tests if the application behaves in a way it is supposed to after

changing the code structure or adding new features into the application. (24.)

In the third quarter, all the testing methods were executed manually. External

testers and inner testers performed exploratory testing the purpose of which

was to find bugs in a way that automated testing or other means of testing could

not find. Exploratory testing went through all the parts in the application, but it is

often directed to a specific feature for the release. In exploratory testing testers

tried to check how the application recovers from crashes and how it handles er-

rors. Testers put invalid data into text fields. They performed odd movements on

the UI and studied how application performs when there is no Internet connec-

tion or when the application moves between the foreground and the back-

ground. (24.)

Scenario testing was important since it means that the application is tested in a

way where testers verify if the application functions and behaves as it should

from a casual user’s point of view. It was performed by an internal tester. The

scope of scenario testing was more flexible compared to aforementioned testing

cases, but it was still considered as a legitimate way of testing. (24.)

Usability testing means that the tester goes through UI elements and points out

what is wrong with them or may propose a change so that the usability would

feel more fluid. The tester also points all the UI bugs that might occur during

testing. This method of testing was performed by developers and inner testers.

(24.)

35

In the fourth quarter the product then will be tested to find out how it handles

huge loads of content, how it performs other mobile devices and how secure the

application is. In performance or load testing, the tester tries to find out how the

application performs when dealing with a huge amount of information. In this

case, since there was no automatic testing available, the tester created multiple

pieces of expenses to be loaded for the home view and for home and business

folder views. The aim of this kind of testing is to find out how the application be-

haves under a lot of stress, whether the application still work fluidly even if it has

many networking cycles and loading is happening on the background. (24.)

In compatibility testing testers try to find out how the application performs on dif-

ferent devices. In case of SPENT’s application, testing needed to point out the

incompatibility issues on different devices, such as differences in the UI or per-

formance. (24.)

In security testing testers test out the security of the application, such as login

and sign up functionalities, passcode security, both digit inputs and Touch ID.

(24.)

6.2 Bug management

The bugs found during testing were marked into a Trello board, which was re-

served for iOS developers. Trello is a web-based task management tool, where

a team can create different boards and where team members can add lists to

sort out different tasks. These lists can symbol the status of a task. One list can

be set for tasks that are “in progress” or “to be tested” and there can be a list for

tasks that have been done. Figure 11 below shows the development cycle of

SPENT’s development team:

36

FIGURE 11. Development process of the SPENT iOS application.

37

7 CONCLUSION

The development of the new settings feature was successful and it feels that I

learned a lot of how to develop an application feature in a startup environment.

SPENT had different teams for different stages of development: a concepting

team, a designing team, a programming team and, in the future, a testing team.

I participated in the programming team, more specifically in the iOS develop-

ment. I learned how to develop a feature by using the MVC architecture as a

basis for the mobile software development. I learned how to create controllers

and different views by using Cocoa Touch and Foundation frameworks. I re-

ceived a lot of help from my co-workers when I was running out of time and

could not deliver the finished code on time.

In the beginning, it was quite hard for me to review the code that had been cre-

ated at the start of the SPENT development. There were changes in the iOS de-

velopment team and programmers had their own personal sense of what type of

code would be good. Alongside of this project, a lot of refactoring was done and

things were executed differently. This made merging the settings feature branch

to the main development branch a pain. Luckily, the merging was a success. It

was my first time to merge branches that were as extensive as these two

branches were.

Even though I achieved the aim of finishing the feature, instead of learning eve-

rything necessary, I found myself more curious of how to implement new fea-

tures and my own personal aim was to create or utilize the model classes more

often. This project, however, did not require me to utilize any other third-party

frameworks extensively. These third-party frameworks that I used to some ex-

tent were Realm and Snapkit.

After receiving commentsfor using the userDefaults class instead of using the

key chain functionalities for storing local data, I realized that I should not have

implemented the data storing functionality in that way. The reason is that

userDefaults stores data in a plain text file and does not encrypt that data at all,

38

whereas storing critical bits of data into the key chain means that it gets en-

crypted (25.)

After reviewing and polishing the feature I had created, the new settings view

was accepted and then it was implemented into the application itself by merging

the settings development branch into the development branch and then to the

master branch. I am quite happy about my input on the project. It feels good to

see your own touch in the final product. Unfortunately, this application is not

available in Finland and because of that I cannot download the application on

my phone and see if the feature is still in use.

This project was a good way to see what it is like to work in a startup company.

A small team developed a product, which has a lot of promise on the American

soil. It requires a big amount of effort to develop the product even further and to

keep up with the competition. A huge appreciation for software development as

a practice is necessary.

39

REFERENCES

1. Meet Erno: Founder and CEO. 2017. Blog post. Date of retrieval:

25.4.2017. https://spentapp.com/blog/meet-erno-founder-ceo/.

2. Our Offices. 2017. SPENT Website. Date of retrieval: 25.4.2017.

https://spentapp.com/about-us/.

3. iOS. 2017. Wikipedia, the free encyclopedia. Date of retrieval: 19.1.2017.

https://en.wikipedia.org/wiki/iOS.

4. About the iOS Technologies. 2014. Apple documentation. Date of re-

trieval: 11.3.2017. https://developer.apple.com/library/content/documen-

tation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduc-

tion/Introduction.html.

5. Cocoa Touch Layer. 2014. Apple documentation. Date of retrieval:

18.5.2017. https://developer.apple.com/library/content/documenta-

tion/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTech-

nologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-

CH3-SW1.

6. Media Layer. 2014. Apple documentation. Date of retrieval https://devel-

oper.apple.com/library/content/documentation/Miscellaneous/Concep-

tual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//ap-

ple_ref/doc/uid/TP40007898-CH9-SW4. Date of retrieval: 18.5.2017.

7. Core Services Layer. 2014. Apple documentation. Date of retrieval:

18.5.2017. https://developer.apple.com/library/content/documenta-

tion/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreServ-

icesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-

CH10-SW5.

8. Core OS Layer. 2014. Apple documentation. Date of retrieval: 18.5.2017.

https://developer.apple.com/library/content/documentation/Miscellane-

ous/Conceptual/iPhoneOSTechOverview/CoreOSLayer/Core-

OSLayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1.

https://spentapp.com/blog/meet-erno-founder-ceo/
https://spentapp.com/about-us/
https://en.wikipedia.org/wiki/iOS
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1.
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1.
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1.
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1.
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//apple_ref/doc/uid/TP40007898-CH9-SW4
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreServicesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-CH10-SW5
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreServicesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-CH10-SW5
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreServicesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-CH10-SW5
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreServicesLayer/CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-CH10-SW5
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1
https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1

40

9. Cocoa (Touch). 2015. Apple documentation. Date of retrieval: 25.1.2017.

https://developer.apple.com/library/content/documentation/General/Con-

ceptual/DevPedia-CocoaCore/Cocoa.html.

10. Foundation. 2017. Apple documentation. Date of retrieval: 17.5.2017.

https://developer.apple.com/reference/foundation.

11. UIKit. 2017. Apple documentation. Date of retrieval: 18.5.2017.

https://developer.apple.com/reference/uikit.

12. Xcode. 2017. Wikipedia, the free encyclopedia. Date of retrieval:

11.3.2017. https://en.wikipedia.org/wiki/Xcode.

13. What is version control. Tutorial. Date of retrieval: 18.5.2017.

https://www.atlassian.com/git/tutorials/what-is-version-control.

14. Bitbucket. 2017. Wikipedia, the free encyclopedia. Date of retrieval:

19.5.2017. https://en.wikipedia.org/wiki/iOS.

15. Model-View-Controller (MVC) in iOS: A Modern Approach. 2016. Blog

post. Date of retrieval: 11.3.2017. https://www.raywender-

lich.com/132662/mvc-in-ios-a-modern-approach.

16. Advantages of MVC Architecture. 2009. Blog post. Date of retrieval:

27.4.2017. http://javabynataraj.blogspot.fi/2009/05/14-advantages-of-

mvc-arch.html.

17. Swift. 2017. Apple documentation. Date of retrieval: 14.2.2017.

https://developer.apple.com/reference/foundation.

18. Swift (programming language). 2017. Wikipedia, the free encyclopedia.

Date of retrieval: 27.4.2017. https://en.wikipedia.org/wiki/Swift_(program-

ming_language).

19. Swift vs. Objective-C: 10 reasons the future favors Swift. 2015. Online ar-

ticle. Date of retrieval: 11.5.2017. http://www.infoworld.com/arti-

cle/2920333/mobile-development/swift-vs-objective-c-10-reasons-the-fu-

ture-favors-swift.html.

20. Access Control. 2017. Apple documentation. Date of retrieval: 15.5.2017.

https://developer.apple.com/library/content/documentation/Swift/Concep-

tual/Swift_Programming_Language/AccessControl.html.

https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/Cocoa.html
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/Cocoa.html
https://developer.apple.com/reference/foundation
https://developer.apple.com/reference/uikit
https://en.wikipedia.org/wiki/Xcode
https://www.atlassian.com/git/tutorials/what-is-version-control
https://en.wikipedia.org/wiki/iOS
https://www.raywenderlich.com/132662/mvc-in-ios-a-modern-approach
https://www.raywenderlich.com/132662/mvc-in-ios-a-modern-approach
http://javabynataraj.blogspot.fi/2009/05/14-advantages-of-mvc-arch.html
http://javabynataraj.blogspot.fi/2009/05/14-advantages-of-mvc-arch.html
https://developer.apple.com/reference/foundation
https://en.wikipedia.org/wiki/Swift_(programming_language)
https://en.wikipedia.org/wiki/Swift_(programming_language)
http://www.infoworld.com/article/2920333/mobile-development/swift-vs-objective-c-10-reasons-the-future-favors-swift.html
http://www.infoworld.com/article/2920333/mobile-development/swift-vs-objective-c-10-reasons-the-future-favors-swift.html
http://www.infoworld.com/article/2920333/mobile-development/swift-vs-objective-c-10-reasons-the-future-favors-swift.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/AccessControl.html

41

21. Automatic Reference Counting. 2016. Wikipedia, the free encyclopedia.

Date of retrieval: 15.5.2017. https://en.wikipedia.org/wiki/Automatic_Ref-

erence_Counting.

22. How it works. 2017. SPENT website. Date of retrieval: 26.4.2017.

https://spentapp.com/how-it-works/.

23. UIWebView. 2017. Apple API Reference. Date of retrieval 19.5.2017.

https://developer.apple.com/reference/uikit/uiwebview.

24. Pirnes, Marko 2017. Test strategy. SPENT documentation. Oulu, Fin-

land.

25. Are You Storing Sensitive Data in NSUserDefaults? Stop Doing That!

2014. Blog post. Date of retrieval: 11.5.2017.

https://www.andyibanez.com/nsuserdefaults-not-for-sensitive-data/.

https://en.wikipedia.org/wiki/Automatic_Reference_Counting
https://en.wikipedia.org/wiki/Automatic_Reference_Counting
https://spentapp.com/how-it-works/
https://developer.apple.com/reference/uikit/uiwebview
https://www.andyibanez.com/nsuserdefaults-not-for-sensitive-data/

