

Performance Testing Smart Metering

Systems
Tools, Automated Tests and Reporting

Joel Kortelainen

Bachelor’s thesis

May 2017

Technology, communication and transport

Degree Programme in Software Engineering

Description

Author(s)

Kortelainen, Joel
Type of publication

Bachelor’s thesis
Date

May 2017

Number of pages

38
Language of publication:
English

 Permission for web

publication: x

Title of publication

Performance Testing Smart Metering Systems
Tools, Automated Tests and Reporting

Degree programme
Software Engineering

Supervisor(s)

Esa Salmikangas, Jouni Huotari

Assigned by

Landis+Gyr, Jyskä

Description

Landis+Gyr’s R&D department in Jyskä had a need for high-level, automated performance
tests for the Gridstream AIM smart metering system. Landis+Gyr assigned a task to develop
a set of automated tests and a way to store and visualize the gathered data for history and
regression purposes.

The objective was to design and develop a set of high-level, automated performance tests
for specific parts of the Gridstream AIM system according to the requirement specification
as well as a system for storing and displaying the gathered performance data. The tests
were developed using Robot Framework, MongoDB was used as a data storage and a web
server written in Node.js served as a back-end. Data visualization was done using C3.js chart
library and the data was retrieved from the database by using a simple REST API. The tests
were executed periodically as a scheduled Jenkins jobs.

As a result, the required test cases were developed according to requirement specification.
Jenkins executes the Robot Framework test suites automatically every night, the desired
data is gathered and stored to MongoDB. The overall test execution status is automatically
reported to TestRail as a test teardown procedure. Node.js-based web server serves static
web sites with C3.js graph templates that receive the gathered performance data from
MongoDB via REST API.

Robot Framework is an excellent tool for developing high-level test automation. Due to a
variety of different testing libraries it is possible to develop test automation regardless of
the programming language the system under test is based on. Building an architecture that
handles test execution, data storing and visualization automatically, can easily be done by
using only open-source tools and technologies. By constant performance monitoring, the
chances of uncovering new software bugs and regressions are greatly increased, which
reduces the need for repetitive manual labor.

Keywords (subjects)

Test automation, Performance testing, Robot Framework, Jenkins, Windows

Miscellanous

http://finto.fi/fi/?clang=en

Kuvailulehti

Tekijä(t)

Kortelainen, Joel
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Toukokuu 2017

Sivumäärä

38
Julkaisun kieli

Englanti

 Verkkojulkaisulupa

myönnetty: x

Työn nimi

Performance Testing Smart Metering Systems
Tools, Automated Tests and Reporting

Tutkinto-ohjelma

Ohjelmistotekniikan koulutusohjelma

Työn ohjaaja(t)

Esa Salmikangas, Jouni Huotari

Toimeksiantaja(t)

Landis+Gyr, Jyskä

Tiivistelmä

Landis+Gyr Oy:n Jyskän tuotekehitysosastolla oli tarve korkean tason automatisoiduille
suorituskykytesteille Gridstream AIM -älymittausjärjestelmälle. Landis+Gyr Oy antoi tehtä-
väksi kehittää joukon automaattisia testejä sekä tavan tallentaa ja visualisoida kerätty data
historia- ja regressiotarkoituksiin.

Tavoitteena oli suunnitella ja kehittää joukko korkean tason automatisoituja suorituskyky-
testejä Gridstream AIM -järjestelmän graafisen käyttöliittymän tiettyihin toiminnallisuuk-
siin vaatimusmäärittelyn mukaisesti sekä kehittää järjestelmä kerätyn tiedon tallentami-
seen sekä esittämiseen. Testit kehitettiin käyttämällä Robot Framework -ohjelmistokehys-
tä, MongoDB:tä käytettiin tietovarastona ja Node.js:llä kirjoitettu web-palvelin toimi palve-
lun taustana. Tietojen visualisointi suoritettiin käyttämällä C3.js -kaaviokirjastoa ja tiedot
haettiin tietokannasta käyttämällä yksinkertaista REST-rajapintaa. Testejä suoritettiin sään-
nöllisesti ajastettuina Jenkins-töinä.

Tämän tuloksena vaaditut testitapaukset kehitettiin vaatimusmäärittelyn mukaisesti.
Jenkins -automaatiopalvelin suorittaa Robot Framework -testit joka yö määrätyllä aikavälil-
lä, halutut tiedot kerätään ja tal-lennetaan MongoDB:hen. Testien suoritustila raportoi-
daan automaattisesti TestRail-palveluun testin purkumenetelmänä. Node.js -pohjainen
web-palvelin tarjoilee staattisia web-sivuja, joissa on C3.js -kaaviomallipohjat, jotka vas-
taanottavat kerättyä tietoa Mongo-DB:stä REST-rajapinnan avulla.

Robot Framework on erinomainen työkalu korkean tason testiautomaation kehittämiseen.
Erilaisten testikirjastojen avulla on mahdollista kehittää testiautomaatiota riippumatta
testattavan järjestelmän ohjelmointikielestä. Arkkitehtuurin, joka suorittaa testit, tallentaa
ja visualisoi tiedot automaattisesti, voidaan helposti rakentaa käyttämällä vain avoimen
lähdekoodin työkaluja ja tekniikoita. Suorituskyvyn jatkuvalla seuraamisella uusien ohjel-
mistovirheiden ja regressioiden löytäminen helpoittuu, mikä puolestaan vähentää toistu-
van, manuaalisen työn tarvetta.

Avainsanat (asiasanat)

Testiautomaatio, Suorituskykytestaus, Robot Framework, Jenkins, Windows

Muut tiedot

http://www.finto.fi/

Contents
1 Introduction .. 8

2 Basis of the thesis ... 9

2.1 Theoretical background ... 9

2.1.1 Test automation ... 9

2.1.2 Performance testing ... 9

2.2 Landis+Gyr ... 10

2.3 Gridstream AIM ... 10

2.4 Thesis background and assignment... 11

2.5 Objectives of the thesis ... 12

2.5.1 Concrete objectives .. 12

2.5.2 Other objectives ... 12

3 Tools and their role in development .. 13

3.1 Git .. 13

3.2 Gerrit .. 14

3.3 JIRA .. 15

3.4 Robot Framework .. 16

3.4.1 Overview .. 16

3.4.2 Test data tables .. 16

3.4.3 Best practices ... 16

3.5 Jenkins ... 18

3.6 TestRail .. 19

3.7 MongoDB ... 20

3.8 Node.js ... 21

3.9 C3.js.. 23

4 Workflow .. 24

4.1 Developing automated tests ... 24

4.1.1 Research ... 24

4.1.2 Development .. 25

4.1.3 Review .. 28

4.2 Data gathering and storing .. 28

4.3 Displaying the results .. 29

4.4 Automated test execution ... 30

4.4.1 Jenkins plugins .. 30

4.4.2 Slave machine setup ... 31

4.4.3 Creating jobs ... 32

5 Evaluation ... 34

6 Further development ... 35

7 Conclusion .. 36

References .. 37

Figures

Figure 1. Mainline Branch Strategy .. 13

Figure 2. Gerrit Workflow Model ... 14

Figure 3. Robot Framework - Appropriate abstraction level 17

Figure 4. Robot Framework - Too low abstraction level .. 17

Figure 5. TestRail overview ... 20

Figure 6. MongoDB example document ... 21

Figure 7. A simple Node.js web server ... 22

Figure 8. Combination chart sample .. 23

Figure 9. Test case breakdown example .. 24

Figure 10. Folder structure ... 25

Figure 11. Argument file example .. 26

Figure 12. Batch script example ... 27

Figure 13. Jenkins Robot Framework Plugin ... 30

Figure 14. Jenkins Build Monitor Plugin .. 31

Figure 15. Jenkins Slave Launch Options ... 32

Figure 16. Job scheduling example ... 33

Figure 17. Project's overall architecture .. 34

Tables

Table 1. Agile delivery vehicles .. 15

Table 2. Robot Framework test data tables ... 16

Terms

AMM

Advanced Metering Management

AngularJS

An open-source front-end web application framework.

API

Application Programming Interface is a set of tools, protocols and subroutine

definitions for building an application or software system.

Gerrit

A web-based team code collaboration tool closely integrated with Git (see Git) that

enables developers to review, approve or reject each other’s modifications on their

source code.

Git

A distributed version control system (see VCS) that allows developers to work on a

specific project without them sharing a common network.

C3.js

A D3.js-based (see D3.js) reusable chart library.

CD

Continuous Delivery is an approach where software is produced in short cycles to

ensure a reliable release at any given time.

CI

Continuous Integration is a practice of testing and merging all isolated code changes

to a shared mainline several times a day.

Cron

Linux utility which schedules a command or script on a server to run automatically at

a specified time and date.

CSS

Cascading Style Sheets is a style sheet language most often used to set the visual

style of web pages.

D3.js

Data-Driven Documents is a JavaScript (see JavaScript) library for manipulating data-

based documents while providing powerful data visualization tools.

EMEA

Europe, the Middle East and Africa

Express.js

An open-source web application framework for Node.js (see Node.js).

HES

Head End System

IDE

An integrated development environment is a software application usually consisting

of a source code editor, build automation tools and a debugger.

I/O

Input/output is the communication between an information processing system and

the outside world.

Java

A class-based and object-oriented general-purpose programming language.

JavaScript

Dynamic, untyped and interpreted programming language used by web browsers to

display dynamic content.

JIRA

Issue tracking and project management product , developed by Atlassian.

Jenkins

An open-source automation server written in Java (see Java).

JSON

JavaScript Object Notation is an open-standard format for transmitting data objects

consisting of attribute-value pairs. JSON is mostly used for asynchronous

browser/server communication.

MEAN

A free and open-source software stack consisting of MongoDB (see MongoDB),

Express.js (see Express.js), AngularJS (see AngularJS) and Node.js (see Node.js).

MongoDB

An open-source cross-platform document-oriented database (see Database) program

that uses JSON-like (see JSON) documents.

Node.js

Open-source JavaScript (see JavaScript) runtime environment for developing server

tools and applications.

NoSQL

”Not only SQL” (see SQL) database provides a mechanism to manage data which is

modeled differently from the tabular relations used in relational databases.

npm

The default package manager for Node.js (see Node.js).

Python

A general-purpose, high-level programming language.

QA

Quality assurance

R&D

Research and development.

Software framework

An abstraction that enables application-specific software by providing a software

with generic functionality which can be selectively changed by additional code.

SQL

Structured Query Language is a domain-specific language designed for managing

data stored in a relational database management system.

Test case

A set of conditions used to determine if a feature in an application or software

system is working as it was originally intended.

TestRail

A web-based test case management software for managing, tracking and organizing

testing efforts.

Test suite

A collection of test cases (see Test case) used to show that an application or software

system has some specified set of behaviours.

VCS

Version Control System tracks and provides control over changes to source code and

enables developers to quickly switch between different versions of their software

8

1 Introduction

Testing has always been an integral part of software development. Testing helps to

ensure that the product in development meets the requirements of its design such as

responding correctly to given inputs, performing its functions within an acceptable

time and that the overall usability is sufficient. However, testing large entities

manually can be extremely taxing in terms of time, money and resources. That is

where automation comes in. When automation handles the boring and repetitive

testing tasks, the human resources are freed to analyze the results and solve the

possible problems instead of consuming the precious development time trying to

locate said problems.

An example of these large entities is the Landis+Gyr’s smart metering solution.

Electricity meters are found in millions of homes and their proper functioning is

crucial for both, the client and the supplier. The electricity companies around the

world use smart metering systems to remotely read data from thousands upon

thousands of meters simultaneously and there is little to no room for errors. The

data that is collected should be valid and the operation itself should take as little

time as possible. One way to ensure the good quality of the product is

comprehensive automated testing for regression, acceptance and performance

purposes.

This thesis introduces the basic workflow of developing high-level performance test

automation for smart metering systems, the tools and technologies that are being

used in development as well as a solution for automatically reporting the test results

and the gathered data. It is worth noting that due to a non-disclosure agreement

made with Landis+Gyr, this thesis does not go into detail on the functions, business

processes or design decisions behind Landis+Gyr’s smart metering systems, but

describes them only superficially.

9

2 Basis of the thesis

2.1 Theoretical background

2.1.1 Test automation

In software testing, test automation is a process that utilizes a special software to

execute pre-scripted tests on a software application and compares the actual results

of the tests with the predicted ones. Test automation is ideal for repetitive but

necessary tasks and it can drastically decrease test execution time compared to

manual testing. Test execution speed is not the only benefit test automation can

offer compared to manual testing, as it also negates the possibility of human error by

always executing the tests in an identical manner.

Test automation provides an efficient way for software development and quality

assurance teams to catch possible defects of their products, as the tests can be

executed off-hours and the results examined in the morning.

Test automation has a range of uses such as functional acceptance testing, regression

testing and integration testing, however, there are some cases where manual testing

excels such as usability testing and exploratory testing.

2.1.2 Performance testing

In software testing, performance testing is a type of non-functional testing that is

used to determine how fast some aspect of a system performs under a particular

workload. (What is Performance testing in software, 2017). Performance testing can

be used to measure parameters such as throughput, bandwidth, data transfer rate or

efficiency.

The scope of this thesis focuses mainly on high-level performance testing. This means

measuring the execution time of certain user interface operations, data transfer

rates and system’s overall reliability.

10

2.2 Landis+Gyr

Landis+Gyr has been in the energy business for more than a century. Their meters

and solutions empower utilities and end-customers around the world to improve

their energy efficiency, reduce their energy costs and contribute to a sustainable use

of resources. Landis+Gyr is the largest global player in smart metering with one of

the broadest portfolios in the industry. (Landis+Gyr, 2017)

Landis+Gyr has 45 companies in over 30 countries and it is headquartered in Zug,

Switzerland. Since 2011, Landis+Gyr has been an independent growth platform of

the Japanese Toshiba Corporation. (Landis+Gyr, 2017)

Founded in 1999, Landis+Gyr’s software R&D site in Jyskä, Finland is one of the global

technology centers that focuses on remote reading systems and smart metering

solutions. The Jyskä site currently employs over 200 IT professionals, most of whom

work in development.

2.3 Gridstream AIM

Gristream AIM is a part of Landis+Gyr’s Gridtream smart metering solution that

provides data management capabilities, a task flow engine and data validation

beyond basic HES functions. With a single, integrated software the utility can manage

its AMM infrastructure, support its network management operations and enhance its

business processes. (Landis+Gyr – Gridstream AIM, 2017)

Support for utility processes in Gridstream AIM. (Landis+Gyr – Gridstream AIM, 2017)

• Business processes – billing, balance settlement, customer service, contract

management and new business development.

• Network management – network monitoring, load management and network

investment planning.

• Smart metering operations – automated data collection and management,

device asset management and troubleshooting.

11

Gridstream AIM is based on openness and modularity. It is designed for the ever-

changing energy market to help companies collect and manage their metering data

efficiently, process it in a flexible manner and transfer information between various

parties effortlessly. It offers a single source for metering data that can be transferred

to other systems. Today, Gridstream AIM runs over 2 million metering points in

EMEA. (Landis+Gyr – Gridstream AIM, 2017)

2.4 Thesis background and assignment

In the summer of 2016, the author spent four months as an intern for the Solution

Integration Team at Landis+Gyr’s Jyskä site developing test automation for the

Gridstream AIM system. In that four-month period a fairly good understanding of

how different parts of the system function as well as an immense amount of

knowledge about test automation in general was gained. There was not have enough

time to complete the full five-month internship period; therefore, as the summer

was ending there was a discussion with the manager about the possibility of coming

back to finish the internship period and writing the thesis there. An informal

agreement was made on returning back to the company after New Year. The

remainder of the internship was started in January 2017 and after three weeks, the

internship was over and it was time to start thinking about the subject of the

Bachelor’s thesis. There had been some talks about performance testing, however,

nothing had been formally agreed upon.

The AIM development team had a need for a set of high-level performance tests for

the Gridstream AIM system that would gather performance data for history,

acceptance and regression purposes. The tests should be automated and they should

be executed at regular intervals. Another requirement was that the data the tests

gathered should be stored and displayed in a way that it is easy to access and

analyze. As the author was already somewhat familiar with the system and with test

automation, that assignment seemed like a perfect subject for the thesis.

12

2.5 Objectives of the thesis

2.5.1 Concrete objectives

The main objective of the thesis was to develop a set of high-level automated

performance test cases for Landis+Gyr’s Gridstream AIM smart metering system. The

tests were to cover the performance of different parts of the data transfer chain, like

installing a new meter to the system, remotely reading data from the meter,

validating the data and remotely connecting and disconnecting the meter. The

results of these tests are stored and displayed in order to see how the performance

of the system develops over time.

Everything mentioned above, is to be fully automated, which means that once the

testing environment has been built and configured, everything from test execution,

data gathering and storing, to reporting the results and displaying them will take

place automatically at regular intervals.

2.5.2 Other objectives

The author’s personal objectives for this thesis were not only to learn more about

test automation, different development tools and smart metering systems in general,

but also to learn to create tools to help with test automation development. Test

automation is not a new phenomenon in the information technology business by any

means and a staggering number of different open-source tools and libraries can be

found from the internet. But every now and then a situation comes along that

requires building one’s own tools in order to proceed with the development. Usually

this means creating a new library or altering an existing one. That said, the main goal,

personally speaking, was to build the confidence and skills so as to be able to create

an own solution to a problem if an existing one is nowhere to be found.

13

3 Tools and their role in development

3.1 Git

Git and other version control systems are crucial for any software project with

multiple team members as they offer an easy way to track modifications made on

the source code and fast switching between different versions, or branches, of the

software. Git offers a variety of different branching strategies for different situations,

however, the simplest, yet the most effective strategy for small to medium sized

teams is the mainline branch strategy. The developers constantly commit their work

into a single, central branch, also called the master branch. The master branch

should only contain fully tested and quality work and should never be broken (Git

Branching Strategies, 2015).

By having their own copy of the master branch, each developer has the freedom to

experiment and test new features without the fear of breaking existing

implementations. When a developer decides that their work is done and that

everything works as intended, they commit their changes, and usually after the

changes are followed by a review and acceptance (Chapter 3.2 Gerrit), after which

their work gets merged into the master branch (Figure 1).

Figure 1. Mainline Branch Strategy (Git Branching Strategies, 2015)

14

3.2 Gerrit

Gerrit is a web-based code collaboration tool that is heavily integrated with Git. It

supports comparing old and new versions of code with syntax highlighting and

colored differences as well as posting comments to specific parts of the code for

others to see (Gerrit Code Review, 2017). The basic Gerrit workflow goes as follows:

when a developer commits and pushes their changes to the Gerrit server, the

changes are automatically put into a temporary review branch where the workflow

engine enforces the rules before the changes can be merged into a permanent

repository. These rules usually involve automatic building and testing, checks to see

if the changes conflict with other commits and also human code reviews (Figure 2).

Figure 2. Gerrit Workflow Model (Gerrit Workflow, 2014)

Gerrit has review levels ranging from -2 to +2. The -1 and +1 level are opinions, e.g.

”looks good to me, but someone else must approve it” and the -2 and + 2 level are

for blocking or approving the changes. In order for a change to be accepted, it must

have at least one +2 vote and no -2 votes. If these conditions are met, a submit

button will become available, enabling the changes to be merged with a permanent

repository. (Gerrit Code Review – A Quick Introduction, 2017)

15

3.3 JIRA

According to Atlassian, the developer of JIRA, JIRA is used for issue tracking and

project management by over 60,000 companies in 122 countries across the globe.

(Atlassian – Customers, 2017). JIRA supports SCRUM and any other agile

methodologies by offering agile boards and reports as well as tools for planning,

tracking and managing agile software development projects within a single tool.

(Atlassian – Agile, 2017).

Agile development uses four so-called delivery vehicles in order to maintain the

structure in a project: epics, stories, versions and sprints (Table 1).

Table 1. Agile delivery vehicles (Atlassian - Delivery Vehicles, 2017)

Epic Story Version Sprint

Large body of
work, contains
stories

Smallest unit of
work, also known
as a task

The release of
software to the
customer

Iteration where
team does the
work

In large projects with multiple team members, keeping track on what everyone is

working on and at the same time maintaining a clear picture of the overall progress

can be a gruesome task without relevant tools. However, by breaking the work down

to smaller tasks and giving them story points which describe the amount of work

needed to complete the given task (i.e. one story point equals one day of work),

managing the project becomes considerably easier as it now can be calculated what

tasks fit into a sprint and what tasks do not. For example, there is a project with a

backlog full of tasks, five team members working for eight hours a day, five days a

week and a need to plan a sprint lasting for two weeks. Thus, there is a total of 50

working days at the team’s disposal, and if one working day equals one story point,

the maximum of 50 story points of work can be fit in one sprint. Additionally, given

that the backlog is full of tasks, the team can start picking tasks to add to the sprint in

priority order until there is a sprint that is both doable and contains enough work for

everybody. In conclusion, JIRA and other project management tools are not just for

managers, but they also help individual developers to stay on track on what they are

doing and how their project is progressing.

16

3.4 Robot Framework

3.4.1 Overview

Robot Framework is a generic test automation framework for acceptance and

acceptance-driven test development. It has easy-to-use tabular test data syntax and

it utilizes the keyword-driven testing approach. Its testing capabilities can be further

extended with bundled and self-made test libraries implemented either with Python

or Java. (Robot Framework, 2017).

3.4.2 Test data tables

Robot framework’s test data is structured in four types of tables (Table 2). In small

test suites, all four tables are usually defined in a single file, in larger suites however,

each table is usually defined in a separate file in order to reduce clutter and make the

tests more readable and easier to maintain.

Table 2. Robot Framework test data tables (Robot Framework User Guide, 2017)

Table Used for

Settings Importing test libraries, resource files
and variable files.
Defining metadata for test suites and
test cases.

Variables Defining variables that can be used
elsewhere in the test data.

Test cases Creating test cases from available
keywords

Keywords Create user keywords from existing
lower-level keywords

3.4.3 Best practices

The following section demonstrates some of the best practices in Robot Framework

test development. These practices are based on the author’s own experiences as well

as Pekka Klärck’s, the lead developer of Robot Framework, general guidelines on how

to develop a good test (Robot Framework Dos and Don’ts, 2014).

17

Naming

Like in traditional programming, good naming plays a very important role as it makes

the test cases easier to understand and maintain. Be it test suites, test cases,

keywords, resource files or variables, naming should be consistent and explicit. A

good general rule for naming is that names should tell ”what”, not ”how”.

Appropriate abstraction levels

Abstraction levels can make or break the readability of a test suite. The appropriate

abstraction level is in the eye of the developer and it can be, at times, hard to

determine. Below (Figures 3 & 4) are examples of appropriate and too low

abstraction levels, and the differences in readability are fairly clear.

*** Test Cases ***

Logging In To Facebook Should Succeed

 Open Browser To Facebook Login Page

 Input Username test_user

 Input Password test_password

 Submit Credentials

 Welcome Page Should Be Open

 [Teardown] Close Browser

Figure 3. Robot Framework - Appropriate abstraction level

*** Test Cases ***

Logging In To Facebook Should Succeed

 Open Browser ${URL} ${BROWSER}

 Maximize Browser Window

 Title Should Be Facebook login

 Input Text username_field test_user

 Input Text password_field test_password

 Click Button login_button

 Title Should Be Facebook

 Location Should Be ${FACEBOOK_MAIN_URL}

 [Teardown] Close Browser

Figure 4. Robot Framework - Too low abstraction level

Test setup and teardown

In short, a test setup is a keyword that is executed before a test case, and a test

teardown is executed after a test case. The more important of the two is teardown,

as it is executed even if the test case fails allowing the use of proper clean-up

activities. Setups and teardowns can be defined at suite level, test level, or even at

keyword level.

18

Move complex logic to libraries

Complex logic within a test case reduces readability and makes the test case harder

to maintain. Therefore, logic should be moved to a library when possible, as this

hides the complexity from the test case and the same result can be achieved by using

a single keyword. However, the logic within a library should be made as generic as

possible so that when a need for similar functionality arises, the same logic can be

used again, without any library modifications.

Avoid dependencies between test cases

Even though ”chaining” test cases (successful execution of a test case requires that

previous test case has also succeeded) might seem tempting at first, however, it is

generally considered as a bad practice. If the test cases have dependencies to one

another, the whole test suite needs to be executed when the results of specific test

cases are wanted. It should be possible to execute every test case within a test suite

separately without any prerequisite test cases.

Synchronize with polling

Robot Framework has multiple ways of synchronizing test execution, the most

notable being Sleep and Wait Until X -keywords. Sleep pauses the test execution until

a specified amount of time has passed, whereas Wait Until X checks for a desired

result at regular intervals. Using Sleep is generally considered as a bad practice, as it

forces the test to pause even if there are no impediments present that would hinder

the execution. The most used Wait Until X -keyword, Wait Until Keyword Succeeds, is

a much more flexible approach to synchronizing the test execution as it allows

defining the maximum wait time, the desired polling rate and the keyword that

needs to succeed before continuing with the execution.

3.5 Jenkins

Jenkins is an open-source automation server that is mainly used as a continuous

integration server or as a continuous delivery hub. It offers a wide range of plugins

that help to integrate Jenkins with most of the tools used in CI/CD toolchain. (Jenkins

2017). In the scope of this thesis, Jenkins is used to schedule and run jobs that

19

execute automated tests. This is done via Jenkins ”master/slave” mode, where the

testing workload is delegated to multiple ”slave” nodes, allowing a single Jenkins

installation to host a number of test execution machines. By using Cron expressions

to schedule jobs, a timeframe can be defined for the test execution and if should

there happen to be multiple jobs scheduled within the same timeframe, Jenkins

organizes the jobs so that the tests can run without interruptions. By using Jenkins,

testing can be conducted in non-working hours and the results will be ready for

examination in the morning.

By default, Jenkins reports its job execution using three markers: successful, unstable

and failed. In test automation, this information is insufficient as testers would like to

know what exactly went wrong during testing. By installing the Robot Framework

plugin, the more detailed Robot Framework report straight to Jenkins ”master”

machine can be obtained.

3.6 TestRail

TestRail is a modern, web-based test case management software aimed for QA and

development teams. It helps teams to verify their product’s functionality and

requirements by offering an easy way to manage all details in a structured way,

including preconditions, steps and expected results (TestRail – Features, 2017).

TestRail has a clean and modern interface that helps users to get a clear view of the

statuses of their tests at a glimpse (Figure 5).

20

Figure 5. TestRail overview (TestRail, 2017)

With a complete JIRA integration, users can link JIRA stories and issues to specific

test cases or test suites. The test execution statuses can then be viewed straight from

JIRA, and possible defects and bugs can be pushed to JIRA without leaving TestRail.

TestRail also offers an extensive API for integrating automated tests and submitting

test results. With a custom built Python library for Robot Framework utilizing

TestRail’s API, it is extremely easy to automatically start a new test run, submit

results and comments and to close the run after it is finished, so that the results

cannot be altered afterwards. In the scope of this thesis, TestRail is a tool that offers

a quick way to gain an understanding of the overall execution of the tests: how many

tests have been run, how many have passed and how many have failed within a

given timeframe.

3.7 MongoDB

MongoDB is an open-source cross-platform document-oriented NoSQL database

program. It is aimed for storing large volumes of unstructured data in a JSON-like

format (Figure 6) and is, at the time of writing, the leading NoSQL database.

21

{

 “_id”: “4cc4a5c3f597e9db6e010109”,

 “last_update”: “2017-04-03 18:28”,

 “users”: [

 {

 “name”: “Billy Bob”,

 “age”: 42

 },

 {

 “name”: “Mary Lou”,

 “age”: 28

 }

],

 “tags”: [“people”, “students”]

}

Figure 6. MongoDB example document

Due to MongoDB’s light weight, fast performance and flexible schemas, it was an

ideal choice for storing performance data that can have substantial variations

depending on the test case, unlike relational databases where a table’s schema must

be determined and declared before inserting the data. An application communicates

with MongoDB by using a driver that handles all interaction with the database in a

language appropriate to the application (MongoDB, 2017) or by REST API. In the

scope of this thesis, both communication options were used: driver for inserting the

data and REST API for retrieving it.

3.8 Node.js

Node.js is an open-source, cross-platform JavaScript runtime environment for

developing scalable network tools and applications. It was designed to be an

asynchronous environment that uses event-driven, non-blocking I/O model that

makes it lightweight and efficient. Node.js also provides a variety of JavaScript

modules that simplify the application development process to a great extend via its

package ecosystem, npm, which is the largest ecosystem of open-source libraries in

the world. (Node.js, 2017).

22

One of the reasons why Node.js is, at the time of writing, such a popular

environment for web application development, in addition to the fantastic package

ecosystem and efficiency, is its simplicity and flexibility. Setting up a simple web

server takes mere minutes and requires only a few lines of code. (Figure 7.)

const http = require('http');

const hostname = '127.0.0.1';

const port = 3000;

const server = http.createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World\n');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

Figure 7. A simple Node.js web server (Node.js – About, 2017)

However, the ever increasing amount of new modules makes the Node.js ecosystem

move constantly. New and ”better” tools are released almost on a daily basis and the

Node.js community is quick to switch its opinion on whether or not to use a certain

module anymore. When the community switches to a new module, the development

of the old module slows down or stops completely, causing deprecation and

dependency issues for those who still use it. In order to keep a Node.js application

up-to-date, developers must keep up with the current trends, which can be a

gruesome task if the application in question is large and complex.

In the scope of this thesis, however, Node.js based back-end solution works perfectly

as its main job is extremely simple: communicate with MongoDB and serve the data.

This kind of functionality has very few dependencies for modules and a small code

base, so the shifting trends within the Node.js community should cause little to no

problems in the future.

23

3.9 C3.js

C3.js is a D3.js based reusable JavaScript chart library. It makes data visualization

extremely easy by wrapping the code that is required to construct D3.js charts. C3.js

assigns CSS classes to each element when the chart is generated, allowing extensive

custom styling for the entire graph (Why C3, 2017). C3.js provides tools for

generating a variety of unique graphs for all kinds of data with only a few lines of

code (Figure 8).

Figure 8. Combination chart sample (C3.js, 2017)

24

4 Workflow

4.1 Developing automated tests

4.1.1 Research

As with most cases when starting a new undertaking, the first step is to research and

study the presented problem or task. Based on the author’s own experiences, it can

safely be said that understanding the problem before trying to solve it can drastically

reduce the amount of unnecessary work. As high-level test automation is, practically

speaking, just a computer mimicking the actions of the user, it is crucial for the

developer to understand how the user performs that specific action.

In this case, the correct route to fully understanding the problem usually involves

several manual executions of the given test case. However, before the test can be

manually executed, each step required to perform it must be known. The best way to

list these steps is to have someone familiar with the given test case to perform it

manually, while the developer memorizes or writes down every single step. It is easy

to see how this method automatically breaks a large and complicated test case into a

smaller, more manageable pieces (Figure 9).

Figure 9. Test case breakdown example

25

The case now having been broken down to several small steps such as opening an

application and inserting a text to a field or pressing a specific button, there is a clear

view on how the actual execution takes place and automating it can be started.

4.1.2 Development

The following section demonstrates some good practices on starting a new Robot

Framework project. These practices are derived from the author’s own experiences

and they are meant as helpful guidelines.

Folder structure

Like in traditional software development, logical and easy-to-understand folder

structure makes a project much easier to maintain. Therefore, the first thing to do

when starting a new project is to design and create an appropriate folder structure

for the project. Each piece of the test, e.g. argument files, environment specific

configuration files and keyword files, should have a dedicated folder (Figure 10).

Figure 10. Folder structure

Imports

Once the folder structure is deemed appropriate, it is time to start thinking about

what libraries and resources are needed for the given project. Is the system under

test a Java-based system? Importing SwingLibrary might be a good idea. Is it a web

application? Selenium2Library is a good option. Does the test include string

26

handling? Import String library. Larger projects may depend on multiple libraries and

resources so importing them at a suite- or keyword level might cause the files to

become cluttered. Therefore, a separate file for imports is a good solution for

keeping the files nice and clean.

Argument file

Robot Framework tests can be executed straight from the IDE’s terminal, however,

large and complicated test suites may require several startup arguments and

configurations which can make writing the startup command a fairly tedious task.

Therefore, writing a batch file that uses a separate argument file to define the

execution parameters is a good solution. Argument files can be used to define where

Robot Framework should create the test logs, how to name them and what tests to

execute, among other things (Figure 11).

Figure 11. Argument file example

A few things to note about the argument file example are the flags -d and -L which

define the desired output folder and logging level, respectively. In addition, the -

27

removekeywords flag can help to reduce the file size of the reports, especially in this

example case where the extra Wait Until Keyword Succeeds -keywords are removed

from the report and only the last one, whether it succeeded or not, is kept. Keeping

the arguments in a separate file greatly simplifies the test configuration process and

execution, as variables and tests can be commented out based on the current need

and the test can be executed from the command line by running a simple batch

script (Figure 12).

Figure 12. Batch script example

Writing the test cases

After the project is correctly structured and all the relevant files have been created,

writing the tests can begin. One of the ways to start developing test cases is to write

the steps down chronologically at a suite level in order to get a view of logical

keyword groups that can be wrapped under a new keyword. Once these groups are

found, they are easy to wrap and move to a separate keyword file while maintaining

an appropriate abstraction level.

The test under development should be executed constantly in order to spot and

handle the problematic parts of the execution in time. In addition, checks to make

sure that the test execution as well as the system under test are in correct and

expected state, should be made regularly.

Once the test case is deemed as working, the last steps are sending the measured

data to the database and writing the TestRail report. The TestRail report will always

be written regardless of the test execution status, so a natural place for it is the

teardown section of the case; unlike the database update part which might not be a

good idea if the test execution fails for one reason or another. However, this

functionality depends on the given test case.

28

4.1.3 Review

After a test case is deemed finished and working by the developer, it is time for a

review. First is the code review which takes place via Gerrit. When the code is

pushed to Gerrit it gets reviewed for logical errors and bad practices by other test

automation developers. However, Gerrit is not used just for review purposes, as it

also helps developers to stay on track what other developers are working on and

possibly learn something when reading each other’s code. Once the code is deemed

appropriate and error free, it is accepted and pushed to the master branch.

There should be another review session in appropriate intervals with the party that

had given the assignment in the first place. However, in this review session the main

attraction is the logic of the test case, not the code itself. It should be confirmed that

the test does what it should, collects the desired data and reports the results

correctly. Once all the relevant parties are happy with the results, it is safe to

consider the test development as finished and move on with the next case.

4.2 Data gathering and storing

The gathered data mostly consists of the execution time of a specific operation on

the user interface and the amount of processed database rows. The execution time is

measured as follows: once the test has reached the point of interest, the current

time is stored in a variable with an accuracy of one millisecond. Using the Wait Until

Keyword Succeeds -keyword, the automation observes the user interface in one

millisecond intervals for a sign that the operation has finished. Once the operation is

deemed as finished, the current time is once again stored in a variable and the total

time for the given operation is calculated from the difference. If the operation failed

for some reason, the test execution is aborted and marked as failed. If the operation

finished successfully, the amount of processed database rows is read from the user

interface, when available, and stored in a variable. Once all the data is gathered, a

predefined database query string is updated using said data and a new database

record is sent to the database as a last step before the test teardown procedures.

29

4.3 Displaying the results

Fetching the measured performance data from the database happens via REST API

created with the Express framework for Node.js. Only two routes are defined in

Node.js, both of which are GET method routes. There was no need for other HTTP

operations, such as POST, PUT and DELETE, as the data is stored to the database

directly from Robot Framework and subsequent data manipulation is not allowed.

Therefore, the only required functionalities for the web server are to serve static web

pages and retrieve the desired data that is displayed on those pages.

Each test case has a designated web page for data visualization which contains a

preconfigured graph template for the data of that particular test case. When a page

is loaded, a request containing the name of that particular test case is sent to the

web server and the identifier of every test environment that that test case has been

executed against is returned. A dropdown menu is then populated with those

environments in order to easily switch between the results of different

environments. Once the environments are fetched, another request containing the

test’s name and the identifier of the first environment that was just returned, is sent

to the server. This request returns all the gathered data for that particular test case

against that particular environment in a JSON format. The JSON containing the data

is then passed on to the graph generation function which generates a graph based on

the values of the JSON. For readability, only the 10 most recent measurements are

displayed on the graph by default, however, a zoomable sub-chart that contains all

the gathered data is positioned under the main graph.

Each data visualization page also has a TestRail link to the most recent test runs, as

well as a badge that shows the latest Jenkins build status for that particular test case.

The badge also links to the Jenkins job for that particular test case so it is easy to go

analyze the Robot Framework logs straight from the data visualization page.

30

4.4 Automated test execution

4.4.1 Jenkins plugins

Jenkins installation is a fairly straightforward process of downloading and running the

installer and starting the server. However, there are a few ease-of-life plugins

available for cases where Jenkins is used to run Robot Framework test automation.

First, the Robot Framework Plugin, could be considered mandatory as it allows

uploading the test reports directly to Jenkins, defining the percentage of test cases

required to pass in order to mark the suite execution successful, as well as displaying

test execution trend graphs (Figure 13).

Figure 13. Jenkins Robot Framework Plugin (Robot Framework Plugin, 2016)

The second plugin, the NodeLabel Parameter Plugin, is an extremely useful plugin

when dealing with multiple slave machines. It adds two new parameter types to job

configuration – node and label, which allows dynamic selection of the node where a

job should be executed. This functionality can be used to verify that a particular slave

machine is correctly set up and ready for work.

The third plugin, the Build Monitor Plugin, is not mandatory by any means. However,

it is a helpful tool for getting a clear overall view of all the Jenkins jobs that are being

executed (Figure 14). It shows, for example, job execution statuses in real-time and

31

how long each job execution has lasted. The Build Monitor Plugin can be very

informative when used in an open space where all relevant parties can get a quick

glimpse about a project’s overall status.

Figure 14. Jenkins Build Monitor Plugin (Build Monitor Plugin, 2017)

4.4.2 Slave machine setup

Creating a new Jenkins slave machine, or Node, happens through Manage Jenkins ->

Manage Nodes menu. When creating a new slave machine there are few things that

need setting up before the slave machine can be issued with jobs:

• Naming the slave machine

• Defining number of executors (how many concurrent jobs can be executed on

a slave machine at a given time). A safe choice is one executor per slave

machine as it prevents conflicts between processes run at the same time.

• Setting a Remote FS Root which is the Jenkins home directory on the slave

machine (for Windows slaves, usually ”C:\Jenkins\”).

• Defining an appropriate Usage; Utilize this slave as much as possible and

Leave this machine for tied jobs only, meaning that the slave machine can be

32

used to execute any jobs whenever the machine is in idle state or that the

slave machine can only be used to execute specified jobs, respectively.

• Selecting a Launch Method for the slave machine. For Windows slaves, the

recommended method is Launch slave agents via Java Web Start.

• Selecting the Availability option. In most cases the Keep this slave on-line as

much as possible -option is appropriate.

After setting up the slave machine, the only thing to do is to connect the slave

machine to the Jenkins master. There are a few different launch options available

(Figure 15).

Figure 15. Jenkins Slave Launch Options (Jenkins 2016)

Once the slave machine has been connected to the Jenkins master, it shows up as an

available build executor with an idle status and the slave is now ready to start

executing jobs.

4.4.3 Creating jobs

Jenkins job creation process is very flexible and allows configuration of every aspect

of the build process. It is, for example, possible to define a parameterized job which

allows the definition of certain environmental variables e.g. the environment to

execute the test cases against and what slave machine the job should be executed

with. Other notable configurations are the timeout limit and actions to take when

that limit is reached.

33

Job scheduling is also done in this part. By checking the Build periodically -checkbox

the job is defined as scheduled and the scheduling itself is done using Cron

expressions (Figure 16).

Figure 16. Job scheduling example

In the above example, the job is scheduled to be executed every night between

midnight and 6 am. Jenkins keeps track on all the scheduled jobs and allocates a

suitable timeframe for each job so that there are no conflicts.

In the build section of the job creation form, it is possible to add build steps to

execute. In the case of executing Robot Framework tests in a Windows environment,

a batch script that executes the desired test suite can be written. If the project is

structured as mentioned in chapter 4.1.2, a batch script that executes a test suite is

already written and the only required build step is to call that script.

The last option to define for a new job are the post-build actions. These actions are

executed after the job has finished. The Robot Framework Plugin for Jenkins allows

defining an action called Publish Robot Framework test results, which fetches the

results files from a defined path and publishes them to Jenkins. The plugin expects a

default naming for the results files (i.e. report.html and log.html), however, custom

file names can be defined using the Advanced button and writing the desired names

in relevant fields.

Now that the job is properly configured, the only thing left to do is save the job and it

can then be executed from the Jenkins master.

34

5 Evaluation

At the time of writing, the developed test cases have been running nightly for a few

weeks with a 97% pass rate. The data is properly collected and stored in the

database, from which it then gets served to the data visualization pages. The whole

project is built so that it is extremely simple to add new test cases. The only thing to

do after a new test case is developed is to copy an existing visualization page,

configure the graph as desired and define the name of the new test case. Using

dynamic routing, the desired data is easily fetched using only an identifier for the

test, which in this case is the test’s name. The benefits of dynamic routing can also be

seen when the tests are executed against a new environment. The new environment

gets automatically added to the environment selection menu and the data is

instantly available without any extra configurations.

Overall, the tests seem to be very stable and as the whole chain from periodic test

execution to data storing, reporting and data visualization is fully automated, there is

little to no need for maintenance. The full architecture for the project is available in

the figure below (Figure 17).

Figure 17. Project's overall architecture

35

6 Further development

At the time of writing, the required test cases are ready and the main focus of the

project has been moved to setting up the final performance testing environment.

Once the environment is configured properly, it can be defined as the testing target

in Jenkins and the automation can start gathering performance data from the final

testing environment. As adding new test cases for performance data gathering

purposes is fairly simple, it is also possible that a need arises for a new set of test

cases.

Improving filtering options for the fetched data is also on the list. As the amount of

collected data grows bigger over time, the ability to filter the data by date or by the

version of the system under test becomes almost mandatory. At the time of writing,

the only data filtering option is the ability to define the environment the tests have

been executed against. In order to keep the graphs readable, currently only 10 most

recent test results are displayed by default and a sub-chart which includes all the

gathered data is positioned under the main graph. Although it is possible to review

all of the collected data by zooming around the sub-chart, a more flexible and user-

friendly solution is definitely needed.

36

7 Conclusion

All the required performance test cases were designed and developed successfully

and the solution for automatic test execution, reporting, data gathering and data

visualization works well. The test development process greatly enhanced my skills as

a test automation developer and due to the need for testing library enhancements

some experience of writing custom library additions in both Python and Java was also

gained. A well designed overall solution makes further development extremely easy.

New test cases can be added to the solution with only a minimal amount of

configuration.

Prior knowledge of open-source technologies like Node.js, Express.js and MongoDB

made the back-end development process extremely fast. With only under hundred

lines of code, a simple web-server that communicates with the database and serves

static web pages was fully working and stable. By using these light-weight

technologies the server experiences only minimal load and requires little to no

maintenance.

When it comes to developing test automation, Robot Framework is an excellent tool.

By following simple guidelines, it is possible to create test cases that excel in

readability and maintainability. Large variety of different testing libraries enables test

automation development regardless of the programming language the system under

test is based on. By combining Robot Framework and Jenkins automation server with

open-source back-end technologies, a testing solution that is both reliable and self-

sufficient can be created easily.

The objectives of the thesis were met and the performance test suites are ready to

be deployed to the actual testing environment. The created solution makes

monitoring the performance of specific graphical user interface functions simple and

user friendly. By constant performance monitoring, the chances of uncovering new

software bugs and regressions are greatly increased, which reduces the need for

repetitive manual labor.

37

References

Atlassian – Agile 2017. Accessed on 28.03.2017. Retrieved from
https://www.atlassian.com/software/jira/agile/.

Atlassian – Customers 2017. Accessed on 28.03.2017. Retrieved from
https://www.atlassian.com/customers/.

Atlassian – Delivery Vehicles 2017. Accessed on 28.03.2017. Retrieved from
https://www.atlassian.com/agile/delivery-vehicles/.

C3.js – Combination Chart 2017. Accessed on 26.04.2017. Retrieved from
http://c3js.org/samples/chart_combination.html/.

C3.js – Why C3? 2017. Accessed on 26.04.2017. Retrieved from http://c3js.org/.

Gerrit Code Review – A Quick Introduction 2017. Accessed on 21.03.2017. Retrieved
from https://review.openstack.org/Documentation/intro-quick.html/.

Gerrit Code Review 2017. Accessed on 21.03.2017. Retrieved from
https://www.gerritcodereview.com/.

Gerrit Workflow 2014. Accessed on 21.03.2017. Retrieved from
http://blogs.wandisco.com/2014/09/22/gerrit-workflow/.

Jenkins 2017. Accessed on 28.04.2017. Retrieved from https://jenkins.io/.

Jenkins - Build Monitor Plugin 2017. Accessed on 28.04.2017. Retrieved from
https://wiki.jenkins-ci.org/display/JENKINS/Build+Monitor+Plugin/.

Jenkins - Robot Framework Plugin 2016. Accessed on 28.04.2017. Retrieved from
https://wiki.jenkins-ci.org/display/JENKINS/Robot+Framework+Plugin/.

Jenkins – Step by step guide to set up master and slave machines 2016. Accessed on
01.05.2017. Retrieved from https://wiki.jenkins-
ci.org/display/JENKINS/Step+by+step+guide+to+set+up+master+and+slave+machine
s+on+Windows/.

Kumar, A. 2015. Git Branching Strategies. Accessed on 20.03.2017. Retrieved from
https://www.javacodegeeks.com/2015/11/git-branching-strategies.html/.

Landis-Gyr - Gridstream AIM 2017. Accessed on 17.04.2017. Retrieved from
http://www.landisgyr.fi/product/gridstream-aim/.

https://www.atlassian.com/software/jira/agile/
https://www.atlassian.com/customers/
https://www.atlassian.com/agile/delivery-vehicles/
http://c3js.org/samples/chart_combination.html/
http://c3js.org/
https://review.openstack.org/Documentation/intro-quick.html/
https://www.gerritcodereview.com/
http://blogs.wandisco.com/2014/09/22/gerrit-workflow/
https://jenkins.io/
https://wiki.jenkins-ci.org/display/JENKINS/Build+Monitor+Plugin/
https://wiki.jenkins-ci.org/display/JENKINS/Robot+Framework+Plugin/
https://wiki.jenkins-ci.org/display/JENKINS/Step+by+step+guide+to+set+up+master+and+slave+machines+on+Windows/
https://wiki.jenkins-ci.org/display/JENKINS/Step+by+step+guide+to+set+up+master+and+slave+machines+on+Windows/
https://wiki.jenkins-ci.org/display/JENKINS/Step+by+step+guide+to+set+up+master+and+slave+machines+on+Windows/
https://www.javacodegeeks.com/2015/11/git-branching-strategies.html/
http://www.landisgyr.fi/product/gridstream-aim/

38

Landis+Gyr: A Smart Meter Pioneer 2017. Accessed on 16.03.2017. Retrieved from
http://www.landisgyr.com/.

MongoDB Drivers and Client Libraries 2017. Accessed on 03.04.2017. Retrieved from
https://docs.mongodb.com/manual/application/drivers/.

Node.js 2017. Accessed on 06.04.2017. Retrieved from https://nodejs.org/.

Node.js – About 2017. Accessed on 06.04.2017. Retrieved from
https://nodejs.org/en/about/.

Klärck, P. 2014. Robot Framework Dos and Don’ts. Accessed on 15.05.2017.
Retrieved from https://www.slideshare.net/pekkaklarck/robot-framework-dos-and-
donts/.

Robot Framework - Introduction 2017. Accessed on 11.04.2017. Retrieved from
http://robotframework.org/.

Robot Framework User Guide 2017. Accessed on 11.04.2017. Retrieved from
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.htm
l/.

TestRail – Features 2017. Accessed on 29.03.2017. Retrieved from
http://www.gurock.com/testrail/tour/modern-test-management/.

What is Performance testing in software? 2017. Accessed on 16.03.2017. Retrieved
from http://istqbexamcertification.com/what-is-performance-testing-in-software/.

http://www.landisgyr.com/
https://docs.mongodb.com/manual/application/drivers/
https://nodejs.org/
https://nodejs.org/en/about/
https://www.slideshare.net/pekkaklarck/robot-framework-dos-and-donts/
https://www.slideshare.net/pekkaklarck/robot-framework-dos-and-donts/
http://robotframework.org/
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html/
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html/
http://www.gurock.com/testrail/tour/modern-test-management/
http://istqbexamcertification.com/what-is-performance-testing-in-software/

