
Centralized log management

Miikka Ruokola

Bachelor’s thesis

May 2017

School of Technology

Degree Programme in Information Technology

Description
Author(s)

Ruokola, Miikka
Type of publication

Bachelor’s thesis
Date

May 2017
Language

English
Number of pages

70
Permission for web

publication: X
Title

Centralized log management
Degree programme

Information Technology
Supervisor(s)

Rantonen, Mika; Häkkinen, Antti
Assigned by

Solteq Oyj; Hasanen, Kimmo
Abstract

The project was assigned by Solteq Oyj, a Finnish software company
centralized around digital marketing with offices in multiple countries. The
goal of the project was to replace an existing proof of concept environment
running the Elastic Stack by recreating everything from scratch. The
objectives were to achieve the goal by using automation and containerization
while learning the use of every component involved in the process.

Because the tools used were determined beforehand both by company policy
and from previous internal experience with the stack, there were no
comparisons done between these tools and other similar ones.

The implementation of the Elastic Stack was completely carried out with
automation by utilizing Ansible and its features. As the result, with little
previous experience of using many of the software components involved in the
project, much was learned. The outcome of the project was taken into use
and it has benefited the company in many ways, including easier resolution
to problem situations.

Keywords/tags

log, log management, Elastic Stack, Redis, Ansible, Docker
Miscellaneous

Kuvailulehti
Tekijä(t)

Ruokola, Miikka
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Toukokuu 2017
Julkaisun kieli

Englanti
Sivumäärä

70
Verkkojulkaisulupa

myönnetty: X
Työn nimi

Keskitetty lokienhallinta
Tukinto-ohjelma

Tietotekniikka
Työn ohjaaja(t)

Rantonen, Mika; Häkkinen, Antti
Toimeksiantaja(t)

Solteq Oyj; Hasanen, Kimmo
Tiivistelmä

Opinnäytetyön antoi Solteq Oyj, joka on suomalainen digitaaliseen
markkinointiin keskittyvä ohjelmistoyritys jolla on toimistoja useissa maissa.
Projektin päämäräänä oli korvata olemassaoleva Elastic Stackia pyörittävä
konseptiympäristö tekemällä kaikki alusta asti uudestaan. Tarkoituksena
päämäärään pääsemisessä oli käyttää automaatio- ja kontitustekniikoita
samalla oppien kaikkien työhön liittyvien ohjelmistojen käyttöä.

Koska käytetyt työkalut oli päätetty etukäteen sekä yrityksen käytäntöjen
että aiemman sisäisen kokemuksen perusteella, ei tässä työssä käsitelty
käytettyjen ohjelmistojen vertailuja muihin vastaaviin.

Toteutusosiossa Elastic Stackin käyttöönotto tehtiin täysin automatisoidusti
Ansiblea ja sen ominaisuuksia käyttäen. Tuloksena saavutettiin paljon
kokemusta ja opittuja asioita työssä käytettyjen ohjelmistojen osalta, kun
aiempaa kokemusta näistä oli vain vähän. Työssä tehtyjen töiden tulokset
otettiin käyttöön ja ne ovat auttaneet monilla tavoin esimerkiksi
ongelmatilanteiden ratkaisemisia.

Avainsanat

loki, lokienhallinta, Elastic Stack, Redis, Ansible, Docker
Muut tiedot

Contents

Terms 5

1 Premise 7

1.1 Assigner . 7

1.2 Assignment and its goals . 7

2 Log 7

3 Software components 8

3.1 Elastic Stack . 8

3.1.1 Elasticsearch . 8

3.1.2 Logstash . 9

3.1.3 Kibana . 10

3.2 Logstash-forwarder-java . 11

3.3 Redis . 11

3.4 Nginx . 12

3.5 Docker . 12

3.6 Ansible . 13

4 Log sources 14

4.1 IBM HTTP Server . 14

4.2 IBM WebSphere Application Server 14

4.3 IBM DB2 . 14

5 Implementation 14

5.1 Environment . 15

5.2 Base configuration . 16

5.2.1 Ansible . 16

5.2.2 Elasticsearch . 20

5.2.3 Logstash cacher . 21

5.2.4 Logstash parser . 23

5.2.5 Kibana . 29

5.2.6 Nginx . 29

5.2.7 Logstash-forwarder-java . 33

1

2

5.3 Ansible role and playbook configurations 36

5.3.1 Dependencies . 36

5.3.2 Elasticsearch . 37

5.3.3 Redis . 40

5.3.4 Logstash . 41

5.3.5 Kibana . 44

5.3.6 Nginx . 45

5.3.7 Logstash-forwarder-java . 47

5.3.8 Elastic Stack playbooks . 50

5.3.9 Logstash-forwarder-java playbooks 51

5.4 Deployment . 52

5.4.1 Elastic Stack . 52

5.4.2 Logstash-forwarder-java . 52

6 Verification 53

6.1 Redeployment with changed configuration 53

6.2 Operating system . 54

6.3 Containers . 54

6.4 Kibana frontend . 56

6.5 Log pipeline . 62

7 Kibana visualizations 67

8 Discussion 69

References 73

Appendices 74

Appendix 1 Ansible project directory structure 74

Appendix 2 Ansible installation and configuration commands 76

Appendix 3 File ansible.cfg . 80

Appendix 4 File hosts . 81

Appendix 5 Files group vars/elk prod.yml and group vars/elk test.yml 82

Appendix 6 File files/template/elasticsearch/elasticsearch.yml.j2 83

Appendix 7 File files/template/ls-cacher/cacher.conf.j2 84

Appendix 8 File files/template/ls-parser/parser.conf.j2 85

Appendix 9 File files/template/kibana/kibana.yml.j2 87

Appendix 10 File files/template/nginx/default.conf.j2 88

Appendix 11 File files/template/nginx/index.html.j2 89

Appendix 12 File files/template/logstash-forwarder-java/config.json.j2 . 90

Appendix 13 File roles/elk deps/tasks/main.yml 91

Appendix 14 File roles/elk elasticsearch/tasks/main.yml 92

Appendix 15 File roles/elk elasticsearch/handlers/main.yml 93

Appendix 16 File roles/elk redis/tasks/main.yml 94

Appendix 17 File roles/elk ls/tasks/main.yml 95

Appendix 18 File roles/elk ls/handlers/main.yml 97

Appendix 19 File roles/elk kibana/tasks/main.yml 98

Appendix 20 File roles/elk kibana/handlers/main.yml 99

Appendix 21 File roles/elk nginx/tasks/main.yml 100

Appendix 22 File roles/elk nginx/handlers/main.yml 101

Appendix 23 File roles/logstash-forwarder-java/tasks/main.yml 102

Appendix 24 File roles/logstash-forwarder-java/handlers/main.yml . . . 104

Appendix 25 File deploy elk prod.yml 105

Appendix 26 File deploy elk test.yml 106

Appendix 27 File deploy logshipper prod.yml 107

Appendix 28 File deploy logshipper test.yml 108

Appendix 29 Ansible output for production environment deployment . 109

Appendix 30 Ansible output for test environment deployment 112

Appendix 31 Ansible output for production log shipper deployment . . 115

Appendix 32 Ansible output for test log shipper deployment 116

Appendix 33 Ansible output for production redeployment 117

Figures

Figure 1 Visualization of Logstash’s capabilities 9

Figure 2 An example Kibana dashboard 10

Figure 3 Kibana’s Discover page and its sections explained 11

Figure 4 Comparison of containers and virtual machines 13

Figure 5 ELK architecture . 16

Figure 6 Nginx landing page . 57

3

Figure 7 Kibana authentication window 58

Figure 8 Kibana frontend . 59

Figure 9 Kibana access forbidden for the wrong credentials 60

Figure 10 Elasticsearch REST API index 61

Figure 11 Elasticsearch cluster health 62

Figure 12 Configuring Kibana index pattern 64

Figure 13 Viewing Kibana index pattern 65

Figure 14 Kibana Discover page . 66

Figure 15 Searching for IHS response size in Kibana 67

Figure 16 Creating a Kibana visualization for HTTP requests 68

Figure 17 Kibana dashboard for statistics 69

Tables

Table 1 Virtual servers used . 16

Table 2 Example of parsed fields from HTTP server access log 25

Table 3 Example of parsed fields from WebSphere Application Server

log . 26

Table 4 Example of parsed fields from DB2 diagnostic log 27

Table 5 Wrapper configuration modified parameters 34

Table 6 Logstash-forwarder-java watched files 35

Table 7 Ansible role deploy dependencies 51

4

5

Terms

AIX Advanced Interactive eXecutive - Properietary Unix operating

system developed by IBM

API Application Programming Interface - A set of definitions for

communicating between software components

CGI Common Gateway Interface - A standardized scripting protocol

created for web servers that generates pages dynamically

EPEL Extra Packages for Enterprise Linux - Repository that provides

additional packages for CentOS and some other Linux distributions

HTTP Hypertext Transfer Protocol - Protocol to transfer text on the

World Wide Web with visual presentation

HTTPS HTTP Secure - HTTP over an encrypted connection

HTTP/2 HTTP version 2 - A newer, somewhat backwards compatible,

version of the HTTP protocol with improvements in performance

and efficiency

IP address Internet Protocol address - Computer identification system used in

telecommunication networks

JSON JavaScript Object Notation - Human readable text format for data

structure representation

REST Representational state transfer - RESTful web services provide

unified interoperability between computers

SSH Secure Shell - Telecommunications protocol for secure, encrypted

and confidential communication between two computers

6

SSL/TLS Secure Sockets Layer / Transport Layer Security - Protocols

providing cryptographic security in communications over computer

networks

TCP Transmission Control Protocol - One of the main protocols used in

computer networks to transport data between applications

7

1 Premise

1.1 Assigner

This project was assigned by Solteq Oyj, a company providing its clients with

services focusing on digital commerce. Solteq expertises in digital customer

engagement. It has the capabilities to provide comprehensive service to its

customers by being able to cover technological solutions, continuous services and

business support. The company’s revenue in 2016 was over 63 million euros and

during that year it employed a staff of over 450 employees in average. (Solteq

Oyj 2016)

1.2 Assignment and its goals

The goal of this assignment was to replace a proof of concept environment by

setting up the Elastic Stack as a tool to gather server logs from different

customer environments to a centralized location for easy near-real time data

inspection, visualization and reporting. The software stack was to be set up and

configured with the automation tool Ansible for both easier and faster

deployment of the stack itself and any configuration changes that may occur later

in the environment’s lifecycle.

Instead of the traditional way of installing the Elastic Stack directly on top of

the target server’s operating system, the Docker containerization technology was

utilized. As the tools used were chosen before the project began, it was left in

the scope of the assignment to learn the usage of these tools, mainly Ansible and

Docker, and use them together in a way, which would allow for the outcome to

be utilized in other projects within the company.

2 Log

Log data is a document of an event that has happened at a certain moment and

exists for a pre-defined purpose and amount of time. Logs and log processing are

needed in both normal and abnormal situations, in the former for monitoring

operations, statistics and performing analysis. In abnormal situations logs are

8

needed for normalizing the situation and situational investigation such as cause

analysis as to why the situation deviated from normal. (Government Information

Security Management Board 2009, 13)

3 Software components

3.1 Elastic Stack

The Elastic Stack (previously called ELK Stack) is a software stack that is

mainly comprised of three different open source server software components:

Elasticsearch, Logstash and Kibana. These three components were created to

make a powerful combination of software that allows its users to easily and

efficiently conduct centralized log management, inspection, analysis and

visualization. (Chhajed 2015, 5)

3.1.1 Elasticsearch

Elasticsearch is the backbone of the Elastic Stack. It is a very scalable open

source engine for text search and analysis enabling its users to quickly store,

search and analyze data in near-real time and is usually used as the backend

technology for applications that have complex features and requirements for

searching. (Elasticsearch BV 2017)

An Elasticsearch index is a collection of documents or data that is similar or

otherwise related. It is defined by its unique name, which can be used as the

identification to determine the target for queries such as searching or updating

the data in it. An index is categorized with one or more types, usually containing

their own set of data fields with specific type of values. (Elasticsearch BV 2017)

Elasticsearch supports distributed computing, which means it is possible to

combine multiple nodes into a cluster that provides redundancy, stores data and

provides the capability to index and search through it across all the cluster’s

nodes. Elasticsearch can form clusters automatically, which it does by

communicating with other nodes in or out of a cluster and groups up with the

nodes that have the same cluster name configured. Despite these features,

9

Elasticsearch is able to operate as a lone single node system as well.

(Elasticsearch BV 2017)

3.1.2 Logstash

Logstash is an open source engine for data collection and processing. It can read

and normalize data from various sources and then send it off to the desired

destinations for archival or later processing. Logstash was originally created for

log gathering and enrichment; however, thanks to its modular core, it is now

capable of much more with its wide selection of input, output, codec and filter

plugins. (Elasticsearch BV 2017)

The capabilities of Logstash are visualized in Figure 1.

Figure 1: Visualization of Logstash’s capabilities. (Elasticsearch BV 2017)

As mentioned in the previous paragraph, Logstash has a vast selection of plugins

divided into four categories: input, output, codec and filter plugins. Of these the

first two are responsible for reading from and writing to outside data sources,

such as Elasticsearch, Redis or even a simple file on the filesystem. Codec plugins

are used in conjunction with input and ouput plugins and are responsible for

reading data in certain formats, such as JSON. Filter plugins are the types of

plugins that Logstash uses to process and transform the data in an event, for

example, the Grok filter can parse information from text strings using regular

10

expression. In total, there are over 150 officially maintained plugins.

(Elasticsearch BV 2017)

3.1.3 Kibana

Kibana is an open source visualization and analytics platform for Elasticsearch.

It is used with Elasticsearch indices to search, view and interact with their data

and can be used to analyze and visualize data as charts, tables and maps in an

intuitive browser-based user interface. (Elasticsearch BV 2017)

An example of a Kibana dashboard presenting website statistics can be seen in

Figure 2.

Figure 2: An example Kibana dashboard. (Ewing 2016)

Kibana can also be used to interactively explore the data in Elasticsearch from

the Discover page. Document data in every index that matches the selected

index pattern can be viewed and executed queries against, for a specified time

period. For a search query along with the data a histogram is shown, visualizing

the distribution of occurrences the search yielded over time. Search queries can

also be saved for later use and visualization purposes. (Elasticsearch BV 2017)

The different sections of the Discover page are explained in Figure 3.

11

Figure 3: Kibana’s Discover page and its sections explained. (Elasticsearch BV
2017)

3.2 Logstash-forwarder-java

Logstash-forwarder-java is a Java port of the original logstash-forwarder which

was written in the Go programming language by the creator of Logstash, Jordan

Sissel. (didfet 2016)

The purpose of logstash-forwarder-java is to read a given source, either text files

or an input stream piped to the program, for new log lines and send those lines

off as events to a Logstash server using the Lumberjack protocol. It originated

from the need of a lightweight, portable and viable Lumberjack-compatible log

shipper for platforms that the Go language does not support, such as IBM AIX.

(didfet 2016)

3.3 Redis

Redis is a data store for structured data such as strings, key-value pairs and lists.

It has built-in support for transactions, Lua scripting, different levels of database

on disk persistence and more. Redis can perform very well and achieves its

performance by working with an in-memory dataset, which can be made

persistent by either periodically saving it to disk or by writing each command

executed to a log. It also supports asynchronous data replication with the

12

master-slave model, with fast non-blocking synchronization, reconnection and

partial resynchronization. (Redis 2017)

3.4 Nginx

Nginx is an open source web server that was originally designed to be a stable

and high performance web server, however, since then it has incorporated many

more features such as the ability to act as a reverse proxy or a load balancer. As

its central goal, it has always been one of the fastest web servers available, and

has been able to maintain that status despite web technologies evolving and

becoming much more complicated than what they originally were when Nginx

was created. (NGINX Inc. 2017)

3.5 Docker

Docker is an open source platform that automates the deployment of software in

Docker containers. A container is both a lightweight and standalone package that

includes everything required to run a specific software, while isolating it from the

underlying infrastructure it is run in. (Docker Inc. 2017)

Containers differ from virtual machines in that they do not contain an entire

operating system, but only the programs that run on top of the operating

system. This reduces overhead making them lightweight, reducing the usage of

system memory, disk and other resources (Docker Inc. 2017). The difference is

visualized in Figure 4.

13

Figure 4: Comparison of containers and virtual machines. (Docker Inc. 2017)

3.6 Ansible

Ansible is an open source automation engine that enables the automation of

configuration management, application deployment and much more. It is an

agentless system that takes advantage of the very readable and human friendly

YAML markup language to abstract functionality, making it very simple and

easy to use. By being agentless, Ansible works by connecting to the target

machines and uploading small programs consisting of Ansible modules, which are

written to target the desired state described to them, and removing the modules

when finished. (Red Hat Inc. 2017)

In Ansible, playbooks are used to declare the tasks to be executed. A task is a

single operation which will call a module and can reside in either a playbook, a

role or a separate task file. A single role can consist of multiple tasks, and they

are usually used to group up multiple tasks aiming for the same end goal.

Ansible modules are idempotent, meaning that they will try to achieve the

desired state and only that. If the same task or module is run multiple times

with the same parameters, it will not change anything on the target system when

the state it is trying to achieve has already been achieved. (Red Hat Inc. 2017)

14

4 Log sources

4.1 IBM HTTP Server

IBM HTTP Server is an Apache HTTP Server based web server developed by

IBM. Apache HTTP Server is an open source web server project that’s goal is to

create a stable, rich-featured and openly available HTTP server implementation

that is suitable for business use. (Apache Software Foundation 2017)

The biggest differences in IBM HTTP Server compared to Apache HTTP Server

are the added support for the WebSphere Administrative Console and suEXEC

which allows running CGI scripts as other users. (IBM Inc. 2016)

4.2 IBM WebSphere Application Server

IBM WebSphere Application Server provides flexible and secure Java application

server runtime environments ranging from lightweight web, cloud-based

applications to large-scale mission critical applications offering near continuous

availability. It supports a variety of features including fast installation and

deployment, web tier clustering across multiple application server instances, web

server load balancing, centralized management and more. (IBM Inc. 2017)

4.3 IBM DB2

IBM DB2 is an SQL-compatible relational database for the enterprise, offering

extreme performance, flexibility, scalability and reliability regardless of the size of

the organization. It is used for transactional and analytical workloads and

provides high availability of data, storage optimizations to transparently

compress data and save disk space, storage requirements in general and to

improve application performance. (IBM Inc. 2017)

5 Implementation

The implementation steps described in this chapter were done in an environment

consisting of five different virtual machines, four running CentOS Linux 7.3 and

15

one running Ubuntu 16.04 (Xenial). Two of the CentOS servers were used for

deploying the Elastic Stack onto, running on top of the Community Edition of

the Docker Engine, and the other two for shipping log entries from. The Ubuntu

server was purposed as the Ansible control machine.

There was no base configuration done for Redis as it was not deemed necessary

due to it working well enough with an out of the box setup.

The final directory structure for the implementation can be found in Appendix 8.

5.1 Environment

The target environments, both test and production, each consist of a single

server that were to be running the software components in their own isolated

Docker containers. While this may not be ideal considering the possible future

workloads, it is practical for learning all the software components used in the

assignment.

The architecture chosen was a simple buffered version of the basic Logstash to

Elasticsearch pipeline, meaning that instead of log entries being sent directly to

the Logstash parser, in front of it there was a dedicated Logstash instance for

receiving logs that sent them to a cache server for later on-demand parsing. This

architecture and Redis as the caching server were chosen internally beforehand

and so these choices were not part of the assignment.

The user frontend was implemented with Nginx acting as an SSL reverse proxy

with HTTP basic authentication for both the Kibana frontend and the

Elasticsearch HTTP API. The architecture is visualized in Figure 5.

16

Figure 5: ELK architecture.

The virtual servers used in the assignment and their purposes are listed in Table

1.

Table 1: Virtual servers used.

Hostname Purpose
elk-prod.example.com Elastic Stack production server
elk-test.example.com Elastic Stack test server
server-prod.example.com Production server where logs are shipped from
server-test.example.com Test server where logs are shipped from
elk-control.example.com Ansible control server

5.2 Base configuration

5.2.1 Ansible

As an agentless configuration management software, Ansible does not require

much from the hosts it controls. At bare minimum it can use programs over

connections like SSH to do work, however for more complicated tasks require a

basic Python installation. In this assignment, on top of the basic Python

installation some additional third party modules were installed due to the

requirements set by some of the Ansible modules used. On the control machine

however, some initial setting up is required.

17

In this assignment an Ubuntu Xenial installation was chosen as the control

machine. The easiest way to install Ansible would be to use the operating

system’s package manager, however, because Xenial is a long term support

version of Ubuntu its package repositories do not have the latest version of

Ansible as can be seen below:

$ apt update
$ apt show ansible | grep ^Version
Version: 2.0.0.2-2ubuntu1

From the output it can be determined that the Xenial repositories only have

Ansible version 2.0, which is almost a year and a half old at the time of this

project. So instead of installing it from the system repositories, Python’s pip

package manager was used instead. Because Ansible was installed this way, there

were some system library requirements as well. The installation commands were

as follows:

$ apt install -y python python-pip libssl-dev libffi-dev sshpass
$ pip install ansible
$ ansible --version
ansible 2.3.0.0

Here the OpenSSL and libffi development packages, libssl-dev and libffi-dev

respectively, were also installed, because Ansible depends on the cryptography

module that in turn depends on the native bindings for these libraries that

cryptography’s setup script builds when installed with pip. Finally looking at

the output of ansible --version it can be seen that doing the extra steps for

the installation was worth it since it is now at version 2.3 instead of the

previously would-be 2.0. The sshpass program was also installed because in this

assignment password authentication was used instead of key-based

authentication.

After the installation, there was some project-specific configuration to be

performed. While Ansible’s default configuration is usually sufficient, there were

some parameters that needed to be changed for this use case and these changes

were done by creating a new file called ansible.cfg in the project’s working

directory. In addition to ansible.cfg in the current directory where Ansible

commands are run it will read configuration from an environment variable called

ANSIBLE_CONFIG, which it prioritizes over ansible.cfg, and the default location of

18

the configuration file at /etc/ansible/ansible.cfg, which is the last place it

will read the configuration from. Creating a custom configuration file for each

Ansible project can be useful in the sense that when the project files are shared

through version control for example, it will run the same way for everyone, which

is why this approach was chosen for this assignment as well.

1 [defaults]
2 ask_pass = True
3 host_key_checking = False
4 inventory = ./hosts
5 log_path = ./ansible.log
6 callback_whitelist = timer,profile_task
7

8 [privilege_escalation]
9 become = True

10 become_ask_pass = True

In this project the custom configurations were rather simple: Ansible is told to

always ask for passwords when starting, disable SSH host key checking and

always log all output with timestamps into a logfile also. The name of the

default inventory file was also given.

The next step was to create the aforementioned inventory file, called hosts. The

inventory file holds all the information about Ansible’s target hosts and is

mandatory when working with remote hosts like this. Each target server is given

a friendly name optionally pointing to a specific address and port that is then

grouped into environment-specific groups, enabling easy environment or

task-specific control:

1 [elk_prod]
2 elk_prod_node1 ansible_host=192.168.1.201 ansible_port=22
3

4 [elk_test]
5 elk_test_node1 ansible_host=192.168.1.202 ansible_port=22
6

7 [elk:children]
8 elk_prod
9 elk_test

10

11 [servers_prod]
12 server_prod_node1 ansible_host=192.168.1.203 ansible_port=22
13

14 [servers_test]
15 server_test_node1 ansible_host=192.168.1.204 ansible_port=22
16

17 [servers:children]
18 servers_prod
19 servers_test

Normally groups cannot be referred to from inside other groups, however on lines

7-9 a special :children keyword is used which tells Ansible that the elk group

19

will actually be referring to the elk_prod and elk_test groups instead of single

hosts. The same was done for the servers where the logs originated from.

The last step in preparing the configuration was to create the variable files for

the inventory groups elk_test and elk_prod. These files were created under the

directory group_vars which, as the name suggests, is meant for holding the

optional variable files for each defined group in files called groupname either with

or without the YAML file extension. As an example, here is the file for the

production environment, elk_prod.yml:

1 ---
2

3 env: prod
4 http_hostname: elk-{{ env }}.example.com
5

6 users:
7 - user: produser
8 pass: pass456
9 - user: admin

10 pass: adminerino456
11

12 xpack_settings:
13 security: "false"
14 monitoring: "false"
15 graph: "false"
16 watcher: "false"
17 reporting: "false"
18 ml: "false"
19

20 kibana_config:
21 users: "{{ users }}"
22 server_name: "{{ env }}-kibana1"
23 xpack: "{{ xpack_settings }}"
24

25 elasticsearch_config:
26 users: "{{ users }}"
27 cluster_name: "{{ env }}-cluster1"
28 node_name: "{{ env }}-node1"
29 xpack: "{{ xpack_settings }}"

There are quite a few variables defined here, however, between the two

environments the most relevant ones are env and users, where the former holds

the environment’s name, prod in this case, and the latter defines a list of

key-value pairs. These two are referenced by the some of the variables under

kibana_config and elasticsearch_config with two curly brackets, so for

example elk-{{ env }}.example.com becomes elk-prod.example.com when

Ansible is reading the file at runtime. The translation is possible thanks to the

Jinja2 templating engine that Ansible uses.

The variable xpack_settings is used to switch off all X-Pack related features,

due to X-Pack being a paid add-on to the Elastic Stack.

20

In Elasticsearch’s case, both the cluster_name and node_name are already

defined at this level, which will help future-proof the environment by handily

separating the production and test environments from joining into each other’s

clusters, as described in Chapter 3.1.1.

The commands and files referenced in this chapter can also be found in

Appendices 8, 8, 8 and 8.

5.2.2 Elasticsearch

The first actual component part of the Elastic Stack configured was

Elasticsearch. While the configuration itself is very simple and straightforward,

there are some things to take note of. First, the file was created as follows:

$ mkdir -p files/template/elasticsearch
$ vim files/template/elasticsearch/elasticsearch.yml.j2

The contents of the configuration file are:

1 network.host: 0.0.0.0
2

3 cluster.name: {{ elasticsearch_config.cluster_name }}
4 node.name: {{ elasticsearch_config.node_name }}
5

6 xpack.security.enabled: {{ elasticsearch_config.xpack.security }}
7 xpack.monitoring.enabled: {{ elasticsearch_config.xpack.monitoring }}
8 xpack.ml.enabled: {{ elasticsearch_config.xpack.ml }}

In the Elasticsearch configuration file, there are multiple references to variables

defined in the group-specific variable files created in the previous chapter. Here

the variables are used to help configuration management by putting all the

relevant configuration in the same centralized place.

By giving network.host the value 0.0.0.0, Elasticsearch is told to bind itself to

every network interface, this is desired with containers, as the actual container

layer will handle the networking aspect anyway. Also, the features of the X-Pack

add-on are disabled as per the previous chapter.

The commands and the file referenced here are also located in Appendices 8 and

8.

21

5.2.3 Logstash cacher

The Logstash instance performing the caching of incoming log data was

configured before the parser. The Jinja2 configuration template was created:

$ mkdir -p files/template/ls-cacher
$ vim files/template/ls-cacher/cacher.conf.j2

Logstash configuration files are usually made of three different configuration

blocks: input, filter and output. However, as the purpose of this Logstash

instance was only to receive and cache the incoming log data, the configuration

only has the input and output blocks.

The beginning of the file looks like this:

1 input {
2 lumberjack {
3 port => 5000
4 ssl_certificate => "/ssl/{{ http_hostname }}.crt"
5 ssl_key => "/ssl/{{ http_hostname }}.key"
6 }
7 }

In a logical manner, the input block is configured first. In the snippet above the

input plugin for the Lumberjack protocol is configured to listen the port 5000

and to use the specific SSL key and certificate for authenticating the incoming

connections. These are the only mandatory fields for the Lumberjack plugin, so

nothing else was configured. By default the address it will bind the port to is

0.0.0.0.

Ending the cacher configuration file is the output section:

9 output {
10 redis {
11 host => "redis:6379"
12 data_type => "list"
13 key => "logstash"
14 codec => "json"
15 }
16 }

As the Redis cache server is the only desired destination for the events coming in

this Logstash instance, the plugin for it is the only plugin configured in the

output block. The host setting is set to redis:6379, which will be an entry that

Docker will automatically put in the container’s /etc/hosts file on creation.

data_type is set to list, which is a queue-like data type in Redis, it allows for

data to be put at the beginning or in the end of the queue, although the

22

Logstash plugin will only push events in the end of the queue. The other possible

value for data_type would be channel, however, that was not used because then

the relationship of Redis and the parsing Logstash instance would be that Redis

would be pushing new events to the Logstash pipeline which in theory could

degrade performance as Logstash might start choking due to the amount of the

incoming data.

key is the list identifier under which all the events will be put for the parser. In

this case, the json plugin was chosen as the codec because it seemed logical as

Logstash events contain much more information than just the log entry. It will

create a JSON formatted string of the log event that is then pushed to Redis.

The SSL certificate and key used on lines 4-5 were generated with the following

commands:

$ cd files/ls-cacher/
$ NAME=elk-prod.example.com
$ openssl req -newkey rsa:4096 -keyout $NAME.key \

-new -x509 -out $NAME.crt -days 3650 \
-nodes -subj "/C=FI/CN=$NAME"

The files were created with OpenSSL and were generated as a 4096-bit RSA

key/certificate pair. The certificate was self-signed and valid for 10 years, until

2027.

Java KeyStore (JKS) files for both environments were also created, as these are

needed by the chosen log shipping software, logstash-forwarder-java. The JKS

files for production were created with the following commands:

$ cd files/
$ NAME=elk-prod.example.com
$ keytool -importcert -trustcacerts \

-file ls-cacher/$NAME.crt -alias ca \
-keystore logstash-forwarder-java/$NAME.jks \
-storepass changeit

The same commands were repeated with NAME’s value being

elk-test.example.com.

The commands and the full configuration file can also be found in Appendices 8

and 8.

23

5.2.4 Logstash parser

In the configuration, the parser utilizes a pattern file to help with the grok filter

plugin. Both of the files were created with this structure:

$ mkdir -p files/ls-parser/patterns files/template/ls-parser
$ vim files/ls-parser/patterns/ibm
$ vim files/template/ls-parser/parser.conf.j2

The pattern file called ibm is, as mentioned, a helper file for the grok plugin. It

contained named regular expression (regexp) patterns that make using grok

easier:

1 WAS_DATETIME %{MONTHNUM}[./]%{MONTHDAY}[./]%{YEAR} %{TIME}:%{INT} \S{,4}
2 DB2DIAG_TIMESTAMP %{YEAR}-%{MONTHNUM}-%{MONTHDAY}-%{HOUR}\.%{MINUTE}\.%{S c

ECOND}\.%{INT}%{INT:timezone}↪→

Two named patterns are defined here: WAS_DATETIME and DB2DIAG_TIMESTAMP.

They both heavily utilize Logstash’s built-in named regexp patterns, which are

similarly defined in Logstash’s internal configurations and will recursively resolve

to actual regexp patterns.

The WAS_DATETIME pattern will match WebSphere Application Server’s log

timestamps formatted as

MONTH.DAY.YEAR HOUR:MINUTE:SECOND:MILLISECOND TZ with month, day and

year being separated by either a dot or a forward slash and where TZ is a time

zone name, like UTC, for example.

DB2DIAG_TIMESTAMP will match DB2’s diagnostic log timestamps where the

format is YEAR-MONTH-DAY-HOUR.MINUTE.SECOND.MILLISECONDS+TZ where all

the other fields are the same as with WAS_DATETIME with the exception of TZ

which is actually represented as minutes instead of hours or a time zone’s name.

The time zone in this pattern is parsed into a separate field called timezone, to

help with later processing as Logstash’s date plugin does not support time zones

represented in minutes.

Configuration for the Logstash instance doing all the actual data processing and

parsing is somewhat more complicated, however, the same principles as in the

previous chapter still apply. The configuration consists of all three types of

plugins: input, filter and output, out of which the filter block is the most

complicated one.

Starting with the input block:

24

1 input {
2 redis {
3 host => "redis"
4 data_type => "list"
5 key => "logstash"
6 codec => "json"
7 }
8 }

This is practically the same as the output block in Chapter 5.2.3, but instead of

sending data out with the output block, the input block is used instead to read

from Redis, with the same settings used in sending the data from the cacher.

10 filter {
11 mutate {
12 strip => "message"
13 remove_field => ["offset", "line"]
14 split => { "tags" => "," }
15 }

Here the filter block starts, with three actions using the mutate filter plugin used

to do mutations on the fields of the Logstash event. On line 12 the message field

containing the full line of log from the log shipper, is stripped of all leading and

trailing whitespaces, removing empty lines and unnecessary spaces before and

after the actual log. Line 13 removes the offset and line fields from the event,

which were deemed to be useless information sent by logstash-forwarder-java.

Logstash-forwarder-java does not actually support the sending of fields as arrays,

so the tags field is actually a string that needs to be split into an array here,

using a comma as the separator. The field needs to be an array to allow for more

fine-grained searching of events in Kibana.

17 if ! [message] {
18 drop {}
19 }

Continuing with the theme of stripping the message field, this event will be

dropped entirely if the field is empty.

21 grok {
22 patterns_dir => ["/patterns"]
23 match => { "message" => [
24 "^%{COMMONAPACHELOG}",

Grok is the filter plugin used to parse arbitrary strings with regexp patterns.

The setting patterns_dir is used to refer to the directory where the ibm pattern

file containing the custom named patterns resides. On line 23 the plugin is

initialized to match for any of the defined patterns in the message field.

25

On line 24 another Logstash’s internal named pattern, COMMONAPACHELOG is

referenced. This named defined pattern is defined as an Apache HTTP

Server-specific pattern and looks for lines formatted as the default CommonLog

format for access logs. Here is an example line from a log file that it would be

able to parse:

::1 - - [23/May/2017:13:43:42 +0300] "GET / HTTP/1.1" 200 3493

This line would be broken into fields with values described in Table 2.

Table 2: Example of parsed fields from HTTP server access log.

FIELD VALUE
clientip ::1
ident -
auth -
timestamp 23/May/2017:13:43:42 +0300
verb GET
request /
httpversion 1.1
response 200
bytes 3493

25 "(?m)\[%{WAS_DATETIME:timestamp}\]%{SPACE}%{BASE16NUM:thread}%{SPAC c
E}%{WORD:shortname}%{SPACE}%{WORD:loglevel}%{SPACE}%{GREEDYDAT c
A:message2}",

↪→
↪→

On line 25 is the parser for WebSphere Application Server’s (WAS)

SystemOut.log file, which is where all the messages going to stdout are written.

The pattern starts with (?m) which indicates that this can be a multi line event

that spans multiple lines, in case of Java exception stack traces and such. The

end of the string is parsed into the message2 field because grok does not

overwrite existing fields. An example from a log file that the pattern would be

able to parse into several fields follows:

[5/23/17 13:22:33:157 EEST] 00000001 WsServerImpl A WSVR0001I: Server

server1 open for e-business

This line would be broken into the fields and values described by Table 3.

26

Table 3: Example of parsed fields from WebSphere Application Server log.

FIELD VALUE
timestamp 5/23/17 13:22:33:157 EEST
thread 00000001
shortname WsServerImpl
loglevel A
message2 WSVR0001I: Server server1 open for e-business

26 "(?m)%{DB2DIAG_TIMESTAMP:timestamp}%{SPACE}%{NOTSPACE:id}%{SPACE}LE c
VEL:%{SPACE}%{DATA:loglevel}%{SPACE}PID%{SPACE}:%{SPACE}%{INT: c
pid}%{SPACE}TID%{SPACE}:%{SPACE}%{INT:tid}%{SPACE}PROC%{SPACE} c
:%{SPACE}%{DATA:proc}%{SPACE}INSTANCE%{SPACE}:%{SPACE}%{NOTSPA c
CE:instance}%{SPACE}NODE%{SPACE}:%{SPACE}%{INT:node}%{SPACE}HO c
STNAME%{SPACE}:%{SPACE}%{NOTSPACE:hostname}%{SPACE}%{GREEDYDAT c
A:message2}"

↪→
↪→
↪→
↪→
↪→
↪→

27]}
28 }

Line 26 contains the most complicated of the three, the pattern for DB2’s

diagnostic log entries. The log file itself is very elaborate and informative which

is of course a good thing, however, when trying to parse those entries it is often

impossible to avoid the mental gymnastics involved. Again the pattern starts

with the multi line identifier (?m) same as the WAS log pattern and it uses the

custom named pattern DB2DIAG_TIMESTAMP to find the timestamp, and several of

Logstash’s internally defined named patterns such as SPACE which matches zero

or more spaces in a row. The DATA pattern is a non-greedy regexp matcher that

matches everything until the next character specified in the pattern is found.

Here as well the end of the string is parsed into the message2 field because grok

does not overwrite existing fields. An example block from the DB2 diagnostic log

file might look something like the following:

2017-05-23-09.53.38.354591+180 I1736E334 LEVEL: Event
PID : 8261 TID : 140448931723136 PROC : db2flacc
INSTANCE: db2inst1 NODE : 000
HOSTNAME: localhost.localdomain
FUNCTION: DB2 UDB, config/install, sqlfLogUpdateCfgParam, probe:30
CHANGE : CFG DBM: "Discover_comm" From: "" To: "TCPIP"

This would then be broken by the pattern into the fields and values described in

Table 4.

27

Table 4: Example of parsed fields from DB2 diagnostic log.

FIELD VALUE
timestamp 2017-05-23-09.53.38.354591
timezone +180
id I1736E334
loglevel Event
pid 8261
tid 140448931723136
proc db2flacc
instance db2inst1
node 000
hostname localhost.localdomain
message2 FUNCTION: DB2 UDB, config/install, sqlfLogUpdate...

30 if [type] == "db2" {
31 ruby {
32 code => "event.set(’timestamp’, event.get(’timestamp’)[0..-5] + ’

+%02d00’ % (event.get(’timezone’).to_i / 60))"↪→
33 }
34 mutate {
35 remove_field => ["timezone"]
36 }
37 }

Because DB2’s log format prints the time zone as minutes instead of hours, this

condition block is required. It will check if the event’s type is db2, and if it is the

ruby filter plugin on lines 31-33 will be run to convert the time zone to hours and

concatenate it with the timestamp field. When the ruby filter is done, the

timezone field is removed from the event.

39 if [message2] {
40 mutate {
41 replace => { "message" => "%{message2}" }
42 remove_field => ["message2"]
43 }
44 }

Because the grok filter will not replace the values of existing fields, the message2

field that stores main message of the event is removed after having replaced the

original message field.

46 mutate {
47 gsub => ["timestamp", "EE(S|D)T", "+0300"]
48 }

Here the mutate plugin is used again, this time it needs to be processed after the

grok parsing is done because WAS uses either EEST or EEDT as its time zone

28

name when run on a machine using the Europe/Helsinki time zone. The gsub

option is used to search the field timestamp for all matches of either EEST or

EEDT and those matches are then replaced with +0300. This is done because the

parsing engine Logstash uses to parse datetime strings, Joda-Time, does not

support those named time zones, but it does support +0300.

50 date {
51 match => ["timestamp",
52 "dd/MMM/yyyy:HH:mm:ss Z",
53 "M/d/yy HH:mm:ss:SSS z",
54 "M.d.yy HH:mm:ss:SSS z",
55 "M/d/yy HH:mm:ss:SSS Z",
56 "M.d.yy HH:mm:ss:SSS Z",
57 "yyyy-MM-dd-HH.mm.ss.SSSSSS Z"
58]
59 }
60 }

This is where the Joda-Time parsing is carried out in Logstash. In this

configuration, the date plugin uses the timestamp field to match all the defined

datetime formats. On line 52 is the HTTP Server time format, on lines 53-56 are

the possible WebSphere Application Server formats and on line 57 is the DB2

time format. The last curly bracket here signifies the end of the filtering block.

62 output {
63 elasticsearch {
64 hosts => "elasticsearch:9200"
65 index => "{{ env }}-logs-%{+YYYY.w}"
66 }
67

68 if "_grokparsefailure" in [tags] or "_rubyexception" in [tags] or
"_dateparsefailure" in [tags] {↪→

69 stdout { codec => rubydebug }
70 }
71 }

The output block is configured to deliver the event out to the Elasticsearch

instance running at elasticsearch:9200 and to store the event as a document

in the index {{ env }}-logs-%{+YYYY.w}. Here again the Ansible variable env

that was defined in Chapter 5.2.1 is used. Logstash will parse the datetime

pattern %{+YYYY.w} into a format of YEAR.WEEK. So for example, an event might

be stored in an index called prod-logs-2017.21.

Lines 68-70 make Logstash print the event as a Ruby debug message to stdout

using the stdout plugin combined with the rubydebug codec, in the case that

any of the three conditions are met: the grok parser failed to find a match for the

log line of the current event, the ruby plugin threw an exception, or if the date

plugin fails to parse the timestamp.

29

The commands and the full configuration file can be found in Appendices 8 and 8.

5.2.5 Kibana

Configuring Kibana, like Elasticsearch, was rather simple:

$ mkdir -p files/template/kibana
$ vim files/template/kibana/kibana.yml.j2

The contents of kibana.yml.j2 were:

1 server.host: "0.0.0.0"
2 server.name: "{{ kibana_config.server_name }}"
3 server.basePath: "/kibana"
4

5 elasticsearch.url: "http://elasticsearch:9200"
6 elasticsearch.requestTimeout: 90000
7

8 xpack.security.enabled: {{ kibana_config.xpack.security }}
9 xpack.monitoring.enabled: {{ kibana_config.xpack.monitoring }}

10 xpack.graph.enabled: {{ kibana_config.xpack.graph }}
11 xpack.watcher.enabled: {{ kibana_config.xpack.watcher }}
12 xpack.reporting.enabled: {{ kibana_config.xpack.reporting }}
13 xpack.ml.enabled: {{ kibana_config.xpack.ml }}

As with Elasticsearch in Chapter 5.2.2, Kibana is also made to listen for

connections in all available network interfaces by giving server.host the value

of 0.0.0.0. On the second line server.name being set to {{ env }}-kibana1

makes this Kibana instance uniquely identifiable. For the production

environment the third value would for example be prod-kibana1. On the

following two lines of the file the connection to Elasticsearch’s HTTP REST API

is configured to use plain unencrypted HTTP with a request timeout of 90

seconds, after which Kibana’s state will change red and it will be unable to

operate until it can again establish a connection to Elasticsearch. Using the

container’s name elasticsearch here means that the Kibana container will be

linked to Elasticsearch and Docker will automatically do the name resolution to

the proper IP address. Finally on lines 8-13 the X-Pack add-ons are disabled as

configured in Chapter 5.2.1.

The commands and the configuration file can be found in Appendices 8 and 8.

5.2.6 Nginx

The file and directory structure for the Nginx files were created like so:

30

$ mkdir -p files/nginx
$ mkdir -p files/template/nginx
$ vim files/template/nginx/default.conf.j2
$ vim files/template/nginx/index.html.j2

The file default.conf.j2 contains the actual web server configuration needed

for this assignment, and is meant to overwrite the

/etc/nginx/conf.d/default.conf file in the Nginx container. index.html.j2

is the Jinja2 template file for the website default landing page that was used to

link to the Kibana and Elasticsearch reverse proxies.

1 server {
2 listen 80 default_server;
3 server_name {{ http_hostname }};
4 return 301 https://$server_name$request_uri;
5 }

In this server configuration block is defined a simple plain and unencrypted

HTTP server behind port 80 the only job of which is to serve a permanent

redirect to the HTTPS encrypted version of the website. As server_name was

set to {{ http_hostname }}, it was for example in the production

environment’s case resolved to elk-prod.example.com, as defined by the

variable set in Chapter 5.2.1.

7 server {
8 listen 443 default_server ssl http2;
9 server_name {{ http_hostname }};

10

11 ssl_certificate /ssl/{{ http_hostname }}.crt;
12 ssl_certificate_key /ssl/{{ http_hostname }}.key;

The second server configuration block is set to listen to the HTTPS port 443 for

SSL only, optionally for HTTP/2 when the client supports it. The difference in

this block to the HTTP server block is that no redirect instruction is given and

that the SSL key and certificate are used.

14 location / {
15 root /usr/share/nginx/html;
16 index index.html;
17 }

This is the default location block that the users will hit when accessing the

website’s index. Its document root is defined as /usr/share/nginx/html where

the index.html index file resides.

31

19 location ~ ^/(kibana|elasticsearch)$ {
20 return 301 https://$server_name$request_uri/;
21 }

This location block is a simple helper that will permanently redirect users who

try to access Kibana without the trailing forward slash, to the proper location,

for example, from https://elk-prod.example.com/kibana to

https://elk-prod.example.com/kibana/. This is necessary for the reverse

proxy to properly work, because if the trailing forward slash is missing Nginx

would send an improper request to the backend application.

23 location ~ ^/kibana/.*$ {
24 rewrite /kibana/(.*) /$1 break;
25 proxy_pass http://kibana:5601;
26 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
27 proxy_buffering off;
28

29 auth_basic "Kibana";
30 auth_basic_user_file /auth/kibana.htpasswd;
31 }

Here is the first of the two reverse proxy blocks that Nginx was serving. In this

block everything located under the /kibana/ path is forwarded to the Kibana

instance running in its container at http://kibana:5601. The first thing done

in this block on line 24 is that a part of the request the user sent to Nginx will be

stripped off, more specifically the kibana/ portion, after which the request is

passed on to Kibana. On line 26 the X-Forwarded-For header is set, a common

method of providing applications behind proxies the actual IP address of the

user, because by normal means the application behind the proxy will only see the

IP address of the proxy itself. On line 27 proxy buffering is disabled. Proxy

buffering makes Nginx to first completely load the requested content from the

backend application into memory and only then send it off to the user; by

disabling this functionality the content from the application is streamed directly

to the user immediately when Nginx receives it.

On lines 29-30 basic HTTP authentication is enabled for this location block.

When the user accesses it with their browser, the browser will give them a popup

asking for authorization to the realm Kibana and Nginx will authenticate the

users against the credential store /auth/kibana.htpasswd.

33 location ~ ^/elasticsearch/.*$ {
34 rewrite /elasticsearch/(.*) /$1 break;
35 proxy_pass http://elasticsearch:9200;

32

36 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
37 proxy_buffering off;
38

39 auth_basic "Elasticsearch";
40 auth_basic_user_file /auth/elasticsearch.htpasswd;
41 }

The /elasticsearch/ location block is the same as the /kibana/ block, except

the connections are passed through to Elasticsearch and a different credential

store is used instead.

1 <h2>ELK - {{ env }}</h2>
2 Kibana
3 Elasticsearch

The index.html.j2 file is simple and its only purpose is to serve as a portal of

sorts for the users to easily be able to differentiate between the two environments

and to provide clickable links to the applications. As with some of the other

configuration files, the env variable was used here as well to tell the user which

environment they are currently using.

The SSL certificate and key used on lines 11-12 were generated with the

following commands:

$ cd files/nginx/
$ NAME=elk-prod.example.com
$ openssl req -newkey rsa:4096 -keyout $NAME.key \

-new -x509 -out $NAME.crt -days 3650 \
-nodes -subj "/C=FI/CN=$NAME" \
-extensions sAN -config <(awk -v name=$NAME \
’{print $0}
END{
print "[sAN]"
print "subjectAltName=DNS:"name
}’ /etc/pki/tls/openssl.cnf)

The files were generated with OpenSSL as a 4096-bit RSA key/certificate pair.

The certificate will be self-signed and valid for 10 years, until 2027.

Along with the normal procedure of assigning the certificate to a common name

(CN), it was also assigned to a subject alternate name (sAN) because in Google

Chrome, as of version 58 (released on 19th of April 2017), the field is mandatory.

(Sleevi 2017)

The same commands were repeated for the value of elk-test.example.com for

the NAME variable.

All the commands and files in this chapter can be found in Appendices 8, 8 and 8.

33

5.2.7 Logstash-forwarder-java

Logstash-forwarder-java was chosen as the program to ship the logs with because

there are quite a few server environments running IBM AIX.

Logstash-forwarder-java being written in Java, is very portable and can run on

these servers with no problems. While Linux servers were used for the

implementation description instead, the principle of the methods applied remain

the same for AIX.

Unfortunately the official version of logstash-forwarder-java does not support

multiline events, which was very much a requirement in the project, so a fork was

used instead and compiled from source:

$ mkdir files/bin/logstash-forwarder-java
$ cd files/bin/logstash-forwarder-java
$ wget

https://github.com/Sentido-Labs/logstash-forwarder-java/archive/master.zip↪→
$ unzip master.zip
$ cd logstash-forwarder-java-master/
$ apt install unzip maven openjdk-8-jdk
$ mvn package
$ unzip target/logstash-forwarder-java-0.2.4-bin.zip
$ cp -r logstash-forwarder-java-0.2.4/* ../
$ cd ..

Here the required packages for building the fork’s source code were installed and

the fork was built with Apache Maven.

Java Service Wrapper from Tanuki Software Ltd. was used on top of

logstash-forwarder-java. The wrapper makes Java programs available as

system-like services. The wrapper was downloaded and extracted in the same

directory and cleanup was performed:

$ wget https://wrapper.tanukisoftware.com/download/3.5.32/wrapper-linux-x86-64 c
-3.5.32.tar.gz↪→

$ tar -xzf wrapper-linux-x86-64-3.5.32.tar.gz
$ cp -r wrapper-linux-x86-64-3.5.32/* .
$ rm -r logstash-forwarder-java-master master.zip wrapper-linux-x86-64-3.5.32

wrapper-linux-x86-64-3.5.32.tar.gz↪→

After which the wrapper’s configuration file was created:

$ cp src/conf/wrapper.conf.in conf/wrapper.conf
$ vim wrapper.conf

The wrapper’s configuration is a simple INI-style file, consisting of lines with

key=value properties. The modified and added properties can be seen in Table 5.

34

Table 5: Wrapper configuration modified parameters.

KEY VALUE
wrapper.java.command ../jre/bin/java
wrapper.java.classpath.2 ../logstash-forwarder-java-0.2.4.jar
wrapper.app.parameter.1 info.fetter.logstashforwarder.Forwarder
wrapper.app.parameter.2 -config
wrapper.app.parameter.3 ../config.json
wrapper.app.parameter.4 -sincedb
wrapper.app.parameter.5 ../sincedb.json
wrapper.app.parameter.6 -tail
wrapper.console.title logshipper

Then the script to start and stop the service was created and modified:

$ cp src/bin/sh.script.in bin/wrapper.sh
$ vim bin/wrapper.sh
$ perl -pi -e ’s/\@app\.(long\.)?name\@/logshipper/’ bin/wrapper.sh
$ perl -pi -e ’s/^#RUN_AS_USER=/RUN_AS_USER=logshipper/’ bin/wrapper.sh

Here Perl was used to find and replace all occurrences of @app.name@ and

@app.long.name@ with logshipper, and changing the only occurrence of a line

starting with #RUN_AS_USER= to RUN_AS_USER=logshipper. This was done to

make the wrapper identify itself as logshipper and to have the script start the

program as the user logshipper.

When the wrapper was configured, the configuration file template for the

forwarder was created:

$ mkdir -p files/template/logstash-forwarder-java
$ vim files/template/logstash-forwarder-java/config.json.j2

It is a JSON-formatted file that specifies the connection options and the files

watched.

1 { "network": {
2 "servers": ["{{ logstash_address }}:{{ logstash_port }}"],
3 "timeout": 30,
4 "ssl ca": "/opt/logstash-forwarder-java/{{ logstash_address }}.jks"

In the network part of the configuration the target server is specified to

{{ logstash_address }}:{{ logstash_port }} that resolved, for example, to

elk-prod.example.com:5000. A thirty second connection timeout is set and the

SSL CA Java KeyStore file generated in Chapter 5.2.3 is given. While the

program accepts multiple servers, since there was only one Logstash cacher

instance per environment used in this project, only one was specified.

35

6 { "paths": ["/opt/IBM/WebSphere/AppServer/profiels/AppSrv01/server1/ c
SystemOut.log"
],

↪→
↪→

7 "fields": { "type": "was",
8 "tags": "AppSrv01,server1,systemout" },
9 "multiline": { "pattern": "(^\\[)",

10 "negate": "true", "what": "Previous" } },
11 { "paths": ["/opt/IBM/HTTPServer/logs/access_log"],
12 "fields": { "type": "ihs",
13 "tags": "accesslog" } },
14 { "paths": ["/home/db2inst1/sqllib/db2dump/db2diag*log"],
15 "fields": { "type": "db2",
16 "tags": "diaglog" },
17 "multiline": { "pattern": "^(?>\\d\\d){1,2}-(?:0?[1-9]|1[0-9])-",
18 "negate": "true", "what": "Previous" } }] }

Then the files part which is an array of objects specifying the files being

watched and the field options for those files. The file paths support file glob

patterns, which the DB2 file path is using. All the three files and their

parameters are listed in Table 6.

Table 6: Logstash-forwarder-java watched files.

FILE TYPE TAGS
SystemOut.log was AppSrv01,server1,systemout
access log ihs accesslog
db2diag*log db2 db2diag

Looking at the table above, as an example logs in the SystemOut.log file is sent

with additional fields, where the field type is set to was, and the field tags is set

to AppSrv01,server1,systemout. Both of these fields were set to make

searching for the correct type of data easier. The type being set made the logs

more categorizable and when coupled with the tags, it makes it easy for the user

browsing the logs with Kibana to know exactly where the log originated from.

The tags field is a string since configuring fields as arrays is not possible with

logstash-forwarder-java, so the field is split into an array at parsing time as

configured in Chapter 5.2.4.

For DB2 logs the file glob pattern db2diag*log was used, because the log files

start from db2diag.log but when the maximum log file size is reached, log

rotation makes the next log files become db2diag.0.log, db2diag.1.log and so

on. The pattern is used because it matches all the variations.

Both of the WAS and DB2 watchers use the multiline option, which with the

configured values will collect lines for the event and send it only after the pattern

36

specified is seen. The patterns are Java-compatible regexp and look for lines

starting with the WAS and DB2 log event hallmarks.

The commands and files can be found in Appendices 8, 8.

5.3 Ansible role and playbook configurations

5.3.1 Dependencies

The dependencies role’s purpose was to install the Docker Engine and all the

packages required to control it. All it needed was the main task file:

$ mkdir -p roles/elk_deps/tasks
$ vim roles/elk_deps/tasks/main.yml

The task file itself had only seven tasks in total.

1 ---
2

3 - name: Enable the EPEL repository and install Python SELinux support
4 yum: name={{ item }}
5 with_items:
6 - epel-release
7 - libselinux-python
8

9 - name: Install PIP
10 yum: name=python-pip

The first task uses the yum module to install the epel-release and

libselinux-python packages. libselinux-python is a package allowing

Python to interact with SELinux and is required by Ansible when the target host

has SELinux enabled. epel-release installs and enables the EPEL repository

where python-pip is located.

The task utilizes the with_items option which makes the task run yum in a loop,

replacing {{ item }} with the value of the item in each iteration, so for example

for the first loop, {{ item }} would be replaced by epel-release, effectively

making the task run yum: name=epel-release. However, python-pip needs to

be installed separately in its own task or the task would fail with the message

”No package matching ’python-pip’ found available, installed or updated”.

12 - name: Install Python docker-py and passlib modules
13 pip: name={{ item }}
14 with_items:
15 - docker-py
16 - passlib

37

Using pip to install two Python modules: docker-py, a requirement for

Ansible’s docker_container module and passlib which is required by the

htpasswd module.

18 - name: Install Docker CE dependencies
19 yum: name={{ item }}
20 with_items:
21 - device-mapper-persistent-data
22 - lvm2
23

24 - name: Enable Docker CE repository
25 get_url:
26 url: https://download.docker.com/linux/centos/docker-ce.repo
27 dest: /etc/yum.repos.d/docker-ce.repo
28

29 - name: Install latest Docker CE
30 yum: name=docker-ce

Then some Docker-specific packages are checked that they are installed, which

they usually are in a default CentOS installation. Because the Docker packages

are hosted by Docker Inc. themselves, the get_url module is used to download

the repository configuration into a file called docker-ce.repo. When that is

done the engine itself is installed with yum.

32 - name: Enable and start docker
33 systemd: name=docker state=started enabled=yes daemon_reload=yes

Finally, the last dependency task uses the systemd module to start the Docker

Engine and make it start automatically on boot.

The commands and files referenced can be found in Appendices 8 and 8.

5.3.2 Elasticsearch

Compared to the previous role, here a new file was created for handlers. Ansible

handlers are special tasks that are run at the end of a play and only when

notified by a task that has changed something. Here are the file creations:

$ mkdir -p roles/elk_elasticsearch/{tasks,handlers}
$ vim roles/elk_elasticsearch/tasks/main.yml
$ vim roles/elk_elasticsearch/handlers/main.yml

First the task file:

1 ---
2

3 - name: Set mmap count kernel parameter for Elasticsearch
4 sysctl:
5 name: vm.max_map_count
6 value: 262144
7 sysctl_set: yes

38

Here the sysctl module is used to set the kernel parameter vm.max.map_count

to 262144 as recommended by the Elasticsearch documentation (Elasticsearch

BV 2017). This parameter is usually too low for Elasticsearch and might result

in out of memory errors.

9 - name: Ensure Elasticsearch directory paths exist
10 file:
11 path: "{{ item }}"
12 state: directory
13 recurse: yes
14 with_items:
15 - /srv/conf/elasticsearch
16 - /srv/data/elasticsearch

This task uses with_items for the two directory paths and uses the file module

to create them. The file module’s parameters specify that the paths should be

directories, created recursively (equivalent to mkdir -p).

18 - name: Give Elasticsearch data directory uid/gid 1000 ownership
19 file:
20 path: /srv/data/elasticsearch
21 state: directory
22 recurse: yes
23 owner: 1000
24 group: 1000

This task works in the same kind of way except its only job is to make the data

directory owned by a user and group with the id 1000. The ownership is required

because inside the container Elasticsearch is run as a user with the same user

and group ids.

26 - name: Render Elasticsearch config
27 template:
28 src: files/template/elasticsearch/elasticsearch.yml.j2
29 dest: /srv/conf/elasticsearch/elasticsearch.yml
30 notify: Restart Elasticsearch

In this task the template module is used. This will render Jinja2 template files,

processing any Jinja2-specific logic and replacing variable references with their

corresponding values. notify is used to call the handler named

Restart Elasticsearch, which will restart the container if this task resulted in

a change.

32 - name: Run Elasticsearch container
33 docker_container:
34 name: elasticsearch
35 image: docker.elastic.co/elasticsearch/elasticsearch:5.4.0
36 env:
37 ES_JAVA_OPTS: "-Xms1g -Xmx1g"
38 log_driver: json-file

39

39 log_options:
40 max-size: 10m
41 max-file: "5"
42 ports:
43 - 127.0.0.1:9200:9200/tcp
44 volumes:
45 - /srv/conf/elasticsearch/elasticsearch.yml:/usr/share/elasticsearch/ c

config/elasticsearch.yml:ro↪→
46 - /srv/data/elasticsearch:/usr/share/elasticsearch/data:rw
47 - /etc/localtime:/etc/localtime:ro

Breaking this task down, it uses the docker_container module to create and

start a named container called elasticsearch. It uses the official Elasticsearch

version 5.4.0 image provided by the company’s official Docker Registry. The env

option takes key-value parameters that are passed as global environment

variables to the created container, and here the ES_JAVA_OPTS environment

variable is set to limit Elasticsearch’s Java heap size to one gigabyte.

log-driver and log-options define how the container’s logging is done, in this

case json-file is used to make the Docker Engine write logs into a JSON file

while limiting the maximum number of said log files to 5 with each file being

limited to being at most 10 megabytes in size. The value of max-file is in

quotes because of the way Ansible processes YAML, without them the value

would be sent to the Docker API as an integer, when the API excepts a string.

This would result in an error when the task is run.

The ports parameter specifies a list of ports that can be bound to the host. In

this case the TCP port 9200 within the container is bound to 127.0.0.1:9200

on the host which makes the port accessible from outside the container, but only

locally within the host machine itself.

Files, directories, etc. can be passed through to a container with the volumes

option, which takes a list of paths to mount in the container. For example with

the first entry, the Elasticsearch configuration file which was rendered with the

template module above is located at

/srv/conf/elasticsearch/elasticsearch.yml on the host machine and is

mounted at /usr/share/elasticsearch/config/elasticsearch.yml inside

the container as read only. The file is mounted as read only because the

container does not need to modify it, unlike with the second entry which has the

parameter rw to signify that. As the last volume the /etc/localtime file is

mounted to set the container’s time settings to match the host’s settings.

40

The handler file is rather simple:

1 ---
2

3 - name: Restart Elasticsearch
4 docker_container:
5 name: elasticsearch
6 restart: yes

When run, it uses the docker_container module to restart the Elasticsearch

container.

The commands and files referenced can be found in Appendices 8 and 8.

5.3.3 Redis

Since there was no special configuration created for Redis, a handler is not

needed. Only the task file was created:

$ mkdir -p roles/elk_redis/tasks
$ vim roles/elk_redis/tasks/main.yml

The file is broken into three tasks:

1 ---
2

3 - name: Set overcommit memory kernel parameter for Redis
4 sysctl:
5 name: vm.overcommit_memory
6 value: 1
7 sysctl_set: yes

Like with Elasticsearch, a kernel parameter is set for Redis as well. The

vm.overcommit_memory parameter is enabled as recommended and if it is not,

Redis’ background saving may not work due to the way it forks the process and

dumps the database (Redis 2017).

9 - name: Ensure Redis directory paths exist
10 file:
11 path: /srv/data/redis
12 state: directory
13 recurse: yes

Here the data directory for Redis’ background saving is created.

15 - name: Run Redis container
16 docker_container:
17 name: redis
18 image: redis:3.2-alpine
19 log_driver: json-file
20 log_options:

41

21 max-size: 10m
22 max-file: "5"
23 ports:
24 - 127.0.0.1:6379:6379/tcp
25 volumes:
26 - /srv/data/redis:/data:rw
27 - /etc/localtime:/etc/localtime:ro

And the container itself is created and started. This time a third party Registry

is not specified, so Docker will pull the image from the Docker Hub. The image is

an official Redis version 3.2 image that’s based on Alpine Linux. Logging options

are the same as with Elasticsearch but this time the port 6379, which is the

default Redis port, is bound to the host.

The commands and files referenced can be found in Appendices 8 and 8.

5.3.4 Logstash

Both Logstash instances are deployed from the same role, so only one role was

needed to do the job:

$ mkdir -p roles/elk_ls/{tasks,handlers}
$ vim roles/elk_ls/tasks/main.yml
$ vim roles/elk_ls/handlers/main.yml

Following is the task file:

1 ---
2

3 - name: Ensure Logstash directory paths exist
4 file:
5 path: "{{ item }}"
6 state: directory
7 recurse: yes
8 with_items:
9 - /srv/ssl/ls-cacher

10 - /srv/conf/ls-cacher
11 - /srv/conf/ls-parser
12 - /srv/conf/ls-parser-patterns

A simple loop to prepare all the directories for the configuration files for both

Logstash instances.

14 - name: Render Logstash cacher config
15 template:
16 src: "{{ item }}"
17 dest: "/srv/conf/ls-cacher/{{ item | basename |

regex_replace(’\\.j2$’, ’’) }}"↪→
18 with_fileglob: files/template/ls-cacher/*.conf.j2
19 notify: Restart Logstash cacher
20

21 - name: Render Logstash parser config
22 template:

42

23 src: "{{ item }}"
24 dest: "/srv/conf/ls-parser/{{ item | basename |

regex_replace(’\\.j2$’, ’’) }}"↪→
25 with_fileglob: files/template/ls-parser/*.conf.j2
26 notify: Restart Logstash parser

These two tasks are essentially the same, just with different paths.

with_fileglob acts much like with_items except that it can generate the list of

items to loop through itself, when given a file glob pattern.

Instead of the usual {{ item }}, the dest parameter is a bit more complicated.

basename and regex_replace are both Jinja2 filters in Ansible’s core and can be

used within Jinja2 syntax. For example when with_fileglob matched

files/template/ls-cacher/cacher.conf.j2, it passed it on as a string to the

Jinja2 filter. The string was then processed by basename, transforming it to

cacher.conf.j2 and passed to regex_replace, which replaced .j2 from the

end of the string with nothing, if found, so the end result in this case was

cacher.conf and the contents of the dest parameter were

/srv/conf/ls-cacher/cacher.conf.

28 - name: Copy Logstash cacher SSL files
29 copy: src={{ item }} dest=/srv/ssl/ls-cacher/
30 with_items:
31 - "files/ls-cacher/{{ http_hostname }}.key"
32 - "files/ls-cacher/{{ http_hostname }}.crt"
33 notify: Restart Logstash cacher

Fourth on the task list is the copying of the Logstash cacher SSL key and

certificate, with a notification being sent to Restart Logstash cacher.

35 - name: Copy Logstash parser patterns
36 copy: src={{ item }} dest=/srv/conf/ls-parser-patterns/
37 with_fileglob:
38 - files/ls-parser/patterns/*
39 notify: Restart Logstash parser

Here with_fileglob and notify are used again, this time to copy the custom

named patterns that were created in Chapter 5.2.4.

41 - name: Run Logstash containers
42 docker_container:
43 name: "{{ item.name }}"
44 image: docker.elastic.co/logstash/logstash:5.4.0
45 env:
46 LS_JAVA_OPTS: "-Xms256m -Xmx256m"
47 XPACK_MONITORING_ENABLED: "false"
48 log_driver: json-file
49 log_options:
50 max-size: 10m
51 max-file: "5"
52 links: "{{ item.links | default([]) }}"
53 ports: "{{ item.ports | default([]) }}"
54 volumes: "{{ item.volumes |

default([’/etc/localtime:/etc/localtime:ro’]) }}"↪→

43

The creation of the actual containers, only this time with a loop which is given a

list of dictionaries. Because the links and ports options only accept a list as

their parameter, a Jinja2 filter is used to default to an empty list ([]) in the case

item.links or item.ports are empty or not defined. Same applies to volumes,

except the default value will be a list with the /etc/localtime file being

mounted. This makes the item.name the only required parameter, and without

it the task would fail.

With the env option the Logstash instance’s Java heap size is set to 256

megabytes and to save from having to create a separate configuration file for a

single option, the X-Pack add-on was disabled here with the

XPACK_MONITORING_ENABLED environment variables set to "false". Much like

with max-file, the quotes are important here as well, because Logstash will case

sensitively only accept true or false and the YAML parser Ansible uses would

give it the value of False instead as that is the string representation of a Python

boolean set to false.

55 with_items:
56 - name: ls-cacher
57 links:
58 - redis
59 ports:
60 - 0.0.0.0:5000:5000/tcp
61 volumes:
62 - /srv/conf/ls-cacher:/usr/share/logstash/pipeline:ro
63 - /srv/ssl/ls-cacher:/ssl:ro
64 - /etc/localtime:/etc/localtime:ro
65 - name: ls-parser
66 links:
67 - redis
68 - elasticsearch
69 volumes:
70 - /srv/conf/ls-parser:/usr/share/logstash/pipeline:ro
71 - /srv/conf/ls-parser-patterns:/patterns:ro
72 - /etc/localtime:/etc/localtime:ro

The actual parameters for the docker_container task are defined here. Both

dictionaries have the name parameter set, so the task will not fail. As can be

seen, the ls-parser parameters are missing ports definitions but this would not

cause the task to fail because of the default([]) filter from above.

Because these containers have links to other containers, namely elasticsearch

and redis, those containers need to already exist and be running when these

containers are created, or else the task would fail.

1 ---
2

44

3 - name: Restart Logstash cacher
4 docker_container:
5 name: ls-cacher
6 restart: yes
7

8 - name: Restart Logstash parser
9 docker_container:

10 name: ls-parser
11 restart: yes

Both instances have their own notify handlers because was no need to restart

both if only the other one’s configuration had changed.

The commands and files referenced can be found in Appendices 8 and 8.

5.3.5 Kibana

Kibana’s file structure was created with the following commands:

$ mkdir -p roles/elk_kibana/{tasks,handlers}
$ vim roles/elk_kibana/tasks/main.yml
$ vim roles/elk_kibana/handlers/main.yml

The task file as follows:

1 ---
2

3 - name: Ensure Kibana directory paths exist
4 file:
5 path: /srv/conf/kibana
6 state: directory
7 recurse: yes

Only one directory is created this time, so there is no need for a loop.

9 - name: Render Kibana config
10 template:
11 src: files/template/kibana/kibana.yml.j2
12 dest: /srv/conf/kibana/kibana.yml
13 notify: Restart Kibana

Only one configuration file as well, and the Restart Kibana handler is notified

with notify.

15 - name: Run Kibana container
16 docker_container:
17 name: kibana
18 image: docker.elastic.co/kibana/kibana:5.4.0
19 log_driver: json-file
20 log_options:
21 max-size: 10m
22 max-file: "5"
23 links:
24 - elasticsearch
25 ports:
26 - 127.0.0.1:5601:5601/tcp
27 volumes:
28 - /srv/conf/kibana/kibana.yml:/usr/share/kibana/config/kibana.yml:ro
29 - /etc/localtime:/etc/localtime:ro

45

Most of this is the same as what the previously configured containers had, with

the exception of this container being linked to elasticsearch, which means this

container needs to be created after the Elasticsearch one. Also the port 5601 is

bound for local access only.

1 ---
2

3 - name: Restart Kibana
4 docker_container:
5 name: kibana
6 restart: yes

And the handler for restarting the kibana container when needed.

The commands and files referenced can be found in Appendices 8 and 8.

5.3.6 Nginx

Nginx role structure was created with these commands:

$ mkdir -p roles/elk_nginx/{tasks,handlers}
$ vim roles/elk_nginx/tasks/main.yml
$ vim roles/elk_nginx/handlers/main.yml
$ mkdir -p roles/logstash-forwarder-java/{tasks,handlers}

The role configuration with the following:

1 ---
2

3 - name: Ensure Nginx directory paths exist
4 file:
5 path: "{{ item }}"
6 state: directory
7 recurse: yes
8 with_items:
9 - /srv/conf/nginx

10 - /srv/ssl/nginx
11 - /srv/auth/nginx
12 - /srv/html

Using a loop to create the directories that are mounted in the Nginx container.

14 - name: Render Nginx config
15 template:
16 src: files/template/nginx/default.conf.j2
17 dest: /srv/conf/nginx/default.conf
18 notify: Restart Nginx
19

20 - name: Render Nginx index.html
21 template:
22 src: files/template/nginx/index.html.j2
23 dest: /srv/html/index.html

Since the web server config and the landing page HTML file are both Jinja2

templates, they are rendered using the template module.

46

25 - name: Copy Nginx SSL files
26 copy:
27 src: "{{ item }}"
28 dest: /srv/ssl/nginx/
29 with_fileglob:
30 - "files/nginx/{{ http_hostname }}.key"
31 - "files/nginx/{{ http_hostname }}.crt"
32 notify: Restart Nginx

Here the SSL key and certificate are copied over.

34 - name: Create Nginx Kibana htpasswd file
35 htpasswd:
36 name: "{{ item.user }}"
37 password: "{{ item.pass }}"
38 path: /srv/auth/nginx/kibana.htpasswd
39 with_items: "{{ kibana_config.users }}"
40 notify: Restart Nginx
41

42 - name: Create Nginx Elasticsearch htpasswd file
43 htpasswd:
44 name: "{{ item.user }}"
45 password: "{{ item.pass }}"
46 path: /srv/auth/nginx/elasticsearch.htpasswd
47 with_items: "{{ elasticsearch_config.users }}"
48 notify: Restart Nginx

These two tasks use the htpasswd module to generate the credential stores for

HTTP basic authentication. A list of dictionaries is passed to with_items which

loops through them, enabling the use of item.user and item.pass. These were

defined in the group_vars files in Chapter 5.2.1. By default the module uses the

apr_md5_crypt encryption scheme from Python’s passlib module (Red Hat

Inc. 2017).

50 - name: Run Nginx container
51 docker_container:
52 name: nginx
53 image: nginx:1.13-alpine
54 log_driver: json-file
55 log_options:
56 max-size: 10m
57 max-file: "5"
58 links:
59 - elasticsearch
60 - kibana
61 ports:
62 - 0.0.0.0:80:80/tcp
63 - 0.0.0.0:443:443/tcp
64 volumes:
65 - /srv/conf/nginx:/etc/nginx/conf.d:ro
66 - /srv/ssl/nginx:/ssl:ro
67 - /srv/auth/nginx:/auth:ro
68 - /srv/html:/usr/share/nginx/html:ro
69 - /etc/localtime:/etc/localtime:ro

Again when compared to the settings of the previously defined containers, the

image used is from Docker Hub and is the official Nginx image for version 1.13

based on Alpine Linux. As this container is linked to both elasticsearch and

47

kibana, it is necessary to create and start those containers before this one. The

default HTTP and HTTPS ports, 80 and 443 respectively, are exposed to every

network interface on the host, so that this container can be accessed from outside

the host machine. Finally, all the necessary files and directories are mounted into

various locations inside the container as read only, because there is no need for

the container to modify the contents of any of the files and directories.

1 ---
2

3 - name: Restart Nginx
4 docker_container:
5 name: nginx
6 restart: yes

Finally the handler for restarting the Nginx container when configuration

changes are deployed.

The commands and files referenced can be found in Appendices 8 and 8.

5.3.7 Logstash-forwarder-java

The role for logstash-forwarder-java was created with the following structure:

$ mkdir -p roles/logstash-forwarder-java/{tasks,handlers}
$ vim roles/logstash-forwarder-java/tasks/main.yml
$ vim roles/logstash-forwarder-java/handlers/main.yml

The task file creates the user for the wrapper to run as, copies all the relevant

files and installs the IBM JRE:

1 ---
2

3 - name: Create logshipper user
4 user: name=logshipper

Here the user module is used to create the user logshipper.

6 - name: Copy logstash-forwarder-java files
7 copy:
8 src: files/bin/logstash-forwarder-java/
9 dest: /opt/logstash-forwarder-java/

10 owner: logshipper
11 group: logshipper
12 notify: Restart logstash-forwarder-java
13

14 - name: Make wrapper.sh executable
15 file:
16 path: /opt/logstash-forwarder-java/bin/wrapper.sh
17 mode: "ug+x"
18

48

In these tasks the copy module is used to recursively copy the contents of

files/bin/logstash-forwarder-java/ to /opt/logstash-forwarder-java/

on the server, with logshipper as the owning user and group. The

Restart logstash-forwarder-java handler is notified in case this task causes

any changes on the system. After the files have been copied, the wrapper.sh

script is made executable.

19 - name: Render config.json
20 template:
21 src: files/template/logstash-forwarder-java/config.json.j2
22 dest: /opt/logstash-forwarder-java/config.json
23 owner: logshipper
24 group: logshipper
25 notify: Restart logstash-forwarder-java

The program’s configuration is rendered with this task, notifying

Restart logstash-forwarder-java if the configuration was updated.

27 - name: Create empty sincedb
28 copy:
29 dest: /opt/logstash-forwarder-java/sincedb.json
30 content: "[]"
31 force: no
32 owner: logshipper
33 group: logshipper
34 notify: Restart logstash-forwarder-java

An empty sincedb file is created because otherwise the forwarder would fail to

initialize properly, causing an exception being thrown when started.

36 - name: Copy Java CA KeyStore
37 copy:
38 src: "files/logstash-forwarder-java/{{ logstash_address }}.jks"
39 dest: /opt/logstash-forwarder-java/
40 owner: logshipper
41 group: logshipper
42 notify: Restart logstash-forwarder-java

This task copies over the Java KeyStore file created in Chapter 5.2.3.

44 - name: Check is IBM JRE java binary already exists
45 stat: path=/opt/logstash-forwarder-java/jre/bin/java
46 register: stat_java
47 changed_when: False

This task checks if the IBM JRE is already installed, by using the stat module

to check is the java binary file exists. It then uses register to create a variable

called stat_java which can be used in the later tasks in this role. Because stat

will always result in a change, changed_when is set to False which makes this

task to always return ok.

49

49 - block:
50 - name: Copy IBM JRE installer
51 copy:
52 dest: /opt/logstash-forwarder-java/
53 src: files/bin/ibm-java-jre-8.0-4.5-x86_64-archive.bin
54 owner: logshipper
55 group: logshipper
56 mode: "ug+x"

Here a block section is started, which means the tasks inside the block will only

be executed if the specified conditions are met. This is to save the trouble of

having to specify the wanted condition in every single task where it is needed.

Again, the copy module is used, but this time to copy the IBM JRE installer.

58 - name: Create IBM JRE installer response file
59 copy:
60 dest: /opt/logstash-forwarder-java/ibm_jre.properties
61 owner: logshipper
62 group: logshipper
63 content: |+
64 INSTALLER_UI=silent
65 LICENSE_ACCEPTED=TRUE
66 USER_INSTALL_DIR=/opt/logstash-forwarder-java/

The properties file for the installer is created, by using the blockinfile module

to write text into the ibm_jre.properties file instead of using a template. The

syntax block: |+ means that the text for the option is written properly with

each line being on their own lines in the output file, with leading and trailing

whitespace removed.

68 - name: Install IBM JRE
69 shell: ./ibm-java-jre-8.0-4.5-x86_64-archive.bin -f ibm_jre.properties
70 args:
71 chdir: /opt/logstash-forwarder-java/
72 creates: /opt/logstash-forwarder-java/jre/bin/java
73 notify: Restart logstash-forwarder-java
74

75 when: not stat_java.stat.exists

Finally as the last task the shell module is used to run the JRE installer, with

module args chdir and create, former of which will change to the

/opt/logstash-forwarder-java/ directory before running the command, and

the latter signifies that this shell command should create the file

/opt/logstash-forwarder-java/jre/bin/java and if it does not, the task

should fail.

To end the block section, a conditional using when checks if the variable

stat_java.stat.exists is set to False. This uses the registered stat_java

50

from above, and the stat.exists is output from the stat module itself. If the

stat_java.stat.exists variable is not False, this block will not be run which

means that the IBM JRE will not be installed because it already is.

1 ---
2

3 - name: Restart logstash-forwarder-java
4 shell: /opt/logstash-forwarder-java/bin/wrapper.sh restart

The handler called by one of the tasks will use the wrapper.sh script to restart

the program.

The command and files can be found in Appendices 8, 8 and 8.

5.3.8 Elastic Stack playbooks

As the method to separate different tasks with was chosen to be the usage of

roles, playbooks were required. To accommodate for both the production and

test environments, they both were to have their own separate playbooks:

$ vim deploy_elk_test.yml
$ vim deploy_elk_prod.yml

Following is the production playbook for calling the roles:

1 ---
2

3 - hosts: elk_prod
4 roles:
5 - { name: elk_deps, tags: deps }
6 - { name: elk_elasticsearch, tags: elasticsearch }
7 - { name: elk_redis, tags: redis }
8 - { name: elk_ls, tags: logstash }
9 - { name: elk_kibana, tags: kibana }

10 - { name: elk_nginx, tags: nginx }

Here with the specification of hosts: elk_prod, this playbook will only run

against the production group that was defined in the hosts file in Chapter 5.2.1.

In the playbook the roles are listed in the order they are executed. There is little

room in this configuration to change the order in which the containers are

deployed, due to dependencies between containers as described in Table 7.

51

Table 7: Ansible role deploy dependencies.

↓ deps on → elk deps elk elastics... elk redis elk ls elk kibana elk nginx

elk deps

elk elastics... X
elk redis X
elk ls X X X

elk kibana X X
elk nginx X X X

The main dependency being elk_deps, of course when its packages have already

been installed it is not needed any more. Same applies for dependencies to linked

containers, if the linked containers are running then there is no need to deploy

them along with the container that depends on them.

Both the commands and the playbook files can be found in Appendices 8, 8 and

8.

5.3.9 Logstash-forwarder-java playbooks

This playbook files were created as follows:

$ vim deploy_logshipper_test.yml
$ vim deploy_logshipper_prod.yml

The playbooks required for the deployment of logstash-forwarder-java are much

simpler than the ones for the Elastic Stack, calling only one role. Following is the

playbook for production:

1 ---
2

3 - hosts: servers_prod
4 roles:
5 - logstash-forwarder-java

The playbook will run the logstash-forwarder-java role on the servers

belonging in the server_prod group, which was defined in Chapter 5.2.1.

The commands and files for both environments can be found in Appendices 8, 8

and 8.

52

5.4 Deployment

5.4.1 Elastic Stack

The production environment was deployed with the following command:

$ ansible-playbook deploy_elk_prod.yml -u vagrant

And as can be seen on this truncated output from the command, the deployment

was successful:

SSH password:
SUDO password[defaults to SSH password]:

PLAY [elk_prod]

TASK [Gathering Facts]
ok: [elk_prod_node1]
...
...
...
RUNNING HANDLER [elk_nginx : Restart Nginx]
changed: [elk_prod_node1]

PLAY RECAP
elk_prod_node1 : ok=37 changed=35 unreachable=0 failed=0

Playbook run took 0 days, 0 hours, 2 minutes, 57 seconds

The commands used and the full output from the deployment for both

production and test can be found in Appendices 8, 8 and 8.

5.4.2 Logstash-forwarder-java

Logstash-forwarder-java was deployed on the production server with the

following command:

$ ansible-playbook deploy_logshipper_prod.yml -u vagrant

With the following output:

SSH password:
SUDO password[defaults to SSH password]:

PLAY [servers_prod]

TASK [Gathering Facts]
ok: [server_prod_node1]
...
...
...
RUNNING HANDLER [logstash-forwarder-java : Restart logstash-forwarder-java]
changed: [server_prod_node1]

PLAY RECAP
server_prod_node1 : ok=12 changed=10 unreachable=0 failed=0

Playbook run took 0 days, 0 hours, 0 minutes, 51 seconds

53

The deployment was successful, as seen in the above output.

The commands and full output for both production and test can be found in

Appendices 8, 8 and 8.

6 Verification

Because of the fact that both production and test environments are identical,

verification was done only on the production environment.

6.1 Redeployment with changed configuration

To verify that the notify calls defined in some of the role tasks are working, a

new user was added to the production users list:

$ vim group_vars/elk_prod.yml
users:
...
- user: newuser
pass: newpass098

And by running the playbook again, the only tasks that resulted in a change

were Create Nginx Kibana htpasswd file and

Create Nginx Elasticsearch htpasswd file, which notified the handler

Restart Nginx to restart the container:

SSH password:
SUDO password[defaults to SSH password]:

PLAY [elk_prod]
...
...
...
TASK [elk_nginx : Create Nginx Kibana htpasswd file]
ok: [elk_prod_node1] => (item={u’user’: u’produser’, u’pass’: u’pass456’})
ok: [elk_prod_node1] => (item={u’user’: u’admin’, u’pass’: u’adminerino456’})
changed: [elk_prod_node1] => (item={u’user’: u’newuser’, u’pass’:

u’newpass098’})↪→

TASK [elk_nginx : Create Nginx Elasticsearch htpasswd file]
ok: [elk_prod_node1] => (item={u’user’: u’produser’, u’pass’: u’pass456’})
ok: [elk_prod_node1] => (item={u’user’: u’admin’, u’pass’: u’adminerino456’})
changed: [elk_prod_node1] => (item={u’user’: u’newuser’, u’pass’:

u’newpass098’})↪→

TASK [elk_nginx : Run Nginx container]
ok: [elk_prod_node1]

RUNNING HANDLER [elk_nginx : Restart Nginx]
changed: [elk_prod_node1]

PLAY RECAP

54

elk_prod_node1 : ok=33 changed=3 unreachable=0 failed=0

Playbook run took 0 days, 0 hours, 0 minutes, 19 seconds

The full Ansible output can be found in Appendix 8.

6.2 Operating system

The target host’s operating system was verified with the following commands:

$ yum info epel-release libselinux-python python2-pip | grep -E "Name|Repo"
Name : docker-ce
Repo : installed
Name : epel-release
Repo : installed
Name : libselinux-python
Repo : installed
Name : python2-pip
Repo : installed
$ pip list | grep -E "(docker-py|passlib) "
docker-py (1.10.6)
passlib (1.7.1)

These are the yum and pip packages installed with the elk_deps role, configured

in Chapter 5.3.1.

$ sysctl vm.max_map_count
vm.max_map_count = 262144
$ sysctl vm.overcommit_memory
vm.overcommit_memory = 1

These kernel parameters were set in the Elasticsearch and Redis deployment

tasks configured in Chapters 5.3.2 and 5.3.3.

As can be seen from the above outputs, the container and software dependencies

were successfully applied.

6.3 Containers

Ansible does not keep track of whether the container actually stays up (as it is

not supposed to) so it might be a good idea to check that the containers are still

running after the deployment has completed. This was done by logging in to the

server running the containers, in this case elk-prod.example.com, and running

the following command:

55

$ docker ps -a --format ’{{.Names}} - {{.Status}}’
nginx - Up 9 minutes
kibana - Up 9 minutes
ls-parser - Up 9 minutes
ls-cacher - Up 9 minutes
redis - Up 9 minutes
elasticsearch - Up 9 minutes

And since all the containers had been up for over nine minutes, it was safe to

assume that there were no silent errors from the deployment.

By checking for ports instead of status:

$ docker ps -a --format ’{{.Names}} - {{.Ports}}’
nginx - 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp
kibana - 127.0.0.1:5601->5601/tcp
ls-parser - 5044/tcp, 9600/tcp
ls-cacher - 0.0.0.0:5000->5000/tcp, 5044/tcp, 9600/tcp
redis - 127.0.0.1:6379->6379/tcp
elasticsearch - 127.0.0.1:9200->9200/tcp, 9300/tcp

As it can be seen in the output, the configured ports 80, 443 and 5000 were

bound to the host’s network interfaces, as indicated by 0.0.0.0:80->80/tcp, for

example. Also as configured in Chapters 5.3.5 and 5.3.2 the Kibana,

Elasticsearch and Redis containers bound their 5601, 9200 and 6379 ports

respectively for local access.

With these port configurations, the web services were checked right in the

terminal as well:

$ curl -kL localhost
<h2>ELK - prod</h2>
 Kibana
 Elasticsearch

$ curl -kL localhost:5601
<script>var hashRoute = ’/kibana/app/kibana’;
var defaultRoute = ’/kibana/app/kibana’;

var hash = window.location.hash;
if (hash.length) {
window.location = hashRoute + hash;

} else {
window.location = defaultRoute;

}</script>

$ curl -kL localhost:9200
{
"name" : "prod-node1",
"cluster_name" : "prod-cluster1",
"cluster_uuid" : "Wv0MR_wcROKDV3ut36OEFA",
"version" : {
"number" : "5.4.0",
"build_hash" : "780f8c4",
"build_date" : "2017-04-28T17:43:27.229Z",
"build_snapshot" : false,
"lucene_version" : "6.5.0"

},
"tagline" : "You Know, for Search"

}

56

Redis was checked by using the redis-cli program inside the container with the

parameters info server:

$ docker exec redis redis-cli info server
Server
redis_version:3.2.9
redis_git_sha1:00000000
redis_git_dirty:0
redis_build_id:a185302eca11aed0
redis_mode:standalone
os:Linux 3.10.0-514.16.1.el7.x86_64 x86_64
arch_bits:64
multiplexing_api:epoll
gcc_version:6.2.1
process_id:1
run_id:e90529b01533f61a267193cf4962f5fbf9eb2a59
tcp_port:6379
uptime_in_seconds:1575
uptime_in_days:0
hz:10
lru_clock:2501064
executable:/data/redis-server
config_file:

6.4 Kibana frontend

The web frontend was verified by visiting the production environment at

http://elk-prod.example.com with a web browser. Figure 6 shows the landing

page (index.html) for the environment and it can be seen that the deployment of

the Nginx configuration was successful, as signified by the title of the page ”ELK

- prod”.

http://elk-prod.example.com

57

Figure 6: Nginx landing page.

By clicking the link to Kibana an authentication window asking for credentials to

the realm ”Kibana” appeared, as seen in Figure 7.

58

Figure 7: Kibana authentication window.

When the proper credentials were given, for example the username admin and

the password adminerino123, access to the Kibana frontend was granted,

verifying that the Kibana reverse proxy was working. Seen in Figure 8.

59

Figure 8: Kibana frontend.

However, to test the authentication properly, wrong credentials were also given

when trying to access Kibana. See Figure 9.

60

Figure 9: Kibana access forbidden for the wrong credentials.

Elasticsearch was accessed by going back to the frontpage and clicking the

Elasticsearch link. This verified that the Elasticsearch reverse proxy was working

as well, as can be seen in Figure 10.

61

Figure 10: Elasticsearch REST API index.

Elasticsearch’s landing page gave basic information about the node accessed,

such as the node and cluster names which as seen above are prod-node1 and

prod-cluster1 respectively, as configured in Chapter 5.2.2.

The proxy allowed direct access to Elasticsearch’s REST API and made it

possible to do simple queries in the browser, such as viewing the cluster’s health

as seen in Figure 11.

62

Figure 11: Elasticsearch cluster health.

6.5 Log pipeline

The log shipping and processing pipeline was verified by checking each

component separately:

$ tail -5 /opt/logstash-forwarder-java/logs/wrapper.log | cut -b 67-
INFO Forwarder - Trying to connect to elk-prod.example.com:5000
INFO LumberjackClient - Connected to elk-prod.example.com:5000
INFO LumberjackClient - Sending 218 events
INFO LumberjackClient - Sending 28 events
INFO LumberjackClient - Sending 481 events

Here the log file of logstash-forwarder-java was tailed, and as can be seen it was

sending events successfully. cut was used here to leave out the timestamp

information.

$ docker logs --tail=2 ls-cacher | cut -b 50-
[INFO][logstash.pipeline] Pipeline main started
[INFO][logstash.agent] Successfully started Logstash API endpoint

{:port=>9600}↪→

63

With the docker logs command the log file of the ls-cacher Logstash instance

was tailed to check if there were any errors. As the output does not have any

errors, it was safe to assume the events passed through. Again, cut was used to

leave out the timestamp.

$ docker exec redis redis-cli keys "*"

Checking the Redis queue was done by executing redis-cli within the container

with docker exec. Passing the keys command with the parameter "*" usually

makes Redis list all the keys that exist, such as logstash in this case, which

would mean that they have items in them. As the output for this command was

empty, there were no keys present which meant that the queue was empty and

the ls-parser Logstash instance pulled all the events successfully.

$ docker logs --tail=2 ls-parser | cut -b 26-
[INFO][logstash.pipeline] Pipeline main started
[INFO][logstash.agent] Successfully started Logstash API endpoint

{:port=>9600}↪→

Finally the last part of checking in things in the terminal was done by again

running the docker logs command, only this time for the ls-parser container.

Since there were no errors in the output, every event was parsed successfully.

Next to check the Elasticsearch’s end, Kibana was configured to use the

prod-logs-* index pattern to find the parsed events. This pattern comes from

the {{ env }}-logs-%{+YYYY.w} index pattern configured for Logstash in

Chapter 5.2.4. Configuring the index pattern for Kibana is shown in Figure 12.

64

Figure 12: Configuring Kibana index pattern.

After creating the index pattern, Kibana redirected to the overview page showing

all the fields and their options found for the pattern. This is show in Figure 13.

65

Figure 13: Viewing Kibana index pattern.

Kibana being able to display all the fields shows that the parsed data did indeed

exist in Elasticsearch, but the Discovery page was also checked, as show in Figure

14.

66

Figure 14: Kibana Discover page.

To test searching, a simple search query was made:

type: ihs AND bytes: [5000 TO *] which searched for all the HTTP server

documents where the size of the response was over 5000 bytes. This is shown in

Figure 15.

67

Figure 15: Searching for IHS response size in Kibana.

7 Kibana visualizations

For demonstrating the visualization side of Kibana, three very simple metric

visualizations were created to show the number of results for a given query.

These visualizations were labelled for easy recognition in the dashboard. The

queries were as follows:

• DB2 warning count: type: db2 AND loglevel: Warning

• HTTP request count (not images):

type: ihs AND NOT request: (*.gif, *.jpg, *.png)

• Number of WAS events from AppSrv01 SystemOut.log:

type: type: was AND tags: (AppSrv01, systemout)

68

Creation of the HTTP request count visualization is shown in Figure 16.

Figure 16: Creating a Kibana visualization for HTTP requests.

The dashboard showing all the three visualizations can be seen in Figure 17.

69

Figure 17: Kibana dashboard for statistics.

8 Discussion

While the result produced in the assignment is working, looking back there are

several improvement points that come to mind, e.g. with Ansible, instead of

storing the website credentials in plaintext, Ansible Vault could be used. Vault is

a tool that allows any file to be encrypted into a text file that can be then put in

version control, for example. Ansible recognizes the files encrypted with Vault

automatically, so the files would not even need to be decrypted on the disk but

would be decrypted by Ansible in runtime.

Another issue that in this implementation could be improved is parametrization,

almost every hardcoded value could and should be replaced by a reference to a

variable defined somewhere else. This would make the roles more flexible in the

sense that the roles themselves would not need to be modified in the event that

values such as the Java heap sizes, for example, would need to be increased.

70

Proper parametrization would also allow for the base role files to be put in a

generic version control repository for easy tracking and the variable files would

reside elsewhere.

Regarding Elasticsearch’s data types, in this implementation none of the number

fields were not actually stored as numbers in the index, including fields such as

bytes from the HTTP server access log parser. While these string fields could be

converted to numbers in Logstash’s configuration with the mutate plugin’s

convert option, an Elasticsearch index templates could be used instead to

simplify the process.

In the end the original objectives of the assignment were indeed reached. The

Elastic Stack and the deployment process produced were taken into use and

improved upon later and the stack is now processing several gigabytes of logs in a

day. The project was also a great learning experience of the benefits and quirks

of all the components, especially Ansible and Docker and how they can be made

to work together.

71

References

Apache Software Foundation. 2017. ‘About the Apache HTTP Server Project’.

Accessed 1/1/2017. Retrieved from

https://httpd.apache.org/ABOUT_APACHE.html.

Chhajed, Saurabh. 2015. Learning ELK Stack.

didfet. 2016. ‘logstash-forwarder-java’. Accessed 27/5/2017. Retrieved from

https://github.com/didfet/logstash-forwarder-

java/blob/master/README.md.

Docker Inc. 2017. ‘What is a Container’. Accessed 27/5/2017. Retrieved from

https://www.docker.com/what-container.

Elasticsearch BV. 2017. ‘Basic Concepts - Elasticsearch Reference’. Accessed

23/5/2017. Retrieved from https://www.elastic.co/guide/en/

elasticsearch/reference/5.4/_basic_concepts.html.

Elasticsearch BV. 2017. ‘Discover - Kibana User Guide’. Accessed 26/5/2017.

Retrieved from

https://www.elastic.co/guide/en/kibana/5.4/discover.html.

Elasticsearch BV. 2017. ‘Getting Started - Elasticsearch Reference’. Accessed

23/5/2017. Retrieved from https:

//www.elastic.co/guide/en/elasticsearch/reference/5.4/getting-

started.html.

Elasticsearch BV. 2017. ‘Introduction - Kibana User Guide’. Accessed 23/5/2017.

Retrieved from

https://www.elastic.co/guide/en/kibana/5.4/introduction.html.

Elasticsearch BV. 2017. ‘Logstash Introduction - Logstash Reference’. Accessed

23/5/2017. Retrieved from

https://www.elastic.co/guide/en/logstash/5.4/introduction.html.

Elasticsearch BV. 2017. ‘Logstash Reference’. Accessed 23/5/2017. Retrieved

from https://www.elastic.co/guide/en/logstash/5.4/index.html.

https://httpd.apache.org/ABOUT_APACHE.html
https://github.com/didfet/logstash-forwarder-java/blob/master/README.md
https://github.com/didfet/logstash-forwarder-java/blob/master/README.md
https://www.docker.com/what-container
https://www.elastic.co/guide/en/elasticsearch/reference/5.4/_basic_concepts.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.4/_basic_concepts.html
https://www.elastic.co/guide/en/kibana/5.4/discover.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.4/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.4/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.4/getting-started.html
https://www.elastic.co/guide/en/kibana/5.4/introduction.html
https://www.elastic.co/guide/en/logstash/5.4/introduction.html
https://www.elastic.co/guide/en/logstash/5.4/index.html

72

Elasticsearch BV. 2017. ‘Virtual memory - Elasticsearch Reference’. Accessed

26/5/2017. Retrieved from

https://www.elastic.co/guide/en/elasticsearch/reference/5.4/vm-

max-map-count.html.

Ewing, Court. 2016. ‘Kibana 5.0.0-alpha1 released’. Accessed 5/4/2016.

Retrieved from https://www.elastic.co/blog/kibana-5-0-0-alpha1.

Government Information Security Management Board. 2009. Lokiohje. Retrieved

from https://www.vahtiohje.fi/web/guest/3/2009-lokiohje.

IBM Inc. 2016. ‘Key differences from the Apache HTTP Server’. Accessed

18/12/2016. Retrieved from

https://www.ibm.com/support/knowledgecenter/SSEQTJ_8.5.5/com.

ibm.websphere.ihs.doc/ihs/cihs_changes.html.

IBM Inc. 2017. ‘IBM DB2 - Database software’. Accessed 27/5/2017. Retrieved

from https://www.ibm.com/analytics/us/en/technology/db2/.

IBM Inc. 2017. ‘WebSphere Application Server’. Accessed 27/5/2017. Retrieved

from http://www-03.ibm.com/software/products/en/appserv-was.

NGINX Inc. 2017. ‘What is NGINX?’ Accessed 23/5/2017. Retrieved from

https://www.nginx.com/resources/glossary/nginx/.

Red Hat Inc. 2017. ‘How Ansible Works’. Accessed 27/5/2017. Retrieved from

https://www.ansible.com/how-ansible-works.

Red Hat Inc. 2017. ‘htpasswd - Ansible Documentation’. Accessed 25/5/2017.

Retrieved from

http://docs.ansible.com/ansible/htpasswd_module.html.

Red Hat Inc. 2017. ‘Intro to Playbooks’. Accessed 27/5/2017. Retrieved from

http://docs.ansible.com/ansible/playbooks_intro.html.

Redis. 2017. ‘FAQ - Redis’. Accessed 25/5/2017. Retrieved from

https://redis.io/topics/faq.

Redis. 2017. ‘Introduction to Redis’. Accessed 28/5/2017. Retrieved from

https://redis.io/topics/introduction.

https://www.elastic.co/guide/en/elasticsearch/reference/5.4/vm-max-map-count.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.4/vm-max-map-count.html
https://www.elastic.co/blog/kibana-5-0-0-alpha1
https://www.vahtiohje.fi/web/guest/3/2009-lokiohje
https://www.ibm.com/support/knowledgecenter/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/cihs_changes.html
https://www.ibm.com/support/knowledgecenter/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/cihs_changes.html
https://www.ibm.com/analytics/us/en/technology/db2/
http://www-03.ibm.com/software/products/en/appserv-was
https://www.nginx.com/resources/glossary/nginx/
https://www.ansible.com/how-ansible-works
http://docs.ansible.com/ansible/htpasswd_module.html
http://docs.ansible.com/ansible/playbooks_intro.html
https://redis.io/topics/faq
https://redis.io/topics/introduction

73

Sleevi, Ryan. 2017. ‘Support for commonName matching in Certificates

(removed)’. Accessed 6/3/2017. Retrieved from

https://www.chromestatus.com/feature/4981025180483584.

Solteq Oyj. 2016. ‘Strategy and focus areas’. Accessed 23/5/2017. Retrieved from

https://www.solteq.com/en/investors/.

https://www.chromestatus.com/feature/4981025180483584
https://www.solteq.com/en/investors/

74

Appendices

Appendix 1 Ansible project directory structure

.
|-- ansible.cfg
|-- deploy_elk_prod.yml
|-- deploy_elk_test.yml
|-- deploy_logshipper_prod.yml
|-- deploy_logshipper_test.yml
|-- files
| |-- bin
| | |-- ibm-java-jre-8.0-4.5-x86_64-archive.bin
| | ‘-- logstash-forwarder-java
| | |-- bin
| | | |-- demoapp
| | | |-- testwrapper
| | | |-- wrapper
| | | ‘-- wrapper.sh
| | |-- conf
| | | |-- demoapp.conf
| | | ‘-- wrapper.conf
| | |-- doc
| | | |-- index.html
| | | |-- revisions.txt
| | | ‘-- wrapper-community-license-1.3.txt
| | |-- lib
| | | |-- commons-cli-1.2.jar
| | | |-- commons-io-2.2.jar
| | | |-- commons-lang-2.6.jar
| | | |-- hamcrest-core-1.3.jar
| | | |-- jackson-annotations-2.1.5.jar
| | | |-- jackson-core-2.1.5.jar
| | | |-- jackson-databind-2.1.5.jar
| | | |-- junit-4.11.jar
| | | |-- libwrapper.so
| | | |-- log4j-1.2.17.jar
| | | |-- wrapperdemo.jar
| | | |-- wrapper.jar
| | | ‘-- wrappertest.jar
| | |-- LICENSE.md
| | |-- logs
| | | ‘-- wrapper.log
| | |-- logstash-forwarder-java-0.2.4.jar
| | |-- README_de.txt
| | |-- README_en.txt
| | |-- README_es.txt
| | |-- README_ja.txt
| | |-- README.md
| | ‘-- src
| | |-- bin
| | | ‘-- sh.script.in
| | ‘-- conf
| | ‘-- wrapper.conf.in
| |-- logstash-forwarder-java
| | |-- elk-prod.example.com.jks
| | ‘-- elk-test.example.com.jks
| |-- ls-cacher
| | |-- elk-prod.example.com.crt
| | |-- elk-prod.example.com.key
| | |-- elk-test.example.com.crt
| | ‘-- elk-test.example.com.key
| |-- ls-parser
| | ‘-- patterns
| | ‘-- ibm
| |-- nginx
| | |-- elk-prod.example.com.crt
| | |-- elk-prod.example.com.key

75

| | |-- elk-test.example.com.crt
| | ‘-- elk-test.example.com.key
| ‘-- template
| |-- elasticsearch
| | ‘-- elasticsearch.yml.j2
| |-- kibana
| | ‘-- kibana.yml.j2
| |-- logstash-forwarder-java
| | ‘-- config.json.j2
| |-- ls-cacher
| | ‘-- cacher.conf.j2
| |-- ls-parser
| | ‘-- parser.conf.j2
| ‘-- nginx
| |-- default.conf.j2
| ‘-- index.html.j2
|-- group_vars
| |-- elk_prod.yml
| |-- elk_test.yml
| |-- servers_prod.yml
| ‘-- servers_test.yml
|-- hosts
‘-- roles

|-- elk_deps
| ‘-- tasks
| ‘-- main.yml
|-- elk_elasticsearch
| |-- handlers
| | ‘-- main.yml
| ‘-- tasks
| ‘-- main.yml
|-- elk_kibana
| |-- handlers
| | ‘-- main.yml
| ‘-- tasks
| ‘-- main.yml
|-- elk_ls
| |-- handlers
| | ‘-- main.yml
| ‘-- tasks
| ‘-- main.yml
|-- elk_nginx
| |-- handlers
| | ‘-- main.yml
| ‘-- tasks
| ‘-- main.yml
|-- elk_redis
| ‘-- tasks
| ‘-- main.yml
‘-- logstash-forwarder-java

|-- handlers
| ‘-- main.yml
‘-- tasks

‘-- main.yml

44 directories, 73 files

76

Appendix 2 Ansible installation and configuration

commands

Ansible installation:

$ apt update
$ apt show ansible | grep ^Version
Version: 2.0.0.2-2ubuntu1
$ apt install -y python python-pip libssl-dev libffi-dev sshpass
$ pip install ansible
$ ansible --version
ansible 2.3.0.0

Ansible and group configurations:

$ vim ansible.cfg
$ vim hosts
$ mkdir -p group_vars
$ vim group_vars/elk_prod.yml
$ vim group_vars/elk_test.yml
$ vim group_vars/elk.yml

Elasticsearch configuration:

$ mkdir -p files/template/elasticsearch
$ vim files/template/elasticsearch/elasticsearch.yml.j2

Logstash cacher configuration:

$ mkdir -p files/template/ls-cacher
$ vim files/template/ls-cacher/cacher.conf.j2

Logstash cacher SSL certificate generation for the production environment:

$ cd files/ls-cacher/
$ NAME=elk-prod.example.com
$ openssl req -newkey rsa:4096 -keyout $NAME.key \

-new -x509 -out $NAME.crt -days 3650 \
-nodes -subj "/C=FI/CN=$NAME"

Logstash cacher SSL certificate generation for the test environment:

$ cd files/ls-cacher/
$ NAME=elk-test.example.com
$ openssl req -newkey rsa:4096 -keyout $NAME.key \

-new -x509 -out $NAME.crt -days 3650 \
-nodes -subj "/C=FI/CN=$NAME"

Logstash cacher Java KeyStore generation for production:

$ cd files/
$ NAME=elk-prod.example.com
$ keytool -importcert -trustcacerts \

-file ls-cacher/$NAME.crt -alias ca \
-keystore logstash-forwarder-java/$NAME.jks \
-storepass changeit

77

Logstash cacher Java KeyStore generation for test:

$ cd files/
$ NAME=elk-test.example.com
$ keytool -importcert -trustcacerts \

-file ls-cacher/$NAME.crt -alias ca \
-keystore logstash-forwarder-java/$NAME.jks \
-storepass changeit

Logstash parser configuration:

$ mkdir -p files/ls-parser/patterns files/template/ls-parser
$ vim files/ls-parser/patterns/ibm
$ vim files/template/ls-parser/parser.conf.j2

Kibana configuration:

$ mkdir -p files/template/kibana
$ vim files/template/kibana/kibana.yml.j2

Nginx configuration:

$ mkdir -p files/nginx
$ mkdir -p files/template/nginx
$ vim files/template/nginx/default.conf.j2
$ vim files/template/nginx/index.html.j2

Nginx SSL certificate generation for the production environment:

$ cd files/nginx/
$ NAME=elk-prod.example.com
$ openssl req -newkey rsa:4096 -keyout $NAME.key \

-new -x509 -out $NAME.crt -days 3650 \
-nodes -subj "/C=FI/CN=$NAME" \
-extensions sAN -config <(awk -v name=$NAME \
’{print $0}
END{
print "[sAN]"
print "subjectAltName=DNS:"name
}’ /etc/pki/tls/openssl.cnf)

Nginx SSL certificate generation for the test environment:

$ cd files/nginx/
$ NAME=elk-test.example.com
$ openssl req -newkey rsa:4096 -keyout $NAME.key \

-new -x509 -out $NAME.crt -days 3650 \
-nodes -subj "/C=FI/CN=$NAME" \
-extensions sAN -config <(awk -v name=$NAME \
’{print $0}
END{
print "[sAN]"
print "subjectAltName=DNS:"name
}’ /etc/pki/tls/openssl.cnf)

Logstash-forwarder-java preparation:

78

$ mkdir files/bin/logstash-forwarder-java
$ cd files/bin/logstash-forwarder-java
$ wget

https://github.com/Sentido-Labs/logstash-forwarder-java/archive/master.zip↪→
$ unzip master.zip
$ cd logstash-forwarder-java-master/
$ apt install unzip maven openjdk-8-jdk
$ mvn package
$ unzip target/logstash-forwarder-java-0.2.4-bin.zip
$ cp -r logstash-forwarder-java-0.2.4/* ../
$ cd ..
$ wget https://wrapper.tanukisoftware.com/download/3.5.32/wrapper-linux-x86-64 c

-3.5.32.tar.gz↪→
$ tar -xzf wrapper-linux-x86-64-3.5.32.tar.gz
$ cp -r wrapper-linux-x86-64-3.5.32/* .
$ rm -r logstash-forwarder-java-master master.zip wrapper-linux-x86-64-3.5.32

wrapper-linux-x86-64-3.5.32.tar.gz↪→
$ cp src/conf/wrapper.conf.in conf/wrapper.conf
$ vim wrapper.conf
$ cp src/bin/sh.script.in bin/wrapper.sh
$ vim bin/wrapper.sh
$ perl -pi -e ’s/\@app\.(long\.)?name\@/logshipper/’ bin/wrapper.sh
$ perl -pi -e ’s/^#RUN_AS_USER=/RUN_AS_USER=logshipper/’ bin/wrapper.sh
$ mkdir -p files/template/logstash-forwarder-java
$ vim files/template/logstash-forwarder-java/config.json.j2

Ansible tasks configuration:

$ vim deploy_elk_test.yml
$ vim deploy_elk_prod.yml
$ mkdir -p roles/elk_deps/tasks
$ vim roles/elk_deps/tasks/main.yml
$ mkdir -p roles/elk_elasticsearch/{tasks,handlers}
$ vim roles/elk_elasticsearch/tasks/main.yml
$ vim roles/elk_elasticsearch/handlers/main.yml
$ mkdir -p roles/elk_redis/tasks
$ vim roles/elk_redis/tasks/main.yml
$ mkdir -p roles/elk_ls/{tasks,handlers}
$ vim roles/elk_ls/tasks/main.yml
$ vim roles/elk_ls/handlers/main.yml
$ mkdir -p roles/elk_kibana/{tasks,handlers}
$ vim roles/elk_kibana/tasks/main.yml
$ vim roles/elk_kibana/handlers/main.yml
$ mkdir -p roles/elk_nginx/{tasks,handlers}
$ vim roles/elk_nginx/tasks/main.yml
$ vim roles/elk_nginx/handlers/main.yml
$ mkdir -p roles/logstash-forwarder-java/{tasks,handlers}
$ vim roles/logstash-forwarder-java/tasks/main.yml
$ vim roles/logstash-forwarder-java/handlers/main.yml
$ vim deploy_logshipper_test.yml
$ vim deploy_logshipper_prod.yml

Ansible production deployment of Elastic Stack:

$ ansible-playbook deploy_elk_prod.yml -u vagrant

Ansible test deployment of Elastic Stack:

$ ansible-playbook deploy_elk_test.yml -u vagrant

Ansible production deployment of logstash-forwarder-java:

$ ansible-playbook deploy_logshipper_prod.yml -u vagrant

79

Ansible test deployment of logstash-forwarder-java:

$ ansible-playbook deploy_logshipper_test.yml -u vagrant

80

Appendix 3 File ansible.cfg

1 [defaults]
2 ask_pass = True
3 host_key_checking = False
4 inventory = ./hosts
5 log_path = ./ansible.log
6 callback_whitelist = timer,profile_task
7

8 [privilege_escalation]
9 become = True

10 become_ask_pass = True

81

Appendix 4 File hosts

1 [elk_prod]
2 elk_prod_node1 ansible_host=192.168.1.201 ansible_port=22
3

4 [elk_test]
5 elk_test_node1 ansible_host=192.168.1.202 ansible_port=22
6

7 [elk:children]
8 elk_prod
9 elk_test

10

11 [servers_prod]
12 server_prod_node1 ansible_host=192.168.1.203 ansible_port=22
13

14 [servers_test]
15 server_test_node1 ansible_host=192.168.1.204 ansible_port=22
16

17 [servers:children]
18 servers_prod
19 servers_test

82

Appendix 5 Files group vars/elk prod.yml and

group vars/elk test.yml

elk_prod.yml:

1 ---
2

3 env: prod
4 http_hostname: elk-{{ env }}.example.com
5

6 users:
7 - user: produser
8 pass: pass456
9 - user: admin

10 pass: adminerino456
11

12 xpack_settings:
13 security: "false"
14 monitoring: "false"
15 graph: "false"
16 watcher: "false"
17 reporting: "false"
18 ml: "false"
19

20 kibana_config:
21 users: "{{ users }}"
22 server_name: "{{ env }}-kibana1"
23 xpack: "{{ xpack_settings }}"
24

25 elasticsearch_config:
26 users: "{{ users }}"
27 cluster_name: "{{ env }}-cluster1"
28 node_name: "{{ env }}-node1"
29 xpack: "{{ xpack_settings }}"

elk_test.yml:

1 ---
2

3 env: test
4 http_hostname: elk-{{ env }}.example.com
5

6 users:
7 - user: testuser
8 pass: pass123
9 - user: admin

10 pass: admin123
11

12 xpack_settings:
13 security: "false"
14 monitoring: "false"
15 graph: "false"
16 watcher: "false"
17 reporting: "false"
18 ml: "false"
19

20 kibana_config:
21 users: "{{ users }}"
22 server_name: "{{ env }}-kibana1"
23 xpack: "{{ xpack_settings }}"
24

25 elasticsearch_config:
26 users: "{{ users }}"
27 cluster_name: "{{ env }}-cluster1"
28 node_name: "{{ env }}-node1"
29 xpack: "{{ xpack_settings }}"

83

Appendix 6 File files/template/elasticsearch/elastic-

search.yml.j2

1 network.host: 0.0.0.0
2

3 cluster.name: {{ elasticsearch_config.cluster_name }}
4 node.name: {{ elasticsearch_config.node_name }}
5

6 xpack.security.enabled: {{ elasticsearch_config.xpack.security }}
7 xpack.monitoring.enabled: {{ elasticsearch_config.xpack.monitoring }}
8 xpack.ml.enabled: {{ elasticsearch_config.xpack.ml }}

84

Appendix 7 File files/template/ls-cacher/cacher.conf.j2

1 input {
2 lumberjack {
3 port => 5000
4 ssl_certificate => "/ssl/{{ http_hostname }}.crt"
5 ssl_key => "/ssl/{{ http_hostname }}.key"
6 }
7 }
8

9 output {
10 redis {
11 host => "redis:6379"
12 data_type => "list"
13 key => "logstash"
14 codec => "json"
15 }
16 }

85

Appendix 8 File files/template/ls-parser/parser.conf.j2

1 input {
2 redis {
3 host => "redis"
4 data_type => "list"
5 key => "logstash"
6 codec => "json"
7 }
8 }
9

10 filter {
11 mutate {
12 strip => "message"
13 remove_field => ["offset", "line"]
14 split => { "tags" => "," }
15 }
16

17 if ! [message] {
18 drop {}
19 }
20

21 grok {
22 patterns_dir => ["/patterns"]
23 match => { "message" => [
24 "^%{COMMONAPACHELOG}",
25 "(?m)\[%{WAS_DATETIME:timestamp}\]%{SPACE}%{BASE16NUM:thread}%{SPAC c

E}%{WORD:shortname}%{SPACE}%{WORD:loglevel}%{SPACE}%{GREEDYDAT c
A:message2}",

↪→
↪→

26 "(?m)%{DB2DIAG_TIMESTAMP:timestamp}%{SPACE}%{NOTSPACE:id}%{SPACE}LE c
VEL:%{SPACE}%{DATA:loglevel}%{SPACE}PID%{SPACE}:%{SPACE}%{INT: c
pid}%{SPACE}TID%{SPACE}:%{SPACE}%{INT:tid}%{SPACE}PROC%{SPACE} c
:%{SPACE}%{DATA:proc}%{SPACE}INSTANCE%{SPACE}:%{SPACE}%{NOTSPA c
CE:instance}%{SPACE}NODE%{SPACE}:%{SPACE}%{INT:node}%{SPACE}HO c
STNAME%{SPACE}:%{SPACE}%{NOTSPACE:hostname}%{SPACE}%{GREEDYDAT c
A:message2}"

↪→
↪→
↪→
↪→
↪→
↪→

27]}
28 }
29

30 if [type] == "db2" {
31 ruby {
32 code => "event.set(’timestamp’, event.get(’timestamp’)[0..-5] + ’

+%02d00’ % (event.get(’timezone’).to_i / 60))"↪→
33 }
34 mutate {
35 remove_field => ["timezone"]
36 }
37 }
38

39 if [message2] {
40 mutate {
41 replace => { "message" => "%{message2}" }
42 remove_field => ["message2"]
43 }
44 }
45

46 mutate {
47 gsub => ["timestamp", "EE(S|D)T", "+0300"]
48 }
49

50 date {
51 match => ["timestamp",
52 "dd/MMM/yyyy:HH:mm:ss Z",
53 "M/d/yy HH:mm:ss:SSS z",
54 "M.d.yy HH:mm:ss:SSS z",
55 "M/d/yy HH:mm:ss:SSS Z",
56 "M.d.yy HH:mm:ss:SSS Z",
57 "yyyy-MM-dd-HH.mm.ss.SSSSSS Z"
58]

86

59 }
60 }
61

62 output {
63 elasticsearch {
64 hosts => "elasticsearch:9200"
65 index => "{{ env }}-logs-%{+YYYY.w}"
66 }
67

68 if "_grokparsefailure" in [tags] or "_rubyexception" in [tags] or
"_dateparsefailure" in [tags] {↪→

69 stdout { codec => rubydebug }
70 }
71 }

87

Appendix 9 File files/template/kibana/kibana.yml.j2

1 server.host: "0.0.0.0"
2 server.name: "{{ kibana_config.server_name }}"
3 server.basePath: "/kibana"
4

5 elasticsearch.url: "http://elasticsearch:9200"
6 elasticsearch.requestTimeout: 90000
7

8 xpack.security.enabled: {{ kibana_config.xpack.security }}
9 xpack.monitoring.enabled: {{ kibana_config.xpack.monitoring }}

10 xpack.graph.enabled: {{ kibana_config.xpack.graph }}
11 xpack.watcher.enabled: {{ kibana_config.xpack.watcher }}
12 xpack.reporting.enabled: {{ kibana_config.xpack.reporting }}
13 xpack.ml.enabled: {{ kibana_config.xpack.ml }}

88

Appendix 10 File files/template/nginx/default.conf.j2

1 server {
2 listen 80 default_server;
3 server_name {{ http_hostname }};
4 return 301 https://$server_name$request_uri;
5 }
6

7 server {
8 listen 443 default_server ssl http2;
9 server_name {{ http_hostname }};

10

11 ssl_certificate /ssl/{{ http_hostname }}.crt;
12 ssl_certificate_key /ssl/{{ http_hostname }}.key;
13

14 location / {
15 root /usr/share/nginx/html;
16 index index.html;
17 }
18

19 location ~ ^/(kibana|elasticsearch)$ {
20 return 301 https://$server_name$request_uri/;
21 }
22

23 location ~ ^/kibana/.*$ {
24 rewrite /kibana/(.*) /$1 break;
25 proxy_pass http://kibana:5601;
26 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
27 proxy_buffering off;
28

29 auth_basic "Kibana";
30 auth_basic_user_file /auth/kibana.htpasswd;
31 }
32

33 location ~ ^/elasticsearch/.*$ {
34 rewrite /elasticsearch/(.*) /$1 break;
35 proxy_pass http://elasticsearch:9200;
36 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
37 proxy_buffering off;
38

39 auth_basic "Elasticsearch";
40 auth_basic_user_file /auth/elasticsearch.htpasswd;
41 }
42 }

89

Appendix 11 File files/template/nginx/index.html.j2

1 <h2>ELK - {{ env }}</h2>
2 Kibana
3 Elasticsearch

90

Appendix 12 File files/template/logstash-forwarder-

java/config.json.j2

1 { "network": {
2 "servers": ["{{ logstash_address }}:{{ logstash_port }}"],
3 "timeout": 30,
4 "ssl ca": "/opt/logstash-forwarder-java/{{ logstash_address }}.jks"
5 }, "files": [
6 { "paths": ["/opt/IBM/WebSphere/AppServer/profiels/AppSrv01/server1/ c

SystemOut.log"
],

↪→
↪→

7 "fields": { "type": "was",
8 "tags": "AppSrv01,server1,systemout" },
9 "multiline": { "pattern": "(^\\[)",

10 "negate": "true", "what": "Previous" } },
11 { "paths": ["/opt/IBM/HTTPServer/logs/access_log"],
12 "fields": { "type": "ihs",
13 "tags": "accesslog" } },
14 { "paths": ["/home/db2inst1/sqllib/db2dump/db2diag*log"],
15 "fields": { "type": "db2",
16 "tags": "diaglog" },
17 "multiline": { "pattern": "^(?>\\d\\d){1,2}-(?:0?[1-9]|1[0-9])-",
18 "negate": "true", "what": "Previous" } }] }

91

Appendix 13 File roles/elk deps/tasks/main.yml

1 ---
2

3 - name: Enable the EPEL repository and install Python SELinux support
4 yum: name={{ item }}
5 with_items:
6 - epel-release
7 - libselinux-python
8

9 - name: Install PIP
10 yum: name=python-pip
11

12 - name: Install Python docker-py and passlib modules
13 pip: name={{ item }}
14 with_items:
15 - docker-py
16 - passlib
17

18 - name: Install Docker CE dependencies
19 yum: name={{ item }}
20 with_items:
21 - device-mapper-persistent-data
22 - lvm2
23

24 - name: Enable Docker CE repository
25 get_url:
26 url: https://download.docker.com/linux/centos/docker-ce.repo
27 dest: /etc/yum.repos.d/docker-ce.repo
28

29 - name: Install latest Docker CE
30 yum: name=docker-ce
31

32 - name: Enable and start docker
33 systemd: name=docker state=started enabled=yes daemon_reload=yes

92

Appendix 14 File roles/elk elasticsearch/tasks/main.yml

1 ---
2

3 - name: Set mmap count kernel parameter for Elasticsearch
4 sysctl:
5 name: vm.max_map_count
6 value: 262144
7 sysctl_set: yes
8

9 - name: Ensure Elasticsearch directory paths exist
10 file:
11 path: "{{ item }}"
12 state: directory
13 recurse: yes
14 with_items:
15 - /srv/conf/elasticsearch
16 - /srv/data/elasticsearch
17

18 - name: Give Elasticsearch data directory uid/gid 1000 ownership
19 file:
20 path: /srv/data/elasticsearch
21 state: directory
22 recurse: yes
23 owner: 1000
24 group: 1000
25

26 - name: Render Elasticsearch config
27 template:
28 src: files/template/elasticsearch/elasticsearch.yml.j2
29 dest: /srv/conf/elasticsearch/elasticsearch.yml
30 notify: Restart Elasticsearch
31

32 - name: Run Elasticsearch container
33 docker_container:
34 name: elasticsearch
35 image: docker.elastic.co/elasticsearch/elasticsearch:5.4.0
36 env:
37 ES_JAVA_OPTS: "-Xms1g -Xmx1g"
38 log_driver: json-file
39 log_options:
40 max-size: 10m
41 max-file: "5"
42 ports:
43 - 127.0.0.1:9200:9200/tcp
44 volumes:
45 - /srv/conf/elasticsearch/elasticsearch.yml:/usr/share/elasticsearch/ c

config/elasticsearch.yml:ro↪→
46 - /srv/data/elasticsearch:/usr/share/elasticsearch/data:rw
47 - /etc/localtime:/etc/localtime:ro

93

Appendix 15 File

roles/elk elasticsearch/handlers/main.yml

1 ---
2

3 - name: Restart Elasticsearch
4 docker_container:
5 name: elasticsearch
6 restart: yes

94

Appendix 16 File roles/elk redis/tasks/main.yml

1 ---
2

3 - name: Set overcommit memory kernel parameter for Redis
4 sysctl:
5 name: vm.overcommit_memory
6 value: 1
7 sysctl_set: yes
8

9 - name: Ensure Redis directory paths exist
10 file:
11 path: /srv/data/redis
12 state: directory
13 recurse: yes
14

15 - name: Run Redis container
16 docker_container:
17 name: redis
18 image: redis:3.2-alpine
19 log_driver: json-file
20 log_options:
21 max-size: 10m
22 max-file: "5"
23 ports:
24 - 127.0.0.1:6379:6379/tcp
25 volumes:
26 - /srv/data/redis:/data:rw
27 - /etc/localtime:/etc/localtime:ro

95

Appendix 17 File roles/elk ls/tasks/main.yml

1 ---
2

3 - name: Ensure Logstash directory paths exist
4 file:
5 path: "{{ item }}"
6 state: directory
7 recurse: yes
8 with_items:
9 - /srv/ssl/ls-cacher

10 - /srv/conf/ls-cacher
11 - /srv/conf/ls-parser
12 - /srv/conf/ls-parser-patterns
13

14 - name: Render Logstash cacher config
15 template:
16 src: "{{ item }}"
17 dest: "/srv/conf/ls-cacher/{{ item | basename |

regex_replace(’\\.j2$’, ’’) }}"↪→
18 with_fileglob: files/template/ls-cacher/*.conf.j2
19 notify: Restart Logstash cacher
20

21 - name: Render Logstash parser config
22 template:
23 src: "{{ item }}"
24 dest: "/srv/conf/ls-parser/{{ item | basename |

regex_replace(’\\.j2$’, ’’) }}"↪→
25 with_fileglob: files/template/ls-parser/*.conf.j2
26 notify: Restart Logstash parser
27

28 - name: Copy Logstash cacher SSL files
29 copy: src={{ item }} dest=/srv/ssl/ls-cacher/
30 with_items:
31 - "files/ls-cacher/{{ http_hostname }}.key"
32 - "files/ls-cacher/{{ http_hostname }}.crt"
33 notify: Restart Logstash cacher
34

35 - name: Copy Logstash parser patterns
36 copy: src={{ item }} dest=/srv/conf/ls-parser-patterns/
37 with_fileglob:
38 - files/ls-parser/patterns/*
39 notify: Restart Logstash parser
40

41 - name: Run Logstash containers
42 docker_container:
43 name: "{{ item.name }}"
44 image: docker.elastic.co/logstash/logstash:5.4.0
45 env:
46 LS_JAVA_OPTS: "-Xms256m -Xmx256m"
47 XPACK_MONITORING_ENABLED: "false"
48 log_driver: json-file
49 log_options:
50 max-size: 10m
51 max-file: "5"
52 links: "{{ item.links | default([]) }}"
53 ports: "{{ item.ports | default([]) }}"
54 volumes: "{{ item.volumes |

default([’/etc/localtime:/etc/localtime:ro’]) }}"↪→
55 with_items:
56 - name: ls-cacher
57 links:
58 - redis
59 ports:
60 - 0.0.0.0:5000:5000/tcp
61 volumes:
62 - /srv/conf/ls-cacher:/usr/share/logstash/pipeline:ro
63 - /srv/ssl/ls-cacher:/ssl:ro
64 - /etc/localtime:/etc/localtime:ro
65 - name: ls-parser
66 links:

96

67 - redis
68 - elasticsearch
69 volumes:
70 - /srv/conf/ls-parser:/usr/share/logstash/pipeline:ro
71 - /srv/conf/ls-parser-patterns:/patterns:ro
72 - /etc/localtime:/etc/localtime:ro

97

Appendix 18 File roles/elk ls/handlers/main.yml

1 ---
2

3 - name: Restart Logstash cacher
4 docker_container:
5 name: ls-cacher
6 restart: yes
7

8 - name: Restart Logstash parser
9 docker_container:

10 name: ls-parser
11 restart: yes

98

Appendix 19 File roles/elk kibana/tasks/main.yml

1 ---
2

3 - name: Ensure Kibana directory paths exist
4 file:
5 path: /srv/conf/kibana
6 state: directory
7 recurse: yes
8

9 - name: Render Kibana config
10 template:
11 src: files/template/kibana/kibana.yml.j2
12 dest: /srv/conf/kibana/kibana.yml
13 notify: Restart Kibana
14

15 - name: Run Kibana container
16 docker_container:
17 name: kibana
18 image: docker.elastic.co/kibana/kibana:5.4.0
19 log_driver: json-file
20 log_options:
21 max-size: 10m
22 max-file: "5"
23 links:
24 - elasticsearch
25 ports:
26 - 127.0.0.1:5601:5601/tcp
27 volumes:
28 - /srv/conf/kibana/kibana.yml:/usr/share/kibana/config/kibana.yml:ro
29 - /etc/localtime:/etc/localtime:ro

99

Appendix 20 File roles/elk kibana/handlers/main.yml

1 ---
2

3 - name: Restart Kibana
4 docker_container:
5 name: kibana
6 restart: yes

100

Appendix 21 File roles/elk nginx/tasks/main.yml

1 ---
2

3 - name: Ensure Nginx directory paths exist
4 file:
5 path: "{{ item }}"
6 state: directory
7 recurse: yes
8 with_items:
9 - /srv/conf/nginx

10 - /srv/ssl/nginx
11 - /srv/auth/nginx
12 - /srv/html
13

14 - name: Render Nginx config
15 template:
16 src: files/template/nginx/default.conf.j2
17 dest: /srv/conf/nginx/default.conf
18 notify: Restart Nginx
19

20 - name: Render Nginx index.html
21 template:
22 src: files/template/nginx/index.html.j2
23 dest: /srv/html/index.html
24

25 - name: Copy Nginx SSL files
26 copy:
27 src: "{{ item }}"
28 dest: /srv/ssl/nginx/
29 with_fileglob:
30 - "files/nginx/{{ http_hostname }}.key"
31 - "files/nginx/{{ http_hostname }}.crt"
32 notify: Restart Nginx
33

34 - name: Create Nginx Kibana htpasswd file
35 htpasswd:
36 name: "{{ item.user }}"
37 password: "{{ item.pass }}"
38 path: /srv/auth/nginx/kibana.htpasswd
39 with_items: "{{ kibana_config.users }}"
40 notify: Restart Nginx
41

42 - name: Create Nginx Elasticsearch htpasswd file
43 htpasswd:
44 name: "{{ item.user }}"
45 password: "{{ item.pass }}"
46 path: /srv/auth/nginx/elasticsearch.htpasswd
47 with_items: "{{ elasticsearch_config.users }}"
48 notify: Restart Nginx
49

50 - name: Run Nginx container
51 docker_container:
52 name: nginx
53 image: nginx:1.13-alpine
54 log_driver: json-file
55 log_options:
56 max-size: 10m
57 max-file: "5"
58 links:
59 - elasticsearch
60 - kibana
61 ports:
62 - 0.0.0.0:80:80/tcp
63 - 0.0.0.0:443:443/tcp
64 volumes:
65 - /srv/conf/nginx:/etc/nginx/conf.d:ro
66 - /srv/ssl/nginx:/ssl:ro
67 - /srv/auth/nginx:/auth:ro
68 - /srv/html:/usr/share/nginx/html:ro
69 - /etc/localtime:/etc/localtime:ro

101

Appendix 22 File roles/elk nginx/handlers/main.yml

1 ---
2

3 - name: Restart Nginx
4 docker_container:
5 name: nginx
6 restart: yes

102

Appendix 23 File roles/logstash-forwarder-

java/tasks/main.yml

1 ---
2

3 - name: Create logshipper user
4 user: name=logshipper
5

6 - name: Copy logstash-forwarder-java files
7 copy:
8 src: files/bin/logstash-forwarder-java/
9 dest: /opt/logstash-forwarder-java/

10 owner: logshipper
11 group: logshipper
12 notify: Restart logstash-forwarder-java
13

14 - name: Make wrapper.sh executable
15 file:
16 path: /opt/logstash-forwarder-java/bin/wrapper.sh
17 mode: "ug+x"
18

19 - name: Render config.json
20 template:
21 src: files/template/logstash-forwarder-java/config.json.j2
22 dest: /opt/logstash-forwarder-java/config.json
23 owner: logshipper
24 group: logshipper
25 notify: Restart logstash-forwarder-java
26

27 - name: Create empty sincedb
28 copy:
29 dest: /opt/logstash-forwarder-java/sincedb.json
30 content: "[]"
31 force: no
32 owner: logshipper
33 group: logshipper
34 notify: Restart logstash-forwarder-java
35

36 - name: Copy Java CA KeyStore
37 copy:
38 src: "files/logstash-forwarder-java/{{ logstash_address }}.jks"
39 dest: /opt/logstash-forwarder-java/
40 owner: logshipper
41 group: logshipper
42 notify: Restart logstash-forwarder-java
43

44 - name: Check is IBM JRE java binary already exists
45 stat: path=/opt/logstash-forwarder-java/jre/bin/java
46 register: stat_java
47 changed_when: False
48

49 - block:
50 - name: Copy IBM JRE installer
51 copy:
52 dest: /opt/logstash-forwarder-java/
53 src: files/bin/ibm-java-jre-8.0-4.5-x86_64-archive.bin
54 owner: logshipper
55 group: logshipper
56 mode: "ug+x"
57

58 - name: Create IBM JRE installer response file
59 copy:
60 dest: /opt/logstash-forwarder-java/ibm_jre.properties
61 owner: logshipper
62 group: logshipper
63 content: |+
64 INSTALLER_UI=silent
65 LICENSE_ACCEPTED=TRUE
66 USER_INSTALL_DIR=/opt/logstash-forwarder-java/

103

67

68 - name: Install IBM JRE
69 shell: ./ibm-java-jre-8.0-4.5-x86_64-archive.bin -f ibm_jre.properties
70 args:
71 chdir: /opt/logstash-forwarder-java/
72 creates: /opt/logstash-forwarder-java/jre/bin/java
73 notify: Restart logstash-forwarder-java
74

75 when: not stat_java.stat.exists

104

Appendix 24 File roles/logstash-forwarder-

java/handlers/main.yml

1 ---
2

3 - name: Restart logstash-forwarder-java
4 shell: /opt/logstash-forwarder-java/bin/wrapper.sh restart

105

Appendix 25 File deploy elk prod.yml

1 ---
2

3 - hosts: elk_prod
4 roles:
5 - { name: elk_deps, tags: deps }
6 - { name: elk_elasticsearch, tags: elasticsearch }
7 - { name: elk_redis, tags: redis }
8 - { name: elk_ls, tags: logstash }
9 - { name: elk_kibana, tags: kibana }

10 - { name: elk_nginx, tags: nginx }

106

Appendix 26 File deploy elk test.yml

1 ---
2

3 - hosts: elk_test
4 roles:
5 - { name: elk_deps, tags: deps }
6 - { name: elk_elasticsearch, tags: elasticsearch }
7 - { name: elk_redis, tags: redis }
8 - { name: elk_ls, tags: logstash }
9 - { name: elk_kibana, tags: kibana }

10 - { name: elk_nginx, tags: nginx }

107

Appendix 27 File deploy logshipper prod.yml

1 ---
2

3 - hosts: servers_prod
4 roles:
5 - logstash-forwarder-java

108

Appendix 28 File deploy logshipper test.yml

1 ---
2

3 - hosts: servers_test
4 roles:
5 - logstash-forwarder-java

109

Appendix 29 Ansible output for production environment

deployment

The output has been stripped from all the asterisks which were making lines too

long.

SSH password:
SUDO password[defaults to SSH password]:

PLAY [elk_prod]

TASK [Gathering Facts]
ok: [elk_prod_node1]

TASK [elk_deps : Enable the EPEL repository and install Python SELinux support]
changed: [elk_prod_node1] => (item=[u’epel-release’, u’libselinux-python’])

TASK [elk_deps : Install PIP]
changed: [elk_prod_node1]

TASK [elk_deps : Install Python docker-py and passlib modules]
changed: [elk_prod_node1] => (item=docker-py)
changed: [elk_prod_node1] => (item=passlib)

TASK [elk_deps : Install Docker CE dependencies]
ok: [elk_prod_node1] => (item=[u’device-mapper-persistent-data’, u’lvm2’])

TASK [elk_deps : Enable Docker CE repository]
changed: [elk_prod_node1]

TASK [elk_deps : Install latest Docker CE]
changed: [elk_prod_node1]

TASK [elk_deps : Enable and start docker]
changed: [elk_prod_node1]

TASK [elk_elasticsearch : Set mmap count kernel parameter for Elasticsearch]
changed: [elk_prod_node1]

TASK [elk_elasticsearch : Ensure Elasticsearch directory paths exist]
changed: [elk_prod_node1] => (item=/srv/conf/elasticsearch)
changed: [elk_prod_node1] => (item=/srv/data/elasticsearch)

TASK [elk_elasticsearch : Give Elasticsearch data directory uid/gid 1000
ownership]↪→

changed: [elk_prod_node1]

TASK [elk_elasticsearch : Render Elasticsearch config]
changed: [elk_prod_node1]

TASK [elk_elasticsearch : Run Elasticsearch container]
changed: [elk_prod_node1]

TASK [elk_redis : Set overcommit memory kernel parameter for Redis]
changed: [elk_prod_node1]

TASK [elk_redis : Ensure Redis directory paths exist]
changed: [elk_prod_node1]

TASK [elk_redis : Run Redis container]
changed: [elk_prod_node1]

TASK [elk_ls : Ensure Logstash directory paths exist]
changed: [elk_prod_node1] => (item=/srv/ssl/ls-cacher)
changed: [elk_prod_node1] => (item=/srv/conf/ls-cacher)
changed: [elk_prod_node1] => (item=/srv/conf/ls-parser)
changed: [elk_prod_node1] => (item=/srv/conf/ls-parser-patterns)

110

TASK [elk_ls : Render Logstash cacher config]
changed: [elk_prod_node1] =>

(item=/home/ubuntu/elk/files/template/ls-cacher/cacher.conf.j2)↪→

TASK [elk_ls : Render Logstash parser config]
changed: [elk_prod_node1] =>

(item=/home/ubuntu/elk/files/template/ls-parser/parser.conf.j2)↪→

TASK [elk_ls : Copy Logstash cacher SSL files]
changed: [elk_prod_node1] => (item=files/ls-cacher/elk-prod.example.com.key)
changed: [elk_prod_node1] => (item=files/ls-cacher/elk-prod.example.com.crt)

TASK [elk_ls : Copy Logstash parser patterns]
changed: [elk_prod_node1] =>

(item=/home/ubuntu/elk/files/ls-parser/patterns/ibm)↪→

TASK [elk_ls : Run Logstash containers]
changed: [elk_prod_node1] => (item={u’volumes’: [u’/srv/conf/ls-cacher:/usr/sh c

are/logstash/pipeline:ro’, u’/srv/ssl/ls-cacher:/ssl:ro’,
u’/etc/localtime:/etc/localtime:ro’], u’name’: u’ls-cacher’, u’links’:
[u’redis’], u’ports’: [u’0.0.0.0:5000:5000/tcp’]})

↪→
↪→
↪→
changed: [elk_prod_node1] => (item={u’volumes’: [u’/srv/conf/ls-parser:/usr/sh c

are/logstash/pipeline:ro’, u’/srv/conf/ls-parser-patterns:/patterns:ro’,
u’/etc/localtime:/etc/localtime:ro’], u’name’: u’ls-parser’, u’links’:
[u’redis’, u’elasticsearch’]})

↪→
↪→
↪→

TASK [elk_kibana : Ensure Kibana directory paths exist]
changed: [elk_prod_node1]

TASK [elk_kibana : Render Kibana config]
changed: [elk_prod_node1]

TASK [elk_kibana : Run Kibana container]
changed: [elk_prod_node1]

TASK [elk_nginx : Ensure Nginx directory paths exist]
changed: [elk_prod_node1] => (item=/srv/conf/nginx)
changed: [elk_prod_node1] => (item=/srv/ssl/nginx)
changed: [elk_prod_node1] => (item=/srv/auth/nginx)
changed: [elk_prod_node1] => (item=/srv/html)

TASK [elk_nginx : Render Nginx config]
changed: [elk_prod_node1]

TASK [elk_nginx : Render Nginx index.html]
changed: [elk_prod_node1]

TASK [elk_nginx : Copy Nginx SSL files]
changed: [elk_prod_node1] =>

(item=/home/ubuntu/elk/files/nginx/elk-prod.example.com.key)↪→
changed: [elk_prod_node1] =>

(item=/home/ubuntu/elk/files/nginx/elk-prod.example.com.crt)↪→

TASK [elk_nginx : Create Nginx Kibana htpasswd file]
changed: [elk_prod_node1] => (item={u’user’: u’produser’, u’pass’: u’pass456’})
changed: [elk_prod_node1] => (item={u’user’: u’admin’, u’pass’:

u’adminerino456’})↪→

TASK [elk_nginx : Create Nginx Elasticsearch htpasswd file]
changed: [elk_prod_node1] => (item={u’user’: u’produser’, u’pass’: u’pass456’})
changed: [elk_prod_node1] => (item={u’user’: u’admin’, u’pass’:

u’adminerino456’})↪→

TASK [elk_nginx : Run Nginx container]
changed: [elk_prod_node1]

RUNNING HANDLER [elk_elasticsearch : Restart Elasticsearch]
changed: [elk_prod_node1]

RUNNING HANDLER [elk_ls : Restart Logstash cacher]
changed: [elk_prod_node1]

111

RUNNING HANDLER [elk_ls : Restart Logstash parser]
changed: [elk_prod_node1]

RUNNING HANDLER [elk_kibana : Restart Kibana]
changed: [elk_prod_node1]

RUNNING HANDLER [elk_nginx : Restart Nginx]
changed: [elk_prod_node1]

PLAY RECAP
elk_prod_node1 : ok=37 changed=35 unreachable=0 failed=0

Playbook run took 0 days, 0 hours, 2 minutes, 57 seconds

112

Appendix 30 Ansible output for test environment

deployment

The output has been stripped from all the asterisks which were making lines too

long.

SSH password:
SUDO password[defaults to SSH password]:

PLAY [elk_test]

TASK [Gathering Facts]
ok: [elk_test_node1]

TASK [elk_deps : Enable the EPEL repository and install Python SELinux support]
changed: [elk_test_node1] => (item=[u’epel-release’, u’libselinux-python’])

TASK [elk_deps : Install PIP]
changed: [elk_test_node1]

TASK [elk_deps : Install Python docker-py and passlib modules]
changed: [elk_test_node1] => (item=docker-py)
changed: [elk_test_node1] => (item=passlib)

TASK [elk_deps : Install Docker CE dependencies]
ok: [elk_test_node1] => (item=[u’device-mapper-persistent-data’, u’lvm2’])

TASK [elk_deps : Enable Docker CE repository]
changed: [elk_test_node1]

TASK [elk_deps : Install latest Docker CE]
changed: [elk_test_node1]

TASK [elk_deps : Enable and start docker]
changed: [elk_test_node1]

TASK [elk_elasticsearch : Set mmap count kernel parameter for Elasticsearch]
changed: [elk_test_node1]

TASK [elk_elasticsearch : Ensure Elasticsearch directory paths exist]
changed: [elk_test_node1] => (item=/srv/conf/elasticsearch)
changed: [elk_test_node1] => (item=/srv/data/elasticsearch)

TASK [elk_elasticsearch : Give Elasticsearch data directory uid/gid 1000
ownership]↪→

changed: [elk_test_node1]

TASK [elk_elasticsearch : Render Elasticsearch config]
changed: [elk_test_node1]

TASK [elk_elasticsearch : Run Elasticsearch container]
changed: [elk_test_node1]

TASK [elk_redis : Set overcommit memory kernel parameter for Redis]
changed: [elk_test_node1]

TASK [elk_redis : Ensure Redis directory paths exist]
changed: [elk_test_node1]

TASK [elk_redis : Run Redis container]
changed: [elk_test_node1]

TASK [elk_ls : Ensure Logstash directory paths exist]
changed: [elk_test_node1] => (item=/srv/ssl/ls-cacher)
changed: [elk_test_node1] => (item=/srv/conf/ls-cacher)
changed: [elk_test_node1] => (item=/srv/conf/ls-parser)
changed: [elk_test_node1] => (item=/srv/conf/ls-parser-patterns)

113

TASK [elk_ls : Render Logstash cacher config]
changed: [elk_test_node1] =>

(item=/home/ubuntu/elk/files/template/ls-cacher/cacher.conf.j2)↪→

TASK [elk_ls : Render Logstash parser config]
changed: [elk_test_node1] =>

(item=/home/ubuntu/elk/files/template/ls-parser/parser.conf.j2)↪→

TASK [elk_ls : Copy Logstash cacher SSL files]
changed: [elk_test_node1] => (item=files/ls-cacher/elk-test.example.com.key)
changed: [elk_test_node1] => (item=files/ls-cacher/elk-test.example.com.crt)

TASK [elk_ls : Copy Logstash parser patterns]
changed: [elk_test_node1] =>

(item=/home/ubuntu/elk/files/ls-parser/patterns/ibm)↪→

TASK [elk_ls : Run Logstash containers]
changed: [elk_test_node1] => (item={u’volumes’: [u’/srv/conf/ls-cacher:/usr/sh c

are/logstash/pipeline:ro’, u’/srv/ssl/ls-cacher:/ssl:ro’,
u’/etc/localtime:/etc/localtime:ro’], u’name’: u’ls-cacher’, u’links’:
[u’redis’], u’ports’: [u’0.0.0.0:5000:5000/tcp’]})

↪→
↪→
↪→
changed: [elk_test_node1] => (item={u’volumes’: [u’/srv/conf/ls-parser:/usr/sh c

are/logstash/pipeline:ro’, u’/srv/conf/ls-parser-patterns:/patterns:ro’,
u’/etc/localtime:/etc/localtime:ro’], u’name’: u’ls-parser’, u’links’:
[u’redis’, u’elasticsearch’]})

↪→
↪→
↪→

TASK [elk_kibana : Ensure Kibana directory paths exist]
changed: [elk_test_node1]

TASK [elk_kibana : Render Kibana config]
changed: [elk_test_node1]

TASK [elk_kibana : Run Kibana container]
changed: [elk_test_node1]

TASK [elk_nginx : Ensure Nginx directory paths exist]
changed: [elk_test_node1] => (item=/srv/conf/nginx)
changed: [elk_test_node1] => (item=/srv/ssl/nginx)
changed: [elk_test_node1] => (item=/srv/auth/nginx)
changed: [elk_test_node1] => (item=/srv/html)

TASK [elk_nginx : Render Nginx config]
changed: [elk_test_node1]

TASK [elk_nginx : Render Nginx index.html]
changed: [elk_test_node1]

TASK [elk_nginx : Copy Nginx SSL files]
changed: [elk_test_node1] =>

(item=/home/ubuntu/elk/files/nginx/elk-test.example.com.key)↪→
changed: [elk_test_node1] =>

(item=/home/ubuntu/elk/files/nginx/elk-test.example.com.crt)↪→

TASK [elk_nginx : Create Nginx Kibana htpasswd file]
changed: [elk_test_node1] => (item={u’user’: u’testuser’, u’pass’: u’pass123’})
changed: [elk_test_node1] => (item={u’user’: u’admin’, u’pass’: u’admin123’})

TASK [elk_nginx : Create Nginx Elasticsearch htpasswd file]
changed: [elk_test_node1] => (item={u’user’: u’testuser’, u’pass’: u’pass123’})
changed: [elk_test_node1] => (item={u’user’: u’admin’, u’pass’: u’admin123’})

TASK [elk_nginx : Run Nginx container]
changed: [elk_test_node1]

RUNNING HANDLER [elk_elasticsearch : Restart Elasticsearch]
changed: [elk_test_node1]

RUNNING HANDLER [elk_ls : Restart Logstash cacher]
changed: [elk_test_node1]

RUNNING HANDLER [elk_ls : Restart Logstash parser]

114

changed: [elk_test_node1]

RUNNING HANDLER [elk_kibana : Restart Kibana]
changed: [elk_test_node1]

RUNNING HANDLER [elk_nginx : Restart Nginx]
changed: [elk_test_node1]

PLAY RECAP
elk_test_node1 : ok=37 changed=35 unreachable=0 failed=0

Playbook run took 0 days, 0 hours, 3 minutes, 9 seconds

115

Appendix 31 Ansible output for production log shipper

deployment

The output has been stripped from all the asterisks which were making lines too

long.

SSH password:
SUDO password[defaults to SSH password]:

PLAY [servers_prod]

TASK [Gathering Facts]
ok: [server_prod_node1]

TASK [logstash-forwarder-java : Create logshipper user]
changed: [server_prod_node1]

TASK [logstash-forwarder-java : Copy logstash-forwarder-java files]
changed: [server_prod_node1]

TASK [logstash-forwarder-java : Make wrapper.sh executable]
changed: [server_prod_node1]

TASK [logstash-forwarder-java : Render config.json]
changed: [server_prod_node1]

TASK [logstash-forwarder-java : Create empty sincedb]
changed: [server_prod_node1]

TASK [logstash-forwarder-java : Copy Java CA KeyStore]
changed: [server_prod_node1]

TASK [logstash-forwarder-java : Check is IBM JRE java binary already exists]
ok: [server_prod_node1]

TASK [logstash-forwarder-java : Copy IBM JRE installer]
changed: [server_prod_node1]

TASK [logstash-forwarder-java : Create IBM JRE installer response file]
changed: [server_prod_node1]

TASK [logstash-forwarder-java : Install IBM JRE]
changed: [server_prod_node1]

RUNNING HANDLER [logstash-forwarder-java : Restart logstash-forwarder-java]
changed: [server_prod_node1]

PLAY RECAP
server_prod_node1 : ok=12 changed=10 unreachable=0 failed=0

Playbook run took 0 days, 0 hours, 0 minutes, 51 seconds

116

Appendix 32 Ansible output for test log shipper

deployment

The output has been stripped from all the asterisks which were making lines too

long.

SSH password:
SUDO password[defaults to SSH password]:

PLAY [servers_test]

TASK [Gathering Facts]
ok: [server_test_node1]

TASK [logstash-forwarder-java : Create logshipper user]
changed: [server_test_node1]

TASK [logstash-forwarder-java : Copy logstash-forwarder-java files]
changed: [server_test_node1]

TASK [logstash-forwarder-java : Make wrapper.sh executable]
changed: [server_test_node1]

TASK [logstash-forwarder-java : Render config.json]
changed: [server_test_node1]

TASK [logstash-forwarder-java : Create empty sincedb]
changed: [server_test_node1]

TASK [logstash-forwarder-java : Copy Java CA KeyStore]
changed: [server_test_node1]

TASK [logstash-forwarder-java : Check is IBM JRE java binary already exists]
ok: [server_test_node1]

TASK [logstash-forwarder-java : Copy IBM JRE installer]
changed: [server_test_node1]

TASK [logstash-forwarder-java : Create IBM JRE installer response file]
changed: [server_test_node1]

TASK [logstash-forwarder-java : Install IBM JRE]
changed: [server_test_node1]

RUNNING HANDLER [logstash-forwarder-java : Restart logstash-forwarder-java]
changed: [server_test_node1]

PLAY RECAP
server_test_node1 : ok=12 changed=10 unreachable=0 failed=0

Playbook run took 0 days, 0 hours, 0 minutes, 52 seconds

117

Appendix 33 Ansible output for production

redeployment

The output has been stripped from all the asterisks which were making lines too

long.

SSH password:
SUDO password[defaults to SSH password]:

PLAY [elk_prod]

TASK [Gathering Facts]
ok: [elk_prod_node1]

TASK [elk_deps : Enable the EPEL repository and install Python SELinux support]
ok: [elk_prod_node1] => (item=[u’epel-release’, u’libselinux-python’])

TASK [elk_deps : Install PIP]
ok: [elk_prod_node1]

TASK [elk_deps : Install Python docker-py and passlib modules]
ok: [elk_prod_node1] => (item=docker-py)
ok: [elk_prod_node1] => (item=passlib)

TASK [elk_deps : Install Docker CE dependencies]
ok: [elk_prod_node1] => (item=[u’device-mapper-persistent-data’, u’lvm2’])

TASK [elk_deps : Enable Docker CE repository]
ok: [elk_prod_node1]

TASK [elk_deps : Install latest Docker CE]
ok: [elk_prod_node1]

TASK [elk_deps : Enable and start docker]
ok: [elk_prod_node1]

TASK [elk_elasticsearch : Set mmap count kernel parameter for Elasticsearch]
ok: [elk_prod_node1]

TASK [elk_elasticsearch : Ensure Elasticsearch directory paths exist]
ok: [elk_prod_node1] => (item=/srv/conf/elasticsearch)
ok: [elk_prod_node1] => (item=/srv/data/elasticsearch)

TASK [elk_elasticsearch : Give Elasticsearch data directory uid/gid 1000
ownership]↪→

ok: [elk_prod_node1]

TASK [elk_elasticsearch : Render Elasticsearch config]
ok: [elk_prod_node1]

TASK [elk_elasticsearch : Run Elasticsearch container]
ok: [elk_prod_node1]

TASK [elk_redis : Set overcommit memory kernel parameter for Redis]
ok: [elk_prod_node1]

TASK [elk_redis : Ensure Redis directory paths exist]
ok: [elk_prod_node1]

TASK [elk_redis : Run Redis container]
ok: [elk_prod_node1]

TASK [elk_ls : Ensure Logstash directory paths exist]
ok: [elk_prod_node1] => (item=/srv/ssl/ls-cacher)
ok: [elk_prod_node1] => (item=/srv/conf/ls-cacher)
ok: [elk_prod_node1] => (item=/srv/conf/ls-parser)
ok: [elk_prod_node1] => (item=/srv/conf/ls-parser-patterns)

118

TASK [elk_ls : Render Logstash cacher config]
ok: [elk_prod_node1] =>

(item=/home/ubuntu/elk/files/template/ls-cacher/cacher.conf.j2)↪→

TASK [elk_ls : Render Logstash parser config]
ok: [elk_prod_node1] =>

(item=/home/ubuntu/elk/files/template/ls-parser/parser.conf.j2)↪→

TASK [elk_ls : Copy Logstash cacher SSL files]
ok: [elk_prod_node1] => (item=files/ls-cacher/elk-prod.example.com.key)
ok: [elk_prod_node1] => (item=files/ls-cacher/elk-prod.example.com.crt)

TASK [elk_ls : Copy Logstash parser patterns]
ok: [elk_prod_node1] => (item=/home/ubuntu/elk/files/ls-parser/patterns/ibm)

TASK [elk_ls : Run Logstash containers]
ok: [elk_prod_node1] => (item={u’volumes’: [u’/srv/conf/ls-cacher:/usr/share/l c

ogstash/pipeline:ro’, u’/srv/ssl/ls-cacher:/ssl:ro’,
u’/etc/localtime:/etc/localtime:ro’], u’name’: u’ls-cacher’, u’links’:
[u’redis’], u’ports’: [u’0.0.0.0:5000:5000/tcp’]})

↪→
↪→
↪→
ok: [elk_prod_node1] => (item={u’volumes’: [u’/srv/conf/ls-parser:/usr/share/l c

ogstash/pipeline:ro’, u’/srv/conf/ls-parser-patterns:/patterns:ro’,
u’/etc/localtime:/etc/localtime:ro’], u’name’: u’ls-parser’, u’links’:
[u’redis’, u’elasticsearch’]})

↪→
↪→
↪→

TASK [elk_kibana : Ensure Kibana directory paths exist]
ok: [elk_prod_node1]

TASK [elk_kibana : Render Kibana config]
ok: [elk_prod_node1]

TASK [elk_kibana : Run Kibana container]
ok: [elk_prod_node1]

TASK [elk_nginx : Ensure Nginx directory paths exist]
ok: [elk_prod_node1] => (item=/srv/conf/nginx)
ok: [elk_prod_node1] => (item=/srv/ssl/nginx)
ok: [elk_prod_node1] => (item=/srv/auth/nginx)
ok: [elk_prod_node1] => (item=/srv/html)

TASK [elk_nginx : Render Nginx config]
ok: [elk_prod_node1]

TASK [elk_nginx : Render Nginx index.html]
ok: [elk_prod_node1]

TASK [elk_nginx : Copy Nginx SSL files]
ok: [elk_prod_node1] =>

(item=/home/ubuntu/elk/files/nginx/elk-prod.example.com.key)↪→
ok: [elk_prod_node1] =>

(item=/home/ubuntu/elk/files/nginx/elk-prod.example.com.crt)↪→

TASK [elk_nginx : Create Nginx Kibana htpasswd file]
ok: [elk_prod_node1] => (item={u’user’: u’produser’, u’pass’: u’pass456’})
ok: [elk_prod_node1] => (item={u’user’: u’admin’, u’pass’: u’adminerino456’})
changed: [elk_prod_node1] => (item={u’user’: u’newuser’, u’pass’:

u’newpass098’})↪→

TASK [elk_nginx : Create Nginx Elasticsearch htpasswd file]
ok: [elk_prod_node1] => (item={u’user’: u’produser’, u’pass’: u’pass456’})
ok: [elk_prod_node1] => (item={u’user’: u’admin’, u’pass’: u’adminerino456’})
changed: [elk_prod_node1] => (item={u’user’: u’newuser’, u’pass’:

u’newpass098’})↪→

TASK [elk_nginx : Run Nginx container]
ok: [elk_prod_node1]

RUNNING HANDLER [elk_nginx : Restart Nginx]
changed: [elk_prod_node1]

PLAY RECAP

119

elk_prod_node1 : ok=33 changed=3 unreachable=0 failed=0

Playbook run took 0 days, 0 hours, 0 minutes, 19 seconds

	Terms
	Premise
	Assigner
	Assignment and its goals

	Log
	Software components
	Elastic Stack
	Elasticsearch
	Logstash
	Kibana

	Logstash-forwarder-java
	Redis
	Nginx
	Docker
	Ansible

	Log sources
	IBM HTTP Server
	IBM WebSphere Application Server
	IBM DB2

	Implementation
	Environment
	Base configuration
	Ansible
	Elasticsearch
	Logstash cacher
	Logstash parser
	Kibana
	Nginx
	Logstash-forwarder-java

	Ansible role and playbook configurations
	Dependencies
	Elasticsearch
	Redis
	Logstash
	Kibana
	Nginx
	Logstash-forwarder-java
	Elastic Stack playbooks
	Logstash-forwarder-java playbooks

	Deployment
	Elastic Stack
	Logstash-forwarder-java

	Verification
	Redeployment with changed configuration
	Operating system
	Containers
	Kibana frontend
	Log pipeline

	Kibana visualizations
	Discussion
	References
	Appendices
	Appendix 1 Ansible project directory structure
	Appendix 2 Ansible installation and configuration commands
	Appendix 3 File ansible.cfg
	Appendix 4 File hosts
	Appendix 5 Files group_vars/elk_prod.yml and group_vars/elk_test.yml
	Appendix 6 File files/template/elasticsearch/elasticsearch.yml.j2
	Appendix 7 File files/template/ls-cacher/cacher.conf.j2
	Appendix 8 File files/template/ls-parser/parser.conf.j2
	Appendix 9 File files/template/kibana/kibana.yml.j2
	Appendix 10 File files/template/nginx/default.conf.j2
	Appendix 11 File files/template/nginx/index.html.j2
	Appendix 12 File files/template/logstash-forwarder-java/config.json.j2
	Appendix 13 File roles/elk_deps/tasks/main.yml
	Appendix 14 File roles/elk_elasticsearch/tasks/main.yml
	Appendix 15 File roles/elk_elasticsearch/handlers/main.yml
	Appendix 16 File roles/elk_redis/tasks/main.yml
	Appendix 17 File roles/elk_ls/tasks/main.yml
	Appendix 18 File roles/elk_ls/handlers/main.yml
	Appendix 19 File roles/elk_kibana/tasks/main.yml
	Appendix 20 File roles/elk_kibana/handlers/main.yml
	Appendix 21 File roles/elk_nginx/tasks/main.yml
	Appendix 22 File roles/elk_nginx/handlers/main.yml
	Appendix 23 File roles/logstash-forwarder-java/tasks/main.yml
	Appendix 24 File roles/logstash-forwarder-java/handlers/main.yml
	Appendix 25 File deploy_elk_prod.yml
	Appendix 26 File deploy_elk_test.yml
	Appendix 27 File deploy_logshipper_prod.yml
	Appendix 28 File deploy_logshipper_test.yml
	Appendix 29 Ansible output for production environment deployment
	Appendix 30 Ansible output for test environment deployment
	Appendix 31 Ansible output for production log shipper deployment
	Appendix 32 Ansible output for test log shipper deployment
	Appendix 33 Ansible output for production redeployment

