
Bachelor’s thesis

Information Technology / Embedded Software

NTIETS13S

2017

Mikael Laine

DESIGN AND
IMPLEMENTATION OF A TEST
ENVIRONMENT FOR RFIC
FIRMWARE

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology / Embedded Software

2017 | 31

Mikael Laine

DESIGN AND IMPLEMENTATION OF A TEST
ENVIRONMENT FOR RFIC FIRMWARE

The goal of this thesis was to create a test environment for testing firmware on physical samples
of an RFIC under development. The test environment was required to have support for automation
and have possible uses with other test tools.

The test environment needed to communicate with the RFIC using a DigRF v4 interface in order
to emulate the real environment where the RFIC will finally be used. In order to communicate in
DigRF v4, the Keysight M9252A host adapter was used and controlled programmatically with its
provided interface. The support for automation was implemented using Robot Framework, a test
framework written in Python. An external library was created in order to support usage between
Robot Framework and the M9252A.

The final result of this thesis was a working test environment with support for automation. The
test environment successfully allows the user to test the firmware, and components of the test
environment have been taken into use in other pre-existing testing tools.

KEYWORDS:

Embedded systems, RFIC, firmware, testing, programming

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietotekniikka / Sulautetut ohjelmistot

2017 | 31

Mikael Laine

RFIC:N SULAUTETUN OHJELMISTON
TESTAUSYMPÄRISTÖN SUUNNITTELU JA
KEHITYS

Tämän opinnäytetyön tavoitteena oli kehittää testausympäristö RFIC:n sulautetulle ohjelmistolle.
Testit piti suorittaa valmistetuilla RFIC piireillä. Testausympäristön täytyi tukea automatisointia
sekä tarjota käyttömahdollisuuksia muiden testaustyökalujen kanssa.

Testausympäristön piti kommunikoida RFIC:n kanssa käyttäen DigRF v4 -rajapintaa. Tämä
emuloi todellista tilannetta, jossa piiriä käytetään. Mahdollistaakseen DigRF v4 -kommunikoinnin
käytettiin Keysight M9252A -isäntäadapteria, jota ohjattiin ohjelmoimalla käyttäen sen rajapintaa.
Tuki automatisoinnille toteutettiin käyttäen Robot Framework -testausohjelmistoa. Jotta
mahdollistettiin Robot Frameworkin sekä isäntäadapterin yhteensopivuus, kehitettiin ulkoinen
ohjelmistokirjasto.

Opinnäytetyön lopullinen tulos oli toimiva testausympäristö, sisältäen tuen automatisoituihin
testeihin. Testausympäristöä voitiin käyttää onnistuneesti sulautetun ohjelmiston testaukseen, ja
ympäristön komponentteja otettiin myös käyttöön muissa testausympäristöissä.

ASIASANAT:

Sulautetut järjestelmät, RFIC, sulautettu ohjelmisto, testaus, ohjelmointi

CONTENTS

LIST OF ABBREVIATIONS 6

1 INTRODUCTION 7

1.1 Requirements 7

1.2 Thesis scope 8

2 THEORY 9

2.1 Software testing 9

2.2 Wireless communication 10

2.2.1 Modem circuitry 10

2.2.2 MIPI DigRF Interface 11

2.3 Used technologies 12

2.3.1 Keysight M9252A DigRF Host Adapter 13

2.3.2 Python 13

2.3.3 Robot Framework 14

3 ARCHITECTURE 17

3.1 Test environment overview 18

3.2 DigRFExerciserLibrary 19

3.2.1 Configuration system 19

3.2.2 Usage of the DigRF Host Adapter API 20

3.3 Command line interface 22

3.3.1 Main structure 22

3.3.2 Available functions 23

3.4 CLC Definitions 24

3.5 InputData modules 26

3.6 Test cases 27

3.7 Interfacing with other external tools 28

4 CONCLUSION 30

REFERENCES 31

FIGURES

Figure 1. Modem components in a wireless device. 11
Figure 2. Single lane DigRF layout (Prodigy Technovations 2013). 12
Figure 3. Robot Framework architecture (Robot Framework Foundation 2016). 14
Figure 4. Implementation of Robot Framework architecture. 15
Figure 5. Scalable and maintainable test suite (Ebbert-Karroum 2010). 16
Figure 6. Physical test setup. 17
Figure 7. Test environment component diagram. 18
Figure 8. Workflow for sending CLC frames. 21
Figure 9. CLI main loop activity diagram. 23
Figure 10. CLC frame data positions. 24
Figure 11. CLC frame class diagram. 25
Figure 12. Test case filesystem. 27

TABLES

Table 1. M9252A features (Keysight Technologies 2014). 13

LIST OF ABBREVIATIONS

API Application programming interface

BBIC Baseband integrated circuit

CI Continuous integration

CLC Control logical channel

CLI Command line interface

COM Component object model, an interface standard by Microsoft

DigRF MIPI High speed interface connecting RFIC and BBIC

DLC Data logical channel

FW Firmware

GUI Graphical user interface

HW Hardware

IC Integrated circuit

IQ data Analytic signal

JTAG Joint Test Action Group, a board boundary scan method

LTE Long Term Evolution, a standard for high speed wireless
communication

RAT Radio access technology

RFIC Radio frequency integrated circuit

RX Radio receiver

TX Radio transmitter

UML Unified markup language

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

1 INTRODUCTION

The assignment in this thesis was to create an automated testing environment for Radio

Frequency Integrated Circuit (RFIC) firmware in LG Electronics Finland Lab (LGEFL).

LGEFL is a research and development office developing new RFIC solutions.

The tests were to be carried out on firmware running on actual samples of the RFIC. All

firmware testing prior to this had been conducted in simulation. The IC testing was to be

used in parallel with simulation testing. The IC tests give more reliable measurement

data and verify the functionality of the firmware by giving demonstrable evidence.

There were two major use cases for the testing environment, development/debugging

and automated regression testing. The test environment needed to enable the firmware

developers to test and debug features during development and automate the execution

of tests.

The test environment needed to be developed during two phases, a development phase

and an automation phase. The purpose of these two phases was to have a rudimentary

test environment quickly ready for usage with RFIC samples. This way the firmware

developers could begin testing sooner and provide feedback for fixing existing test

environment features as well as requirements for new features. The latter phase would

focus on automating execution of well-established test cases.

1.1 Requirements

LGEFL required that the test environment would be built with Robot Framework. This

was because it provides automation, plenty of community support and has a free license.

Additionally, the following features were required:

 maintainable

 easy to use

 configurable

 modular

To make the test environment maintainable it needed to be well documented, have well-

structured code and have an ordered filesystem. To make it easy to use, a simple

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

interface needed to be implemented for which the user could provide feedback that could

be swiftly implemented. Configurability meant that the code needed to be able to run on

multiple setups without switching between versions. In order to be compatible with other

existing tools, the test environment needed to be built modularly so that components

could be easily reused elsewhere.

Communication with the RFIC needed to be carried out with a pre-existing tool, the

DigRF Host Adapter. Other implementations of the DigRF Host Adapter were available

in LGEFL, but none of them had an extensive solution for firmware control and command

communication.

1.2 Thesis scope

This thesis focuses mainly on the development of the RFIC firmware test environment.

The automation of the tests were simplified to provide a proof of concept of how

automation with Robot Framework would work. This thesis is framed in this way due to

lack of time for the automation phase. There were several technical issues in the

development phase, many of which were external and out of the scope of this thesis.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

2 THEORY

This chapter explains some of the underlying theory and concepts regarding this thesis.

It explains the goals and methods of software testing and it gives an overview of how an

RFIC works when applied to a larger system of circuits. The final part of this chapter

explains the tools and the software which were used during this thesis.

2.1 Software testing

The goal of software testing is to eliminate ideally all defects from it and to make sure

that the software is actually doing what it was intended to do. Software defects occur due

to a variety of reasons, but many of them can be accredited to human error, such as

failure to analyze the specifications or logical errors in design and/or implementation.

Errors like these can be difficult to notice simply by code review, especially if the system

has a lot of complexity to it. (Homes 2013, 1 – 10)

There are many forms of software testing and each of them have different goals. Some

tests focus on ensuring that the software meets the requirements of the specification,

while other tests examine the compatibility of component’s interfaces. This thesis

focuses mainly on the method of unit testing and integration testing.

The goal of unit testing is to verify that small components of the software are working as

intended. An example measure of a unit in code could be a coded function. The unit

needs to pass a set of criteria as well as previous tests that have been moved into

regression testing. The data acquired from these tests are then stored for analysis in

conjunction with later tests.

Integration tests can have different meanings depending on the system under test. In

this thesis, integration tests mean tests that examine the functionality and compatibility

of components and use cases define which components are being tested. The

specifications of the components and the requirements of the mentioned use cases

define the criteria for when the tests are passed.

(Homes 2013, 58 – 66)

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

Using unit tests in conjunction with integration tests allows the tester to verify that the

software is working as intended and that the outcome of a use case test is valid. There

are more facets to software testing, but the test environment in this thesis focuses on

facilitating unit and integration testing. This is because the development of the tested

product is in a stage where basic functionality is being implemented and these functions

serve simple use cases.

2.2 Wireless communication

Mobile devices are becoming increasingly more commonplace in today’s world, and an

essential part of what makes a device mobile is its ability to communicate wirelessly.

Several devices are also becoming more dependent on being part of an interconnected

system, which only increases the need for wireless communication.

2.2.1 Modem circuitry

Wireless communication is conducted in cellular networks over the medium of radio

frequencies. The circuitry involved in achieving such communication is a matter of

complex electrical engineering. It involves digital/analog conversion, (de)modulation,

amplification and different kinds of signal filtering. However, this thesis simplifies these

processes into the systems they create, such as the Baseband Integrated Circuit (BBIC)

and the RFIC. Even though circuit design can have an effect on firmware functionality,

electrical engineering is out of scope of this thesis.

The modem is a system of circuits that encodes and decodes data into signals that can

be transmitted over radio frequencies. Figure 1 illustrates where and how the modem is

used in a wireless device.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

Figure 1. Modem components in a wireless device.

The applications of a wireless device uses the modem to communicate wirelessly. The

process of using the modem is complex and has many layers to it, but it is simplified in

this thesis to the end goal of sending and receiving data.

The BBIC encodes data into communication frames. These frames are then sent to the

RFIC, which further processes them and finally transmits them wirelessly to the cellular

network. This communication is bidirectional, i.e. signals that are received are sent to the

BBIC and decoded back into data to be used by the applications running on the device.

The BBIC is also responsible for commanding the RFIC to configure itself for different

use cases. These use cases are the different types of wireless radio frequency

communication that are defined by technical standards, such as LTE. The BBIC also

controls the RFIC with operational commands, such as booting up or image uploading.

(Mishra et al. 2015, 254 – 255)

2.2.2 MIPI DigRF Interface

DigRF is a MIPI Alliance working group which writes specifications for an interface

between the BBIC and the RFIC. The DigRF working group was formed in 2007

(Wikipedia 2015). The current version – DigRF v4 – is designed to provide a convenient

way for developers to implement new radio access technologies, such as LTE, while

providing support for older existing ones. To ensure compatibility between different IC

vendors, MIPI states the following: “MIPI DigRF focuses on the protocol and

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

programming used to interface the components, enabling vendors to differentiate their

overlying system designs while providing interoperability at the interface level between

compliant ICs.” (MIPI Alliance 2017)

Figure 1 illustrates where the DigRF interface is implemented in relation to the wireless

device. Figure 2 illustrates the physical layout of a single lane DigRF configuration.

Figure 2. Single lane DigRF layout (Prodigy Technovations 2013).

DigRF uses the M-PHY port, a physical interfaces also created by MIPI Alliance, to

transmit data. The interface can optionally utilize up to 3 more pairs of lanes for RX and

TX each. The interface has also lanes for clock synchronization.

The DigRF interface uses a protocol for sending frames over the TX and RX lanes. These

frames are sent either over the Control Logical Channel (CLC) or the Data Logical

Channel (DLC). The CLC frames are used for control data, such as sending configuration

commands to the RFIC, and the DLC frames are used for IQ transmission.

(Prodigy Technovations 2013)

2.3 Used technologies

This section gives an overview of the tools and the software that were used when

implementing the resulting test environment.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

2.3.1 Keysight M9252A DigRF Host Adapter

The hardware that was used to facilitate DigRF communication was Keysight’s M9252A

DigRF Host Adapter. It is meant for testing RFIC’s by emulating a BBIC. It is suitable for

development tests, validation and device integration. Table 1 lists the product features.

Table 1. M9252A features (Keysight Technologies 2014).

Feature Benefit

For RFIC test, simulates

a BB-IC

Control and configure the RFIC to match

the test setup

Gear 2 (HS2x) support Test high throughput to the latest MIPI

specifications

Multi-link Support for 1Rx/1Tx at low power or

4Rx/2Tx at Gear 2 high speed

Automation API Complete programmatic control for

complete production testing requirements

Seamless integration with Keysight 89600

VSA software

Immediate access to the industry’s

broadest, most advanced standards-

based demodulation and signal analysis

The M9252A comes with software that allows generation and customization of DigRF

traffic. It provides a graphical user interface and a COM API for Windows 7 (32/64-bit)

and Windows XP (32-bit). The API can be used to programmatically command the host

adapter.

(Keysight Technologies 2014)

2.3.2 Python

Python is an interpreted programming language first released in 1991. An interpreted

language means that the program is executed directly rather than compiled in advance

into an executable binary. Python is designed to promote the readability of the code by

eliminating special characters from its syntax and replacing them with whitespaces. It is

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

a very popular language and has been in the top ten popularity list maintained by TIOBE

since 2003.

Python is known for its extensive catalogue of libraries. At the time of writing there are

106 819 packages in the Python package index (Python Software Foundation 2017a).

These packages together with its built-in libraries offer a wide variety of support for web

interfaces, testing, networking, documentation etc.

(Wikipedia 2017)

2.3.3 Robot Framework

Robot Framework is a test automation framework written in Python. It uses a keyword-

driven tabular syntax for writing test cases. However, it also supports data-driven tests.

It automatically produces reports and logs from tests that have been run. Similar to

Python, Robot Framework has a large selection of libraries that provide a wide range of

features. It also has support for integration into different Continuous Integration (CI)

systems.

Robot Framework is application and platform independent. Figure 3 demonstrates the

modularity of its architecture.

Figure 3. Robot Framework architecture (Robot Framework Foundation 2016).

The test libraries equip Robot Framework with interfaces to the system under test. It

does so by programmatically interacting with it, either directly or through other tools. They

provide the test writer with keywords that execute certain functions. These keywords are

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

designed to make the tests easy to understand as it gives the tests a very imperative

structure.

Figure 4 illustrates the structure we get when applying Figure 3 to this thesis.

Figure 4. Implementation of Robot Framework architecture.

The DigRF Host Adapter does not have an existing test library for Robot Framework.

Robot Framework does however have an API and supports the use and creation of

custom external test libraries. An external library can be created for the DigRF Host

Adapter by using its own API as mentioned in Section 2.3.1.

(Robot Framework Foundation 2016)

Tests are written in Robot Framework into test cases which form test suites. Test cases

should be as stable as possible in order to keep them maintainable. This is because the

product requirements are well established and it is merely the implementation that is

fluid. A use case should be explainable in a test in a very simple and somewhat abstract

manner.

As an example, let us assume we want to test that the system under test should be able

to execute task A and B in succession. We would create the following test case:

Test name Action Argument

A and B Execute task A

 Execute task B

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

It is quite rarely that specifications change so drastically that such a use case would no

longer be valid. The implementation of how the task is executed might change and thus

also change what the keyword Execute task would do, but the actual test case stays

intact as it is. Figure 5 demonstrates how often a resource in a test system is subject to

change.

Figure 5. Scalable and maintainable test suite (Ebbert-Karroum 2010).

Figure 5 suggests that the further away a component is from the system under test, the

more stable it should be. In the case of this thesis, the DigRF Host Adapter library would

be situated in the adapter and library layer of the figure. This means that well established

functionality with the DigRF Host Adapter and the DigRF interface should remain stable,

while functionality for different test cases should implemented or updated as the need

arises.

(Ebbert-Karroum 2010)

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

3 ARCHITECTURE

This section explains the structure of the final product, i.e. the test environment. A brief

overview of the complete system is given and each component is explained in more

detail in its own section.

The typical RFIC physical test setup is a computer with external hardware interfaces

connected to the IC that is being tested. The test environment is run on the computer by

the user. The user can be either a person, such as an RFIC firmware developer, or an

automated program as part of a CI system. Figure 6 illustrates where the developed test

environment is situated with regards to the physical test setup.

Figure 6. Physical test setup.

The DigRF Host Adapter facilitates DigRF communication on a hardware level. The RFIC

is operated by emulating a BBIC on the host through the means of sending commands

and IQ data to the RFIC. This is done with DigRF communication by transmitting and

receiving CLC frames for commands and DLC frames for IQ data. See Section 2.2.2 for

further details.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

Other external hardware (HW) interfaces refer to measurement and instrumentation

equipment that are connected to the RFIC, other than the DigRF Host Adapter. These

interfaces can be implemented into the test environment similarly to the DigRF Host

Adapter interface.

3.1 Test environment overview

The test environment is comprised of multiple components. These components together

make it possible to use the DigRF Host Adapter with Python and in Robot Framework.

The most central component is the DigRFExerciserLibrary as it is the bridging

component between the DigRF Host Adapter and the rest of the test environment. Figure

7 illustrates a component diagram of the test environment.

Figure 7. Test environment component diagram.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

The components of the test environment developed in this thesis are highlighted with a

darker background in Figure 7. The test environment is connected to the RFIC through

the DigRF Host Adapter using its API. The API is used with Python by utilizing the

pywin32com module. The test environment is also connected to the RFIC through other

instrumentation devices.

The Command Line Interface (CLI) enables real time usage and self-testing of the test

environment. The CLC Definitions and InputData modules are components that allow

programmatic representation of CLC frames and its data. The test cases are tests written

in Robot Framework compatible syntax.

3.2 DigRFExerciserLibrary

The DigRFExerciserLibrary (later referred as library) is a component that interfaces with

the DigRF Host Adapter’s API. The purpose of this library was to facilitate DigRF

communication with the RFIC and to provide an external library for Robot Framework

usage. Communicating with the RFIC with the DigRF protocol simulates BBIC-RFIC

communication, as opposed to directly writing values into the RFIC’s processor registers

through an external interfacing method, e.g. JTAG. It provides a more accurate testing

environment as this is the way the RFIC communicates with the BBIC in a modem.

Robot Framework is a test automation tool that supports external libraries written in the

Python, Java and C programming languages. The library was written in Python so that it

could be used with Robot Framework without any intermediary components, such as

Jython, if it were written in Java. The DigRF Host Adapter API is provided as a COM

object. To interface with it, the library uses the pywin32com module which provides

support for using COM objects.

3.2.1 Configuration system

The commissioning organization has multiple HW testing setups at multiple locations

that can have many different use cases. These varying environments sometimes have

incompatible configurations. To deal with this issue, a configuration system was

implemented into the library.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

The configuration system is a function that reads an INI-file and configures itself and the

DigRF Host Adapter accordingly. The INI-file is written and given by the user. It is a text-

based file, which means that it can easily be included into version control tools.

The configuration file contains properties for configuring what type of session is created

(e.g. online or simulation) and different link properties (e.g. clock frequency). The correct

values for these properties are referenced from the DigRF Host Adapter API

documentation. Additionally, miscellaneous configurations are also given in the INI-file,

such as paths to software which controls other external instrumentation devices.

3.2.2 Usage of the DigRF Host Adapter API

The library has functions for programming CLC frames into the DigRF Host Adapter’s

memory, controlling the transmission and reception engines as well as parsing CLC

frames from the DigRF Host Adapter’s memory. These functions compile the correct

workflow so that the DigRF Host Adapter is easier to use from the CLI and Robot

Framework. It also stores the sent and received CLC frames into memory so that they

can be used later on for verifying information. As an example, the workflow for sending

CLC frames is described in Figure 8.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

Figure 8. Workflow for sending CLC frames.

When sending CLC frames with the DigRF Host Adapter API, the frames are first

programmed into its memory. This sequence of frames are then programmed into a

queue, which is called an instruction. Each frame that is programmed into the instruction

needs to be configured with a time offset, relative to the previous frame, in order to avoid

overlapping frames in a sequence.

In order to send CLC frames with the test environment library, a list of frames and their

timing values are given to a function. This function serves as a keyword for Robot

Framework. The function iterates over all the given frames and uses the CLC Definitions

interface to build a compatible payload (see Section 3.4 for further details on CLC

Definitions). This payload is then added to the DigRF Host Adapter, which returns a

memory handle for the frame. The library stores the handle of the first and last frame of

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

the sequence. After all frames have been added and their timing offsets have been

configured, an instruction is added to the DigRF Host Adapter. The instruction is then

programmed with the first and last frame handles. This will instruct the DigRF Host

Adapter to send all the frames found between those handles.

For the capture and transmission of IQ data the library needs to configure the data frames

in a similar fashion. These values are static and are based on the type of IQ data which

is being sent, such as Radio Access Technology (RAT) and bandwidth.

Besides having functions to interface with the DigRF Host Adapter, the library provides

interfacing functions outwards. This feature makes the library modular, in the way that it

can be used with other tools. It is easy to implement more functionality, simply by writing

more functions to the library. An example of this is explained in more detail in Section 3.7.

3.3 Command line interface

The Command Line Interface (CLI) is used to test the library and to conduct RFIC FW

tests manually in real time. It was created to facilitate development of the test

environment in a feedback loop as explained in the agile software development

methodology (Lui & Chan 2008, 14). The CLI provides a tool for quickly testing the

functionality of the library and as such can also be used for prototyping test cases. The

CLI enabled the FW developers to begin testing the software on the RFIC samples in

parallel with the development of the test environment.

3.3.1 Main structure

The CLI implements the Python argparse module. This module simplifies the

implementation of parsing command line arguments (Python Software Foundation

2017b). In addition to the in-built help flag, the CLI has arguments for a debug flag,

initialization file and which version of the DigRF Host Adapter API to use.

The CLI runs in an infinite loop which parses user input. Figure 9 illustrates the logic of

the CLI main loop.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

Figure 9. CLI main loop activity diagram.

The input is compared to a list of available functions which is then executed if a match is

found. Any additional input is passed on to the function as arguments. The main loop is

set to catch all errors so that any tests aren’t interrupted. Each component in the test

environment has its own exception objects so that it is easier to pinpoint the origin of the

error. The available functions are either well established workflows, basic operational

commands (e.g. exiting and configuration) or functions for prototyping new functionality.

3.3.2 Available functions

The CLI provides the user the ability to initialize and configure the library, transmit and

receive IQ data and CLC frames. The IQ data that is sent are taken from files that are

defined by the user with external tools. When the user wishes to send CLC frames, she

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

specifies a sequence of frames in files. These files make up the InputData modules (see

Section 3.5), which implement the CLC Definitions interface (see Section 3.4).

The CLI provides a help function which prints all the available functions. When given a

function name as an argument, the inline code documentation, the docstring, is displayed

(Python Software Foundation 2001).

Other available functions are used for controlling the transmission and reception engines,

clearing memory and displaying statistics and statuses of the DigRF Host Adapter.

Additionally, the available functions include basic operations and configuration.

3.4 CLC Definitions

CLC Definitions is a component that implements the structure of the control frames that

are defined in the DigRF v4 protocol and in the specifications by the commissioning

organization. It provides the test environment the ability to pack and unpack data, and to

represent that data in a more human-readable form.

The data that is sent in the payload of the CLC frames need to be provided as raw bytes

to the DigRF Host Adapter API. Calculation of the bytes can be quite a laborious task for

a human, due to the way data is represented in the payload. Figure 10 shows an example

of such a representation.

Figure 10. CLC frame data positions.

Each type of control frame has its own header and own set of parameters which are

packed in the payload to minimize its size in order to reduce the load on the bus between

the RFIC and BBIC. The placements of parameters in the payload are defined in CLC

Definitions and are used to map the data into the payload.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

As an example, let us consider parameter a = 1 and parameter b = 28. This would result

in the byte at index 2 to be 156 (0x9C). Instead of manually calculating each byte and

compiling a payload out of them, the CLC Definitions component allows the user to

represent data in each parameter individually. See below for example code.

frame.data[“a”] = 1

frame.data[“b”] = 28

frame.data[“c”] = 3000

 ...

frame.data[“z”] = 123456

A hierarchical class structure was implemented for the different types of CLC frames, in

order to represent them clearly and to keep the code maintainable. This structure also

automates the process of applying default parameter values to the payload. Figure 11

illustrates how the frames are defined in UML.

Figure 11. CLC frame class diagram.

The more general parts of a CLC frame are defined in parent classes, such as default

variables and functions, while more type specific properties, such as sub headers or the

positions of the parameters in the payload, are defined in child classes. The payload

building function assigns all the necessary values to the payload and fills in zeroes into

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

positions where no values were given by the user. CLC Definitions also parses received

payloads into human-readable data in a similar fashion, only vice versa.

Some parameters are expressed in the specifications in Q format, i.e., a fixed point

format. This is a case by case format in which the developer can assign any amount of

bits as the fractional part and as the integer part (ARM Ltd. 2001). The structure of the

format can vary between parameters in this test system. A separate Q format type was

implemented to provide support for it. Parameters are defined in CLC Definitions with Q

format type which can then be assigned with integer and fractional values separately. As

an example, let q_param be an 8-bit sized parameter with 5 integer bits and 3 fractional,

i.e. Q5.3. We would assign the value 13.5 in the following way:

frame.data[“q_param”] = Qformat(13, 5)

Alternatively, the parameter could still be assigned values normally with Python syntax:

frame.data[“q_param”] = 0b01101101 # Binary

frame.data[“q_param”] = 0x6D # Hexadecimal

frame.data[“q_param”] = 109 # Decimal

3.5 InputData modules

The test modules, which are also called InputData modules in the system overview figure

(Figure 7), are Python scripts that contain CLC frames. Since the firmware is controlled

by CLC frames, its activity is described by what commands are sent to it, e.g. start

receiving data with configuration x, wait 100 ms, change parameter y, wait 100 ms, stop

receiving. Typical use cases like this can be defined by writing a specific set of

commands in a Python script through the use of CLC Definitions (see Section 3.4).

The files written by the user are called modules. Python defines a module as “a file

containing Python definitions and statements” (Python Software Foundation 2017c).

These modules serve as a way for the user to store a command or a set of commands

as an entity that can be called on to activate certain behavior in the RFIC. The modules

could be as simple as sending one ping request, or something with more functionality,

for instance turning on transmission with a specific set of configuration parameters.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

These modules are arranged in a filesystem to provide an organized structure for easier

management of the data. Since the modules define a certain behavior, they can be

arranged into different categories. Figure 12 depicts an example of such a structure.

Figure 12. Test case filesystem.

The main folder contains subfolders which define a category. The pictured categories

are modeled after pre-existing test cases from simulation testing. Each category can

have an endless amount of subcategories, which contain InputData modules. These

InputData modules define a sequence of control frames, which in turn define a certain

behavior in the RFIC FW. The categories, however, may be subject to change when the

testing of the firmware reaches deeper abstractions.

3.6 Test cases

The test cases component in the overview figure (Figure 7) refer to cases written in Robot

Framework’s syntax. These test cases are then executed as an automated process, such

as a batch job or as part of a regression testing setup. When developing a test case, a

basic workflow is established using the CLI. The user uses either previously defined

InputData modules or writes new ones and goes through a specific process to verify

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

RFIC FW functionality. As an example, the user might want to do a test to verify that a

command is executed successfully even though the previous failed. Below is an example

of how such a test case might look like in Robot Framework’s syntax.

Test case name Action Argument

Failing command [Documentation]

 Send command rat_y.rx.use_case_1

 Verify response False

 Send command rat_y.tx.use_case_2

 Verify response True

Test cases were developed as a proof of concept and as a template for further usage.

These test cases demonstrate how to automate the following procedures in the test

environment:

 send basic CLC commands

 automate the use of external tools in the library

 create task lists for different types of testing (regression, RAT specific etc.)

 self-test, i.e., verify connectivity to RFIC whenever it is reset

 structuring the filesystem into test suites and test cases

3.7 Interfacing with other external tools

The commissioning organization had a tool that used the DigRF Host Adapter but it was

designed for sending DLC frames and had a very limited support for CLC frames. A

method for using the CLC Definitions and the InputData modules components was added

into the test environment.

The external tool makes use of standard streams to read the payload value in

hexadecimal of the CLC frame. A script was developed to enable usage of InputData

modules in the external tool in a similar fashion to the CLI. The script builds the payload

of the given module’s frames and outputs their value in hexadecimal. The external tool

then reads the output stream and programs the payload into the DigRF Host Adapter’s

memory.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

This part of the test environment serves as a demonstration of the usefulness and re-

usability of the components. For future improvements, the external tool could use the

parameter mapping values in the definitions to have it display all the parameter values

in its GUI so that the user can modify the values on the fly.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

4 CONCLUSION

This thesis explained the development of an RFIC firmware test environment by

presenting the basic underlying theory and technology of the subject and by giving an

overview of the final resulting system. The test environment was required to test firmware

running on physical samples of the RFIC and support automation of those tests.

The development of the test environment was implemented with agile software

development methods. A basic functionality was established before testing and was later

improved and expanded when usage of the test environment began. Further analysis of

technical requirements of the test environment was carried out during the usage of the

test environment, which led to the development of further configurability and modularity

of the components making up the system.

Automation was successfully established by providing a proof of concept. Complete

automation of all developed tests was not implemented due to technical difficulties, some

of which were external. Further automation is achievable with minor improvements on

the test environment.

The initial requirements of the test environment were met. A working test environment

with basic functionality was up and running during the start of sample testing, and

required features were easily pinpointed and implemented as testing proceeded. The

test environment was proven to be useful and compatible with other tools in use.

While working on this thesis the author learned much about the engineering involved in

developing circuitry and its software. The author had not previously worked on designing

and implementing a system of this scale, which turned out to be a very educational

experience. It involved a lot of research into interfaces, how to use them and how to

create them. The author was also exposed to the concepts of creating user friendly

systems and user interfaces.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Mikael Laine

REFERENCES

ARM Ltd. 2001. ARM® Developer Suite AXD and armsd Debuggers Guide: Q-format. Referenced
20.4.2017
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0066d/CHDFAAEI.html

Ebbert-Karroum, A. 2010. How to Structure a Scalable And Maintainable Acceptance Test Suite.
Referenced 28.4.2017 https://blog.codecentric.de/en/2010/07/how-to-structure-a-scalable-
and-maintainable-acceptance-test-suite/

Homes, B. 2013. Fundamentals of Software Testing, 1st edn. London: Wiley.

Keysight Technologies 2014. M9252A DigRF Host Adapter Data Sheet. Referenced 27.4.2017
http://literature.cdn.keysight.com/litweb/pdf/5991-2028EN.pdf?id=2313868

Lui, K.M. & Chan, K.C.C. 2008. Software development rhythms: harmonizing agile practices for
synergy, 1st edn. Hoboken, New Jersey: John Wiley & Sons Inc.

MIPI Alliance 2017. MIPI DigRF. Referenced 26.4.2017
https://www.mipi.org/specifications/digrfsm-specifications

Mishra, S.; Singh, N.K. & Rousseau, V. 2015. System on Chip Interfaces for Low Power Design,
1st edn. Morgan Kaufmann.

Prodigy Technovations 2013. PGY-DGRF DigRF v4 Application Notes Version 1.0. Referenced
15.5.2017 http://www.prodigytechno.com/resources/DIGRFV4/PGY-
DGRF_DigRF_v4_Application_Notes_Version1.0.pdf

Python Software Foundation 2001. PEP 257 -- Docstring Conventions. Referenced 24.4.2017
https://www.python.org/dev/peps/pep-0257/

Python Software Foundation 2017a. PyPi - the Python Package Index. Referenced 27.4.2017
https://pypi.python.org/pypi

Python Software Foundation 2017b. argparse — Parser for command-line options, arguments
and sub-commands. Referenced 18.5.2017 https://docs.python.org/3/library/argparse.html

Python Software Foundation 2017c. Modules — Python 3.6.1 Documentation. Referenced
24.4.2017 https://docs.python.org/3.6/tutorial/modules.html

Robot Framework Foundation 2016. Robot Framework User Guide. Referenced 25.1.2017
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html

Wikipedia 2015. DigRF. Referenced 26.4.2017 https://en.wikipedia.org/wiki/DigRF

Wikipedia 2017. Python (programming language). Referenced 27.4.2017
https://en.wikipedia.org/wiki/Python_(programming_language)

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0066d/CHDFAAEI.html
https://blog.codecentric.de/en/2010/07/how-to-structure-a-scalable-and-maintainable-acceptance-test-suite/
https://blog.codecentric.de/en/2010/07/how-to-structure-a-scalable-and-maintainable-acceptance-test-suite/
http://literature.cdn.keysight.com/litweb/pdf/5991-2028EN.pdf?id=2313868
https://www.mipi.org/specifications/digrfsm-specifications
http://www.prodigytechno.com/resources/DIGRFV4/PGY-DGRF_DigRF_v4_Application_Notes_Version1.0.pdf
http://www.prodigytechno.com/resources/DIGRFV4/PGY-DGRF_DigRF_v4_Application_Notes_Version1.0.pdf
https://www.python.org/dev/peps/pep-0257/
https://pypi.python.org/pypi
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3.6/tutorial/modules.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
https://en.wikipedia.org/wiki/DigRF
https://en.wikipedia.org/wiki/Python_(programming_language)

