
	
 	

Development and Implementation
of a Test Sequence for a Functional
Tester

Petter Erikslund

Examensarbete för ingenjör (YH)-examen

Utbildningsprogrammet Elektroteknik

Vaasa 2017

BACHELOR’S THESIS
Author: Petter Erikslund
Degree Programme: Electrical Engineering, Vasa
Specialization: Automation
Supervisors: Matts Nickull

Title: Development and Implementation of a Test Sequence for a Functional Tester

Date May 26 2017 Number of pages 32

Abstract
The purpose of this thesis is to develop	
 and	
 implement	
 a	
 test	
 sequence	
 for	
 a	
 final	

functional	
 tester.	
 The	
 assignment	
 was	
 commissioned	
 by	
 Ampner	
 Oy.	
 The	
 company	

produces	
 products	
 and	
 services	
 such	
 as	
 solutions	
 for	
 connecting	
 renewable	
 power	

sources	
 to	
 the	
 grid	
 and	
 automated	
 test	
 systems.	

	

Testing	
 in	
 electronics	
 manufacturing	
 is	
 explained	
 and	
 the	
 development	
 environments	

NI	
 LabVIEW	
 and	
 NI	
 Teststand	
 are	
 introduced.	
 The	
 methods	
 for	
 developing	
 the	
 test	

sequence,	
 such	
 as	
 sequence	
 structure	
 and	
 test	
 duration	
 optimisation	
 are	
 documented	

and	
 areas	
 for	
 further	
 development	
 are	
 suggested.	
 	

	

The	
 test	
 sequence	
 developed	
 in	
 this	
 thesis	
 is	
 automatic	
 and	
 only	
 requires	
 the	

operator	
 to	
 place	
 the	
 DUT	
 in	
 the	
 test	
 fixture	
 and	
 start	
 the	
 test.	
 The	
 sequence	
 starts	
 by	

loading	
 test	
 limits	
 from	
 a	
 file	
 and	
 initiating	
 the	
 instruments.	
 The	
 test	
 cases	
 are	
 then	

executed	
 sequentially.	
 If	
 the	
 test	
 is	
 a	
 pass,	
 a	
 sticker	
 with	
 identification	
 information	
 is	

printed	
 and	
 attached	
 to	
 the	
 tested	
 device.	

Language: english Key words: FCT, Teststand, Automatic test equipment
__

EXAMENSARBETE
Författare: Petter Erikslund
Utbildning och ort: Elektroteknik, Vasa
Inriktningsalternativ: Automationsteknik
Handledare: Matts Nickull

Titel: Utveckling och implementering av en testsekvens för en funktionell testare

Datum 26.5.2017 Sidantal 32

Abstrakt
Målet med detta examensarbete var att utveckla och implementera en testsekvens för en
slutlig funktionell testare. Arbetet beställdes av Ampner Oy. Företaget producerar
produkter och tjänster såsom lösningar för anslutning av förnybara energikällor till elnätet
och automatiserade testsystem.

Testning inom elektroniktillverkning förklaras och utvecklingsmiljöerna NI LabVIEW och
NI Teststand introduceras. Metoderna för att utveckla programvaran för testsekvensen,
såsom sekvensstruktur och tidsoptimering dokumenteras och områden lämpliga för
vidareutveckling föreslås.

Testsekvensen är automatisk. Operatören placerar apparaten som ska testas i testfixturen
och startar testsekvensen. Testsekvensen börjar med att ladda in testets gränsvärden från en
fil och initierar mätinstrumenten. De individuella testfallen utförs sedan i löpande ordning.
Om testet är godkänt förses apparaten med en etikett med identifikation för den testade
apparaten.

Språk: engelska Nyckelord: FCT, Teststand, Automatiserad testutrustning

OPINNÄYTETYÖ
Tekijä: Petter Erikslund
Koulutus ja paikkakunta: Sähkötekniikka, Vaasa
Suuntautumisvaihtoehto: Automaatiotekniikka
Ohjaaja: Matts Nickull

Nimike: Toimintatesterin testisekvenssin kehittäminen ja toteutus

Päivämäärä 26.5.2017 Sivumäärä 32

Tiivistelmä
Tämän opinnäytetyön tarkoituksena oli kehittää ja toteuttaa testisekvenssi toiminnallista
lopputesteriä varten. Työ on toteutettu Ampner Oy:n toimeksiannosta. Ampner tuottaa
tuotteita ja palveluja uusiutuvien energialähteiden sähköverkkoon yhdistämiseksi ja
automaattisia testausjärjestelmiä teollisuuslaitteille.

Työssä kerrotaan elektroniikan tuotantotestauksesta ja esitellään NI LabVIEW- ja NI
Teststand -kehitysympäristöt. Työssä on dokumentoitu menetelmiä testisekvenssin
kehittämiseksi, kuten sekvenssirakenteen ja testin keston optimointi. Lisäksi ehdotetaan
aiheita jatkokehitykselle.

Tässä työssä kehitetty testisekvenssi on automaattinen ja vaatii operaattorilta ainoastaan
tuotteen sijoittamisen testeriin ja testin käynnistyksen. Testisekvenssi aloitetaan lataamalla
testin rajat tiedostosta sekä alustamalla mittalaitteet. Tämän jälkeen testit suoritetaan
peräkkäin. Jos testi menee läpi, tulostetaan tuotteen tunnistetiedot sisältävä tuotetarra ja
liimataan se tuotteeseen.

Kieli: englanti Avainsanat: FCT, Teststand, automaattinen testauslaitteisto

Table of Contents

1	
 Introduction	
 ..	
 1	

1.1	
 The	
 company	
 ...	
 1	

1.2	
 Purpose	
 and	
 goals	
 ...	
 2	

2	
 Testing	
 in	
 electronics	
 manufacturing	
 ..	
 3	

2.1	
 Electronics	
 manufacturing	
 ..	
 3	

2.2	
 Quality	
 management	
 ..	
 4	

2.3	
 Design	
 for	
 Testability	
 ..	
 4	

2.4	
 Testing	
 techniques	
 and	
 strategies	
 ...	
 5	

2.4.1	
 Automated	
 test	
 equipment	
 -­‐‑	
 ATE	
 ...	
 5	

2.4.2	
 PCB	
 visual	
 inspection	
 ...	
 6	

2.4.3	
 In-­‐‑circuit	
 test	
 –	
 ICT	
 ...	
 6	

2.4.4	
 JTAG	
 -­‐‑	
 Boundary	
 scan	
 ..	
 7	

2.4.5	
 Burn	
 in	
 ..	
 8	

2.4.6	
 FCT	
 –	
 Functional	
 testing	
 ...	
 8	

2.5	
 NI	
 LabVIEW	
 ..	
 9	

2.6	
 NI	
 Teststand	
 ...	
 10	

2.6.1	
 Software	
 components	
 ...	
 10	

2.6.2	
 Building	
 blocks	
 ..	
 11	

2.6.3	
 Sequence	
 editor	
 GUI	
 overview	
 ...	
 14	

3	
 Development	
 of	
 the	
 functional	
 tester	
 ..	
 14	

3.1	
 Device	
 Under	
 Test	
 ..	
 15	

3.2	
 Tester	
 hardware	
 ...	
 15	

3.3	
 Tester	
 software	
 ...	
 18	

3.3.1	
 Instrument	
 drivers	
 ...	
 18	

3.3.2	
 Sequential	
 structure	
 in	
 Teststand	
 ...	
 19	

3.3.3	
 Timing	
 of	
 tests	
 and	
 test	
 duration	
 optimisation	
 ...	
 19	

3.3.4	
 Optional	
 structures	
 ..	
 20	

3.3.5	
 Data	
 acquisition	
 ...	
 20	

3.3.6	
 Report	
 generation	
 and	
 the	
 property	
 loader	
 ...	
 21	

3.4	
 Implementation	
 and	
 commissioning	
 ...	
 21	

4	
 Result	
 ...	
 23	

4.1.1	
 Operating	
 the	
 tester	
 ..	
 25	

4.1.2	
 Test	
 duration	
 ..	
 25	

4.2	
 Unresolved	
 issues/DUT	
 functions	
 not	
 tested	
 ..	
 25	

4.2.1	
 Customer	
 approval	
 ..	
 27	

5	
 Conclusion	
 ...	
 27	

5.1	
 Lessons	
 learnt	
 ..	
 27	

5.2	
 Pros	
 and	
 cons	
 using	
 Teststand	
 as	
 a	
 test	
 sequencer	
 ...	
 29	

5.3	
 Further	
 development	
 ..	
 30	

5.4	
 Comments	
 ..	
 30	

6	
 References	
 ...	
 31	

List of abbreviations

API – Application Programming Interface

ATE – Automated Test Equipment

DFT – Design For Testing/Design For Testability

DMM – Digital Multi Meter

DUT – Device Under Test

FCT - Functional Testing

GPIO – General Purpose Input/Output

GUI – Graphical User Interface

ICT – In-circuit Testing

NI – National Instruments

PCB - Printed Circuit Board

PCBA – Printed Circuit Board Assembly

QA – Quality Assurance

QC – Quality Control

R&D – Research and Development

UUT – Unit Under Test

	
 1	

1 Introduction

This thesis was made for Ampner Oy, in Vasa during the autumn of 2016 as part of a

customer order. The goal of the thesis was to develop and implement a test sequence for a

final functional tester for an embedded electronic device. Due to the nature of the work the

thesis will not go into detail about the DUT. The focus of the thesis will be on electronics

testing in general and it will explain the processes involved in developing tester software.

As electronics manufacturing is a highly automated process and the products being produced

are becoming more and more complex quality control and quality assurance is a prominent

part of the electronics manufacturing business. There are almost as many tester types and

testing techniques as there are different types of electronic products. This thesis will make

an attempt to introduce the reader to techniques used to test PCBs, PCBAs and assembled

devices. The test sequence developed as a part of this thesis is used to test a fully assembled

device as part of quality control right before it is approved to be delivered to the customer.

NI LabVIEW and NI Teststand were used as the development environment. Teststand is not

usually used as the test sequencer at the company, thus a thesis was natural and benefited

both the author and the company. When the thesis work started the hardware design was

already done. The goal for the thesis work was to develop the software and implement and

test the system.

After a week of reading up on Teststand the work transitioned into implementing and

customizing instrument drivers to work with Teststand. The instruments and DUT were

tested individually and manually to ensure that communication and test concepts worked.

Each test case was individually developed and tested according to the test specification

delivered by the customer. As soon as the tester hardware was assembled implementation

and testing of the software continued on the tester itself. The tester specification

continuously evolved during the process as the DUT itself was still under development.

1.1 The company

Ampner Oy is an engineering company that produces products and services such as solutions

for connecting renewable power sources to the grid and automated production and test

systems. Today Ampner Oy has almost 2 million euros in revenue and employs 19 people.

The company is located in Vaasa, Finland.

	
 2	

Testcom Solutions is a department at Ampner Oy that designs and produces automated

production and test systems and test equipment for the electronics industry. The Testcom

brand has been supplying testing products and services to the industry for over a decade.

Some of the services Testcom Solutions offer are production and test requirements planning,

Design for Automation (DFA), Design for Testability (DFT) and system commissioning and

after sales services. The Testcom brand also comprises products like quality control

software, power supplies and various I/O modules.

Ampner Power offer design and consultation services of power converters and grid

connections. So far, over 5000 MW of renewable energy have been connected to the grid

using solutions and know how delivered by Ampner. (Ampner 2017).

The company was founded in 2012 by Pasi Törmänen and Mika Jantunen, who have

extensive experience from the energy industry. In 2015 Ampner became the majority owner

of the company Testcom, which led Ampner into a new industry. New capital from private

and local investors was brought into Ampner in 2016 and the company is expanding into

new international markets. (Stenbacka 2016).

1.2 Purpose and goals

This thesis is made as a part of a customer order which means that the scope of thesis is

naturally defined. The thesis practical part consists of development and implementation of a

test sequence for a final functional tester. A functional tester tests that all the functions of

the Device Under Test (DUT) meets the specified requirements. The DUT in this case is a

customer’s tailor made diagnostic and communication device. The goal of this thesis is to

develop software for a pilot test station according to the end customer’s test requirement

specification. Commissioning and verification testing of the complete system is also

included.

Instrument drivers and some of the test functions are developed using National Instruments

LabVIEW and the test sequence is implemented in NI Teststand. The goal of the test

sequence is to first download and flash software to the DUT and then test all functionality

of the DUT. All sequence functionality must be automatic. The operator will place the DUT

in the fixture, press start, and scan the DUT information from the DUT. Depending on the

outcome of the tests a sticker is printed automatically and placed on the DUT by the operator.

	
 3	

To help the reader to get a better understanding of the practical part of the thesis, an overview

of electronics manufacturing and testing is also a part of the thesis. Throughout the thesis

focus lays on testing in electronics manufacturing on the assembly levels PCB and PCBA or

unit. Testing brought up in this thesis is concerned with the question; have we built our

product right? Design validation and testing on chip and component assembly levels are not

included.

2 Testing in electronics manufacturing

Electronics manufacturing is highly automated and all automated processes needs to be

monitored to ensure that they are working as they are supposed to. One way of monitoring

the behaviour is to examine the output. It is possible to assure that the process is producing

quality products by testing the electronic products at different stages throughout the

manufacturing process. Because the scope of this thesis is defined by the development and

implementation of a tester, the theory brought up is kept limited to the background and the

theory relevant to the specific tester.

2.1 Electronics manufacturing

The major stages in the manufacturing of an electronic product are:

1. Chip	
 in	
 wafer	

2. Chip	
 diced	
 and	
 tested	

3. Chip-­‐‑level	
 interconnection	
 and	
 packaging	

4. Package	
 soldered	
 to	
 PCB	

5. PCB	
 assembled	
 into	
 a	
 PCBA	
 or	
 unit	

6. PCBA	
 or	
 unit	
 implemented	
 into	
 final	
 system	

	

This thesis scope include testing from 4. Package soldered to PCB to 5. PCB assembled into

a PCBA or unit. According to Edwards (1991, 13) companies in the electronics industry can

be divided into similar groups depending on what they produce:

1. Component	
 manufacturers	

2. Semiconductor	
 device	
 manufacturers	

3. PCB	
 bare	
 board	
 manufacturers	

4. PCB	
 assemblers	
 for	
 third	
 parties	

5. High	
 volume	
 assembly	
 of	
 PCBs	
 and	
 final	
 assembly	
 of	
 PCBs	
 into	
 complete	

systems	
 	

	
 4	

6. Low	
 volume	
 assembly	
 of	
 PCBs	
 and	
 final	
 assembly	
 of	
 PCBs	
 into	
 complete	

systems	
 	

7. Assembly-­‐‑only	
 companies	
 which	
 build	
 complete	
 systems	
 according	
 to	

customer	
 specifications	

These company types do not indicate the complexity of the actual company. An actual

company may operate on several of the suggested types.

2.2 Quality management

All companies who produces something has an interest in assuring that the product has the

desired properties and functionality when it is delivered to the customer. The strive for a

quality output is the aim of quality management. Quality assurance and quality control are

parts of quality management. The terms are sometimes used interchangeably but can be

defined as follows: Quality assurance (QA) focuses on preventing defects and consists of

activities and processes that ensures that the products developed have desired qualities.

Quality control (QC) focuses on detecting defects in the product and correcting them.

Validation and verification are tasks performed by conducting tests as a part of QA and QC.

Validation aims to confirm that the product will perform its intended functions desired by

the customer. It asks the question; Are we creating the right product? Verification aims to

confirm that the finished product meets the given requirements. It asks the question; Have

we created the product right? Validation and verification might need to be performed on

many different levels from system level down to component level. (ISO 9000:2015).

It becomes less time consuming and less expensive to correct a fault if is detected as soon as

possible in the manufacturing. If a faulty component is changed before it is soldered to a

board it is cheaper and quicker to fix the issue than detecting the fault when the device is

fully assembled. Thus, testing is an important part of quality management and the

manufacturing process.

2.3 Design for Testability

Because electronic devices become increasingly more complex, testing them has become

very expensive and time consuming. Because of this it is important to take testability into

account at an early stage in the product design process. Otherwise it is very likely that the

product will be unnecessarily hard or even impossible to test. For example, if there are no

way to access critical signals for testing on a PCB, it may be impossible to test the product

	
 5	

in production or during development. The only solution might then be to go back to the

drawing board and redo the design.

Design for testability or design for test (DFT) aims to maximise test efficiency and economy.

DFT comprises of design techniques that adds testability features to the designed product.

Even though most of the focus of DFT lies on digital circuits it is also applied to

analog/mixed-signal circuits. Testing is not only needed in manufacturing but may also be

beneficial in the design phase and in system maintenance. Design modifications that can be

linked to DFT are for example improved controllability and observability of internal nodes

in the circuit. This would be done to allow the test engineer to get access to critical signals

during a test. Adding features like built-in-tests (BIT) are also a common technique. BIT

means that the product has the ability to perform a test on itself and report the results. BIT

can be used both in production testing and system maintenance. (Koenemann 2006, 21-1).

2.4 Testing techniques and strategies

As mentioned in Chapter 2.1, there are many assembly levels in electronics manufacturing.

Each one uses different procedures and techniques. The testing techniques and solutions

brought up here are used for testing populated PCBs and PCBAs or units. The factors that

affect the implemented test strategy can for example be complexity of the DUT, type of

faults detected, production volume and already invested test infrastructure.

2.4.1 Automated test equipment - ATE

One of the first questions that need to be answered when developing a tester is if it should

be manual, semi-automated or automated. There are advantages to all of them but in

electronics manufacturing automated testers are the most common due to the large

production volumes. A more manual testing setup can be preferred for example in R&D

related testing. Automated test equipment can be configured into a larger test system to

automatically perform a test on a DUT without any need for the operator to intervene. (Poole,

a). Table 1 compares the two different approaches.

	
 6	

Table 1. Comparison of manual and automated test equipment (Agilent Technologies 2013).

	

 Manual Automated
Throughput Low High
Development cost Low High
Operator experience High Low
Flexibility High Low

2.4.2 PCB visual inspection

When the PCB has been populated with components like resistors, capacitors, diodes and

integrated circuits, it is visually inspected. This is done to confirm that all components have

been properly assembled to the board. Features that are inspected are for example missing

and wrong components, fillet size or shape, component skew, component polarity, height

defects and solder joints. There are three different techniques used to perform visual

inspection. They all have different abilities to detect defects.

- MVI – Manual Visual Inspection can be practical for low volumes and if the

complexity of the board is low. If the volumes or complexity is higher an

automated solution is preferred.

- AOI – Automated Optical Inspection equipment works by letting a camera

automatically scan the board and compare it to a known good sample.

- AXI – Automated X-ray Inspection is similar to AOI but uses X-rays as its source

instead of visible light. That way it is possible to detect defects hidden from view.

(Poole, a)

2.4.3 In-circuit test – ICT

ICT refers to testing techniques where connections are made directly to points on the PCB

and then connections, component values and sometimes even some DUT functionality are

tested. An in-circuit tester can be very expensive to invest in, depending on the type, but can

be beneficial at large quantities. It is often possible to test that the PCB is correctly made

and that no faulty components have been installed with an in-circuit tester. Reasons for not

gaining complete coverage of the PCB can for example be not enough test points or low

value capacitors on the PCB. If low value capacitors are present on the board it might be

	
 7	

impossible for the tester to measure them accurately due to the spurious capacitance of the

tester itself.

Standard in-circuit testers connect to the DUT through a bed of nails as seen in Figure 1. The

fixture containing the bed of nails is specific for different products being tested and can

easily be changed out when a product with other connections is to be tested. (Poole, b)

Figure 1. Connection to DUT in ICT (Tarr).

	

A different type of in-circuit tester is the flying probe tester which does not use a bed of

nails. Instead it uses a set of probes that can move around to connect to various point of the

board. By doing this it is possible to test much smaller quantities by not needing to invest in

as much different testing hardware for each DUT model. (Poole, b)

Wiring testers also use ICT techniques. They use a bed of nails to test the wiring of a PCB

or cable connectors to test cables. A wiring tester can often also test some component values

and polarity.

2.4.4 JTAG - Boundary scan

One of the problems with ICT, especially testing large integrated circuits, is getting access

to all test critical signals on the board. In 1985 a group of electronic manufacturers formed

the Joint Test Action Group (JTAG) to establish a solution to the testing problem. The

solution became IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-

Scan Architecture, which allows test instructions and data to be serially loaded into a device

and test results to be serially read out.

	
 8	

Boundary scan works through four, or more, extra pins on the DUT. Two pins are needed

for control and one each for input and output of serial test data. These connect to chosen

integrated circuits on the DUT to form a chain, thus making it possible to test several

integrated circuits with four pins at once. When a chip is set to boundary scan mode, it is

possible to set and read all pins on the chip. This also makes it possible to test other

components and wiring externally on the PCB. (Texas Instruments Inc. 1997)

2.4.5 Burn in

The highest failure rate for electrical devices is in their early life after production and at the

end of life. Burn in ovens are used on components and devices to accelerate the aging past

the initial failure prone age. This procedure is done so that one can be confident that the

product works under varying conditions in accordance with the requirements and that it will

maintain the performance. Burn in ovens usually test batches of products at once and can

monitor their behaviour during a longer period of time in harsh temperature conditions.

2.4.6 FCT – Functional testing

The purpose of a functional test is to verify that the functional requirements of the DUT are

met by simulating real world scenarios and checking how the product behaves. FCT is done

as a last step of verification on each different level in the manufacturing chain. For example,

when a PCB has been populated with components and the assembly has been verified to be

correct by an in-circuit tester, the functionality of the PCB is verified by a functional tester.

When the PCB has been assembled into the final device it is tested in a burn in oven. The

device’s functionality is tested again on a functional tester to verify that it is ready to be

installed into the final system.

It is often not practical to test all possible functionality due to the complexity of the product

and time restrictions. If two different companies where to develop a functional tester for the

same product, the resulting testers might look very different from each other. It is important

to balance out what needs to be tested by weighting testing accuracy, time and financial

restrictions against each other.

A functional tester uses the connectors on the PCB or device to test its functionality, so there

is usually no verification of what happens on the inside. If there is a need for verification of

internal signals, a tester can use several testing methods at the same time. For example, a

	
 9	

functional tester might use boundary scan to verify some internal functions not visible to the

outside world. (Cort 2002).

2.5 NI LabVIEW

LabVIEW is a development environment from National Instruments that is extensively used

in electronics testing. It uses a graphical programming language called G. The programming

language is one of the major differences from many other development environments. G

uses a dataflow model instead of sequential lines of text code. This makes the thought

process of writing code quite different from conventional scripting languages and usually

needs some time getting used to. LabVIEW is the preferred development environment in the

testing industry as it provides technology for acquiring data and processing signals,

instrument control and for developing custom interfaces.

One of the key benefits of working with LabVIEW is the extensive library of pre-made

functions, which makes getting started with new projects and code faster and more straight

forward. In a testing environment where customisation and adaptability is important this is

a tremendous advantage.

LabVIEW programs are called Virtual Instruments, or Vis, and consists of a front panel,

block diagram and a connector panel. The front panel represents the user interface and is tied

to the block diagram where the code is written. The connector panel is where input and

output data are routed to and from the VI when the VI is called from another VI. Figure 2

shows the basic development environment of LabVIEW.

	
 10	

Figure 2. The front panel and block diagram in LabVIEW (National Instruments 2013).

	

Furthermore, like in other software development environments, there is functionality for

debugging code by executing the code using breakpoints for example. If there are broken

wires, one can use an error list showing the missing connections. When executing code, it is

also possible to do a highlighted execution, which means that the data flow of the executing

code is displayed. Another function for debugging is the probe tool which let you probe

values in the code as it runs. (National Instruments 2013).

2.6 NI Teststand

Teststand is a test management software for test automation made by National Instruments.

It includes a ready-to-run sequence engine that supports multiple test code languages, result

reporting and parallel or multithreaded tests. (National Instruments 2016a).

One of the strengths of Teststand is the pre-built functionality and the ability for

customization. It is used in all industries where automated testing is needed.

2.6.1 Software components

The Teststand engine is as the name suggests what drives the test system. It consists of a set

of DLL files that exports an ActiveX Automation server API for other software components

	
 11	

to communicate with the engine. Other applications, acting as ActiveX clients, can get or set

properties and invoke methods on the server to control the engine through the API.

The sequence editor is the application in which the sequence and test system development is

done. In the sequence editor it is possible to create, edit, execute, and debug sequences. Other

features that can be accessed through the sequence editor are process models and station

settings. As in any other application development environment such as LabVIEW and

Microsoft Visual Studio it is possible to set breakpoints, trace through program executions

and monitor variables for debugging purposes.

The user interface is an application which is used on the deployed system. It is used by the

end user to control and monitor the tester. Teststand is shipped with pre-built user interfaces

developed in all the supported test code languages. The source codes for the pre-built user

interfaces are available so they are fully customizable. It is also possible to create a user

interface from scratch containing only the desired functions.

The deployment utility creates an image and an installation file of the developed system

containing all the necessary files for a functional deployment of the test system on another

computer. Through a simplified GUI the developer can select all the files that need to be

included and the deployment utility takes care of the rest.

2.6.2 Building blocks

Steps

A step is much like a line in a scripting language. They are individual elements of a test

sequence that call a code module or perform some other operation. For example, a step can

call a code module that initializes an instrument, makes a measurement, call a subsequence

or jump to another step. Steps include properties which for example can specify what

parameters to send to code modules and where to store parameters received from code

modules. There are many pre-defined steps in Teststand to accommodate for the most

frequently used tasks. The users can also store their own template steps.

Sequences

A sequence file contains a main sequence with a series of test steps. One of these steps can

be a call for a subsequence. Other properties that sets a main sequence from a subsequence

is that a main sequence includes sequence file global variables.

	
 12	

All sequences contain a setup, a main and a clean-up section which are called step groups.

Steps are placed into the step groups to create a test. There is no significant difference

between the sections but the clean-up section can be used for steps that needs to be executed

in all scenarios. For example, if a step fails in the main section it is possible to configure the

sequence to jump straight to the clean-up section. In general, the setup section is used for

test setup functions like initializing instruments. The main section is used for the actual test

steps like measuring a voltage and checking it against limits. The clean-up section is for

example where steps that close communication with instruments are positioned.

Code modules

Code modules are program modules developed in an application development environment

like LabVIEW or other programming language. The called code module performs a test or

other action.

Properties

Properties consists of values that can be a number, string, Boolean, .NET object reference,

or ActiveX object reference. For example, sequence properties and step properties can be

modified programmatically each time a sequence is run with a property loader step. This

means that limits for measurements and other properties in the sequence can easily be

changed on the deployed Teststand system.

Variables

Variables are properties freely definable in a certain context. A variable can be global for

the whole test station or local only for a specific subsequence and everything in between.

Variables can be used to share data between steps and sequences and can be accessed through

the Teststand API from code modules.

Expressions

Expressions are formulas that van calculate new values from one or more variables and

properties. One can insert an expression as a separate expression step, before or after a step

has executed, or as a property or variable. Expression operators and syntax that Teststand

supports are the same as in C, C++, Java, and Visual Basic .NET.

	
 13	

A simple example of an expression:

 Locals.Humidity = Step.Measurment * 100

Here the relative humidity is measured by a sensor that outputs a voltage between 0 and 1

volts. By multiplying a DMM measurement the scaled humidity value is acquired.

Process models

The process model is a sequence file that specifies certain aspects of how the testing process

works on a certain Teststand system. For example, in addition to the test sequence the testing

process may include DUT identification, result indication, result logging and report

generation. Teststand is shipped with built-in sequential, parallel and batch process models.

These process models can be customized for specific test platform needs.

Callback sequences

Callback sequences are used to define the behaviour of a test station when a specific event

occurs. Callbacks are divided into three groups: model callbacks, engine callbacks and front-

end callbacks. The groups are defined by the software component that invokes the callback

and where the callbacks are defined. Model and engine callbacks are implemented in a test

sequence by adding them through the Sequence File Callbacks dialog box. Front-end

callbacks are called from the user interface and are located in FrontEndCallbacks.seq file.

Model callbacks are used to override the current process model’s behaviour. For example,

one can define a model callback to change how Teststand generates the report for that

specific test sequence. Engine callbacks are used to invoke a callback at specific points

during a test. For example, it is possible to define an engine callback to log to a database

after every step in a test sequence. Front-end callbacks are used to run a specific sequence

when a certain action is triggered by a user through the user interface. Features that do not

depend on the process model are implemented as front-end callbacks. (National Instruments,

2016b).

	
 14	

2.6.3 Sequence editor GUI overview

The sequence editor is the main software component that is used during development of a

Teststand system. Figure 3 shows the GUI of the sequence editor.

Figure 3. Teststand GUI of the sequence editor.

The steps pane is located in the middle of the screen in Figure 3. This is where the individual

steps for the selected sequence are displayed. The sequence pane is located in the top right

corner and shows all the sequences of the sequence file. The insertion palette is located to

the left in the screen. The insertion palette is divided into two windows: step types list and

templates list.

3 Development of the functional tester

As stated earlier, the tester hardware was already done when the thesis work commenced.

Online resources where extensively used for information and guidance where given by

colleagues at Ampner throughout the work. The work of developing and implementing the

tester software could be divided into three main parts: instrument drivers, development of

test sequence and commissioning.

	
 15	

3.1 Device Under Test

When developing a test or a tester it is important to understand the DUT as well as possible.

A short explanation of the DUT will be given, but specific details about the DUT will not be

included in this thesis due to the nature of the work. The DUT is a diagnostics and

communication device. All the functions of the device are to be tested plus a button and all

the LEDs on the device. Functions of the device are:

-­‐‑ 3G modem
-­‐‑ Bluetooth
-­‐‑ USB
-­‐‑ Ethernet interface
-­‐‑ digital GPIO
-­‐‑ accelerometer
-­‐‑ magnetometer
-­‐‑ temperature
-­‐‑ relative humidity
-­‐‑ air pressure
-­‐‑ sound
-­‐‑ analog inputs and outputs

When the device is ready for final testing it will be fully assembled except an identification

label, which will be added when testing is finished. All connections to the device will be

done through the existing connectors on the device.

The device’s software is a Linux operating system which can be accessed via the Ethernet

port by SSH connection during testing. Several test programs are available on the device to

simplify sensor reading and control of functions. After testing the ability to connect to the

DUT are restricted for security reasons.

3.2 Tester hardware

The tester hardware is based on a Testcom product called CUBE. It is a modular 19-inch

rack with a removable fixture on top. The scope of this thesis does not include the tester

hardware but some of it will be explained for a better understanding of the tester software.

Many devices and mechanical solutions where implemented so that the test would be

automatic and require minimal actions from the operator. A mechanical drawing of the test

station is shown in Figure 4.

	
 16	

Figure 4. CUBE test station (Ampner 2016).

	

The modular tester hardware is divided into three main parts: test station, test fixture and test

cassette. The reason for the modular design is to allow for easy maintenance and the

possibility of testing several different products on the same test station. The test station is

the main part of the tester and includes most of the instruments and testing devices. The test

fixture, shown in Figure 5, connects to the test station through a connector interface which

allows for removing the test fixture in a matter of seconds. The test fixture includes DUT

specific test equipment.

Figure 5. Test fixture (Ampner 2016).

	

Inside the test fixture is the test cassette, shown in Figure 6, which includes the connectors

and mechanics for connecting to the DUT. On this specific final functional tester, the DUT

	
 17	

connectors are located on the side of the device. The test connectors need to push in towards

the device to connect. This is accomplished by having the connectors sliding on radial

bearings when the lid of the fixture is closed.

Figure 6. Test cassette (Ampner, 2016).

	

The instruments performing the measurements and control of the test are:

-­‐‑ NI	
 PXI-­‐‑1033	
 –	
 MXI	
 Express	
 controller	

o NI	
 PXI-­‐‑4065	
 –	
 6	
 1⁄2-­‐‑Digit	
 PXI	
 DMM	

o NI	
 PXI-­‐‑2527	
 –	
 64-­‐‑Channel	
 300V	
 CAT	
 I	
 Multiplexer	

o NI	
 PXI-­‐‑6229	
 –	
 32AI,	
 48DIO,	
 4AO	
 DAQ	

-­‐‑ Agilent	
 N6700B	
 –	
 Modular	
 Power	
 System	
 Mainframe,	
 with	
 N6745B	
 and	

N6743B	
 installed	

-­‐‑ Feasa	
 10F	
 –	
 LED	
 analyser	

Other devices in the tester are:

-­‐‑ PC	

-­‐‑ 3D	
 barcode	
 reader	

-­‐‑ Label	
 printer	

-­‐‑ Bluetooth	
 Sensor	
 Tag	

-­‐‑ Signal	
 multiplexers	
 and	
 relay	
 cards	

-­‐‑ Humidity	
 and	
 temperature	
 probe	
 for	
 reference	

-­‐‑ Barometric	
 pressure	
 transducer	
 for	
 reference	

-­‐‑ Buzzer	

-­‐‑ Solenoid	
 for	
 pressing	
 DUT	
 button	

-­‐‑ USB	
 flash	
 drives	

	
 18	

3.3 Tester software

All the hardware on the tester is controlled by software on a Windows PC located in the

testers frame. The test sequence is controlled and monitored through NI Teststand. As this

was a pilot tester the development took place on the actual final PC. Normally test

development would be done on a separate PC and then deployed to the tester.

SSH communication with the DUT is done through a command-line interpreter program

called ExtraPuTTY. Other software used in the test sequence consists of executable scripts

for sending data to the sticker printer and sending ping requests to the DUT.

The tester requirements were used as a basis for the development of the tester software.

Among other things it specified a set of functional test cases that needed to be performed by

the tester. The purpose, procedure and expected results were specified in the short test case

specifications.

3.3.1 Instrument drivers

The instrument drivers had to be written or modified to work with the tester. All drivers,

except the printer driver, were implemented in G code. Most of the drivers had been used in

other projects and only needed minor adjustments so that they would be executable from

within Teststand.

The purpose of an instrument driver is to simplify the development of a test sequence. The

instruments may have different interfaces to the tester PC. An instrument driver is a piece of

code that takes commands and values as inputs and returns one or several results from the

instrument. If all instrument drivers in a tester have similar input and formats it simplifies

the sequence development.

As an example, a power supply might be connected to the computer through a serial

interface. To set the voltage of one of the channels one would have to initialize a serial

connection, send the command, wait for a response and close the connection. Different

protocols and commands might be needed for each instrument. Making the instrument

drivers behave like each other, means that the test sequence development becomes easier.

	
 19	

3.3.2 Sequential structure in Teststand

In this case a sequential process model and a mostly sequential sequence structure were

implemented. With a parallel process model, it is possible to execute tests on several DUTs

at once. The reason for the sequential process model in this case, was the added cost of

hardware for connecting several DUTs to the tester at once. The decision was made to go

with a sequential sequence structure as this seemed to inflict less problems with the DUT

communication.

When running a test, it is possible to let the user interface trace the steps currently executing.

But the user interface that comes with Teststand can only show one thread at a time. This

may be a problem when using several threads in the sequence execution, meaning that the

sequence is executing several steps in parallel. This might be perceived as a confusing

feature for the operator. And thus, another reason why the sequential sequence structure was

chosen. Figure 7 shows the two different execution structures considered for this project.

Figure 7. Sequential and parallel execution structure.

	

3.3.3 Timing of tests and test duration optimisation

Because the tester will be used to test a high volume of devices it is desirable to keep the test

duration as short as possible. The desired complete test duration was one minute. With

Teststand there are many ways to get the test duration down. But there is always a risk that

	
 20	

the test becomes more unreliable if the sequence is over optimized for time. For example,

some data was lost when multithreading was used while communicating with the DUT. This

over optimization likely increased the workload of the tester and DUT. The sequence was

modified to look out for the data loss to prevent the issue.

Further the test duration was optimized by arranging the order of the test cases so that it

suited the DUTs boot up procedure. The test cases that did not need the DUT to be fully

booted was set to be performed during boot up. The modem in the DUT used during the 3G

test took around 45 seconds to be ready after the power had been applied to the DUT. This

meant that the 3G test was performed at the end of the sequence to avoid having the sequence

waiting on the modem to be ready.

3.3.4 Optional structures

Multithreading means that a CPU or a single core are used to run tasks concurrently.

Multithreading in Teststand can be done in many ways but one way that was investigated

and used in this thesis was to call subsequences and configuring the call to be started in a

new thread. This means that the called subsequence is executed in parallel with the sequence

that called it.

Some of the test cases required no instrument use, for example the USB functionality tests,

Bluetooth test and 3G test. It was investigated if these could be run in parallel to the rest of

the test cases to get a shorter test duration. But as mentioned earlier, this created some

reliability issues to the test sequence. Multithreading functionality was only used for a short

push button test on the pilot tester.

3.3.5 Data acquisition

The majority of the tester functionality depend on acquiring data from instruments, sensors

and the DUT. The data is then handled in LabVIEW VIs and in the sequence. One of the

more trivial measurements in this particular tester is acquiring data from a pair of reference

sensors to be compared with the DUT environmental sensors. The reference sensors give out

a voltage value with the sensor reading. This value is measured with the DMM in the tester

and then it is scaled in the sequence so that it can be compared with the DUT output.

There are many occasions when a request is sent to the DUT to return data. This can be

modem identification parameters or test data from one of the many built in test programs on

	
 21	

the DUT. Two different approaches where used. Either the program or command was

executed and the result printed directly to the command-line and recorded into the sequence.

Another approach used was to run the test program as a background process on the DUT and

save the result as a .txt file which data was copied into the sequence at a convenient time.

In the sequence variables and parameters were kept as local as possible. For example, if a

variable in a subsequence were not needed in a higher-level sequence, it only existed in that

subsequence. But some variables and parameters were needed in a subsequent sequence and

then they needed to be transferred between the sequences. This was done by changing the

settings of the sequence call.

3.3.6 Report generation and the property loader

Teststand has built in report generation, so it is easy to create a basic test report. Result

collection, which collects step results and relevant data, is performed automatically during

the execution of a sequence. Teststand then automatically generates a report file at the end

of the sequence. The standard test report can be modified in many different ways. It is for

example possible to choose which step data should be included in the report. It is also

possible to change the layout, design, format and at what conditions reports are generated.

For this pilot tester, the contents of the report were still not clear during the work on the

thesis so the test report was only used and modified to aid the development process. The

database logging was later implemented by the customer using their own customised

solution.

The absolute first step in the sequence is a property loader step. This step lets the user change

limits and other properties of a test easily by editing a .csv file on the tester PC. This feature

is critical during commissioning and when the tester is used in production. If the limits set

during development of the test turns out to be wrong or just slightly off from the DUTs

current specifications, it is much simpler to be able to edit one .csv file on a server instead

of ten different sequence files in ten different locations.

3.4 Implementation and commissioning

By running the sequence in small parts on the assembled tester it was possible to identify

issues and solve them one by one. Because the DUT itself was still being developed

communication with the DUT developers where critical to ensure that both the DUT and the

tester were working as they were intended to.

	
 22	

To get the test sequence work as a whole the structure was modified slightly until it worked

with the DUT boot up procedure. Other aspects that where considered when modifying the

sequence at this state were test duration optimisation, limitations of the DUT and limitations

of the tester.

The reliability and accuracy of the test sequence was tested by doing large numbers of test

runs. Modifications were made when problems were encountered and the sequence was

tested again.

When enough confidence had been gained in the reliability and functionality of the tester it

was shipped to the customer. The customer then continued to implement their own solutions

on the test station. Some modifications where requested to deal with issues raised after

commissioning. This meant travelling to the customer’s location and performing minor

mechanical modifications. During this meeting, the tester was reviewed and issues that

needed to be followed up on when the tester was taken into use in production were pointed

out.

	
 23	

4 Result

The developed test sequence consists of one sequence file containing 23 sub sequences. In

Figure 8 the complete test sequence hierarchy is shown.

Figure 8. Sequence hierarchy.

	

The sequences starting with a number, e.g. 4.1, are test cases specified in the tester

requirements specification. The other sequences are for housekeeping and other required

functionality. All sub sequences are executed sequentially except 4.12.1 and 4.12.2. These

two sequences are executed as new threads. This was done so that it is possible to push the

button and read the button state on the DUT, both at the same time. The subsequence 4.12

is shown in Figure 9.

	
 24	

Figure 9. Button test sequence including execution in new thread of subsequence 4.12.1 and 4.12.2.

	

The 4.5 Sensors Test is shown in Figure 10. It was written to first start the test program on

the DUT. The test program continuously outputs humidity, temperature and air pressure to

a .txt file. When the test program has been started, the tester measures the voltage output of

the reference sensors located close to the DUT in the test cassette. The voltages are scaled

to represent the same units as the DUT readings. This process is timed so that enough

readings from the DUT can be acquired. The difference between the reference and DUT

sensors are tested against expected values.

	

Figure 10. 4.5 Sensors Test sequence.

	
 25	

4.1.1 Operating the tester

The steps involved with operating the pilot functional tester are:

1. The	
 test	
 station	
 is	
 powered	
 on	
 and	
 the	
 Teststand	
 user	
 interface	
 is	
 started.	

2. The	
 user	
 logs	
 in	
 to	
 Teststand	
 with	
 user	
 credentials.	

3. The	
 sequence	
 can	
 be	
 started	
 in	
 two	
 different	
 modes,	
 either	
 running	
 a	
 series	

of	
 multiple	
 tests	
 or	
 just	
 a	
 single	
 pass.	
 If	
 a	
 series	
 of	
 multiple	
 tests	
 is	
 chosen	

steps	
 four	
 to	
 eight	
 are	
 looped.	

4. The	
 barcode	
 reader	
 is	
 used	
 to	
 scan	
 the	
 batch	
 and	
 serial	
 number	
 of	
 the	
 DUT	

and	
 the	
 DUT	
 is	
 then	
 placed	
 in	
 the	
 fixture.	
 	

5. After	
 this	
 point	
 the	
 test	
 sequence	
 is	
 automatic	
 and	
 the	
 operator	
 does	
 not	

have	
 to	
 intervene.	

6. The	
 test	
 result	
 is	
 showed	
 clearly	
 on	
 screen	
 and	
 a	
 result	
 sticker	
 is	
 printed.	
 	

7. The	
 test	
 data	
 is	
 loaded	
 to	
 a	
 database	
 in	
 the	
 background.	

8. The	
 sticker	
 is	
 attached	
 to	
 the	
 DUT	
 and	
 the	
 DUT	
 is	
 placed	
 into	
 the	
 correct	

location	
 according	
 to	
 the	
 test	
 result.	

4.1.2 Test duration

In early sequence development, the duration of the different stages of the test sequence were

estimated to be:

-­‐‑ 30	
 seconds	
 for	
 device	
 flashing	

-­‐‑ 15	
 seconds	
 for	
 booting	
 the	
 device	

-­‐‑ 45	
 seconds	
 for	
 testing	

-­‐‑ 90	
 seconds	
 in	
 total	

The shipped sequence had longer times in every category. Most of the time added to the test

duration was delays in the code to make sure that no errors occurred. The test duration was

longer than desired when the tester was delivered to the customer due to SSH and USB

communication reliability issues. At the end of the thesis work the actual times were around:

-­‐‑ 40	
 seconds	
 for	
 device	
 flashing	

-­‐‑ 30	
 seconds	
 for	
 booting	
 the	
 device	

-­‐‑ 70	
 seconds	
 for	
 testing	

-­‐‑ 130	
 seconds	
 in	
 total	

The test duration was deemed sufficient for the moment and were to be optimized after

further development.

4.2 Unresolved issues/DUT functions not tested

The hysteresis function of the digital GPIO input was tested in the GPIO test. This was done

by incrementally increasing and then decreasing the voltage applied to the input between 1

and 5 volts, as shown in Table 2.

	
 26	

Table 2. GPIO Hysteresis test.

But during a couple of percent of test executions, the recorded value in the sequence on steps

3 or 4, were 0 instead of the expected 1. This issue was examined by the tester developers

and the DUT developers to understand what the reason for the sporadic failures was. The

issue remained unresolved during the thesis work and was set to be followed up as the tester

was applied in production.

The other unresolved issue was interference in the high-speed USB signals in the tester.

Because of the limited number of USB ports on the DUT, USB signals needed to be switched

through relay cards when changing the connections. During implementation of the test

sequence it became apparent that the connections between relay cards, tester PC, USB

memory devices and the DUT were not sufficient in keeping the communication confidently

stable. The USB test connectors were of the type in Figure 11, which are of high quality and

made to withstand a high number of mating cycles, but they do not connect the shield of the

USB cable. Neither the USB multiplexers in the tester had the shields connected resulting in

hard to trace errors during device flashing and USB functionality tests.

Figure 11. UBS test connector (Engmatec 2013).

	

The issue was reduced by changing cabling. The issue was tolerable on the commissioned

tester, but further investigation into alternative connectors and USB multiplexers will be

done in the future.

Step	
 Applied	
 voltage	
 Expected	
 value	

1	
 0	
 	
 0	

2	
 2	
 0	

3	
 5	
 1	

4	
 1	
 1	

5	
 0	
 0	

	
 27	

4.3 Customer approval

To verify that a stable process works according to specifications the process capability can

be analysed. The customer used Cp and Cpk when verifying the tester. Cp and Cpk are statistical

indices that indicate how well the output of the process sits inside the specified limits. Gage

R&R analysis was also performed to assess the measurement precision of the tester. Gage

R&R gives statistics like repeatability, reproducibility and residual or pure error for the

process. (NIST/SEMATECH 2012). The tester was approved by the customer and taken into

use in production at the end customer.

5 Conclusion

The thesis work resulted in a tester with hardware and software functioning according to the

tester requirements specification. The issues that arose and that where not resolved during

the work were not critical and improvements will be made in the future to resolve these

issues.

Throughout the development and implementation process of the tester the scope of the thesis

work was redefined slightly. This was possible because it was a pilot tester and the customer

had some resources themselves to continue the development process after it had been

commissioned. The reason for this flexible arrangement was the tight timeframe of the

project. Although every wish the customer mentioned was not implemented, the delivered

tester was successfully produced according to the customer’s tester specifications in the

defined timeframe.

5.1 Lessons learnt

Even though the thesis work was seen as a success there is always things that could have

been done differently and lessons learnt. To communicate with the DUT a software called

ExtraPuTTY was used as a SSH client. Secure Shell (SSH) is a protocol between a server

and clients for IP networks. ExtraPuTTY was chosen because of its stated ability to work

together with NI Teststand. When installing ExtraPuTTY .dll files are copied into Teststand

folders so that ExtraPuTTY can be called with steps from Teststand. For this project

ExtraPuTTY has been sufficient but not without many aggravating moments. The

documentation of using ExtraPuTTY together with Teststand is very limited and most of the

	
 28	

support has been found on forums online. The installation process was very complicated and

unclear. Help for the installation of ExtraPuTTY can be found in the (NI forum 2013) link

in the bibliography. ExtraPuTTY also had problems communicating with the DUT reliably.

Sometimes the SSH client did not wait for the end of line character from the DUT resulting

in sequence errors.

Another unexplainable incident involving ExtraPuTTY happened when the tester had been

delivered to the customer. A report from ExtraPuTTY popped up after each test execution.

This feature was finally turned off by setting a new file path for the reports and turning of

ExtraPuTTY report generation in test steps. In ExtraPuTTYs defence it is a free software

and most of the work is done for you but I would definitely suggest that investigation of

alternatives would be beneficial if a SSH client with Teststand API is needed in the future.

Some of the test data was transferred from the DUT to the test sequence through the SSH

connection by reading the print out in the terminal on the PC to the sequence. An alternative

way was to let the Linux command be run in the background and save the print out into a

.txt file on the DUT. The data was then transferred to the sequence at a later stage. The

advantages of the second approach are that it frees up the terminal for other tasks and there

is a smaller risk of ExtraPuTTY not waiting for the end of line character. It would have

shortened the test duration and probably made the sequence more reliable if all tests using

data from the DUT would have used the second approach, but due to time limitations the

changes could not be made during the thesis work.

There are many different specification documents used in hardware testing. As in most areas

of engineering, the quality of the specification documents often corresponds with the

resulting product. To the word specification more words are added to specify the purpose of

the document. The names of these documents are sometimes used interchangeably, which

may cause confusion.

It could be argued that in this specific project the specifications was not comprehensive

enough. The test requirements specification and the tester requirements specification were

combined into one document. The functions to be tested were documented, but function

specific measurements were not yet clearly defined because the DUT was still in

development. I can imagine that, in general, the DUT is often not a finished product at the

time of writing the tester requirement specification. But the development and commissioning

of the tester can be done much faster and cheaper with clear specifications. On a functional

	
 29	

tester like this at least all the required measurements and acceptable values should be clearly

defined.

Another issue linked to the fact that the DUT was still in the development phase was the

number of devices present during development of the tester. We only had one device

available in the beginning of tester software development. This meant that it was critical for

the project that the device did not break. Later a new version of the device was available as

well. The second device helped in testing the tester but it would have definitely been

preferable to have had a few copies of the same version of the device during the

implementation and testing phase of the tester.

5.2 Pros and cons using Teststand as a test sequencer

There are several alternatives to using NI Teststand as the test sequencer. Ampner has

developed and sustained a LabVIEW based test sequencer for many years. The advantages

of using a test sequencer programmed in house are that it is independent and completely

customizable. A deployed system does not necessarily need any NI licences to run, so it is

possible to cut costs. It is also possible to include any imaginable feature that the customer

wants. A LabVIEW based test sequences normally uses text based test scripts. It can be

argued that it is easier to read and develop text based scripts than Teststand sequences.

A Teststand sequence can be strenuous to read especially when using many expressions. My

personal experience of using Teststand has been very positive. The online forum support has

been very helpful. As with other NI products, the manuals are quite extensive. A Teststand

deployment needs a runtime licence to run. However, in regards to costing, the costs of

developing and maintaining a completely customizable test sequencer also needs to be

considered.

Other advantages of Teststand are the features already built in and the wide use of the

software in the industry. Because it is well known the processes of marketing, sales,

production and after sales can be aided by the fact that the customers are familiar with the

development environment. With the free extensive support online it gives the customer the

chance to problem solve and further develop the system if they so wish. All these advantages

result in shorter development times and better competitiveness compared to a test sequencer

built in house.

	
 30	

5.3 Further development

The tester developed in this thesis will be further tested in the production line at the end

customer. A second copy, with improvements, of the tester has been commissioned. Because

of this, the tester will continue to be further developed after the thesis work. As mentioned

in Chapter 5.1, there are several areas that could be improved upon that will be investigated.

In relation to the topic of this thesis, the areas that seem to be mostly beneficial to further

development are the USB connections in the tester, the self-test programs on the DUT, and

the sequence structure. The USB connections need to be changed so that the connections are

reliable without the interference earlier mentioned. The self-test programs could be modified

and new programs could be implemented to aid the sequence, thus making the test faster and

more reliable. For example, test results could automatically be written to a .txt file. The

sequence structure could be adapted to the new DUT self-tests and multithreading could be

used to shorten test duration. However, if the structure is changed and extensive

multithreading functionality is introduced further development of the user interface will also

be needed.

5.4 Comments

As expected time is always an issue. If a project does not have a deadline, it most likely will

never be completed. This thesis work was no different. Throughout the project finding time

to handle less than critical issues was hard. Extensive knowledge of testing hardware and

LabVIEW coding were accessible in-house, but Teststand was completely new for me and

had not been used as the primary test sequencer at the company. So, a great deal of precious

time went to figuring out and learning the development environment. In hindsight, this was

probably the fastest and most valuable way to move from and academic environment into

the working life of an engineer.

	
 31	

6 References

Agilent Technologies, 2013. Test-System Development Guide [Online]
http://cp.literature.agilent.com/litweb/pdf/5989-5367EN.pdf [Retrieved: November 8,
2016].

Ampner,	
 2016.	
 Internal	
 document.	
 [Retrieved:	
 January	
 10,	
 2017].	

Ampner,	
 2017.	
 The	
 Power	
 Systems	
 Architects	
 in	
 Renewables.	
 [Online]	

https://wordpress-­‐‑ampner.appcloud.jubic.net/wp-­‐‑
content/uploads/2017/03/Ampner-­‐‑The-­‐‑Power-­‐‑System-­‐‑Architects-­‐‑in-­‐‑
Renewables_web.pdf	
 [Retrieved:	
 May	
 14,	
 2017].	

Cort,	
 A.,	
 2002.	
 Functional	
 Testing	
 of	
 PCBs.	
 [Online]	

http://www.assemblymag.com/articles/83988-­‐‑functional-­‐‑testing-­‐‑of-­‐‑pcbs	

[Retrieved:	
 May	
 14,	
 2017].	

Edwards, P.R., 1991. Manufacturing Technology in the Electronics Industry. Suffolk: St
Edmundsbury Press.

Engmatec, 2013. Testing	
 plugs.	
 [Online]
https://www.engmatec.de/fileadmin/content/ENGLISCH/PDF-­‐‑Medien/Testing-­‐‑
Plugs_2013.pdf	
 [Retrieved: May	
 14, 2017].

ISO	
 9000:2015.	
 Quality	
 management	
 systems	
 —	
 Fundamentals	
 and	
 vocabulary.	

[Online]	
 https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-­‐‑4:v1:en	
 [Retrieved:	
 May	

14,	
 2017].	

Koenemann,	
 B.,	
 2006.	
 Design-­‐‑For-­‐‑Test.	
 in:	
 L.	
 Lavagno,	
 G.	
 Martin	
 &	
 L.	
 Scheffer	
 ed.	

Electronic	
 Design	
 Automation	
 for	
 Integrated	
 Circuits	
 Handbook.	
 Vol	
 2	
 21-­‐‑1-­‐‑21-­‐‑35.	
 New	

York:	
 Taylor	
 &	
 Francis.	

National Instruments, 2013. Getting	
 Started	
 With	
 TestStand.	
 [Online]
http://www.ni.com/pdf/manuals/373436f.pdf [Retrieved: November 8, 2016].

National Instruments, 2016a. What is Teststand. [Online] http://www.ni.com/teststand/
[Retrieved: November 15, 2016].

National Instruments, 2016b. Using Callbacks in NI Teststand. [Online]
http://www.ni.com/product-documentation/6605/en/ [Retrieved: November 16, 2016].

NI forum, 2013. Starting TestStand with ExtraPuTTY installed. [Online]
http://forums.ni.com/t5/NI-TestStand/Starting-TestStand-with-ExtraPuTTY-installed/td-
p/2596877 [Retrieved: October 25, 2016].

NIST/SEMATECH, 2012. E-­‐‑Handbook	
 of	
 Statistical	
 Methods.	
 [Online]	

http://www.itl.nist.gov/div898/handbook	
 [Retrieved: May	
 14,	
 2017].

Poole, I., n.d. a Automatic test equipment ATE. [Online] http://www.radio-
electronics.com/info/t_and_m/ate/automatic-test-equipment-basics.php [Retrieved:	
 May
14, 2017].

Poole, I., n.d. b ICT, In Circuit Test Tutorial. [Online] http://www.radio-
electronics.com/info/t_and_m/ate/ict-in-circuit-test-tutorial.php [Retrieved:	
 May 14,
2017].	

	
 32	

Stenbacka,	
 B.,	
 Ampner	
 –	
 nytt	
 Vasaföretag	
 som	
 växer.	
 Vasabladet,	
 20.12.2016,	
 page	
 1	
 &	

9.

Tarr,	
 M.,	
 n.d.	
 ICT	
 Fixtures.	
 [Online]
http://www.mtarr.co.uk/courses/topics/0251_fixt/index.html [Retrieved:	
 April 13, 2017].

Texas Instruments Inc., 1997.	
 IEEE	
 Std	
 1149.1	
 (JTAG)	
 Testability	
 Primer.	
 [Online]	

http://www.ti.com/lit/an/ssya002c/ssya002c.pdf [Retrieved:	
 May 14, 2017].

