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Abstract 
The purpose of this thesis is to develop	
  and	
  implement	
  a	
  test	
  sequence	
  for	
  a	
  final	
  
functional	
  tester.	
  The	
  assignment	
  was	
  commissioned	
  by	
  Ampner	
  Oy.	
  The	
  company	
  
produces	
  products	
  and	
  services	
  such	
  as	
  solutions	
  for	
  connecting	
  renewable	
  power	
  
sources	
  to	
  the	
  grid	
  and	
  automated	
  test	
  systems.	
  
	
  
Testing	
  in	
  electronics	
  manufacturing	
  is	
  explained	
  and	
  the	
  development	
  environments	
  
NI	
  LabVIEW	
  and	
  NI	
  Teststand	
  are	
  introduced.	
  The	
  methods	
  for	
  developing	
  the	
  test	
  
sequence,	
  such	
  as	
  sequence	
  structure	
  and	
  test	
  duration	
  optimisation	
  are	
  documented	
  
and	
  areas	
  for	
  further	
  development	
  are	
  suggested.	
  	
  
	
  
The	
  test	
  sequence	
  developed	
  in	
  this	
  thesis	
  is	
  automatic	
  and	
  only	
  requires	
  the	
  
operator	
  to	
  place	
  the	
  DUT	
  in	
  the	
  test	
  fixture	
  and	
  start	
  the	
  test.	
  The	
  sequence	
  starts	
  by	
  
loading	
  test	
  limits	
  from	
  a	
  file	
  and	
  initiating	
  the	
  instruments.	
  The	
  test	
  cases	
  are	
  then	
  
executed	
  sequentially.	
  If	
  the	
  test	
  is	
  a	
  pass,	
  a	
  sticker	
  with	
  identification	
  information	
  is	
  
printed	
  and	
  attached	
  to	
  the	
  tested	
  device.	
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Abstrakt 
Målet med detta examensarbete var att utveckla och implementera en testsekvens för en 
slutlig funktionell testare. Arbetet beställdes av Ampner Oy. Företaget producerar 
produkter och tjänster såsom lösningar för anslutning av förnybara energikällor till elnätet 
och automatiserade testsystem.  
 
Testning inom elektroniktillverkning förklaras och utvecklingsmiljöerna NI LabVIEW och 
NI Teststand introduceras. Metoderna för att utveckla programvaran för testsekvensen, 
såsom sekvensstruktur och tidsoptimering dokumenteras och områden lämpliga för 
vidareutveckling föreslås.  
 
Testsekvensen är automatisk. Operatören placerar apparaten som ska testas i testfixturen 
och startar testsekvensen. Testsekvensen börjar med att ladda in testets gränsvärden från en 
fil och initierar mätinstrumenten. De individuella testfallen utförs sedan i löpande ordning. 
Om testet är godkänt förses apparaten med en etikett med identifikation för den testade 
apparaten.  
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Tiivistelmä 
Tämän opinnäytetyön tarkoituksena oli kehittää ja toteuttaa testisekvenssi toiminnallista 
lopputesteriä varten. Työ on toteutettu Ampner Oy:n toimeksiannosta. Ampner tuottaa 
tuotteita ja palveluja uusiutuvien energialähteiden sähköverkkoon yhdistämiseksi ja 
automaattisia testausjärjestelmiä teollisuuslaitteille. 
 
Työssä kerrotaan elektroniikan tuotantotestauksesta ja esitellään NI LabVIEW- ja NI 
Teststand -kehitysympäristöt. Työssä on dokumentoitu menetelmiä testisekvenssin 
kehittämiseksi, kuten sekvenssirakenteen ja testin keston optimointi. Lisäksi ehdotetaan 
aiheita jatkokehitykselle. 
 
Tässä työssä kehitetty testisekvenssi on automaattinen ja vaatii operaattorilta ainoastaan 
tuotteen sijoittamisen testeriin ja testin käynnistyksen. Testisekvenssi aloitetaan lataamalla 
testin rajat tiedostosta sekä alustamalla mittalaitteet. Tämän jälkeen testit suoritetaan 
peräkkäin. Jos testi menee läpi, tulostetaan tuotteen tunnistetiedot sisältävä tuotetarra ja 
liimataan se tuotteeseen.  
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1   Introduction 

This thesis was made for Ampner Oy, in Vasa during the autumn of 2016 as part of a 

customer order. The goal of the thesis was to develop and implement a test sequence for a 

final functional tester for an embedded electronic device. Due to the nature of the work the 

thesis will not go into detail about the DUT. The focus of the thesis will be on electronics 

testing in general and it will explain the processes involved in developing tester software.  

As electronics manufacturing is a highly automated process and the products being produced 

are becoming more and more complex quality control and quality assurance is a prominent 

part of the electronics manufacturing business. There are almost as many tester types and 

testing techniques as there are different types of electronic products. This thesis will make 

an attempt to introduce the reader to techniques used to test PCBs, PCBAs and assembled 

devices. The test sequence developed as a part of this thesis is used to test a fully assembled 

device as part of quality control right before it is approved to be delivered to the customer.  

NI LabVIEW and NI Teststand were used as the development environment. Teststand is not 

usually used as the test sequencer at the company, thus a thesis was natural and benefited 

both the author and the company. When the thesis work started the hardware design was 

already done. The goal for the thesis work was to develop the software and implement and 

test the system.  

After a week of reading up on Teststand the work transitioned into implementing and 

customizing instrument drivers to work with Teststand. The instruments and DUT were 

tested individually and manually to ensure that communication and test concepts worked. 

Each test case was individually developed and tested according to the test specification 

delivered by the customer. As soon as the tester hardware was assembled implementation 

and testing of the software continued on the tester itself. The tester specification 

continuously evolved during the process as the DUT itself was still under development.  

1.1   The company 

Ampner Oy is an engineering company that produces products and services such as solutions 

for connecting renewable power sources to the grid and automated production and test 

systems. Today Ampner Oy has almost 2 million euros in revenue and employs 19 people. 

The company is located in Vaasa, Finland.  
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Testcom Solutions is a department at Ampner Oy that designs and produces automated 

production and test systems and test equipment for the electronics industry. The Testcom 

brand has been supplying testing products and services to the industry for over a decade. 

Some of the services Testcom Solutions offer are production and test requirements planning, 

Design for Automation (DFA), Design for Testability (DFT) and system commissioning and 

after sales services. The Testcom brand also comprises products like quality control 

software, power supplies and various I/O modules. 

Ampner Power offer design and consultation services of power converters and grid 

connections.  So far, over 5000 MW of renewable energy have been connected to the grid 

using solutions and know how delivered by Ampner. (Ampner 2017). 

The company was founded in 2012 by Pasi Törmänen and Mika Jantunen, who have 

extensive experience from the energy industry. In 2015 Ampner became the majority owner 

of the company Testcom, which led Ampner into a new industry. New capital from private 

and local investors was brought into Ampner in 2016 and the company is expanding into 

new international markets. (Stenbacka 2016). 

1.2   Purpose and goals 

This thesis is made as a part of a customer order which means that the scope of thesis is 

naturally defined. The thesis practical part consists of development and implementation of a 

test sequence for a final functional tester. A functional tester tests that all the functions of 

the Device Under Test (DUT) meets the specified requirements. The DUT in this case is a 

customer’s tailor made diagnostic and communication device. The goal of this thesis is to 

develop software for a pilot test station according to the end customer’s test requirement 

specification. Commissioning and verification testing of the complete system is also 

included. 

Instrument drivers and some of the test functions are developed using National Instruments 

LabVIEW and the test sequence is implemented in NI Teststand. The goal of the test 

sequence is to first download and flash software to the DUT and then test all functionality 

of the DUT. All sequence functionality must be automatic. The operator will place the DUT 

in the fixture, press start, and scan the DUT information from the DUT. Depending on the 

outcome of the tests a sticker is printed automatically and placed on the DUT by the operator.  
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To help the reader to get a better understanding of the practical part of the thesis, an overview 

of electronics manufacturing and testing is also a part of the thesis. Throughout the thesis 

focus lays on testing in electronics manufacturing on the assembly levels PCB and PCBA or 

unit. Testing brought up in this thesis is concerned with the question; have we built our 

product right? Design validation and testing on chip and component assembly levels are not 

included. 

 

2   Testing in electronics manufacturing 

Electronics manufacturing is highly automated and all automated processes needs to be 

monitored to ensure that they are working as they are supposed to. One way of monitoring 

the behaviour is to examine the output. It is possible to assure that the process is producing 

quality products by testing the electronic products at different stages throughout the 

manufacturing process. Because the scope of this thesis is defined by the development and 

implementation of a tester, the theory brought up is kept limited to the background and the 

theory relevant to the specific tester.  

2.1   Electronics manufacturing 

The major stages in the manufacturing of an electronic product are: 

1.   Chip	
  in	
  wafer	
  
2.   Chip	
  diced	
  and	
  tested	
  
3.   Chip-­‐‑level	
  interconnection	
  and	
  packaging	
  
4.   Package	
  soldered	
  to	
  PCB	
  
5.   PCB	
  assembled	
  into	
  a	
  PCBA	
  or	
  unit	
  
6.   PCBA	
  or	
  unit	
  implemented	
  into	
  final	
  system	
  

	
  

This thesis scope include testing from 4. Package soldered to PCB to 5. PCB assembled into 

a PCBA or unit. According to Edwards (1991, 13) companies in the electronics industry can 

be divided into similar groups depending on what they produce: 

1.   Component	
  manufacturers	
  
2.   Semiconductor	
  device	
  manufacturers	
  
3.   PCB	
  bare	
  board	
  manufacturers	
  
4.   PCB	
  assemblers	
  for	
  third	
  parties	
  
5.   High	
  volume	
  assembly	
  of	
  PCBs	
  and	
  final	
  assembly	
  of	
  PCBs	
  into	
  complete	
  

systems	
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6.   Low	
  volume	
  assembly	
  of	
  PCBs	
  and	
  final	
  assembly	
  of	
  PCBs	
  into	
  complete	
  
systems	
  	
  

7.   Assembly-­‐‑only	
  companies	
  which	
  build	
  complete	
  systems	
  according	
  to	
  
customer	
  specifications	
  

These company types do not indicate the complexity of the actual company. An actual 

company may operate on several of the suggested types.  

2.2   Quality management 

All companies who produces something has an interest in assuring that the product has the 

desired properties and functionality when it is delivered to the customer. The strive for a 

quality output is the aim of quality management. Quality assurance and quality control are 

parts of quality management. The terms are sometimes used interchangeably but can be 

defined as follows: Quality assurance (QA) focuses on preventing defects and consists of 

activities and processes that ensures that the products developed have desired qualities. 

Quality control (QC) focuses on detecting defects in the product and correcting them. 

Validation and verification are tasks performed by conducting tests as a part of QA and QC. 

Validation aims to confirm that the product will perform its intended functions desired by 

the customer. It asks the question; Are we creating the right product? Verification aims to 

confirm that the finished product meets the given requirements. It asks the question; Have 

we created the product right? Validation and verification might need to be performed on 

many different levels from system level down to component level. (ISO 9000:2015). 

It becomes less time consuming and less expensive to correct a fault if is detected as soon as 

possible in the manufacturing. If a faulty component is changed before it is soldered to a 

board it is cheaper and quicker to fix the issue than detecting the fault when the device is 

fully assembled. Thus, testing is an important part of quality management and the 

manufacturing process.  

2.3   Design for Testability 

Because electronic devices become increasingly more complex, testing them has become 

very expensive and time consuming. Because of this it is important to take testability into 

account at an early stage in the product design process. Otherwise it is very likely that the 

product will be unnecessarily hard or even impossible to test. For example, if there are no 

way to access critical signals for testing on a PCB, it may be impossible to test the product 
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in production or during development. The only solution might then be to go back to the 

drawing board and redo the design.  

Design for testability or design for test (DFT) aims to maximise test efficiency and economy. 

DFT comprises of design techniques that adds testability features to the designed product. 

Even though most of the focus of DFT lies on digital circuits it is also applied to 

analog/mixed-signal circuits. Testing is not only needed in manufacturing but may also be 

beneficial in the design phase and in system maintenance. Design modifications that can be 

linked to DFT are for example improved controllability and observability of internal nodes 

in the circuit. This would be done to allow the test engineer to get access to critical signals 

during a test. Adding features like built-in-tests (BIT) are also a common technique. BIT 

means that the product has the ability to perform a test on itself and report the results. BIT 

can be used both in production testing and system maintenance. (Koenemann 2006, 21-1). 

2.4   Testing techniques and strategies 

As mentioned in Chapter 2.1, there are many assembly levels in electronics manufacturing. 

Each one uses different procedures and techniques. The testing techniques and solutions 

brought up here are used for testing populated PCBs and PCBAs or units. The factors that 

affect the implemented test strategy can for example be complexity of the DUT, type of 

faults detected, production volume and already invested test infrastructure.  

2.4.1   Automated test equipment - ATE 

One of the first questions that need to be answered when developing a tester is if it should 

be manual, semi-automated or automated. There are advantages to all of them but in 

electronics manufacturing automated testers are the most common due to the large 

production volumes. A more manual testing setup can be preferred for example in R&D 

related testing. Automated test equipment can be configured into a larger test system to 

automatically perform a test on a DUT without any need for the operator to intervene. (Poole, 

a). Table 1 compares the two different approaches. 
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Table 1. Comparison of manual and automated test equipment (Agilent Technologies 2013). 

	
  
 Manual Automated 
Throughput Low High 
Development cost Low High 
Operator experience High Low 
Flexibility High Low 

 

2.4.2   PCB visual inspection 

When the PCB has been populated with components like resistors, capacitors, diodes and 

integrated circuits, it is visually inspected. This is done to confirm that all components have 

been properly assembled to the board. Features that are inspected are for example missing 

and wrong components, fillet size or shape, component skew, component polarity, height 

defects and solder joints. There are three different techniques used to perform visual 

inspection. They all have different abilities to detect defects. 

-   MVI – Manual Visual Inspection can be practical for low volumes and if the 

complexity of the board is low. If the volumes or complexity is higher an 

automated solution is preferred. 

-   AOI – Automated Optical Inspection equipment works by letting a camera 

automatically scan the board and compare it to a known good sample.  

-   AXI – Automated X-ray Inspection is similar to AOI but uses X-rays as its source 

instead of visible light. That way it is possible to detect defects hidden from view. 

(Poole, a) 

2.4.3   In-circuit test – ICT 

ICT refers to testing techniques where connections are made directly to points on the PCB 

and then connections, component values and sometimes even some DUT functionality are 

tested. An in-circuit tester can be very expensive to invest in, depending on the type, but can 

be beneficial at large quantities. It is often possible to test that the PCB is correctly made 

and that no faulty components have been installed with an in-circuit tester. Reasons for not 

gaining complete coverage of the PCB can for example be not enough test points or low 

value capacitors on the PCB. If low value capacitors are present on the board it might be 
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impossible for the tester to measure them accurately due to the spurious capacitance of the 

tester itself.  

Standard in-circuit testers connect to the DUT through a bed of nails as seen in Figure 1. The 

fixture containing the bed of nails is specific for different products being tested and can 

easily be changed out when a product with other connections is to be tested. (Poole, b) 

 

Figure 1. Connection to DUT in ICT (Tarr). 

	
  

A different type of in-circuit tester is the flying probe tester which does not use a bed of 

nails. Instead it uses a set of probes that can move around to connect to various point of the 

board. By doing this it is possible to test much smaller quantities by not needing to invest in 

as much different testing hardware for each DUT model. (Poole, b) 

Wiring testers also use ICT techniques. They use a bed of nails to test the wiring of a PCB 

or cable connectors to test cables. A wiring tester can often also test some component values 

and polarity. 

2.4.4   JTAG - Boundary scan  

One of the problems with ICT, especially testing large integrated circuits, is getting access 

to all test critical signals on the board. In 1985 a group of electronic manufacturers formed 

the Joint Test Action Group (JTAG) to establish a solution to the testing problem. The 

solution became IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-

Scan Architecture, which allows test instructions and data to be serially loaded into a device 

and test results to be serially read out.  
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Boundary scan works through four, or more, extra pins on the DUT. Two pins are needed 

for control and one each for input and output of serial test data. These connect to chosen 

integrated circuits on the DUT to form a chain, thus making it possible to test several 

integrated circuits with four pins at once. When a chip is set to boundary scan mode, it is 

possible to set and read all pins on the chip. This also makes it possible to test other 

components and wiring externally on the PCB. (Texas Instruments Inc. 1997) 

2.4.5   Burn in  

The highest failure rate for electrical devices is in their early life after production and at the 

end of life. Burn in ovens are used on components and devices to accelerate the aging past 

the initial failure prone age. This procedure is done so that one can be confident that the 

product works under varying conditions in accordance with the requirements and that it will 

maintain the performance. Burn in ovens usually test batches of products at once and can 

monitor their behaviour during a longer period of time in harsh temperature conditions.  

2.4.6   FCT – Functional testing 

The purpose of a functional test is to verify that the functional requirements of the DUT are 

met by simulating real world scenarios and checking how the product behaves. FCT is done 

as a last step of verification on each different level in the manufacturing chain. For example, 

when a PCB has been populated with components and the assembly has been verified to be 

correct by an in-circuit tester, the functionality of the PCB is verified by a functional tester. 

When the PCB has been assembled into the final device it is tested in a burn in oven. The 

device’s functionality is tested again on a functional tester to verify that it is ready to be 

installed into the final system.  

It is often not practical to test all possible functionality due to the complexity of the product 

and time restrictions. If two different companies where to develop a functional tester for the 

same product, the resulting testers might look very different from each other. It is important 

to balance out what needs to be tested by weighting testing accuracy, time and financial 

restrictions against each other.  

A functional tester uses the connectors on the PCB or device to test its functionality, so there 

is usually no verification of what happens on the inside. If there is a need for verification of 

internal signals, a tester can use several testing methods at the same time. For example, a 
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functional tester might use boundary scan to verify some internal functions not visible to the 

outside world. (Cort 2002). 

2.5   NI LabVIEW 

LabVIEW is a development environment from National Instruments that is extensively used 

in electronics testing. It uses a graphical programming language called G. The programming 

language is one of the major differences from many other development environments. G 

uses a dataflow model instead of sequential lines of text code. This makes the thought 

process of writing code quite different from conventional scripting languages and usually 

needs some time getting used to. LabVIEW is the preferred development environment in the 

testing industry as it provides technology for acquiring data and processing signals, 

instrument control and for developing custom interfaces.  

One of the key benefits of working with LabVIEW is the extensive library of pre-made 

functions, which makes getting started with new projects and code faster and more straight 

forward. In a testing environment where customisation and adaptability is important this is 

a tremendous advantage. 

LabVIEW programs are called Virtual Instruments, or Vis, and consists of a front panel, 

block diagram and a connector panel. The front panel represents the user interface and is tied 

to the block diagram where the code is written. The connector panel is where input and 

output data are routed to and from the VI when the VI is called from another VI. Figure 2 

shows the basic development environment of LabVIEW. 



	
   10	
  

 

Figure 2. The front panel and block diagram in LabVIEW (National Instruments 2013). 

	
  

Furthermore, like in other software development environments, there is functionality for 

debugging code by executing the code using breakpoints for example. If there are broken 

wires, one can use an error list showing the missing connections. When executing code, it is 

also possible to do a highlighted execution, which means that the data flow of the executing 

code is displayed. Another function for debugging is the probe tool which let you probe 

values in the code as it runs. (National Instruments 2013). 

2.6   NI Teststand 

Teststand is a test management software for test automation made by National Instruments. 

It includes a ready-to-run sequence engine that supports multiple test code languages, result 

reporting and parallel or multithreaded tests. (National Instruments 2016a). 

One of the strengths of Teststand is the pre-built functionality and the ability for 

customization. It is used in all industries where automated testing is needed. 

2.6.1   Software components 

The Teststand engine is as the name suggests what drives the test system. It consists of a set 

of DLL files that exports an ActiveX Automation server API for other software components 
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to communicate with the engine. Other applications, acting as ActiveX clients, can get or set 

properties and invoke methods on the server to control the engine through the API. 

The sequence editor is the application in which the sequence and test system development is 

done. In the sequence editor it is possible to create, edit, execute, and debug sequences. Other 

features that can be accessed through the sequence editor are process models and station 

settings. As in any other application development environment such as LabVIEW and 

Microsoft Visual Studio it is possible to set breakpoints, trace through program executions 

and monitor variables for debugging purposes. 

The user interface is an application which is used on the deployed system. It is used by the 

end user to control and monitor the tester. Teststand is shipped with pre-built user interfaces 

developed in all the supported test code languages. The source codes for the pre-built user 

interfaces are available so they are fully customizable. It is also possible to create a user 

interface from scratch containing only the desired functions. 

The deployment utility creates an image and an installation file of the developed system 

containing all the necessary files for a functional deployment of the test system on another 

computer. Through a simplified GUI the developer can select all the files that need to be 

included and the deployment utility takes care of the rest. 

2.6.2   Building blocks 

Steps 

A step is much like a line in a scripting language. They are individual elements of a test 

sequence that call a code module or perform some other operation. For example, a step can 

call a code module that initializes an instrument, makes a measurement, call a subsequence 

or jump to another step. Steps include properties which for example can specify what 

parameters to send to code modules and where to store parameters received from code 

modules. There are many pre-defined steps in Teststand to accommodate for the most 

frequently used tasks. The users can also store their own template steps. 

Sequences 

A sequence file contains a main sequence with a series of test steps. One of these steps can 

be a call for a subsequence. Other properties that sets a main sequence from a subsequence 

is that a main sequence includes sequence file global variables.  
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All sequences contain a setup, a main and a clean-up section which are called step groups. 

Steps are placed into the step groups to create a test. There is no significant difference 

between the sections but the clean-up section can be used for steps that needs to be executed 

in all scenarios. For example, if a step fails in the main section it is possible to configure the 

sequence to jump straight to the clean-up section. In general, the setup section is used for 

test setup functions like initializing instruments. The main section is used for the actual test 

steps like measuring a voltage and checking it against limits. The clean-up section is for 

example where steps that close communication with instruments are positioned.  

Code modules 

Code modules are program modules developed in an application development environment 

like LabVIEW or other programming language. The called code module performs a test or 

other action.  

Properties 

Properties consists of values that can be a number, string, Boolean, .NET object reference, 

or ActiveX object reference. For example, sequence properties and step properties can be 

modified programmatically each time a sequence is run with a property loader step. This 

means that limits for measurements and other properties in the sequence can easily be 

changed on the deployed Teststand system. 

Variables 

Variables are properties freely definable in a certain context. A variable can be global for 

the whole test station or local only for a specific subsequence and everything in between. 

Variables can be used to share data between steps and sequences and can be accessed through 

the Teststand API from code modules.  

Expressions 

Expressions are formulas that van calculate new values from one or more variables and 

properties. One can insert an expression as a separate expression step, before or after a step 

has executed, or as a property or variable. Expression operators and syntax that Teststand 

supports are the same as in C, C++, Java, and Visual Basic .NET.  
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A simple example of an expression: 

 Locals.Humidity = Step.Measurment * 100 

Here the relative humidity is measured by a sensor that outputs a voltage between 0 and 1 

volts. By multiplying a DMM measurement the scaled humidity value is acquired.   

Process models 

The process model is a sequence file that specifies certain aspects of how the testing process 

works on a certain Teststand system. For example, in addition to the test sequence the testing 

process may include DUT identification, result indication, result logging and report 

generation. Teststand is shipped with built-in sequential, parallel and batch process models. 

These process models can be customized for specific test platform needs.  

Callback sequences 

Callback sequences are used to define the behaviour of a test station when a specific event 

occurs. Callbacks are divided into three groups: model callbacks, engine callbacks and front-

end callbacks. The groups are defined by the software component that invokes the callback 

and where the callbacks are defined. Model and engine callbacks are implemented in a test 

sequence by adding them through the Sequence File Callbacks dialog box. Front-end 

callbacks are called from the user interface and are located in FrontEndCallbacks.seq file. 

Model callbacks are used to override the current process model’s behaviour.  For example, 

one can define a model callback to change how Teststand generates the report for that 

specific test sequence. Engine callbacks are used to invoke a callback at specific points 

during a test. For example, it is possible to define an engine callback to log to a database 

after every step in a test sequence. Front-end callbacks are used to run a specific sequence 

when a certain action is triggered by a user through the user interface. Features that do not 

depend on the process model are implemented as front-end callbacks.  (National Instruments, 

2016b). 
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2.6.3   Sequence editor GUI overview 

The sequence editor is the main software component that is used during development of a 

Teststand system. Figure 3 shows the GUI of the sequence editor.  

 

Figure 3. Teststand GUI of the sequence editor. 

The steps pane is located in the middle of the screen in Figure 3. This is where the individual 

steps for the selected sequence are displayed. The sequence pane is located in the top right 

corner and shows all the sequences of the sequence file. The insertion palette is located to 

the left in the screen. The insertion palette is divided into two windows: step types list and 

templates list.  

 

 

3   Development of the functional tester 

As stated earlier, the tester hardware was already done when the thesis work commenced. 

Online resources where extensively used for information and guidance where given by 

colleagues at Ampner throughout the work. The work of developing and implementing the 

tester software could be divided into three main parts: instrument drivers, development of 

test sequence and commissioning.  
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3.1   Device Under Test 

When developing a test or a tester it is important to understand the DUT as well as possible. 

A short explanation of the DUT will be given, but specific details about the DUT will not be 

included in this thesis due to the nature of the work. The DUT is a diagnostics and 

communication device. All the functions of the device are to be tested plus a button and all 

the LEDs on the device. Functions of the device are: 

-­‐‑   3G modem  
-­‐‑   Bluetooth  
-­‐‑   USB  
-­‐‑   Ethernet interface  
-­‐‑   digital GPIO  
-­‐‑   accelerometer 
-­‐‑   magnetometer 
-­‐‑   temperature 
-­‐‑   relative humidity 
-­‐‑   air pressure 
-­‐‑   sound 
-­‐‑   analog inputs and outputs 

 

When the device is ready for final testing it will be fully assembled except an identification 

label, which will be added when testing is finished. All connections to the device will be 

done through the existing connectors on the device.  

The device’s software is a Linux operating system which can be accessed via the Ethernet 

port by SSH connection during testing. Several test programs are available on the device to 

simplify sensor reading and control of functions. After testing the ability to connect to the 

DUT are restricted for security reasons.   

3.2   Tester hardware 

The tester hardware is based on a Testcom product called CUBE. It is a modular 19-inch 

rack with a removable fixture on top. The scope of this thesis does not include the tester 

hardware but some of it will be explained for a better understanding of the tester software. 

Many devices and mechanical solutions where implemented so that the test would be 

automatic and require minimal actions from the operator. A mechanical drawing of the test 

station is shown in Figure 4. 
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Figure 4. CUBE test station (Ampner 2016). 

	
  

The modular tester hardware is divided into three main parts: test station, test fixture and test 

cassette. The reason for the modular design is to allow for easy maintenance and the 

possibility of testing several different products on the same test station. The test station is 

the main part of the tester and includes most of the instruments and testing devices. The test 

fixture, shown in Figure 5, connects to the test station through a connector interface which 

allows for removing the test fixture in a matter of seconds. The test fixture includes DUT 

specific test equipment.  

 

Figure 5. Test fixture (Ampner 2016). 

	
  

Inside the test fixture is the test cassette, shown in Figure 6, which includes the connectors 

and mechanics for connecting to the DUT. On this specific final functional tester, the DUT 
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connectors are located on the side of the device. The test connectors need to push in towards 

the device to connect. This is accomplished by having the connectors sliding on radial 

bearings when the lid of the fixture is closed. 

 

Figure 6. Test cassette (Ampner, 2016). 

	
  

The instruments performing the measurements and control of the test are: 

-­‐‑   NI	
  PXI-­‐‑1033	
  –	
  MXI	
  Express	
  controller	
  
o   NI	
  PXI-­‐‑4065	
  –	
  6	
  1⁄2-­‐‑Digit	
  PXI	
  DMM	
  
o   NI	
  PXI-­‐‑2527	
  –	
  64-­‐‑Channel	
  300V	
  CAT	
  I	
  Multiplexer	
  
o   NI	
  PXI-­‐‑6229	
  –	
  32AI,	
  48DIO,	
  4AO	
  DAQ	
  

-­‐‑   Agilent	
  N6700B	
  –	
  Modular	
  Power	
  System	
  Mainframe,	
  with	
  N6745B	
  and	
  
N6743B	
  installed	
  

-­‐‑   Feasa	
  10F	
  –	
  LED	
  analyser	
  

Other devices in the tester are: 

-­‐‑   PC	
  
-­‐‑   3D	
  barcode	
  reader	
  
-­‐‑   Label	
  printer	
  
-­‐‑   Bluetooth	
  Sensor	
  Tag	
  
-­‐‑   Signal	
  multiplexers	
  and	
  relay	
  cards	
  
-­‐‑   Humidity	
  and	
  temperature	
  probe	
  for	
  reference	
  
-­‐‑   Barometric	
  pressure	
  transducer	
  for	
  reference	
  
-­‐‑   Buzzer	
  
-­‐‑   Solenoid	
  for	
  pressing	
  DUT	
  button	
  
-­‐‑   USB	
  flash	
  drives	
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3.3   Tester software 

All the hardware on the tester is controlled by software on a Windows PC located in the 

testers frame. The test sequence is controlled and monitored through NI Teststand. As this 

was a pilot tester the development took place on the actual final PC. Normally test 

development would be done on a separate PC and then deployed to the tester.  

SSH communication with the DUT is done through a command-line interpreter program 

called ExtraPuTTY. Other software used in the test sequence consists of executable scripts 

for sending data to the sticker printer and sending ping requests to the DUT. 

The tester requirements were used as a basis for the development of the tester software. 

Among other things it specified a set of functional test cases that needed to be performed by 

the tester. The purpose, procedure and expected results were specified in the short test case 

specifications. 

3.3.1   Instrument drivers 

The instrument drivers had to be written or modified to work with the tester. All drivers, 

except the printer driver, were implemented in G code. Most of the drivers had been used in 

other projects and only needed minor adjustments so that they would be executable from 

within Teststand. 

The purpose of an instrument driver is to simplify the development of a test sequence. The 

instruments may have different interfaces to the tester PC. An instrument driver is a piece of 

code that takes commands and values as inputs and returns one or several results from the 

instrument. If all instrument drivers in a tester have similar input and formats it simplifies 

the sequence development.  

As an example, a power supply might be connected to the computer through a serial 

interface. To set the voltage of one of the channels one would have to initialize a serial 

connection, send the command, wait for a response and close the connection. Different 

protocols and commands might be needed for each instrument. Making the instrument 

drivers behave like each other, means that the test sequence development becomes easier. 
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3.3.2   Sequential structure in Teststand 

In this case a sequential process model and a mostly sequential sequence structure were 

implemented. With a parallel process model, it is possible to execute tests on several DUTs 

at once. The reason for the sequential process model in this case, was the added cost of 

hardware for connecting several DUTs to the tester at once. The decision was made to go 

with a sequential sequence structure as this seemed to inflict less problems with the DUT 

communication.  

When running a test, it is possible to let the user interface trace the steps currently executing. 

But the user interface that comes with Teststand can only show one thread at a time. This 

may be a problem when using several threads in the sequence execution, meaning that the 

sequence is executing several steps in parallel. This might be perceived as a confusing 

feature for the operator. And thus, another reason why the sequential sequence structure was 

chosen. Figure 7 shows the two different execution structures considered for this project. 

 

Figure 7. Sequential and parallel execution structure. 

	
  

3.3.3   Timing of tests and test duration optimisation  

Because the tester will be used to test a high volume of devices it is desirable to keep the test 

duration as short as possible. The desired complete test duration was one minute. With 

Teststand there are many ways to get the test duration down. But there is always a risk that 
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the test becomes more unreliable if the sequence is over optimized for time. For example, 

some data was lost when multithreading was used while communicating with the DUT. This 

over optimization likely increased the workload of the tester and DUT. The sequence was 

modified to look out for the data loss to prevent the issue.  

Further the test duration was optimized by arranging the order of the test cases so that it 

suited the DUTs boot up procedure. The test cases that did not need the DUT to be fully 

booted was set to be performed during boot up. The modem in the DUT used during the 3G 

test took around 45 seconds to be ready after the power had been applied to the DUT. This 

meant that the 3G test was performed at the end of the sequence to avoid having the sequence 

waiting on the modem to be ready.  

3.3.4   Optional structures  

Multithreading means that a CPU or a single core are used to run tasks concurrently. 

Multithreading in Teststand can be done in many ways but one way that was investigated 

and used in this thesis was to call subsequences and configuring the call to be started in a 

new thread. This means that the called subsequence is executed in parallel with the sequence 

that called it.  

Some of the test cases required no instrument use, for example the USB functionality tests, 

Bluetooth test and 3G test. It was investigated if these could be run in parallel to the rest of 

the test cases to get a shorter test duration. But as mentioned earlier, this created some 

reliability issues to the test sequence. Multithreading functionality was only used for a short 

push button test on the pilot tester. 

3.3.5   Data acquisition 

The majority of the tester functionality depend on acquiring data from instruments, sensors 

and the DUT. The data is then handled in LabVIEW VIs and in the sequence. One of the 

more trivial measurements in this particular tester is acquiring data from a pair of reference 

sensors to be compared with the DUT environmental sensors. The reference sensors give out 

a voltage value with the sensor reading. This value is measured with the DMM in the tester 

and then it is scaled in the sequence so that it can be compared with the DUT output.  

There are many occasions when a request is sent to the DUT to return data. This can be 

modem identification parameters or test data from one of the many built in test programs on 
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the DUT. Two different approaches where used. Either the program or command was 

executed and the result printed directly to the command-line and recorded into the sequence. 

Another approach used was to run the test program as a background process on the DUT and 

save the result as a .txt file which data was copied into the sequence at a convenient time.  

In the sequence variables and parameters were kept as local as possible. For example, if a 

variable in a subsequence were not needed in a higher-level sequence, it only existed in that 

subsequence. But some variables and parameters were needed in a subsequent sequence and 

then they needed to be transferred between the sequences. This was done by changing the 

settings of the sequence call.  

3.3.6   Report generation and the property loader 

Teststand has built in report generation, so it is easy to create a basic test report. Result 

collection, which collects step results and relevant data, is performed automatically during 

the execution of a sequence. Teststand then automatically generates a report file at the end 

of the sequence. The standard test report can be modified in many different ways. It is for 

example possible to choose which step data should be included in the report. It is also 

possible to change the layout, design, format and at what conditions reports are generated. 

For this pilot tester, the contents of the report were still not clear during the work on the 

thesis so the test report was only used and modified to aid the development process. The 

database logging was later implemented by the customer using their own customised 

solution. 

The absolute first step in the sequence is a property loader step. This step lets the user change 

limits and other properties of a test easily by editing a .csv file on the tester PC. This feature 

is critical during commissioning and when the tester is used in production. If the limits set 

during development of the test turns out to be wrong or just slightly off from the DUTs 

current specifications, it is much simpler to be able to edit one .csv file on a server instead 

of ten different sequence files in ten different locations. 

3.4   Implementation and commissioning 

By running the sequence in small parts on the assembled tester it was possible to identify 

issues and solve them one by one. Because the DUT itself was still being developed 

communication with the DUT developers where critical to ensure that both the DUT and the 

tester were working as they were intended to.  
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To get the test sequence work as a whole the structure was modified slightly until it worked 

with the DUT boot up procedure. Other aspects that where considered when modifying the 

sequence at this state were test duration optimisation, limitations of the DUT and limitations 

of the tester. 

The reliability and accuracy of the test sequence was tested by doing large numbers of test 

runs. Modifications were made when problems were encountered and the sequence was 

tested again.  

When enough confidence had been gained in the reliability and functionality of the tester it 

was shipped to the customer. The customer then continued to implement their own solutions 

on the test station. Some modifications where requested to deal with issues raised after 

commissioning. This meant travelling to the customer’s location and performing minor 

mechanical modifications. During this meeting, the tester was reviewed and issues that 

needed to be followed up on when the tester was taken into use in production were pointed 

out. 
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4   Result 

The developed test sequence consists of one sequence file containing 23 sub sequences. In 

Figure 8 the complete test sequence hierarchy is shown. 

 

Figure 8. Sequence hierarchy. 

	
  

The sequences starting with a number, e.g. 4.1, are test cases specified in the tester 

requirements specification. The other sequences are for housekeeping and other required 

functionality.  All sub sequences are executed sequentially except 4.12.1 and 4.12.2. These 

two sequences are executed as new threads. This was done so that it is possible to push the 

button and read the button state on the DUT, both at the same time. The subsequence 4.12 

is shown in Figure 9.  
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Figure 9. Button test sequence including execution in new thread of subsequence 4.12.1 and 4.12.2. 

	
  

The 4.5 Sensors Test is shown in Figure 10. It was written to first start the test program on 

the DUT. The test program continuously outputs humidity, temperature and air pressure to 

a .txt file.  When the test program has been started, the tester measures the voltage output of 

the reference sensors located close to the DUT in the test cassette. The voltages are scaled 

to represent the same units as the DUT readings. This process is timed so that enough 

readings from the DUT can be acquired. The difference between the reference and DUT 

sensors are tested against expected values. 

	
  

Figure 10. 4.5 Sensors Test sequence. 
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4.1.1   Operating the tester 

The steps involved with operating the pilot functional tester are: 

1.   The	
  test	
  station	
  is	
  powered	
  on	
  and	
  the	
  Teststand	
  user	
  interface	
  is	
  started.	
  
2.   The	
  user	
  logs	
  in	
  to	
  Teststand	
  with	
  user	
  credentials.	
  
3.   The	
  sequence	
  can	
  be	
  started	
  in	
  two	
  different	
  modes,	
  either	
  running	
  a	
  series	
  

of	
  multiple	
  tests	
  or	
  just	
  a	
  single	
  pass.	
  If	
  a	
  series	
  of	
  multiple	
  tests	
  is	
  chosen	
  
steps	
  four	
  to	
  eight	
  are	
  looped.	
  

4.   The	
  barcode	
  reader	
  is	
  used	
  to	
  scan	
  the	
  batch	
  and	
  serial	
  number	
  of	
  the	
  DUT	
  
and	
  the	
  DUT	
  is	
  then	
  placed	
  in	
  the	
  fixture.	
  	
  

5.   After	
  this	
  point	
  the	
  test	
  sequence	
  is	
  automatic	
  and	
  the	
  operator	
  does	
  not	
  
have	
  to	
  intervene.	
  

6.   The	
  test	
  result	
  is	
  showed	
  clearly	
  on	
  screen	
  and	
  a	
  result	
  sticker	
  is	
  printed.	
  	
  
7.   The	
  test	
  data	
  is	
  loaded	
  to	
  a	
  database	
  in	
  the	
  background.	
  
8.   The	
  sticker	
  is	
  attached	
  to	
  the	
  DUT	
  and	
  the	
  DUT	
  is	
  placed	
  into	
  the	
  correct	
  

location	
  according	
  to	
  the	
  test	
  result.	
  

4.1.2   Test duration 

In early sequence development, the duration of the different stages of the test sequence were 

estimated to be: 

-­‐‑   30	
  seconds	
  for	
  device	
  flashing	
  
-­‐‑   15	
  seconds	
  for	
  booting	
  the	
  device	
  
-­‐‑   45	
  seconds	
  for	
  testing	
  
-­‐‑   90	
  seconds	
  in	
  total	
  

The shipped sequence had longer times in every category. Most of the time added to the test 

duration was delays in the code to make sure that no errors occurred. The test duration was 

longer than desired when the tester was delivered to the customer due to SSH and USB 

communication reliability issues. At the end of the thesis work the actual times were around: 

-­‐‑   40	
  seconds	
  for	
  device	
  flashing	
  
-­‐‑   30	
  seconds	
  for	
  booting	
  the	
  device	
  
-­‐‑   70	
  seconds	
  for	
  testing	
  
-­‐‑   130	
  seconds	
  in	
  total	
  

The test duration was deemed sufficient for the moment and were to be optimized after 

further development.  

4.2   Unresolved issues/DUT functions not tested 

The hysteresis function of the digital GPIO input was tested in the GPIO test. This was done 

by incrementally increasing and then decreasing the voltage applied to the input between 1 

and 5 volts, as shown in Table 2.  



	
   26	
  

Table 2. GPIO Hysteresis test. 

  

 
 
 
 

But during a couple of percent of test executions, the recorded value in the sequence on steps 

3 or 4, were 0 instead of the expected 1. This issue was examined by the tester developers 

and the DUT developers to understand what the reason for the sporadic failures was. The 

issue remained unresolved during the thesis work and was set to be followed up as the tester 

was applied in production.  

The other unresolved issue was interference in the high-speed USB signals in the tester. 

Because of the limited number of USB ports on the DUT, USB signals needed to be switched 

through relay cards when changing the connections. During implementation of the test 

sequence it became apparent that the connections between relay cards, tester PC, USB 

memory devices and the DUT were not sufficient in keeping the communication confidently 

stable. The USB test connectors were of the type in Figure 11, which are of high quality and 

made to withstand a high number of mating cycles, but they do not connect the shield of the 

USB cable. Neither the USB multiplexers in the tester had the shields connected resulting in 

hard to trace errors during device flashing and USB functionality tests.  

 

Figure 11. UBS test connector (Engmatec 2013). 

	
  

The issue was reduced by changing cabling. The issue was tolerable on the commissioned 

tester, but further investigation into alternative connectors and USB multiplexers will be 

done in the future. 

Step	
   Applied	
  voltage	
   Expected	
  value	
  
1	
   0	
  	
   0	
  
2	
   2	
   0	
  
3	
   5	
   1	
  
4	
   1	
   1	
  
5	
   0	
   0	
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4.3   Customer approval 

To verify that a stable process works according to specifications the process capability can 

be analysed. The customer used Cp and Cpk when verifying the tester. Cp and Cpk are statistical 

indices that indicate how well the output of the process sits inside the specified limits. Gage 

R&R analysis was also performed to assess the measurement precision of the tester. Gage 

R&R gives statistics like repeatability, reproducibility and residual or pure error for the 

process. (NIST/SEMATECH 2012). The tester was approved by the customer and taken into 

use in production at the end customer.  

 

5   Conclusion 

The thesis work resulted in a tester with hardware and software functioning according to the 

tester requirements specification. The issues that arose and that where not resolved during 

the work were not critical and improvements will be made in the future to resolve these 

issues.   

Throughout the development and implementation process of the tester the scope of the thesis 

work was redefined slightly. This was possible because it was a pilot tester and the customer 

had some resources themselves to continue the development process after it had been 

commissioned. The reason for this flexible arrangement was the tight timeframe of the 

project. Although every wish the customer mentioned was not implemented, the delivered 

tester was successfully produced according to the customer’s tester specifications in the 

defined timeframe. 

5.1   Lessons learnt 

Even though the thesis work was seen as a success there is always things that could have 

been done differently and lessons learnt. To communicate with the DUT a software called 

ExtraPuTTY was used as a SSH client. Secure Shell (SSH) is a protocol between a server 

and clients for IP networks. ExtraPuTTY was chosen because of its stated ability to work 

together with NI Teststand. When installing ExtraPuTTY .dll files are copied into Teststand 

folders so that ExtraPuTTY can be called with steps from Teststand. For this project 

ExtraPuTTY has been sufficient but not without many aggravating moments. The 

documentation of using ExtraPuTTY together with Teststand is very limited and most of the 
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support has been found on forums online. The installation process was very complicated and 

unclear. Help for the installation of ExtraPuTTY can be found in the (NI forum 2013) link 

in the bibliography. ExtraPuTTY also had problems communicating with the DUT reliably. 

Sometimes the SSH client did not wait for the end of line character from the DUT resulting 

in sequence errors.  

Another unexplainable incident involving ExtraPuTTY happened when the tester had been 

delivered to the customer. A report from ExtraPuTTY popped up after each test execution. 

This feature was finally turned off by setting a new file path for the reports and turning of 

ExtraPuTTY report generation in test steps. In ExtraPuTTYs defence it is a free software 

and most of the work is done for you but I would definitely suggest that investigation of 

alternatives would be beneficial if a SSH client with Teststand API is needed in the future. 

Some of the test data was transferred from the DUT to the test sequence through the SSH 

connection by reading the print out in the terminal on the PC to the sequence. An alternative 

way was to let the Linux command be run in the background and save the print out into a 

.txt file on the DUT. The data was then transferred to the sequence at a later stage. The 

advantages of the second approach are that it frees up the terminal for other tasks and there 

is a smaller risk of ExtraPuTTY not waiting for the end of line character. It would have 

shortened the test duration and probably made the sequence more reliable if all tests using 

data from the DUT would have used the second approach, but due to time limitations the 

changes could not be made during the thesis work. 

There are many different specification documents used in hardware testing. As in most areas 

of engineering, the quality of the specification documents often corresponds with the 

resulting product. To the word specification more words are added to specify the purpose of 

the document. The names of these documents are sometimes used interchangeably, which 

may cause confusion.  

It could be argued that in this specific project the specifications was not comprehensive 

enough. The test requirements specification and the tester requirements specification were 

combined into one document. The functions to be tested were documented, but function 

specific measurements were not yet clearly defined because the DUT was still in 

development. I can imagine that, in general, the DUT is often not a finished product at the 

time of writing the tester requirement specification. But the development and commissioning 

of the tester can be done much faster and cheaper with clear specifications. On a functional 
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tester like this at least all the required measurements and acceptable values should be clearly 

defined. 

Another issue linked to the fact that the DUT was still in the development phase was the 

number of devices present during development of the tester. We only had one device 

available in the beginning of tester software development. This meant that it was critical for 

the project that the device did not break. Later a new version of the device was available as 

well. The second device helped in testing the tester but it would have definitely been 

preferable to have had a few copies of the same version of the device during the 

implementation and testing phase of the tester.  

5.2   Pros and cons using Teststand as a test sequencer 

There are several alternatives to using NI Teststand as the test sequencer. Ampner has 

developed and sustained a LabVIEW based test sequencer for many years. The advantages 

of using a test sequencer programmed in house are that it is independent and completely 

customizable. A deployed system does not necessarily need any NI licences to run, so it is 

possible to cut costs. It is also possible to include any imaginable feature that the customer 

wants. A LabVIEW based test sequences normally uses text based test scripts. It can be 

argued that it is easier to read and develop text based scripts than Teststand sequences.  

A Teststand sequence can be strenuous to read especially when using many expressions. My 

personal experience of using Teststand has been very positive. The online forum support has 

been very helpful. As with other NI products, the manuals are quite extensive. A Teststand 

deployment needs a runtime licence to run. However, in regards to costing, the costs of 

developing and maintaining a completely customizable test sequencer also needs to be 

considered.  

Other advantages of Teststand are the features already built in and the wide use of the 

software in the industry. Because it is well known the processes of marketing, sales, 

production and after sales can be aided by the fact that the customers are familiar with the 

development environment. With the free extensive support online it gives the customer the 

chance to problem solve and further develop the system if they so wish. All these advantages 

result in shorter development times and better competitiveness compared to a test sequencer 

built in house.  
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5.3   Further development 

The tester developed in this thesis will be further tested in the production line at the end 

customer. A second copy, with improvements, of the tester has been commissioned. Because 

of this, the tester will continue to be further developed after the thesis work. As mentioned 

in Chapter 5.1, there are several areas that could be improved upon that will be investigated.  

In relation to the topic of this thesis, the areas that seem to be mostly beneficial to further 

development are the USB connections in the tester, the self-test programs on the DUT, and 

the sequence structure. The USB connections need to be changed so that the connections are 

reliable without the interference earlier mentioned. The self-test programs could be modified 

and new programs could be implemented to aid the sequence, thus making the test faster and 

more reliable. For example, test results could automatically be written to a .txt file. The 

sequence structure could be adapted to the new DUT self-tests and multithreading could be 

used to shorten test duration. However, if the structure is changed and extensive 

multithreading functionality is introduced further development of the user interface will also 

be needed.  

5.4   Comments 

As expected time is always an issue. If a project does not have a deadline, it most likely will 

never be completed. This thesis work was no different. Throughout the project finding time 

to handle less than critical issues was hard. Extensive knowledge of testing hardware and 

LabVIEW coding were accessible in-house, but Teststand was completely new for me and 

had not been used as the primary test sequencer at the company. So, a great deal of precious 

time went to figuring out and learning the development environment. In hindsight, this was 

probably the fastest and most valuable way to move from and academic environment into 

the working life of an engineer.  
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