
Bachelor’s thesis

Information Technology

Embedded software

2017

Nelli Tchernikova

BROWSER-BASED
AUTOMATION TESTING USING
SELENIUM RC FOR MONETIZE
COMMERCIAL SAAS PRODUCT

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme | Information technology

2017 | Total number of pages 48

Nelli Tchernikova

BROWSER-BASED AUTOMATION TESTING
USING SELENIUM RC FOR MONETIZE
COMMERCIAL SAAS PRODUCT

 "HyperIn Inc is Finnish SW development company with a strong portfolio of products to manage
shopping center assets such as sales data, advertisement places , tenants etc. One of the main
products offered by HyperIn is Monetize. It is Software as a Service web based product offering to
shopping center management the way to manage all shopping center advertisement places and
selling them to end users directly or via web shop interface.

Monetize development team identified that Monetize needs to be fully covered with automatic UI
tests using Selenium RC language. Thesis work goal was to implement all required automatic UI
Selenium tests.

Thesis text explains agile Scrum SW development process used to develop Monetize and why
automatic testing is so important for the process. It gives detailed technical overview of how to write
Selenium tests for Monetize including Selenium scripts, Java helper methods, test data management
and efficient ways to identify HTML components on web page in the tests. Additionally it is explained
how to write localization agnostic test cases.

Thesis goal was achieved and Monetize product was100% covered with automatic Selenium UI
tests. There was written about 7400 source code lines in Selenium, Java and Groovy language to
implement the tests. Developed Selenium tests were taken by Monetize development team into
Continuous Integration process to reduce the cost of manual regression testing.“

KEYWORDS:

Automation Testing, QA, Selenium, Selenese, Java

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme | Information technology

2017 | Total number of pages 48

Nelli Tchernikova

SELENIUM AUTOMAATTISET TESTIT
KAUPALLISELLE SAAS TUOTTEELLE
”MONETIZE”

 HyperIn Inc on suomalainen ohjelmistokehitykseen keskittynyt yritys, jolla on tarjolla laaja portfolio
tuotteita erilaisten kauppakeskusten varojen kuten myyntitietojen, mainospaikkojen ja vuokralaisten
hallintaan. Yksi HyperInin tarjoamista tuotteista on Monetize. Se on Software as a Service -
verkkopohjainen tuote, joka tarjoaa kauppakeskusten johdolle mahdollisuuden hallita kaikkia
kauppakeskuksen mainospaikkoja ja myydä niitä loppukäyttäjille suoraan tai verkkokaupan kautta.

Opinnäytetyö kertoo Scrum ohjelmistokehitysprosessista, joka käytettiin Monetizen kehittämiseen
sekä selittää, miksi automaattinen testaus on erittäin tärkeä prosessin kannalta. Se antaa
yksityiskohtaisen teknisen yleiskatsauksen siihen, miten kirjoitetaan Selenium-testit
Monetizelle mukaan lukien Selenium-komentosarjat, Java-helper menetelmät, testitietojen hallinta ja
tehokkaat tavat HTML-komponenttien tunnistamiseen testeissä web-sivuilla. Lisäksi opinnäytetyössä
selitetään, miten tehdään lokalisoinnin testisuunnitelmia.

Opinnäytetyön tavoite oli saavutettu ja Monetize oli testattu 100 % automaattisilla Selenium -
käyttöliittymän testeillä. Testien toteutusta varten kirjoitettiin noin 7 400 koodin rivija Selenium, Java-
ja Groovy-kielellä. Monetizen tuotekehitysryhmä otti Selenium-testit käyttöön osaksi jatkuvaa
integrointiprosessia manuaalisen regressiotestauksen kustannusten vähentämiseksi."

KEYWORDS:

Automaation Testing, QA, Selenium, Selenese, Java

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS ERROR! BOOKMARK NOT DEFINED.

1 INTRODUCTION 6

1.1 Monetize introduction 7

1.2 Thesis goals 8

2 MONETIZE SW DEVELOPMENT PROCESS 9

2.1 Scrum process overview 10

2.2 Scrum framework components 10

3 QUALITY ASSURANCE IN AGILE MONETIZE TEAM 13

3.1 Manual testing 13

3.2 Automated testing 14

3.2.1 Unit testing 15

3.2.2 Functional testing 16

3.2.3 Selenium UI testing 16

4 SELENIUM UI TESTING FRAMEWORK 17

4.1 Selenium RC scripting language 17

4.2 Selenium RC in Play Framework 19

4.2.1 Loading testing data between tests 19

4.2.2 Test data YAML format overview 20

4.3 Most common Selenese commands 22

4.3.1 Action 22

4.3.2 Assertions 23

4.3.3 Accessors 24

4.4 HTML element locators 25

4.4.1 Id 25

4.4.2 Name 26

4.4.3 CSS 27

4.4.4 Xpath 29

4.5 Selenium Java helper classes in Monetize 30

4.6 Selenium scripts and localization 35

4.7 Querying database in Selenium scripts 37

4.8 Cleaning test environment between the tests 39

4.8.1 Cleaning database 39

4.8.2 Cleaning web browser data 40

4.9 The limitation of preprocessors 41

5 THESIS WORK RESULTS 42

5.1 Thesis work implementation processes 42

5.2 Achieved Monetize Selenium test coverage 42

5.3 Thesis work test cases statistic 44

6 SUMMARY 45

REFERENCES 46

TERMINOLOGY 1

LIST OF ABBREVIATIONS (OR) SYMBOLS

SLOC Source lines of code

YAML Stands for “yet another markup language”

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

1 INTRODUCTION

HyperIn Inc is a Finnish company with headquarters in Helsinki with mission to provide leading

solution in management and monetization for shopping centers. Company products are

grouped into 3 categories:

 Manage

o managing shopping center tenants and sales reports

 Connect

o using shopping centers tenants information in mobile apps, interactive mall

directory screens and in shopping centers websites

 Monetize

o managing and selling shopping centers advertisement spaces like banners,

time in ad tvs etc.

Every product is a complex SW solution based on stack of SW components that requires

testing before every product version goes to the market. This thesis work is focusing on

Monetize product.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

1.1 Monetize introduction

Monetize is a software as a service (SaaS) web based application based on Play Framework

and MySQL.

HyperIn http://www.hyperin.com/ web site explains Monetize platform as:

“MONETIZE platform gives you a variety of great tools that you can easily use for selling all

the advertising and promotional spaces of your mall. Whether on your digital screens, video

walls, specialty leasing places, promotional stands, voice commercials or touch-screens, you

will generate more ad revenue. You can also run the same ads on your web page or consumer

mobile devices.

Hyper[in] MONETIZE is a web service, which offers you or any service provider a great

opportunity to efficiently sell advertising on your shopping mall and website with online

reservation and payment functionality.” (Monetize 2017)

Picture 1. Monetize software as a service

http://www.hyperin.com/

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

Monetize contains sophisticated web based UI for end users that allows managing ad spaces,

ad space reservations , customers and many other relevant features.

As product grew it started to be very risky to extend it without good automatic UI test coverage

to make sure that changes in one part of the product do not break something in other part of it.

1.2 Thesis goals

Monetize UI was originally covered ~15% with automatic Selenium UI tests. The thesis goal

was to achieve 100% Selenium UI automatic tests coverage of Monetize web application

developed by HyperIn Inc. The work to finish the task was estimated by Monetize developers

to be 3 to 6 months full time work of test automation engineer.

Thesis goal was reached and currently Monetize is 100% covered with automatic Selenium

tests. This text contains details on how this was achieved.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

2 MONETIZE SW DEVELOPMENT PROCESS

HyperIn delivers new product features often and with good quality. Usually there is a new

product version released to the customers every month. Products becoming more complex

with time and it gets time consuming and expensive to test and ensure quality manually. To

keep rapid delivery with expected quality HyperIn adapted agile SW development practices

and effective SW testing process that includes sophisticated automatic testing steps. Monetize

team is a typical Agile Scrum team as demonstrated on the picture below:

Below is diagram representing Monetize development process that is similar to one explained

in Agile project management with Scrum (Schwaber, 2004) or Agile software development with

Scrum (Beedle & Schwaber, 2001).

Picture 2. Agile Scrum team

Picture 3. Monetize development process

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

2.1 Scrum process overview

 Scrum team agrees on Monetize releases:

o Product owner defines requirements as Stories into “Product backlog”

o Several Stories selected by product owner for next Monetize release

o Release date is set based on high level estimations from the developers

 Monetize developed in a series of 1-2 weeks sprints

 At the beginning of the sprint team meets in “Sprint planning meeting” where it:

o discusses results of the previous sprint. What went well, what not and check if

release date is still feasible.

o selects Stories it can implement in the next sprint and commit to implement

them during the sprint. Stories selected for the sprint called “Sprint backlog”

 Every day team has 5 minutes stand-up meeting to check the sprint status, work

impediments and check burndown chart

 Monetize stories are designed, coded and tested during the sprint

 The team is self-organized and no management involvement required during the sprint

 In case team realizes it cannot deliver features in time Product manager can decide

either to postpone the release or to drop some features from the release.

2.2 Scrum framework components

The main components of Scrum framework in Monetize / HyperIn are:

 Roles

o Product owner

 define user Stories and what stories go to which Monetize released

Picture 4. Components of Scrum framework in Monetize

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 review, accept or reject implemented stories

o Scrum master

 Makes sure scrum process is followed

 Collects and resolves impediments for the team

o Scrum team

 Team is self-organizing and no management is required during the

sprinting

 Consists of SW developers, SW testers and UI designers

 Meetings

o Sprint planning / review

 Review previous sprint results

 Define next sprint goal - select Stories from Product Backlog that

can be implemented and tested during sprint taking into account

sprint length and team capacity

 Define detailed tasks to implement stories and estimate each task in

hours. This will allow to follow up on burn-down chart

 Check if release date is still feasible and if not Product manager

need to decide either to postpone release date or to reduce release

scope.

o Daily scrum meeting

 5 minutes stand up meetings with scrum master and team members

 Check burndown chart and impediments

o Release demo

 When release stories are implemented those are demoed to the

whole company

 Tools

o Product backlog

 List of user stories for the product.

 Stories prioritized by product owner

o Sprint backlog

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 List of user stories selected for implementation in the sprinting

 Story must be small enough to fit the sprint including implementation

and testing

o Burn-down chart

 Burn-down chart represent comparison graph between worked planned

at the beginning of the sprint against remaining work.

 If remaining work is above the planned work on the graph it means

scrum is late and vice versa.

Example of typical burndown chart in Monetize presented below. In this particular case team

didn't manage to reach sprint goals because remaining work presented as a red line is not

zero.

Picture 5. Burndown chart in Monetize

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

3 QUALITY ASSURANCE IN AGILE MONETIZE TEAM

Quality Assurance of features developed during the sprint contains following stages:

 Development phase – automatic testing

o For every piece of newly developed / changed code there is a set of set of

automatic tests that must pass before code is merged to repository

o Automatic tests include – unit, functional and Selenium tests.

 Testing phase

o Tests executed manually by SW testers by opening application pages and

trying out functionality.

o New feature testing – testing of newly developed functionality

o Regression testing – testing of old functionality that might be impacted by new

code.

3.1 Manual testing

Manual testing contains following events:

 Writing test plan for the user Story. It usually includes chapters for:

o Testing of normal feature functionality

o Testing border cases like max / min field values, mandatory fields etc

o Testing security like trying to insert JavaScript code into input fields

o Testing localization to all languages supported by Monetize

Picture 6. Sprint stages

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

o Testing for different browser versions from IE9 to IE12 and latest Chrome and

Firefox

 Testing according to plan after user Story is implemented

o Executing all test steps written in test plan

o Reporting found bugs in case functionality does not follow the test plan

 Verification of the fixed bugs

o SW developers fix found bugs immediately and testers must verify them

 Regression testing

o While developing new features source code changes can break already

functional old features.

o Sometimes it is possible to predict what parts of product could be broken by

new code and test them. Sometimes it is not possible.

o Regression testing aims to find what existing functionality was broken by new

code. It can be time consuming because Monetize is a big product.

o Automated testing target is to reduce time spent on manual regression testing.

3.2 Automated testing

Monetize team uses git as a version control system. This is a simplified git work-flow

demonstrated from automated testing point of view:

Simplified development process with automated testing steps: Picture 7. A simplified git work-flow.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 Fork new source code branch from develop branch

 Do coding of a new functionality

 Create pull request in GitHub with a request to merge new code to develop branching

 Jenkins Continuous Integration sever triggers Pull request automated testing

 If automated tests passed Pull Request can be merged into develop branching

 If automated tests failed Pull Request is automatically rejected and developer must

inspect and fix the code to make sure all automatic tests pass.

 Passing automated tests reduce regression testing that need to be done during manual

testing phase.

There are several layers of automated testing implemented in Monetize and each stage helps

to reduce regression testing.

3.2.1 Unit testing

During unit testing individual atomic parts of source code are tested independently of each

other. It is mostly utility methods that for example process one set of data into another set of

data.

This is an example of a typical unit test

@Test

public void getLast_nonEmptyListWithSeveralObject_returnsLastObject() {

 List<String> list = new ArrayList<>();

 list.add("First object");

 list.add("Second object");

 list.add("Third object");

 assertTrue(CollectionUtils.getLast(list).equals("Third object"));

}

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

3.2.2 Functional testing

Functional testing covers broad interconnected functionality areas to make sure those

conforms to the original requirements. Play framework provides utilities that simplify writing

functional tests for the products based on it. Selenium UI testing is one of the functional

testing methods provided by framework.

3.2.3 Selenium UI testing

Play framework bundled with Selenium language and Selenium tests executor to create and

execute automatic UI tests. Selenium is a language that allows emulating user behavior in web

browser. It is possible to write script like the one below and Selenium engine will execute it

step by step:

#{selenium "Public medium - hiding visibility to public"}

 open('/api/v1/media/${mediumId}')

 verifyTextPresent('"id":10')

 verifyTextPresent('"code":"C123"')

 open('/realty/thirdpartytomedia')

 assertLocation('*/thirdpartytomedia')

 waitForElementPresent('css=tr.testautomation_id$12')

#{/selenium}

Typical Selenium test contains UI control commands like “open some URL”, “click some

button” and verification commands like “verify that something presented on the screen”.

Selenium tests are executed in browser window either manually or automatically.

At the beginning of this thesis work Monetize had ~15% of its functionality covered with

automatic Selenium tests. There was an urgent need to cover 100% to reduce manual

regression testing that is slow and costly. During this thesis work Monetize UI was 100%

covered with automatic Selenium tests. Following chapters cover Selenium testing in details.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

4 SELENIUM UI TESTING FRAMEWORK

There are several good UI testing frameworks on the market but Selenium is a “de-facto” most

popular framework for UI testing. Probably, that's why Play Framework bundled Selenium

script language and scripts executor into the platform by default.

“Selenium is a portable software testing framework for web applications. Selenium provides a

record/playback tool for authoring tests without learning a test scripting language (Selenium

IDE). It also provides a test domain-specific language (Selenese) to write tests in a number of

popular programming languages, including C#, Groovy, Java, Perl, PHP, Python, Ruby and

Scala. The tests can then be run against most modern web browsers. Selenium deploys on

Windows, Linux, and OS X platforms. It is open-source software, released under the Apache

2.0 license, and can be downloaded and used without charge.” (Selenium (software) 2017)

4.1 Selenium RC scripting language

Originally Selenium was designed as a scripting linear language without loops or conditional

if/then statements. The format to write scripts was quite unusual and typically written as HTML

file. The script itself was formed as HTML table.

For example imagine we want to test google.com main page for search functionality.

1. Open google.com address

2. Type “What is Selenium?” to search for the answer

3. Click “Search button”

4. Wait for results

The script in original Selenium format as HTML table look very verbose and not user friendly

as below. Note that elements ids cannot match actual google page and presented here only as

example:

<tr>

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 <td>open</td>

 <td>www.google.com</td>

 <td></td>

</tr>

<tr>

 <td>waitForElementPresent</td>

 <td>id=search-input</td>

 <td></td>

</tr>

<tr>

 <td>type</td>

 <td>id=search-input</td>

 <td>What is the best web platform in the world</td>

</tr>

<tr>

 <td>clickAndWait</td>

 <td>id=search-button</td>

 <td></td>

</tr>

The idea was that Selenium tests could run in any browsers without any need for browser

simulation ensuring that you test actual web application as it is presented in the browser. As

you can deduct from example test above each Selenium command contains command name

and 2 parameters

1. command name (mandatory) for example “type” to type string into input

2. target (mandatory) – for example CSS selector css=#search-field or web address

3. value – value that must be applied for target

In other words

<tr>

 <td>type</td> ← command

 <td>id=search-input</td> ← target

 <td>What is the best web platform in the world</td> ← value

</tr>

The commands in Selenium also called Selenese commands.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

4.2 Selenium RC in Play Framework

Writing Selenium tests as HTML tables was very laborious and not user friendly. From the

other hands that was and is a de-facto most popular UI testing scripting language in the world.

Play Framework development team decided to use Selenium for UI testing but improve the

way scripts are written a lot and wrote good documentation about it here (Play selenium,

2017).

{ Insert your comments here }

#{selenium 'Test google search page'}

 open('www.google.com')

 waitForElementPresent('id=search-input')

 type('id=search-input', 'What is the best web platform in the world')

 clickAndWait('id=search-button')

#{/selenium}

Let's rewrite example from the previous section in Play Framework Selenium scripting

language:

This code looks as real test code written in a proper conventional scripting language. It is easy

to read and understand.

4.2.1 Loading testing data between tests

However, any complex tests for real web application testing usually requires some sort of

database to provide data for web application. Play Framework provides mechanism to load

test data before every test case. For example below is a sample Monetize Selenium test that

starts with user logging into Monetize:

#{fixture delete:'all', load:'user-data.yml' /}

#{selenium "Login into Monetize"}

 open('/login')

 type('name=username', 'username@hyperin.com')

 type('name=password', 'password')

 clickAndWait('signin')

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 open('/admin')

#{/selenium}

For loading test data we use #{fixture /} tag. It contains 2 directives inside:

 delete: 'all' – instructs to delete all previously loaded models into database. It means

database schema and tables structures will remain intact but all table content will be

cleared

 load: 'user-data.yml' – loads sample data set into tables from external file in YAML

format

4.2.2 Test data YAML format overview

YAML stands for “yet another markup language” and it is a human readable data

representation format (Yalm, 2017). For example in the example above we load user-data.yml

file that may looks as below example:

Company(c1):

 name: Gweb2

 languages: [fi]

 defaultLanguage: fi

 subdomain: hyperin

User(u1):

 email: john.doe@hyperin.com

 password: klgjlskg

 companies: [c1]

User(u2):

 email: mikki.mouse@hyperin.com

 password: fdgsdfg345234rfwfdsa

 companies: [c1]

This yml file represents 2 tables in the database:

 Company – has 1 record

 User – has 2 records

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

If we look at one of the YAML pbjects in detail then:

On loading test runner identify which YAML object must go to which database table and what

relationship these YAML objects has between each other (like user u2 belongs to company c1)

and recreates table relationships based on this data.

User ← table name (u1 ← unique id in yaml file):

 email: john.doe@hyperin.com ← field value

 password: klgjlskg ← field value

 companies: [c1] ← field value

Play Framework provides in memory lightweight H2 database accessible by Play application

while running Selenium tests. H2 was selected by Play Framework developers because it is

much faster than MySQL to initialize and load data into it. Fast H2 database allows to achieve

2 goals:

 Reset test data between each Selenium test and make these tests independent of

each other

 Reset data very fast that allows to run Selenium tests within reasonable time

As Selenium script runner runs hundreds of tests and each test needs its own set of data the

batch test execution looks as below:

Reset data

#{fixture delete:'all', load:'data-test1.yml' /}

Run test 1

↓

Reset data

#{fixture delete:'all', load:'data-test2.yml' /}

mailto:john.doe@hyperin.com

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

Run test 2

↓

…

↓

Reset data

#{fixture delete:'all', load:'data-testn.yml' /}

Run test n

The data resetting with H2 database and YML files is very fast that allows to create

independent of each other Selenium tests. If some test fails it definitely failed not due to data

changed in previous test that helps to isolate and debug the problem.

4.3 Most common Selenese commands

Selenium commands are also called Selenese commands. There are many predefined

Selenese commands supplied by Selenium and also Selenium can be extended with custom

commands using JavaScript extension file. The commands can be grouped into 3 categories:

4.3.1 Action

Actions are commands that controls the flow and changes state of the web application under

test. They represent end user behavior in the web browser. For example you action can type a

text into input field or click a button or open an URL. If action fails for example because it

cannot find an element test script also fails. Many actions can be extended with suffix AndWait

for example you could use command click or clickAndWait. The difference is that latter will

expect server to send a new web page to client and will wait for a new page to load before

script continues.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

The most used actions in Monetize Selenium test scripts are:

 open(url)

o Opens page by URL address

o Example: open('www.google.com')

 type(locator, value)

o Types string into element. Usually element is a normal input or text field.

o Example: type('id=search-field', 'who is mister John')

 click(locator)

o Clicks on element on the page

o Example: click('id=save')

 clickAndWait(locator)

o Same as click() but also wait for next page to load after click

 check(locator)

o Activates checkbox element. Use uncheck() to deactivate it

o Example: check('id=terms-accepted')

 select(locator, option value)

o Selects option from drop down

o For example: select()

 pause(milliseconds)

o Pause test execution for given amount of milliseconds. Often used to let web

application under test to finish background processing before going to next test

step.

4.3.2 Assertions

Assertions check the state of the web application and either fail the test or let it continue.

There are 2 types of assertions starting with prefixes:

 Verify... – it verify condition and if it fails it log the failure but let the test to continue till

the end. If any of “verify” statement failed it will fail the complete test at the end. These

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

commands are useful to collect small non critical errors in the web applications all at

once instead of terminating the whole test on minor mistake.

 Assert… - if condition fails it terminates test immediately and mark it as failed because

failure is so critical that there is no reason to continue execution.

 WaitFor… - similar to Assert... but waits for 30 seconds periodically checking if

condition have turned to true. If it doesn't turn true it fails the test.

The most used actions in Monetize Selenium test scripts are:

 verifyTextPresent(text)

o Searches the whole page for the given text and passes if text is found.

 verifyTextNotPresent(text)

o Searches the whole page for the given text and passes if text is not found.

 verifyValue(locator, value)

o Searches web page for element and verify if it contains given value. Very useful for

checking summary pages in Monetize.

 assertElementPresent(locator)

o Passes if element found on the page. Fails whole test if element cannot be found.

 assertElementNotPresent(locator)

o Passes if element not found on the page. Fails whole test if element can be found.

 waitForElementPresent(locator)

o Waits maximum 30 seconds for given element to appear on web page. Passes

immediately when element appeared. Fails whole test if element does not appear

after 30 seconds.

 waitForElementNotPresent(locator)

o Waits maximum 30 seconds for given element to disappear from web page. Passes

immediately when element disappeared. Fails whole test if element is still visible

after 30 seconds.

4.3.3 Accessors

Accessors check the state of the application elements and store results into variables or read

them. Accessors commands were not found very useful in Monetize Selenium tests. The only

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

useful command was the command to deactivate system browser dialogs that were otherwise

not accessible by standard element selectors:

 storeConfirmation('variable')

o Retrieves the message of a browse confirmation dialog generated during the

previous action. After this command Monetize tests use

chooseOkOnNextConfirmation() to close confirmation dialog.

Monetize Selenium tests actively use 15 - 20 Selenese commands listed above to fulfill the

testing needs. However, there are many more commands Selenese available that can be

used in writing test scripts. Unfortunately , official list and documentation of Selenese

commands on Selenium HQ website http://www.seleniumhq.org/ is broken. However , there

are plenty 3rd party sites where these commands and documentation with code examples can

be found. During thesis work following web page was good source of Selenium commands

examples “Selenium tutorial for beginner ” (Selenium tutorial for beginners 2017)

4.4 HTML element locators

Selenium uses so called locators to locate elements on the web page. There are 4 locators

types used in Monetized Selenium tests.

4.4.1 Id

Simplest locator type that uses id HTML attribute to locate elements. For example consider

following HTML snippet:

<html>

 <body>

 <form id="login">

 <input id="username"/>

 <input id="password" name=”password.field” />

 <input id="submit"/>

 </form>

http://www.seleniumhq.org/

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 </body>

</html>

Simple Selenium test in Monetize utilizing Id locator that types user name 'Nelly' into user

name field will look as:

#{fixture delete:'all', load:'user-data.yml' /}

#{selenium "Typing user name"}

 type('id=username', 'Nelly')

#{/selenium}

Syntax:

 id=value

Pros:

 Each id should be unique , at least in a well-designed page. It means locator can

match only single element on the page.

Cons:

 Often elements in Monetize do not have ids and it is not possible to identify them with

id locator

4.4.2 Name

Similar to id locator but uses name attribute to locate HTML element. If we consider same

HTML snippet as in id locator section then simple Selenium test in Monetize utilizing Name

locator that types password into password field will look as:

#{fixture delete:'all', load:'user-data.yml' /}

#{selenium "Typing user password"}

 type('name=password.field', 'Nelly')

#{/selenium}

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

4.4.3 CSS

If Id or Name is not an option to select element because those are missing or not unique in

web page you should prefer using CSS locators as a best alternative.

Syntax:

 css=selector

Pros:

 Easy to write and read

 Flexible

 It is claimed CSS locators are faster to execute then XPath locators

Cons:

 Sometimes, though quite seldom, CSS selectors are not flexible enough to select

element. Then XPath selectors usually helps in such situations.

Typical selectors used in Monetize are:

 css=tag

o Selects element by HTML tag.

o For example to select <input></input> use locator css=input

 css=tag[attribute=value]

o Selects element by HTML tag and attribute value.

o For example to select use locator

css=a[href=”google.com”]

 css=tag.class

o Selects element by HTML tag and CSS class.

o For example to select <div class=”table-of-content”></div> use css=div.table-of-

content

 css=tag#id

o Selects element by HTML tag and id

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

o For example to select <input id=”password”></input> use locator

css=input#password

 css=.class

o Selects element by class only.

o For example to select <div class=”table-of-content”></div> use css=.table-of-

content

 css=#id

o Selects element by id only.

o For example to select <input id=”password”></input> use locator css=#password

 css=tag:contains(“text”)

o Selects element if it contains text. It is very convenient to select table cell with

certain text using this selector.

o For example to select <td>Some text</td> you could use selector

css=td:contains(“Some text”)

 css=parentSelector childSelector childOfChildSelector etc.

o Selects element by first selecting parent element by parentSelector and searching

for childSelector inside. It is very useful for selecting elements in HTML tables or in

complex selectors.

o For example in this table-of

<html>

 <table>

 <tr><td>row1</td><td>value</td></tr>

 <tr><td>row2</td><td>value</td></tr>

 </table>

</html>

to select the bold <td> element you could use selector css=tr:contains(“row1”)

td:contains(“value”)

In Monetize most of locators are CSS locators because those are fast , flexible , easy to write

and read. The good CSS one page instruction that was used during Monetize Selenium scripts

creation can be found in the article “XPath, CSS, DOM and Selenium: The Rosetta Stone”

(Sorens, 2011).

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

4.4.4 Xpath

XPath is a syntax to navigate XML documents. Since HTML is practically a subset of XML –

XPath syntax is supported by Selenese commands to locate HTML elements. XPath locators

are generally more complex to write and difficult to read though often they provide the way to

select elements that otherwise not possible to select with other selector types like CSS locator.

Syntax:

 //tag[expression]/tag[expression] etc.

Pros:

 If no other locator types works it is usually possible to construct XPath locator to select

elements

Cons:

 It is difficult to construct XPath locators

 It is not user friendly and it is difficult to understand it

Typical examples XPath locators used in Monetize:

 //span[contains(text(),"text1”)]//preceding-sibling::input

o Locator selects input element located before span element

 //tr[@class="element css class"]//th[contains(text(),"table header”)]//following-

sibling::td[contains(text(),"cell text”)]'

o Locator selects cell in table that follows after another cell and both located in table

row with header that contain certain text.

As you can see those are quite complex selectors and it is quite difficult to construct them

right. However, sometimes XPath selectors allows selecting elements that are otherwise not

possible to select so it is important to know how to use them.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

The good XPath one page instruction that was used during Monetize Selenium scripts creation

can be found in the article “XPath, CSS, DOM and Selenium: The Rosetta Stone” (Sorens,

2011).

4.5 Selenium Java helper classes in Monetize

Play framework developers didn't stop on making Selenium scripts easy to write and adding

good support of test data loading. They added support for calling Java class methods and

Groovy script snippets to pre-process Selenium test script before sending it to test runner for

test execution.

The test execution sequence in Play Framework looks as below:

test.html

(original test script with Groovy or Java source code + Play Selenium commands)

↓

Java / Groovy pre-processor

↓

test.html

(with Play Selenium commands only)

↓

Selenium preprocessor

↓

test.html

(with Selenium RC script in html tables fiormat)

↓

Script runner

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

Play framework does not dictate on how test developer use this possibility to pre-process test

scripts with Java. Monetize SW developers took advantage of it to make Selenium tests

written for monetize to be more readable and reusable and extended tests writing process with

a small custom Java library called SeleniumScriptBuilder. It is easier to demonstrate how it

helps to simplify Selenium script.

Let consider following real sample test script that logs in into Monetize, check that login was

successful and immediately logs out.

#{fixture delete:'all', load:'user-data.yml' /}

#{selenium "Test login / logout"}

 // log in

 deleteAllVisibleCookies()

 createCookie(_subdomain=hyperin)

 waitForElementPresent(css=a:contains("Sign in"))

 open('/login')

 type('name=username', 'username@hyperin.com')

 type('name=password', 'password')

 clickAndWait('signin')

 // verifying successful login

 verifyElementNotPresent('css=.message.error')

 waitForElementPresent('css=div#login-status a[href$=logout]')

 // log out

 waitForElementPresent('css=a[href="/logout"]')

 click('css=a[href="/logout"]')

#{/selenium}

The test is written using Selenese commands in Play framework format. It is a real test and all

Monetize tests can be written in this format but there is a number of problems with it:

 Limited re-usability

o Every Monetize Selenium tests requires login into the Monetize service. If we use

plain Selenese commands format as above we need to repeat first 7 Selenese

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

commands every time we want to login to Monetize. Monetize Selenium tests

contains 34 places where test logs in into Monetize. It means these 7 commands

needs to be repeated 34 times that is 238 lines of repeated code that generally

considered as a bad design in SW engineering.

 No configurability

o If test need to login with different user name / password then these values must be

hard-coded into Selenese commands themselves making it very hard to change

these values on the fly if needed.

 Hard to maintain

o This directly comes from the first point of limited re-usability. In case Monetize login

– logout code changes it will require updating all 34 places where login Selenium

script is used. That is time consuming and tedious.

Let’s make login and logout methods reusable using SeleniumScriptBuilder Java library

introduced by Monetize SW developers to simplify Selenium tests in Monetize.

Login.java helper class:

public class Login extends SeleniumScriptBuilder {

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 public static Class doLogin(String subdomain,

 String email, String password) {

 pushSteps(

 "deleteAllVisibleCookies()",

 "open('/login')",

 f("createCookie('_subdomain=%s')", subDomain));

 pushSteps(

 f("waitForElementPresent('css=a:contains(\"Sign in\")')",

 pushSteps(

 f("type('name=username', '%s')", email),

 f("type('name=password', '%s')", password),

 "clickAndWait('signin')");

 return Login.class;

 }

 public static Class assertLoginSuccess() {

 pushSteps(

 "verifyElementNotPresent('css=.message.error')",

 "waitForElementPresent('css=div#login-status a[href$=logout]')");

 return Login.class;

 }

 public static Class doLogout() {

 pushSteps(

 "waitForElementPresent('css=a[href=\"/logout\"]')",

 "click('css=a[href=\"/logout\"]')");

 return Login.class;

 }

Login class extends SeleniumScriptBuilder class that contains following helper methods for

building Selenese commands:

 SeleniumScriptBuilder.pushSteps(String… steps) – pushes any string or list of

string into string list in memory. String is usually a Selenese command but it could be a

comment or any other string supported by Selenium script runner in Play framework.

 f(String, string, String parameter) – this is just a short version of Java String.format()

method that allows insert one string into another string. It is used to create

parametrized Selenese commands.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 Each method defined in Login.class returns class itself. It allows chained method calls

as it is explained below.

Let's rewrite original login / logout test using Login.class above.

#{fixture delete:'all', load:'user-data.yml' /}

%{

 def Login = com.hyperin.test.greige.selenium.Login

}%

${Login

 .doLogin("hyperin", "user", "password")

 .assertLoginSuccess()

 .doLogout()

 .go()}

#{/selenium}

Original 11 Selenese commands login/logout test was re-factored to 3 Java method calls that

construct the target Selenese script. There are following important items introduced in above

re-factored script:

 Groovy script

o You can notice new section %{ def Login = … }%. Play Framework supports

executing Groovy scripts in Selenium test scripts. To access Java class in

Selenium script you need to specify full Java package path to it. In order not to

repeat full package path for every Java method call we can first define Groovy

variable Login pointing to that Java class and then call Java class methods using

that variable in the script.

o This is a very basic example of using Groovy scripts. You can write Groovy scripts

surrounded by %{ }% of any complexity in Selenium test and it is very handy in

many situations.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 Template statements

o Another new section above is surrounded by ${ statement }. Statement could be

Java method call or variable. Play Framework will execute statement, collect value

it returns and will replace whole ${ statement } with a return value.

o You can see that inside these ${ statement } we execute chained Java methods

one by one. Chaining is possible because inside Java methods we return reference

to Java class itself as “return Login.class;”

o The last statement is always go(); It is part of SeleniumScriptBuilder class and

simply returns all strings pushed with pushSteps() collected by previous method

calls. As stated above Play Framework replaces ${ statement } with a value

returned inside it, so after go(); is called ${} will be replaced by Selenese

commands pushed in previous Java method calls. Simple and efficient!

Good Java reference to start writing simple Java classes is (Tutorial Java, 2017).

4.6 Selenium scripts and localization

Monetize web application supports several UI languages including Finnish, Swedish, English

etc.

Localizations are stored in a simple text files as key=value sequences. For example 3 sample

files below contains localization for password field label:

messages.en – English localization file

password.field.label=Password

messages.fi – Finnish localization file

common.password=Salasana

messages.sv – Swedish localization file

common.password=Lösenord

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

Depending of current selected UI language Play Framework automatically query localization

from the relevant file. Localization on the screen can change with time. For example we want

to test that current web page contains label for password field. Here is test that passes:

#{selenium "Test password label"}

 waitForElementPresent('css=a:contains("Password")

#{/selenium}

But what happen if product manager decided to change label to more descriptive “Type your

password”? This test will start failing even though password label is still presented on the

screen. To avoid such test failures text on the screen should not be hard-coded but rather

must be queried from localization database before script is run so that scrip knows correct

localization string to look for.

There are 2 ways to do that. First way is to query localization by localization key directly in

Selenium script using Groovy snippet as below:

%{

 def passwordLabelText = messages.get('password.field.label');

}%

#{selenium "Test password label"}

 waitForElementPresent('css=a:contains(${passwordLabelText})

#{/selenium}

Where messages() is a helper method to query localization string from localization database

by string key.

The second way is to query localization key in Java helper methods as demonstrated below:

Login.java helper class:

import play.i18n.Messages;

public class Login extends SeleniumScriptBuilder {

 public static Class assertPasswordLabelShown() {

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

 String passLabel = Messages.get("password.field.label");

 pushSteps("waitForElementPresent('css=a:contains(${passLabel}");

 return Login.class;

 }

Selenium script:

#{fixture delete:'all', load:'user-data.yml' /}

%{

 def Login = com.hyperin.test.greige.selenium.Login

}%

${Login

 .assertPasswordLabelShown()

 .go()}

#{/selenium}

It is recommended to never hard-code UI string values into Selenium scripts to make them

localization agnostic.

4.7 Querying database in Selenium scripts

Sometime HTML elements ids or names constructed using dynamic database ids. For

example below is an example of Monetize HTML source of Monetize user edit page:

<div class="col_3 nest">

 <input type="checkbox" name="selectedCompanyIds" value="65">

 Company1 Oy

</div>

<div class="col_3 nest">

 <input type="checkbox" name="selectedCompanyIds" value="66">

 Company2 Oy

</div>

<div class="col_3 nest">

 <input type="checkbox" name="selectedCompanyIds" value="67">

 Company3 Oy

</div>

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

It is a list of check boxes to select or unselect for the user. Imagine you want to select check

box that user belongs to “Company2 Oy”. You could write following simple script to click on

“input” element by it's value 66:

#{fixture delete:'all', load:'user-data.yml' /}

#{selenium "Click on company"}

 click(css=input[value=66])

#{/selenium}

Unfortunately this script will most probably fail the next time you run the test because input

field values are dynamically generated from database ids. Next time you run the test the

HTML source for “Company2 Oy” might have completely different value id 82 but test expect

value 67:

<div class="col_3 nest">

 <input type="checkbox" name="selectedCompanyIds" value="82”>

 Company2 Oy

</div>

The solution is not to hardcode record id in the script but first to query id from H2 database

and then use it in the test. Let's refactor above Selenium test case to make it independent of

database id:

#{fixture delete:'all', load:'user-data.yml' /}

%{

 company = models.common.Company.find("byName", "Company2 Oy").fetch().get(0)

}%

#{selenium "Click on company"}

 click(css=input[value=${company.id}])

#{/selenium}

First we query company record from database in a form of Java model class using Groovy

snippet. Then use ${company.id} to inject dynamic company id value into Selenium script. In

Monetize many HTML pages contain database record ids as part of element name or id or

value so this technique is used a lot in tests.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

4.8 Cleaning test environment between the tests

Selenium test runner runs Selenium test cases one by one till all requested test cases are

executed. In order to make each Selenium test independent from previously executed test test

environment must be cleaned from the previous test results.

clean test environment from previous test

run test 1

↓

clean test environment from previous test

run test 2

…

…

clean test environment from previous test

run test N

Play Framework didn't provide automatic cleaning between the test so automation test

engineer must take care of this himself.

4.8.1 Cleaning database

H2 database is created at the start of Selenium script runner. All tables created for the

Selenium test case will be persisted for the next test unless manually deleted. It is a good

practice to delete all tables and load test specific set of data in the beginning of the test to

make the test independent from other tests.

Cleaning of database and reloading new data is done as:

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

#{fixture delete:'all', load:'user-data.yml' /}

#{selenium "Click on company"}

 click(css=input[value=66])

#{/selenium}

4.8.2 Cleaning web browser data

Web browser data such as local storage and cookies are also not cleaned between the tests.

In case Monetize functionality depends on cookies or localStorage and test tests this

functionality then these items must be cleaned between the tests.

Cleaning localStorage

There is no standard Selenium command to clean localStorage of web browser. Luckily

Selenium allow executing JavaScript commands and we can access localStorage through

JavaScript. The way to access localStorage from Selenium was found in one of Stack

Overflow answers (Stack Overflow, 2017).

#{selenium "Cleaning local storage"}

 // getting reference to web browser window

 getEval('win = (this.page().getCurrentWindow().wrappedJSObject) ?

this.page().getCurrentWindow().wrappedJSObject : this.page().getCurrentWindow()')

 // cleaning local storage using reference to web browser window

 getEval('win.localStorage.clear()')

#{/selenium}

The complexity of cleaning localStorage is due to Selenium test runner in Play Framework

v1.x in automatic test mode uses very old version of Firefox browser that does not support

modern simple way of accessing the localStorage.

Cleaning cookies

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

Play Framework uses browser cookies to store data for end user sessions. In order tom make

tests independent of each other cookies must be cleaned before each test case. Luckily

Selenium RC has a dedicated command for this.

#{selenium "Cleaning cookies"}

 deleteAllVisibleCookies()

#{/selenium}

4.9 The limitation of preprocessors

As explained above Play framework executes all embedded Groovy, Java statements in the

per-processing stage to get the final test for Script runner. Even though preprocessing allows

to create reusable tests it has its limitations:

 it is not possible to use cycles or conditional statements during test execution

 it is not possible to query data in database during test execution

This comes from the fact that final Selenium script itself cannot contain Java or Groovy

statements. All those are executed before test is sent to test runner. This let us create very

complex tests but from the other hands we cannot influence test execution after it was

constructed.

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

5 THESIS WORK RESULTS

5.1 Thesis work implementation processes

Thesis work was organized in the following steps:

SW team Select UI module for UI test automation

Nelli Write test plan

SW team Review test plan

Nelli Implement test plan comments

SW team Approve test plan

Nelli Implement Selenium automation tests

Nelli Make github.com Pull Request

SW team Review Pull Request

Nelli Implement comments

SW team Approve and merge pull request

SW team Take Selenium test into SW Continuous Integration

Nelli Go to step 1 till 100% test coverage reached

5.2 Achieved Monetize Selenium test coverage

Monetize SW development team had ~15% of Selenium tests coverage of the product at the

time thesis work started. The remaining 75% of Selenium tests development were planned as

the thesis work and currently Monetize is covered 100% with Selenium tests. Below is a list of

application modules and Selenium test coverage status before and after thesis work.

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

Monetize
UI module

Sub-module

Selenium coverage
before thesis work

~15%

Selenium coverage
after thesis work

~100%

Admin Home screen - High

Admin Partners - High

Admin Users - High

Admin User Roles - High

Admin User Groups - High

Admin Companies - High

Realty Home screen - High

Realty Ad Media Medium High

Realty Real Estates - High

Realty Ad media types - High

Realty Reservation Calendar - Medium*

Realty Offers and Orders: Listing - High

Realty Offers and Orders: Order flow - High

Realty
Offers and Orders: Order flow
(web shop)

- High

Realty Offers and Orders: Views - High

Realty Offers and Orders: Editors - High

Realty
Offers and Orders: Editors (web
shop)

- High

Realty Customers - High

Realty Statistics - High

Realty Email templates - High

Realty Company information - High

Realty Thirdparty center Medium High

Common Profile app High High

Common Login/Logout High High

Realty Company selector High High

Partners Home screen - High

Partners Reservation calendar - High

Partners Offers and Orders: Listing - High

Partners Offers and Orders: Order flow - High

Partners Offers and Orders: Views - High

Partners Offers and Orders: Editors - High

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

* Reservation calendar is a very complex UI component written purely in JavaScript and it was

found impossible to provide High level of testing of all its features due to Selenium RC is

outdated and does not provide means to test it properly. However, it was still covered with

Selenium test on a good enough level during thesis work.

5.3 Thesis work test cases statistic

Source code lines (SLOC) written:

 700 SLOC – YML database files

 3700 SLOC - Java code to generate Selenium commands

 3000 SLOC - Selenium tests using Java commands

 Total SLOC: 7400

Test scripts written in files:

 5– Data YML files

 46 – Java classes

 41 – Selenium test script

Average time to run all Selenium tests in Continuous integration process:

 15 minutes

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

6 SUMMARY

Thesis work goal was achieved and Monetize web based SaaS product is currently covered

100% with Selenium tests. Monetize SW team took this tests into development process and it

helps to reduce regression testing and to make sure that all current Monetize features work

after new feature is implemented by Monetize SW development team.

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

REFERENCES

 Stack overflow 2017. Quations. Quoted from 3.4.2017 https://stackoverflow.com/a/9986931

Schwaber, K. 2004. Agile project management with Scrum. Microsoft Press.

Schwaber, K. & Beedle, M. 2001. Agile software development with Scrum. Prentice Hall.

Selenium (software) 2017. Selenium software. Quored from 5.4.2017 www.wikipedia.org >

selenium (software).

Play selenium 2017. Paly selenium. Quored from 5.4.2017 www.playselenium.com >

documentation.

Yaml 2017. Yaml. Quored from 7.5.2017 www.wikipedia.org > yaml.

Tutorial selenium 2017. Tutorial selenium. Quored from 6.5.2017 www.software-testing-

tutorials-automation.com > selenium tutorial.

Sorens 2017.

Tutorial Java 2017. Tutorial Java. Quored from 15.4.2017 www.tutorialspoint.com > java.

Distributed version control 2017. Distributed version control. Quored from 7.3.2017

www.wikipedia.org > Distributed version control.

Software as a service 2017. Software as a service. Quored from 6.5.2017 www.wikipedia.org

> SaaS.

https://stackoverflow.com/a/9986931
http://www.wikipedia.org/
http://www.playselenium.com/
http://www.wikipedia.org/
http://www.software-testing-tutorials-automation.com/
http://www.software-testing-tutorials-automation.com/
http://www.tutorialspoint.com/
http://www.wikipedia.org/
http://www.wikipedia.org/

Appendix 2 (1)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nelli Tchernikova

TERMINOLOGY

Pull Request

Contribution to a source code repository in GitHub.com. “The contributor
requests that the project maintainer "pull" the source code change, hence
the name "pull request". The maintainer has to merge the pull request if
he or she decides the contribution should become part of the source
base.“ (Destributed version control, 2017)

Continuous integration - CI

CI is a process when each developer merge new code into main source
code branch several times a day. Every merge triggers automatic testing
of all available automatic tests including Selenium tests written in this
thesis work. CI in Monetize is implemented using Jenkins CI tool.

Jenkins

Continuous integration automation server. Allows creating automatically
triggering jobs on GitHib repositories updates that automatically run
automatic Selenium and other tests on the latest version of source code.
Monetize team uses Jenkins to implement CI process.

Regression testing

Testing of the product to ensure that software that was previously tested
and working is still working after recent source code changes in other
parts of the product. Automated Selenium testing goal is to reduce
manual regression testing as much as possible.

Software as a Service - SaaS

“Software as a service is a software licensing and delivery model in which
software is licensed on a subscription basis and is centrally hosted. It is
sometimes referred to as "on-demand software" SaaS is typically
accessed by users using web browser.“ (Software as a service, 2017)

git

Command line tool to organize controlling versions of source code in a
distributed development team. It does not require central source code
repository though can have one if agreed in the team.

GitHub

Web service www.github.com providing storage for git based repositories.
Monetize team uses github.com to store and mange Monetize source
code repository.

