

Liquibase
Version Control for Database Schema

Radosław Dziadosz

Bachelor’s thesis
May 2017
School of Technology, Communication and Transport
Bachelor's Degree Program in Information and Communications
Technology

Description

Author(s)

Dziadosz, Radosław
Type of publication

Bachelor’s thesis
Date

29.05.2017

Language of publication:
English

Number of pages

46
Permission for web

publication: x

Title of publication

Liquibase
Version Control for Database Schema

Degree programme

Information and Communications Technology

Supervisor(s)

Salmikangas, Esa

Assigned by

Landis+Gyr Oy

Abstract

The main task was to add a version control system to an existing Oracle database. The
database was complex and migrations were very complicated and difficult to develop
without control version system for database schema.

Creating patches or improvements to the database schema was taking a great amount of
time, because it was needed to take care of error handling manually. It was not sure if the
script would be executed a few times or once, therefore, any exception that could occur
had to be handled in SQL script. All scripts had to be executed in the correct order,
because existing data could be corrupted.

Another goal was also to make it easy for developers to create a database instance. They
were sharing resources, which sometimes caused conflicts while working.

In order to solve the above problems, it was decided to add Liquibase to the existing
database. Liquibase was added to the project in an automated method only in some places
due to the complexity of the database.

As a result, the management of database migration has become much easier. The
migration process was accelerated by not executing scripts again in the upgrade process
and by adding Continuous Integration.

Liquibase should have been added much earlier. It would be good to think about how to
manage the changes at the very beginning of creating the database structure, because
adding a version control system to a schema in a complex database is much more difficult.

Keywords/tags

versioning software, version control, VCS, databases, Liquibase

Miscellaneous

Contents

 Introduction .. 5

1.1 Databases .. 5

1.2 Managing changes manually ... 5

1.3 Versioning tools ... 6

 Liquibase - theoretical basis ... 8

2.1 How does Liquibase work? .. 8

2.2 Liquibase is not difference-based system ... 10

2.3 Development environment ... 10

2.4 Database .. 11

2.5 Deployment ... 11

2.6 ChangeLog file formats .. 14

2.7 Rollback ... 15

 Existing project and Liquibase .. 17

3.1 Approaches to adding Liquibase ... 17

3.2 Liquibase only for new changes .. 17

3.3 Make it look like Liquibase was used from the beginning 18

 Assignment ... 22

4.1 Current situation and goals ... 22

4.2 Initial idea for improvement ... 23

4.3 Another approach to adding Liquibase ... 23

 Format of the changeLogs .. 24

5.1 SQL Formatted changeLog .. 24

5.2 SQL Formatted changeSet ... 24

5.3 Adding metatags to multiple files ... 24

5.4 XML formatted files ... 25

 Organizing the changeLogs .. 26

6.1 Include and include all ... 26

6.2 “Replaceable” database objects.. 27

6.3 Directory structure .. 29

 Inserting Setup Data ... 30

7.1 Loading Data into a Table .. 30

7.2 Load Update Data .. 30

 Database Documentation .. 32

 Contexts .. 34

9.1 Different features of the runtime environment 34

9.2 Adding contexts to changeSets ... 34

9.3 Running Liquibase with a specific context .. 35

 Parameters ... 36

 Testing .. 37

 Conclusions ... 39

References .. 41

Figures

Figure 1 Applying changes directly to the database .. 6

Figure 2 Automating database migration .. 7

Figure 3 Liquibase tables .. 9

Figure 4 Editing environment variables in Windows ... 13

Figure 5 Life of a migration script .. 22

Figure 6 Entry in the DATABASECHANGELOG table after the first run 27

Figure 7 Entry in the DATABASECHANGELOG table after the second run 28

Figure 8 Directory structure ... 29

Figure 9 Generated documentation ... 32

Figure 10 Compare Schemas in Toad for Oracle .. 37

Figure 11 Compare Multiple Schemas in Toad for Oracle ... 38

List of acronyms

CI Continuous Integration

CLI Command Line Interface

CSV Comma-Separated Values

JDBC Java Database Connectivity

JSON JavaScript Object Notation

MD5 Message Digest 5

SQL Structured Query Language

XML Extensible Markup Language

YAML YAML Ain't Markup Language

5

 Introduction

1.1 Databases

Database is usually a large, organized collection of data in form of tables, schemas

and other objects. Today, no application can run or even exist without data.

Database is even more important than code because an algorithm may change but

data is forever. (Database - Definition of database)

Databases are the central elements of most current software systems. They contain

business information, however, they are often not treated with due care. The

databases are as complex and changing as the systems themselves.

The "real" databases are more than just a schema with few tables and a small

number of records. Real databases contain hundreds of tables, with hundreds of

thousands of records each. In addition, databases contain triggers, procedures,

functions and other objects needed to streamline the operations and keep the

system functional. (Oracle Database Concepts: Schema Objects)

During the software development process, the database that is created at the

beginning is always different from the one that will be released. Also, after the

software release the data structure may change. New features and bug fixes can be

added, which affects not only the source code but also the database, thus, the data

structure or stored procedures need to be modified.

1.2 Managing changes manually

Managing changes in a database is not a task that can be done manually or by a

single individual, because it can easily cause errors or inconsistent data. The process

is shown in Figure 1. Changing data directly is ineffective, and reversing the changes

is difficult. It may cause data mismatches. (SQL Server Database Change

Management with Liquibase, 2016)

6

Figure 1 Applying changes directly to the database

(adapted from LiquiBase를 사용하여 데이터베이스 변경 관리하기)

The problem with the version control of databases is very extensive, especially when

there are many people working on the software. In this case, there are many

development environments, many test and production databases, each of which may

have a different database schema version on it.

Moreover, if the schema changes, then it is likely that an existing data transform will

be required. It is simply an operation involving changing existing data to another

using a specific algorithm. The more complex the database is, the more difficult it is

to manage transformations. (A simple introduction to database change management

with SQLite and Liquibase, 2011)

1.3 Versioning tools

There are many open source libraries and frameworks that can help with the

versioning of a database. One of the most popular ones is the Liquibase. The project

started in 2006, and Liquibase library is constantly being improved by many

contributors. (Continuous database migration with Liquibase and Flyway, 2013)

Figure 2 shows the process of database migration using Liquibase and a continuous

integration (CI) server. The version control repository such as Git, is read by the CI

server and if there are any changes to apply to database, Liquibase modifies the

database.

7

Figure 2 Automating database migration

(adapted from LiquiBase를 사용하여 데이터베이스 변경 관리하기)

Using the same process as shown in Figure 2, all team members can make the same

process to the databases. It can be a local or shared database server. This process

can also be automated, and changes can be easily applied to many databases using

automation scripts.

Liquibase has following basic capabilities (Liquibase Official Website):

- Database schema versioning

- Code branching and merging

- Database change history tracking

- Support multiple database types

- Supports multiple developers

- Rollback changes until a particular tag, date or changelog number

- Performing precondition check

8

 Liquibase - theoretical basis

2.1 How does Liquibase work?

The main operation of Liquibase is the changeLog file. This is a text file containing

one or more changeSets. A changeLog can include other changeLogs, which creates a

hierarchy of files. (Liquibase documentation: Database Change Log File, 2014)

A changeSet is the basic unit of change for a database. A changeSet include two types

of information: the metadata about the change and the change instruction itself.

Instruction can contain one or more atomic changes (adding table, modifying

column, adding constraint, inserting rows, etc.), however, when it runs, Liquibase

considers all those changes as part of a single changeSet. (Liquibase documentation:

<changeSet> tag, 2015)

Below is an example of changeLog in XML format containing two changeSets:

<databaseChangeLog

 xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.5.xsd">

 <changeSet id="1" author="rdziadosz">

 <createTable tableName="news">

 <column name="id" type="number"/>

 <column name="title" type="varchar(255)"/>

 </createTable>

 </changeSet>

 <changeSet id="2" author="rdziadosz">

 <insert tableName="news">

 <column name="id" value="1"/>

 <column name="title" value="Hello world!"/>

 </insert>

 </changeSet>

</databaseChangeLog>

9

Metadata allows to uniquely identify the changeSet (information about identifier,

author, and filename) and to define how the change is to be applied. (Liquibase

documentation: <changeSet> tag, 2015)

On the first run, Liquibase creates two tables in the database as shown in Figure 3.

The first one is DATABASECHANGELOG containing data about successful migrations.

Each row in this table contains information about the executed changeSets such as

identifier, author, filename, checksum and execution date. (Liquibase

documentation: DATABASECHANGELOG table, 2015)

Figure 3 Liquibase tables

If Liquibase is run again, it will be able to recognize if the change has already been

applied. By default, Liquibase will only apply new changes. Old changes will be

omitted, however, their MD5 checksum is checked during this process. If the

checksum is different, it means that changeSet has been modified from the previous

run. This is usually an undesirable effect and can lead to unwanted changes to the

database. In this case, Liquibase stops and returns the information about the wrong

10

checksum. That is why every new change should be a part of a new changeSet.

(Liquibase documentation: <changeSet> tag, 2015; Liquibase documentation:

Updating the Database, 2014)

Another table created by Liquibase is DATABASECHANGELOGLOCK, the purpose of

which is to prevent modifying one database instance by multiple users at the same

time. (Liquibase documentation: DATABASECHANGELOGLOCK table, 2015)

2.2 Liquibase is not difference-based system

The fact that Liquibase uses the DATABASECHANGELOG table rather than a

difference-based system has many advantages. The most important is the semantics

of changes in the database schema. Some of the changes to the database schema

can be done in several ways. Some of them may cause modification or change of

related data. Liquibase allows to specify the exact way in which changes are to be

made. (The problem with database diffs, 2007)

Another reason why Liquibase is not based on differences is performance. In huge

databases, it is not possible to compare data within a reasonable time to make

changes. (The problem with database diffs, 2007)

2.3 Development environment

Liquibase is a cross platform tool; therefore, it works on Linux, Windows, or Mac OS.

It can work on both the workstation and the server. (Liquibase documentation:

Installation, 2016)

Liquibase is written in Java language. The latest version of Liquibase (3.5.3) requires

Java 1.6 or higher. (Liquibase documentation: Installation, 2016)

Liquibase connects to the database using the JDBC driver. For example, for Oracle

Database Express Edition 11g Release, the Oracle Database 12.1.0.1 JDBC Driver can

be used. (Liquibase documentation: Supported Databases, 2014)

11

2.4 Database

Liquibase has many advantages and a very important one is its compatibility with

multiple database types. The following list shows the databases with which it is

compatible (Liquibase documentation: Supported Databases, 2014):

 MySQL

 PostgreSQL

 Oracle

 Sql Server

 Sybase_Enterprise

 Sybase_Anywhere

 DB2

 Apache_Derby

 HSQL

 H2

 Informix

 Firebird

 SQLite

Liquibase can support other database systems by using extensions. (Liquibase

documentation: Supported Databases, 2014).

2.5 Deployment

Liquibase can be executed in several ways: it may be an Apache Ant task or a direct

Java call but most often used is the command line, which offers all possibilities of

Liquibase. (A simple introduction to database change management with SQLite and

Liquibase, 2011)

Running using command line

Liquibase uses the following syntax:

liquibase [options] [command] [command parameters]

12

The command can be executed either at the terminal on Linux or Mac Os or at the

Windows command line. (A simple introduction to database change management

with SQLite and Liquibase, 2011)

All commands are checked by the command line processor. In case of a wrong or not

allowed command, Liquibase will return an error message and terminate the

operation. (Liquibase documentation: Liquibase Command Line, 2015)

Below is an example of a code that runs standard migration:

Using Microsoft Windows to be able to use Liquibase in any directory using the CLI,

Liquibase directory should be added to the environment variable. Using Liquibase

will be much more convenient than typing the entire path to Liquibase in each run.

(SQL Server Database Change Management with Liquibase, 2016)

To change the environment variables, the following settings need to be opened:

In the window shown in Figure 4, the path to the Liquibase directory should be

entered. (Microsoft Dev Center: Environment Variables, 2017)

java -jar liquibase.jar \

 --driver=oracle.jdbc.OracleDriver \

 --classpath=ojdbc6.jar \

 --changeLogFile=changelog.xml \

 --url="jdbc:oracle:thin:@localhost:1521:xe" \

 --username=rdziadosz \

 --password=secret \

 update

Control Panel -> System and Security-> System -> Advanced system

settings -> Advanced -> Environments variables...

13

Figure 4 Editing environment variables in Windows

Running using command line and properties file

It is not necessary to enter all options every time, because that is error prone and

tedious. Instead, it is better to create a file with default values. (SQL Server Database

Change Management with Liquibase, 2016)

The file called “liquibase.properties” should be located in the directory where

Liquibase is run, or the location of the file must be specified as a parameter.

(Liquibase documentation: Liquibase Command Line, 2015)

The sample source code for the properties file is shown below:

14

When the following command is executed in the directory that contains the shown

liquibase.properties file, the same effect will be reached as for the command shown

in the previous chapter:

In case that the properties file will be located in another directory the command will

be as follows:

Parameter “defaultsFile” defines the path to the properties file. (Liquibase

documentation: Liquibase Command Line, 2015)

2.6 ChangeLog file formats

ChangeLogs can be written in many different formats. Liquibase supports the

following file formats (Liquibase Official Website):

 XML Format

 YAML Format

 JSON Format

 SQL Format

 Other Formats

#liquibase.properties

driver: oracle.jdbc.OracleDriver

classpath: ojdbc6.jar

url: jdbc:oracle:thin:@localhost:1521:xe

changeLogFile: changelog.xml

username: rdziadosz

password: secret

liquibase update

liquibase --defaultsFile=”C:\project\liquibase.properties” update

15

The main advantage of the XML, YAML and JSON formats is that they support all

Liquibase capabilities. Using the SQL format imposes some limitations, such as the

lack of automatic rollback generation. (Liquibase documentation: XML Format, 2014;

Liquibase documentation: YAML Format, 2014; Liquibase documentation: JSON

Format, 2014; Liquibase documentation: Formatted SQL Changelogs, 2014)

It is possible to create one’s own changeLog files formats using the extension system.

The Liquibase community develops formats such as Groovy Liquibase and Clojure

Liquibase Wrapper (Liquibase documentation: Other Changelog formats, 2013)

2.7 Rollback

One of the most usable key features of Liquibase is the ability to undo changes. This

can be done automatically or using a defined SQL script. (Liquibase documentation:

Rolling Back ChangeSets, 2014)

Using rollback generated automatically is possible for commands such as "CREATE

TABLE”, "CREATE VIEW", "ADD COLUMN”, and so on. However, some changes cannot

be undone, for example, "DROP TABLE". In that case, rollback must be defined

manually. (Liquibase documentation: Rolling Back ChangeSets, 2014)

The following changeSet allows to remove the table news and rollback it:

16

In case the rollback tag is left empty this means that rollback is not possible or

needed. (Liquibase documentation: Rolling Back ChangeSets, 2014)

It is also possible to specify changesets to be made during rollback:

<changeSet id="drop_news" author="rdziadosz">

 <dropTable tableName="news"/>

 <rollback>

 <createTable tableName="news">

 <column name="id" type="number"/>

 <column name="title" type="varchar(255)"/>

 </createTable>

 </rollback>

</changeSet>

<changeSet id="drop_news2" author="rdziadosz">

 <dropTable tableName="news"/>

 <rollback changeSetId="news_create"

changeSetAuthor="rdziadosz"/>

</changeSet>

17

 Existing project and Liquibase

3.1 Approaches to adding Liquibase

Adding Liquibase to a new project is uncomplicated process. A new, empty

changeLog matches the empty database. However, addition of Liquibase to an

existing database is more demanding.

Unfortunately, there is no single method for adding Liquibase to an existing project,

because each project is different. Liquibase provides some tools that help with this

process.

There are two ways to add Liquibase: the first of them is just to start using Liquibase

only for new changes, the second is to make it look like Liquibase was used from the

beginning. (Liquibase documentation: Adding Liquibase on an Existing project, 2014)

3.2 Liquibase only for new changes

This approach consists of creating a changeSet only for new changes made to the

database. It is not need to create a changeSet for changes made in the past. This

approach is only to declare that from that moment Liquibase is in use. This method is

the simplest to set up - it is just a mandate. (Liquibase documentation: Adding

Liquibase on an Existing project, 2014)

Because Liquibase is not a difference-based application, it only looks at the

DATABASECHANGELOG table to check which changeSets needs to be run. All existing

objects in the database will be left unchanged, only the new changeSets will be run.

(The problem with database diffs, 2007)

Usually the best moment to add Liquibase using this method is when moving from

one version of software to the next; the database is usually in a reasonably

consistent state. (Liquibase documentation: Adding Liquibase on an Existing project,

2014)

The biggest disadvantage of this method is that it requires other tools to bootstrap a

new database. First, all pre-Liquibase changes must be made using other tools.

18

Snapshot of pre-Liquibase database should be created using the backup tool to

create a script, which helps in new database bootstrapping. When a new database

needs to be created, first, the snapshot should be loaded and then Liquibase update

can be run. (Liquibase documentation: Adding Liquibase on an Existing project, 2014)

Because databases may vary between schemas, it is useful to use Liquibase functions

such as preconditions, mark the changes run or contexts to standardize those

variations. (Liquibase documentation: Adding Liquibase on an Existing project, 2014)

3.3 Make it look like Liquibase was used from the beginning

In this approach, the main goal is to create a changelog, which allows creating a

database identical to the current state of the database if it is run against empty

database. This approach is best in the long term; however, it requires more work at

the beginning. (Liquibase documentation: Adding Liquibase on an Existing project,

2014)

The process of adding Liquibase support to existing database in this case is described

in the following chapters. (Liquibase documentation: Adding Liquibase on an Existing

project, 2014):

Creating changeLog files

Create changeLog files manually or automatically using CLI command

generateChangeLog. This tool is especially good for large databases, however, all

generated changeSets need to be gone through to ensure that they are correct.

(Liquibase documentation: Generating Change Logs, 2014; Liquibase documentation:

Adding Liquibase on an Existing project, 2014)

Liquibase allows reversing engineering the schema with the following command

(Liquibase documentation: Liquibase Command Line, 2015):

19

However, the use of this tool has some limitations. It is not possible to export stored

procedures, functions, packages, triggers. Some objects specific to some database

systems are also missing. (Liquibase documentation: Generating Change Logs, 2014)

For instance, in the case of Oracle Database it is not possible to export nested tables.

In addition, details such as “not clustered” in the case of indexes may be missing, and

types may vary. (Liquibase documentation: Generating Change Logs, 2014; Liquibase

documentation: Adding Liquibase on an Existing project, 2014)

Running changeSets

The next step is to make sure that pre-Liquibase changes will only be applied to an

empty database. There are several ways to do this:

a. The CLI command changeLogSync can be used. The information that the scripts

have been executed will be added to DATABASECHANGELOG table, however, no

changes to the database will be applied. (Liquibase documentation: Liquibase

Command Line, 2015)

b. Context can be added to each of the pre-Liquibase changeSet, for instance

“legacy”:

liquibase --driver=oracle.jdbc.OracleDriver \

 --classpath=ojdbc6.jar \

 --changeLogFile=changelog.xml \

 --url="jdbc:oracle:thin:@localhost:1521:xe" \

 --username=rdziadosz \

 --password=secret \

 generateChangeLog

20

Then, on the new database, the script should be running using the context

“legacy”:

On the existing database the context should be different, it cannot remain empty

or not set, because then all scripts will be executed and the execution will fail.

(Liquibase documentation: Contexts, 2016)

c. Another possibility is to add precondition tag to each generated changeSet.

<changeSet id="1" author="rdziadosz" context=”legacy”>

 <createTable tableName="news">

 <column name="id" type="number"/>

 <column name="title" type="varchar(255)"/>

 </createTable>

</changeSet>

liquibase --driver=oracle.jdbc.OracleDriver \

 --classpath=ojdbc6.jar \

 --changeLogFile=changelog.xml \

 --contexts=legacy \

 --url="jdbc:oracle:thin:@localhost:1521:xe" \

 --username=rdziadosz \

 --password=secret \

 generateChangeLog

 --contexts=nonLegacy

21

A precondition is added to the changeLog. It checks for an existing element in the

database, and if present, it skips the execution of script and marks changeSet as

ran. (Liquibase documentation: Preconditions, 2014)

This method is time consuming, because it requires many different changes in the

generated changeSets. Two previous methods can be easily automated.

This method can cause serious performance problems. Each precondition must

be checked at the first execution that can take a long time. Therefore, this

method is used in individual cases. (Liquibase documentation: Preconditions,

2014; Liquibase documentation: Adding Liquibase on an Existing project, 2014)

<changeSet id="1" author="rdziadosz">

 <preConditions onFail="MARK_RAN">

 <not>

 <tableExists tableName="news"/>

 </not>

 </preConditions>

 <createTable tableName="news">

 <column name="id" type="number"/>

 <column name="title" type="varchar(255)"/>

 </createTable>

</changeSet>

22

 Assignment

4.1 Current situation and goals

The task it to add a version control system to an existing Oracle database. This

complex database has been used a long time. Without Liquibase process of database,

the upgrade is very complicated and difficult to develop.

It takes a great amount of time to create patches and improvements, because the

error handling needs to be taken care of. It is not sure if the script will be executed a

few times or once, therefore, any exception that can occur must be handled in SQL

script.

All scripts must be executed in the correct order, because existing data could be

corrupted.

Another goal is also to make it easy for developers to create a database instance.

Now they share resources, which sometimes causes conflicts while working.

The next improvement is to accelerate the migration process by not executing scripts

again in upgrade process and by adding CI.

The expected migration process is illustrated in Figure 5.

Figure 5 Life of a migration script (adapted from Evolutionary Database Design, 2016)

23

4.2 Initial idea for improvement

The first idea was to use the generateChangeLog command to the reverse

engineering of the database. ChangeSets for objects such as tables, indexes,

sequences, foreign keys, or views could be generated. Then the plans were to add

the missing scripts that cannot be generated.

However, after the first tests, the results showed that much of the information is

skipped and due to the huge amount of code, the generated XML files are very

unreadable. In addition, the code generated by Liquibase ignored the comments that

were previously in scripts making the code very difficult to maintain.

Some scripts must be executed in the correct order, which was not possible with the

generated file. The code generated by this tool was not acceptable. It would take

plenty of time and resources to correct this code.

4.3 Another approach to adding Liquibase

Due to the aforementioned problems, the decision was to manually or semi-

automatically make the changes to the scripts to add Liquibase support in the

project.

Some major architectural changes needed to be made. All of these changes are

covered in the subsequent chapters.

24

 Format of the changeLogs

5.1 SQL Formatted changeLog

The solution chosen was to use two formats of changeLogs XML and SQL. SQL format

is compatible with Liquibase. The task required to do was to add Liquibase metatags

to the existing scripts.

The SQL file may remain unmodified and it is compatible with Liquibase (one has to

be aware that Liquibase does not support SQL Plus commands, and the scripts should

be modified if used). However, to take full advantage of Liquibase it is worth adding

Liquibase metatags to files.

Each SQL formatted changeLog must begin with the following line:

(Liquibase documentation: Formatted SQL Changelogs, 2004)

5.2 SQL Formatted changeSet

Before each changeSet is metatag which in the sql file has the following format:

Attributes can be, for example, runOnChange, runAlways or a context that allows

using more advanced Liquibase functions. (Liquibase documentation: Formatted SQL

Changelogs, 2004)

5.3 Adding metatags to multiple files

In order to speed up the work, a bash script was used to automate the tasks by

adding meta tags to multiple files at once. The scripts of objects such as triggers or

views were in separate files and had a unified structure.

--liquibase formatted sql

--changeset author:id attribute1:value1 attribute2:value2 [...]

25

Below is the code of bash script:

ChangeSets are created with the same id as the file name (without the extension).

After executing this script, the sample SQL script containing the view looks like the

following:

5.4 XML formatted files

XML files are files such as baseline.xml or triggers.xml. They contain mostly

commands not available in SQL files.

However, new changes will only be made through XML files, as they provide more

capabilities, such as automatic rollback generation.

#!/usr/bin/env bash

#script appends liquibase metadata at the beginning of all *.sql

files in the directory

#create_filename is id of changeset (filename without .sql

extension)

for f in *.sql; do printf -- "--liquibase formatted sql\n--changeset

rdziadosz:${f::-4} runOnChange:true\n" | cat - "$f" > temp && mv

temp "$f"; done;

--liquibase formatted sql

--changeset rdziadosz:locations_v runOnChange:true

 CREATE OR REPLACE FORCE VIEW locations_v AS

 SELECT c.country_id, c.country_name, l.location_id, l.city

 FROM countries c, locations l

 WHERE c.location_id = l.location_id;

26

 Organizing the changeLogs

6.1 Include and include all

Because the database has many objects, the code is divided into smaller parts, which

allows managing them easier.

Liquibase has an include tag that allows creating changeLogs trees. It is important not

to use XML build-in include, because the Liquibase parser recognizes the document

as a single large XML file. It is known that Liquibase uses the file path to identify

changeSet. Therefore, the use of such a solution could cause validation errors.

(Liquibase documentation: Include, 2014)

A similar tool for the include tag is an includeAll tag. It allows adding multiple files at

the same time. IncludeAll is looking for files with the *.xml and *.sql extension and

adds them to changeLog. It is important that the files are executed in alphabetical

order. (Liquibase documentation: IncludeAll, 2015)

The code below shows the use of include tag with two files and use includeAll for the

whole directory “views”:

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog

 xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog

 http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.5.xsd">

 <include file="create_tables.xml" relativeToChangelogFile="true"/>

 <include file="constraints.sql" relativeToChangelogFile="true"/>

 <includeAll path="views" relativeToChangelogFile="true"/>

</databaseChangeLog>

27

6.2 “Replaceable” database objects

What can be replaced in Oracle?

Liquibase runs changeSets only once by default. If migrations are run again, they will

be ignored. Sometimes this is not a wanted action. In the Oracle database objects

such as

 stored procedures,

 functions,

 views,

 packages,

 synonyms,

 triggers

can be easily replaced using OR REPLACE statement. These objects need not to be

deleted from the database each time before recreating them. (Oracle Database SQL

Language Reference)

runOnChange

In case when changeSet has been changed since it was run against the database,

Liquibase returns the checksum error. If it is the intended action, runOnChange

attribute can be used.

After launching Liquibase with the changeSet below, DATABASECHANGELOG table

contained the entry shown in Figure 6.

Figure 6 Entry in the DATABASECHANGELOG table after the first run

--liquibase formatted sql

--changeset rdziadosz:locations_v runOnChange:true

 CREATE OR REPLACE FORCE VIEW locations_v AS

 SELECT c.country_id, c.country_name

 FROM countries c;

28

Then the view code was changed. Liquibase was executed again.

As a result, the view was updated, and the entry in the table looked as shown in

Figure 7.

Figure 7 Entry in the DATABASECHANGELOG table after the second run

Using runOnChange attribute the change will only be applied if the changeSet is

changed. Liquibase compares the changeSet checksum with the checksum in the

database. If the MD5 checksum was deleted from the database (e.g. by

clearCheckSums command), the change is also executed. (Liquibase documentation:

<changeSet> tag, 2015)

runAlways

Sometimes it is necessary to run changeSet each time. In this case, the runAlways

attribute is used. (Liquibase documentation: <changeSet> tag, 2015)

However, if changeSet is be changed, the validation will fail, unlike runOnChange. If

this is intentional, tag validCheckSum is used, as in the case below:

(Liquibase documentation: <changeSet> tag, 2015)

--liquibase formatted sql

--changeset rdziadosz:locations_v runOnChange:true

 CREATE OR REPLACE FORCE VIEW locations_v AS

 SELECT c.country_id, c.country_name, l.location_id, l.city

 FROM countries c, locations l

 WHERE c.location_id = l.location_id;

<changeSet author="rdziadosz" id="clear_table" runAlways="true">

 <validCheckSum>any</validCheckSum>

 <sql>call CLEAR_TABLE('loactions_temp');</sql>

</changeSet>

29

6.3 Directory structure

Because there are several thousand XML and SQL files in the project, their

organization is very important. It is known that over time the project will be further

developed, which means that there will be even more of them.

The directory structure used in the project is shown in Figure 8. Scripts to create non-

replaceable objects are located in the “install” directory. Each type of object is in a

separate directory.

The “latest” directory has been created for files where “CREATE OR REPLACE”

statement can be used (triggers, views, etc.). It means that the updated version of

the object can simply replace an old one. Because modifications are made in one

directory, it is easy to track history changes using a version control system such as

Git.

Figure 8 Directory structure

30

Directories where the name starts with “v” (eg. v1, v2, etc.) contain changeLogs

which upgrade the data from one version to another. A directory tree organized in

this way makes branching and merging easy. (Tutorial Using Oracle, 2015)

 Inserting Setup Data

7.1 Loading Data into a Table

One of the tasks was to improve the addition of the initial data. These data are fixed,

same for each created database. Sometimes, with the application update, it is

necessary to change this data.

The old method of data entry was that each time the table was completely cleaned,

and then the data was entered using thousands of INSERT INTO statements.

Even if the data was not changed, this process was performed, which unnecessarily

increased the update time.

7.2 Load Update Data

Liquibase has made this process easier. The loadUpdateData function allows to add

or update data that is loaded from a CSV file. (Liquibase documentation: Change:

‘loadUpdateData’, 2014)

To use this feature, a CSV file with data needs to be prepared. The following snippet

contains a header and several entries to be inserted into the table:

ID,LON,LAT,PROBABILITYID,LON,LAT,PROBABILITY

"41","50.083333","19.916667","13.5"

"42","49.947942","20.242758","26.2"

"43',"53.84247,"20.947564","24.2"

"44","53.454207,"22.424624","16.2"

31

The code below shows the loadUpdateData tag. It is necessary to declare the table

name to which data is to be entered, the location of the CSV file, and the column that

is the primary key. (Liquibase documentation: Change: ‘loadUpdateData’, 2014):

During first execution, data will be added to the database. Due to the runOnChange

attribute, Liquibase will update the data in next executions if the file will be changed.

However, one needs to keep in mind that if an entry will be deleted from a file, it will

still remain in the database. In this case, the delete tag is needed to remove one or

more entries from the table. (Liquibase documentation: Change: ‘loadUpdateData’,

2014)

<changeSet author="rdziadosz" id="loadData-settings"

runOnChange="true">

 <loadUpdateData catalogName="world"

 primaryKey="ID"

 encoding="UTF-8"

 file="world_data.csv"

 quotchar="""

 schemaName="world"

 separator=","

 tableName="settings">

 </loadUpdateData>

</changeSet>

32

 Database Documentation

Database Documentation Generator is a very useful tool especially in teamwork. It

allows creating documentation in HTML format. This tool can only be used by the CLI.

(Liquibase documentation: Database Documentation Generator, 2014)

The documentation contains information on the executed and pending changes,

information about the current and past structure of the database, and the time and

authors of the changes that have been made. The generated documentation is

shown in Figure 9.

Figure 9 Generated documentation

33

The documentation can be generated by running the following command:

The output files will be in the directory specified after the command name (in this

case “/documentation”).

The advantage of this documentation is that it is precise and error-free. All changes

made in the past will be described there. It takes a few seconds to generate it. Good

documentation makes developers’ work much easier.

liquibase --driver=oracle.jdbc.OracleDriver \

 --classpath=ojdbc6.jar \

 --changeLogFile=changelog.xml \

 --url="jdbc:oracle:thin:@localhost:1521:xe" \

 --username=rdziadosz \

 --password=secret \

 dbDoc \

 /documentation

34

 Contexts

9.1 Different features of the runtime environment

In the created project, some databases differed according to customer requirements.

Sometimes it was necessary to run only some changeSets or skip them.

Creating separate changeLogs for each database would be very laborious. However,

Liquibase offers the opportunity to use contexts. (Contexts Vs. Labels, 2014)

9.2 Adding contexts to changeSets

To use contexts, the context attribute needs to be added to changeSet. Then, during

executing Liquibase, a context needs to be specified, depending on the environment

to be created. (Liquibase documentation: Contexts, 2016)

The following snippets show example changeSets with specific contexts:

<changeSet author="rdziadosz" id="clear_table" runAlways="true"

context=”locations”>

 <validCheckSum>any</validCheckSum>

 <sql>call CLEAR_TABLE('loactions_temp');</sql>

</changeSet>

<changeSet id="1" author="rdziadosz" context=”legacy”>

 <createTable tableName="news">

 <column name="id" type="number"/>

 <column name="title" type="varchar(255)"/>

 </createTable>

</changeSet>

35

9.3 Running Liquibase with a specific context

To run changes, the --contexts parameter is used on the command line interface.

When Liquibase with needs to be run with many contexts, they should be separated

with commas. (Liquibase documentation: Contexts, 2016)

An example command to run Liquibase with two contexts is given below:

If the context remains empty or not set, then all changeSets will be executed. If all

changeSets without the context set need to be run, the --contexts = x parameter

should be set, where x is different from any context added to changeSets. (Liquibase

documentation: Contexts, 2016)

liquibase --driver=oracle.jdbc.OracleDriver \

 --classpath=ojdbc6.jar \

 --changeLogFile=changelog.xml \

 --contexts="locations,legacy" \

 --url="jdbc:oracle:thin:@localhost:1521:xe" \

 --username=rdziadosz \

 --password=secret \

 update

36

 Parameters

Parameters are a very useful function. Parameters allows inserting text fragments

into changeLogs or changeSets. For example, the project needed to create a user, but

for each database users had to have a different password - given when creating the

database. (Change Log Parameters, 2014)

The following code snippet is used to create a user:

Liquibase dynamically replaces parameters with syntax ${name} to given parameter.

Parameters can be included in the XML file or through the CLI. (Change Log

Parameters, 2014)

In the changeLog file the parameter tag is used. The following snippet allows

including a parameter in an XML file (Change Log Parameters, 2014):

On the command line, the parameter must be preceded by the letter D. The

following fragment allows inserting a parameter in CLI (Liquibase documentation:

Command Line, 2015):

 liquibase --driver=oracle.jdbc.OracleDriver \

 --classpath=ojdbc6.jar \

 --changeLogFile=changelog.xml \

 --url="jdbc:oracle:thin:@localhost:1521:xe" \

 --username=rdziadosz \

 --password=secret \

 update \

 -Dmaster.password=secret

--liquibase formatted sql

--changeset rdziadosz:create_master

CREATE USER MASTER IDENTIFIED BY "${master.password}";

<property name="master.password" value="secret"/>

37

 Testing

After the process of creating the changeLogs and running them, it was necessary to

test if the database schema is identical to the current production database version.

Tests were done with Toad for Oracle. The Compare Schema function was used to

check the database, shown in Figure 10. All discrepancies were manually checked

and corrected in changeSets. Compare Schema allows comparing one schema in

multiple databases. (Toad for Oracle 12.1 - Guide to Using Toad for Oracle)

Figure 10 Compare Schemas in Toad for Oracle

38

For a more complex database, Compare Multiple Schemas function is useful. It is

similar to Compare Schema but allows working with multiple schemas in two

databases. Compare Multiple Schemas is shown in Figure 11. (Toad for Oracle 12.1 -

Guide to Using Toad for Oracle)

Figure 11 Compare Multiple Schemas in Toad for Oracle

39

 Conclusions

The purpose of this thesis was to add a version control system to the Oracle

database. The migration process was complex and error-prone. Another goal was

also to make it easy for developers to create a database instance. Previously,

conflicts were sometimes caused by work on a shared base.

All of the aforementioned goals were achieved using the open source tool, Liquibase.

It allows easily management of schema migrations, control of database versions and

automatic generation of documentation about the changes.

As a result of the actions taken, the process of making changes to the database

schema was simplified. In addition, migrations history is saved and documentation is

created automatically. The database is easy to be set up on the developers' devices

so they did not have to share it.

The current version of the database that runs with Liquibase is in the testing phase.

The branch will be merged into the main branch in the forthcoming weeks - when

the development of the newest version of software developed by the company

starts.

The problems that came up when working with Liquibase were, among other things,

the lack of support for multiple connections to the database. This would sometimes

be useful when other privileges need to be used in the database. Another

disadvantage was the lack of support for SQL Plus commands, which required some

code changes. Some of the problems are planned to be solved in the future Liquibase

releases.

Further development will undoubtedly consist of creating new changes using only

Liquibase. After each release, the updates will be merged into the base version to

speed up the migration process and make the Liquibase changeLogs files simpler.

Working with Liquibase was a new useful experience helped me to increase my skills.

Especially analytical skills and good organization were important. Due to the

complexity of the database, it took plenty of time to understand how it worked.

40

A very important aspect of work is the contact with the team. Due to the co-

operation with experienced programmers, I was able to resolve the problems

quickly. The help of the entire team was invaluable.

After this experience, I can say that the versioned database is almost a necessity in a

project that is continuously deployment. Versioning makes it very easy for both

application development and deployment of the product. It is also worth

remembering to implement solutions like Liquibase as early as possible. This can save

programmers plenty of work.

41

References

Hussain, S. 2016. SQL Server Database Change Management with Liquibase Accessed

on 01 April 2017. Retrieved from https://www.mssqltips.com/sqlservertip/4340/sql-

server-database-change-management-with-liquibase/

Köbler, N. 2013. Continuous database migration with Liquibase and Flyway Accessed

on 21 April 2017. Retrieved from http://www.h-

online.com/developer/features/Continuous-database-migration-with-Liquibase-and-

Flyway-1860080.html

Merriam-Webster Database - Definition of database Accessed on 07 May 2017.

Retrieved from https://www.merriam-webster.com/dictionary/database

Microsoft 2017. Microsoft Dev Center: Environment Variables Accessed on 22 April

2017. Retrieved from https://msdn.microsoft.com/en-

us/library/windows/desktop/ms682653(v=vs.85).aspx

Oracle Oracle Database Concepts: Schema Objects Accessed on 07 May 2017.

Retrieved from

https://docs.oracle.com/cd/B28359_01/server.111/b28318/schema.htm#CNCPT010

Oracle Oracle Database SQL Language Reference: CREATE FUNCTION Accessed on 03

May 2017. Retrieved from http://docs.oracle.com/database/122/LNPLS/CREATE-

FUNCTION-statement.htm#LNPLS01370

Oracle Oracle Database SQL Language Reference: CREATE PACKAGE Accessed on 03

May 2017. Retrieved from http://docs.oracle.com/database/122/SQLRF/CREATE-

PACKAGE.htm#SQLRF01306

Oracle Oracle Database SQL Language Reference: CREATE PROCEDURE Accessed on

03 May 2017. Retrieved from http://docs.oracle.com/database/122/LNPLS/CREATE-

PROCEDURE-statement.htm#LNPLS01373

Oracle Oracle Database SQL Language Reference: CREATE SYNONYM Accessed on 01

April 2017. Retrieved from http://docs.oracle.com/database/122/SQLRF/CREATE-

SYNONYM.htm#SQLRF01401

42

Oracle Oracle Database SQL Language Reference: CREATE TRIGGER Accessed on 03

May 2017. Retrieved from http://docs.oracle.com/database/122/LNPLS/CREATE-

TRIGGER-statement.htm#LNPLS01374

Oracle Oracle Database SQL Language Reference: CREATE VIEW Accessed on 01 April

2017. Retrieved from http://docs.oracle.com/database/122/SQLRF/CREATE-

VIEW.htm#SQLRF01504

Quest Toad for Oracle 12.1 - Guide to Using Toad for Oracle Accessed on 03 May

2017. Retrieved from https://support.quest.com/technical-documents/toad-for-

oracle/12.1/guide-to-using-toad-for-oracle/

Ranch, H. 2011. A simple introduction to database change management with SQLite

and Liquibase Accessed on 07 May 2017. Retrieved from

http://henryranch.net/tutorials/a-simple-introduction-to-database-change-

management-with-sqlite-and-liquibase/

Sadalage, P., Fowler, M. 2016. Evolutionary Database Design Accessed on 01 April

2017. Retrieved from https://www.martinfowler.com/articles/evodb.html

Voxland, N. 2014. Contexts Vs. Labels Accessed on 01 April 2017. Retrieved from

http://www.liquibase.org/2014/11/contexts-vs-labels.html

Voxland, N. 2015. Liquibase documentation: <changeSet> tag Accessed on 01 April

2017. Retrieved from http://www.liquibase.org/documentation/changeset.html

Voxland, N. 2014. Liquibase documentation: Adding Liquibase on an Existing project

Accessed on 01 April 2017. Retrieved from

http://www.liquibase.org/documentation/existing_project.html

Voxland, N. 2014. Liquibase documentation: Change Log Parameters Accessed on 01

April 2017. Retrieved from

http://www.liquibase.org/documentation/changelog_parameters.html

Voxland, N. 2014. Liquibase documentation: Change: ‘loadUpdateData’ Accessed on

01 April 2017. Retrieved from

http://www.liquibase.org/documentation/changes/load_update_data.html

43

Voxland, N. 2016. Liquibase documentation: Contexts Accessed on 01 April 2017.

Retrieved from http://www.liquibase.org/documentation/contexts.html

Voxland, N. 2013. Liquibase documentation: Database Change Log File Accessed on

01 April 2017. Retrieved from

http://www.liquibase.org/documentation/databasechangelog.html

Voxland, N. 2014. Liquibase documentation: Database Documentation Generator

Accessed on 01 April 2017. Retrieved from

http://www.liquibase.org/documentation/dbdoc.html

Voxland, N. 2014. Liquibase documentation: DATABASECHANGELOG table Accessed

on 09 April 2017. Retrieved from

http://www.liquibase.org/documentation/databasechangelog_table.html

Voxland, N. 2015. Liquibase documentation: DATABASECHANGELOGLOCK table

Accessed on 09 April 2017. Retrieved from

http://www.liquibase.org/documentation/databasechangeloglock_table.html

Voxland, N. 2014. Liquibase documentation: Formatted SQL Changelogs Accessed on

01 April 2017. Retrieved from

http://www.liquibase.org/documentation/sql_format.html

Voxland, N. 2014. Liquibase documentation: Generating Change Logs Accessed on 01

April 2017. Retrieved from

http://www.liquibase.org/documentation/generating_changelogs.html

Voxland, N. 2014. Liquibase documentation: Include Accessed on 01 April 2017.

Retrieved from http://www.liquibase.org/documentation/include.html

Voxland, N. 2015. Liquibase documentation: IncludeAll Accessed on 01 April 2017.

Retrieved from http://www.liquibase.org/documentation/includeall.html

Voxland, N. 2016. Liquibase documentation: Installation Accessed on 12 April 2017.

Retrieved from http://www.liquibase.org/download/

Voxland, N. 2014. Liquibase documentation: JSON Format Accessed on 01 April 2017.

Retrieved from http://www.liquibase.org/documentation/json_format.html

44

Voxland, N. 2015. Liquibase documentation: Liquibase Command Line Accessed on 01

April 2017. Retrieved from

http://www.liquibase.org/documentation/command_line.html

Voxland, N. 2013. Liquibase documentation: Other Changelog formats Accessed on

01 April 2017. Retrieved from

http://www.liquibase.org/documentation/other_formats.html

Voxland, N. 2014. Liquibase documentation: Preconditions Accessed on 01 April 2017.

Retrieved from http://www.liquibase.org/documentation/preconditions.html

Voxland, N. 2014. Liquibase documentation: Rolling Back ChangeSets Accessed on 01

April 2017. Retrieved from http://www.liquibase.org/documentation/rollback.html

Voxland, N. 2014. Liquibase documentation: Supported Databases Accessed on 01

April 2017. Retrieved from http://www.liquibase.org/databases.html

Voxland, N. 2014. Liquibase documentation: Updating the Database Accessed on 01

April 2017. Retrieved from http://www.liquibase.org/documentation/update.html

Voxland, N. 2014. Liquibase documentation: XML Format Accessed on 01 April 2017.

Retrieved from http://www.liquibase.org/documentation/xml_format.html

Voxland, N. 2014. Liquibase documentation: YAML Format Accessed on 01 April

2017. Retrieved from http://www.liquibase.org/documentation/yaml_format.html

Voxland, N. Liquibase Official Website Accessed on 06 April 2017. Retrieved from

http://www.liquibase.org/index.html

Voxland, N. 2007. The problem with database diffs Accessed on 01 April 2017.

Retrieved from http://www.liquibase.org/2007/06/the-problem-with-database-

diffs.html

Voxland, N. 2015. Tutorial Using Oracle Accessed on 03 May 2017. Retrieved from

http://www.liquibase.org/tutorial-using-oracle

검린 2009. LiquiBase를 사용하여 데이터베이스 변경 관리하기 Accessed on 16

April 2017. Retrieved from http://mirnae.blog.me/100065640596

