

Janne Järvinen

Planning System of Work Shifts for Catering
Service Company

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

24 April 2017

 Abstract

Author(s)
Title

Number of Pages
Date

Janne Järvinen
Planning System of Work Shifts for Catering Service Company

58 pages
24 April 2017

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Heikki Lauranto, Senior Lecturer

The study was carried out for a catering company called Blockfood. Usually a catering com-

pany works on a customer’s premises or another place the customer has selected, thus

there is no constant work place where the employees would arrive. Additionally, most of the

employees work as freelance employees and are called to work on request. This kind of

work requires in advance done work shift planning to make sure that there are all the needed

employees at every customer event.

The objective of the study was to make the work shift planning process more reliable and

less time consuming. Previously, finding available employees and placing them to a certain

date and event was a time-consuming process for the management of the catering service

company because it had to be done manually by phone calls or email.

The result of the study is a web application for planning work shifts. This helps to find avail-

able employees and place them to a certain event. The application was implemented using

modern web application development techniques such as AngularJS, Node.js, Bootstrap

and MongoDB.

The application testing was carried out together with the catering company using predefined

test cases. The result of the study is already a usable and final product which can be used

to maintain the catering company's customer event information. Since such an application

would act as a central point of the company's work there is a need for further development

and maintaining since new ideas and features are requested when the application is used

on a daily basis.

Keywords catering, angularjs, rest, mongodb, html5, bootstrap, node.js

Contents

Preface

Abstract

Table of Contents

1 Introduction 1

1.1 Objective 2

1.2 Verification 3

2 Background 5

2.1 Resource Planning 5

2.2 Order 5

3 Requirements for Software 8

3.1.1 Manager Role 8

3.1.2 Employee Role 8

3.2 Application Flows 8

4 Technology Used to Implement Software 14

4.1 Frontend 14

4.1.1 Bootstrap 14

4.1.2 AngularJS 16

4.1.3 Bower 18

4.2 Backend 20

4.2.1 REST 20

4.2.2 Node.js 21

4.2.3 MongoDB 21

4.2.4 Mongoose 24

4.3 Other tools 27

4.3.1 Git 27

4.3.2 Yeoman 28

5 Application Implementation 30

5.1 Administrator’s Application 30

5.1.1 Application Structure 30

5.1.2 Login Screen 32

5.1.3 Main Menu 32

5.1.4 Orders 33

5.1.5 Adding New Order 34

5.1.6 Editing Order 35

5.1.7 Assigning Employee to Event 36

5.1.8 Removing Order 38

5.1.9 Employees 38

5.1.10 Adding New Employee 39

5.1.11 Editing Employee 40

5.1.12 Removing Employee 41

5.1.13 Logging Out 42

5.2 Employee’s Application 42

5.2.1 Login Screen 42

5.2.2 Calendar View 43

5.2.3 Event Details 45

5.2.4 Logging Out 46

5.3 Backend system 46

5.3.1 REST API 46

5.3.2 Database 48

6 Verification 50

7 Discussion and Conclusions 55

7.1 Further Development 56

7.2 Used Technologies 57

8 References 58

1

1 Introduction

Catering services usually work on customers' premises, so in advance done work shift

planning is one important part to be able to successfully fulfil the customers' needs.

As said, only a small part of the work is done in catering service's own facilities. Typically,

food and service products are preconditioned before going to customer. Usually, the

customer finds and arranges a place where to have their events such as weddings, fu-

nerals, birthdays, and the catering service does the actual work, finishing the food and

doing the serving, there.

In addition to work shift planning, event places create some more challenge because

they are selected by the customer so they can be located in a wide area, in this case in

Helsinki, Vantaa and Espoo. Quite often, festive places might also have some special

features for example contact person, door code, kitchen equipment, and this kind of in-

formation would be useful to share to the event employees.

In addition to food products, the catering service also arranges the needed staff for the

customers' events. Typically, one event requires one cook and one or two waiters. During

the season time from May to October there might be several events on a same day,

usually on weekends and this makes the challenge of the work shift planning larger be-

cause the catering service must find the right employees to right places. Usually employ-

ees have a freelancer contract and they are called to work when needed.

2

1.1 Objective

The goal of this study was to make the work shift planning process more reliable and

less time consuming. Currently, finding available employees and placing them to a cer-

tain date and event is a time-consuming process for the management of the catering

service company because it must be done manually by phone calls or email.

The present study consists of designing and implementing a service for planning work

shifts which helps to find available employees and place them to a certain event. The

service is to be usable by a mobile device as well as desktop computer so that the em-

ployees can report the days when they are available and based on that the management

can assign employees to the event. Further on, when the employee is assigned to work

he/she can check the event details such as date, address, special requirements from the

service.

Figure 1 shows the overview of the resource planning process.

Figure 1. Resource planning of the customer event

3

The requirements for the solution were collected from the catering service management.

The solution should be usable with both mobile and desktop devices. The solution does

not need to use any kind of device specific hardware; hence the solution is to be a web

application which supports both desktop and mobile displays. Technically, the applica-

tion consists of a frontend application and a backend application providing a RestAPI

(Representational State Transfer) for the frontend. RestAPI is an architectural design

pattern for creating platform independent web services. The outcome of the study is a

set of several different tools, services and libraries and all of these are explained later in

this thesis paper.

To be able to utilize the outcome of the study also in the future it is also required that the

produced service would be scalable and easily deployable to other customers and envi-

ronments.

The aim of the study was, in short, to produce a working service designed using good

practices which allows utilizing the created product also in other customers’ projects.

1.2 Verification

To explain how the objective was reached this study starts by describing the key tech-

nologies and why they were selected. When the technologies had been found, the next

phase was to create an application design starting with user roles and use cases contin-

uing to the final solution design which includes the user interface, backend service and

database design.

When the application was in a phase where it could be published, a verification was

arranged with the catering company. The experiences and findings were used to make

possible changes in order to finalize the application to an acceptable level.

This study consists of seven chapters, starting with Chapter 1 which introduces the study

and its objectives. Chapter 2 continues with the background information presenting the

customer of the study and the actual business problem which was solved in the study.

The outcome of this study is software for planning work shifts and Chapter 3 presents

the requirements of the software. The created software is a set of several different tech-

nologies and they are introduced in Chapter 4. Chapter 5 goes through the implemented

software explaining the functionality of the software. The software created in this study

4

was verified together with the catering company and the results of this verification is

presented in Chapter 6. The final chapter lists the results and conclusions of the study

together with further development needs of the created software.

5

2 Background

The study was conducted in the author’s own company, Koodipaja. Currently the com-

pany is a hobby and the author also has a fulltime work in another company. The moti-

vation for the study became from a Koodipaja customer who asked a possibility to create

this kind of service. Another important argument was to create an application which could

be sold to other customers and also collecting good practices for this kind of software

development.

The customer company Blockfood was founded in 2014 and in addition to the owner

itself it has 10-15 freelance employees who are currently invited to work when needed.

2.1 Resource Planning

When a customer event has been agreed on, the catering company starts to plan the

event details. The served menu is decided in co-operation with the customer but the

resources needed for the event are handled by the catering service.

The challenging part is to find the right number of employees for the events, especially

in high season time and the purpose of the present study is to develop this process.

Currently the event resource planning requires a lot of paper work and phone calls or

SMS message sending.

2.2 Order

The catering company writes an order for the customer event. The order can contain the

following information:

- Date and place of the event

- Menu

- The number of guests, adults and children

- Special requirements, like gluten or lactose free guests

- Dishes

- Decorations

- Personnel, cook(s) and waiters

- Time table of the event

6

- Notes about the event place like door code, contact person, kitchen equipment

An example of a customer order is presented in Figure 2.

Figure 2. An example order.

7

In addition to work shift planning the created application also contains the event infor-

mation in an electronical format so that the employees can check the needed details with

their mobile devices and there is no need to print many copies of the orders. When this

order information is provided in a mobile application it is also possible to utilize some

online services e.g. showing a map to the event place.

8

3 Requirements for Software

It is vital for this application to have different user roles because the application contains

business data which should only be visible to the management of the company. The

following chapters describe the needed user roles and their use cases.

3.1.1 Manager Role

The manager user is the owner of the application and the related business data. The

manager publishes the event dates where the employees can register. Based on the

information collected from the employees the manager then assigns employees to

events.

3.1.2 Employee Role

The employee role is used by the company’s employees and they have a limited access

to the business data of the application. The application is designed so that employees

can use it by their mobile devices. The application is a web application so it is also pos-

sible to use it with a normal web browser.

The employees’ user interface shows a calendar view where employees can report

whether they are available or not. When an employee is assigned to an event he/she

can find the event on their calendar view. Employees are not able to see any company

sensitive data, such as prices, on their user interface.

3.2 Application Flows

The following tables describe the steps of the different cases of the software to make it

easier to understand the requirements. The steps are presented as program flows con-

taining preconditions, user actions and possible postconditions.

Table 1 shows the steps needed to log into the manager’s application. When the user

navigates to the URL of the manager’s application, a log in dialog is shown. When the

9

user gives a correct username and password he/she is able to enter into the main screen

of the application.

Use Case: Log into the manager’s application

Preconditions: Manager has opened the manager’s application URL in her browser. The login

screen is shown.

Step # User action System state Details

1 Manager gives her

username and pass-

word to the login

screen

If the username

and password are

not correct, the

login screen is

shown again.

Postconditions: When the correct username and password is given, the main screen is shown.

Table 1. Log into the manager's application

Table 2 shows how the new order is added to the application. First, the user navigates

to the Orders page and selects “Uusi keikka”. The application shows an empty form

where the order information is filled. When all the information is added, the order is saved

by pressing “Talleta” button.

Use Case: Add new order

Preconditions: Manager has logged into the manager’s application. The main menu is shown.

Step # User action System state Details

1 Manager selects Or-

ders from the main

menu

2 Manager selects

“Uusi keikka”

3 Manager inserts the

order details

A form for the new order is shown. Order details in-

cludes: event

name, place, date

and time, contact

person and con-

tents of the order.

4 Manager saves the

new order

Postconditions: The systems contain now a date where the employees are needed.

Table 2. Add new order.

10

Table 3 presents the steps to assign employees to the order. Employee can only be

assigned to an existing order, so the user starts by selecting the order where employees

are going to be assigned. If there are employees available they are shown as icons which

indicate the role of the employee. To assign the employee to the order, the employee

icon is dragged and dropped into the employee area of the order form. Finally, the order

is saved by pressing “Talleta” button.

Use Case: Add employee to the order

Preconditions: Manager has logged into the manager’s application. The system contains a previ-

ously created order.

Step # User action System state Details

1 Manager opens an

existing order.

Available employees are shown as em-

ployee icons:

Employee icon indi-

cates the role of the

employee. Availa-

ble roles are: cook,

waiter or common

employee.

2 Manager drags avail-

able employee to the

order.

The order view contains an area where em-

ployee icon can be dragged to assign an

employee to the event.

If the user must be

removed from the

order, the corre-

sponding icon can

be dragged back to

available employ-

ees’ area.

3 Manager saves the

edited order.

Postconditions: The order contains now the assigned employees and it is ready to be printed.

Table 3. Add employee to the order.

Table 4 shows the steps to log into the employees’ application. This login functionality is

similar to the manager’s application and thus a valid username and password is required

to be able to enter to the employees’ application.

11

Use Case: Employee logs into the employees’ application

Preconditions: Employee has opened the employees’ application’s URL in his/her mobile device.

The login screen is shown.

Step # User action System state Details

1 Employee gives

his/her username

and password to the

login screen

If the username

and password are

not correct, the

login screen is

shown again.

Postconditions: When the correct username and password is given, the calendar view is shown.

Table 4. Employee logs into the employees’ application.

The employees’ application is used for reporting days when the employee is available

for the work. These steps are shown in Table 5. The employee selects the dates by

touching a day in the shown calendar view. When all the needed dates are selected, the

user presses “Lähetä” button which sends the dates into the backend system. Finally,

the user logs out from the application by pressing “Uloskirjaus” button.

Use Case: Employee reports the date when he/she is available for the work.

Preconditions: Employee has logged into the employees’ application. The calendar view is shown.

Step # User action System state Details

1 Employee marks the

days when he/she is

available to work.

The reserved day

can be removed by

touching the day

again.

If there are upcom-

ing events for the

current employee,

their dates are

shown as a differ-

ent colour.

12

2 When the dates are

selected, the em-

ployee sends re-

ported days.

The application

shows a message

whether sending

was successful or

not.

3 Employee logs out

from the employees’

application.

Postconditions: The system contains now the dates when the employee is available. This employee

can be assigned to the selected event.

Table 5. Employee reports the date when he/she is available for the work.

Table 6 shows how the employee checks if there are any events he/she is assigned to.

Such events are shown with a red colour in the calendar view.

Use Case: Employee checks his/her upcoming events

Preconditions: Employee has logged into the employees’ application of the system.

Step # User action System state Details

1 Employee checks

his/her upcoming

events from the cal-

endar view.

If the employee is

assigned to the

event, the event

date is highlighted.

2 Employee logs out

from the employee’s

application.

Postconditions:

Table 6. Employee checks his/her upcoming events.

The employee checks the event details by touching the corresponding event in the cal-

endar view, this is presented in Table 7. When the event is selected, the event details

are shown in a new dialog.

13

Use Case: Employee checks the event details

Preconditions: Employee has logged into the employees’ application.

Step # User action System state Details

1 Employee selects the

event date, where

she is assigned.

The system shows

the order infor-

mation for the user.

2 Employee reads the

order information

3 Employee logs out

from the employee’s

application.

Postconditions:

Table 7. Employee checks the event details.

This chapter described the application flows of the work shift planning system imple-

mented in this study. The application flows shown above were created in the design

phase of the system and they were used when the actual applications were implemented.

Next the technology used to implement the software is discussed.

14

4 Technology Used to Implement Software

The outcome of the present study is a combination of several tools and libraries. This

chapter introduces these tools and their backgrounds. Common to all of these tools is

that they are open source licensed and also platform-independent. Platform-independ-

ency is nowadays very convenient since developers and customers might have very dif-

ferent platforms for doing their work.

4.1 Frontend

Frontend in this case means the visible part of the application. Frontend could be for

example a web page, mobile application, combination of these or even a desktop appli-

cation which uses some resources from another system. The application implemented

in this study is a web application so the visible part is everything shown in a web browser.

Developing web applications requires several different libraries and frameworks to make

the source code maintainable, modular and naturally also usable. The following chapters

introduces the used framework which makes the code usable and UI library which makes

the application usable and uniform looking.

4.1.1 Bootstrap

Bootstrap homepage gives the following definition "Bootstrap is the most popular HTML,

CSS, and JS framework for developing responsive, mobile first projects on the web."

(getbootstrap.com, 2017). This explains the purpose of the Bootstrap very clearly. It is a

widely-used frontend framework for developing modern web applications as well as mo-

bile web applications.

Technically Bootstrap is a collection of CSS-styles and JavaScript functionality which are

used to create uniform looking user interfaces. Bootstrap is used in this study together

with AngularJS framework but Bootstrap is not limited only to be used with AngularJS. It

is also used for example in Asp.Net, Django or PHP applications.

The purpose of the Bootstrap library in this study is to provide a responsive positioning

and layout for the user interface. This means that the application is usable with wide

15

range of screens including mobile devices. Bootstrap is also used to give the application

a common and user-friendly interface which feels familiar to the user.

Figure 3 shows a common Bootstrap-style layout which is used in many web applica-

tions.

Figure 3. Common Bootstrap layout

The common practice is to start the page with the header section which also contains

the name of the company or the application. In the middle of the starting page there can

be a summary of the application describing the purpose of the application. This area is

called “Jumbotron” in Bootstrap. Bootstrap page is usually ended with a footer section.

16

In addition to layout helpers, Bootstrap contains also a wide selection of user interface

components so that there is no need to use any self-made styles and components. Using

Bootstrap’s layouts and components make the web-application more user friendly and

also look more like real application.

4.1.2 AngularJS

AngularJS is JavaScript framework for creating single page applications. It is maintained

and developed by Google.

AngularJS enhances the HTML mark up by its’ own directives which makes the resulting

web page code readable and maintainable. Applications created with AngularJS follow

the MVC (Model-View-Controller) design pattern which is more often used in server side

development.

The following example in Figure 4 shows the basic building blocks of the AngularJS ap-

plication. The example creates a simple shopping list where new items are added by

writing their name and pressing “Add new”-button. The list of items is updated by data-

binding mechanism of AngularJS and there is no need to refresh the page.

Figure 4. AngularJS example.

The example code presented in Figure 5 contains the following AngularJS elements:

• ng-app, Directive marks a web page as an AngularJS application

• app.controller, Defines a controller used in a view

17

• ng-controller, Directive tells that an underlying HTML element is using controller

functionality defined with directive

• ng-model, Defines a databinding to the underlying textbox. The data bound

“itemName” is accessed in controller side via AngularJS scope variable

• ng-click, Defines a controller function, fired when a connected HTML button is

clicked

• ng-repeat, Loops an array based data, in this case a list of items added to the

shopping list.

Figure 5. Example of AngularJS application

18

The above example (Figure 5) shows the controller and view combined in a same file

but in a real case they would be separated to make the code more maintainable and

readable.

The application here is created with AngularJS version 1.5. During the development of

this application the AngularJS framework was updated and redesigned to Angular 2.

4.1.3 Bower

As said earlier, the frontend development may require a lot of different kind of JavaScript

libraries and other dependencies which speeds up the development work since there is

no need to develop all the functionalities by developer herself. These kinds of depend-

encies can be for example:

- Encryption algorithms

- Date manipulation

- User interface frameworks

The traditional way of including these kinds of dependencies to the application was either

to download the local copy of the library or include the source URL of the library to the

application’s source and use the library from the server of its creator.

Both of these methods require some amount of manual work and when the library is

developed further the updated code must be downloaded again to be used in an own

application.

To avoid manual work and to handle updates automatically, tools like Bower were devel-

oped. Bower is a package manager which handles components and libraries and their

dependencies with a more automated way. Bower can handle components such as:

HTML, CSS, JavaScript, font and image files. (bower.io, 2017)

The example presented in Listing 1 shows how to install MD5 hash algorithm with Bower:

Listing 1. Installing MD5 algorithm with Bower

19

After running the above Bower command the MD5 hash algorithm for AngularJS is down-

loaded and it is now available to use in AngularJS application.

All the packages downloaded by Bower are saved into the folder “bower_components”

which is located in the main directory of the developed application, as shown in Figure

6.

Figure 6. The location of the packages installed by Bower

Since the source codes of the downloaded packages are available for the developer in

“bower_components” folder, it is possible to solve errors and other issues by reading the

source codes of them.

In the previous example, there was used a parameter “--save". This parameter makes

the Bower to update the local file “bower.json” which contains a list of installed packages

and their dependencies. This helps to automate the build process and it is also possible

to develop same application with another workstation, since all the needed libraries can

be downloaded based on the information contained in “bower.json” file.

20

4.2 Backend

If the frontend is something which is visible to the application user, the backend is the

functionality which occurs in the background, usually in a backend server. This chapter

tells how the information is saved and maintained and how it is served to the consumers

of the resources.

4.2.1 REST

REST (“Representational State Transfer”) is an architectural design pattern for creating

platform independent web services. These services are called application programming

interfaces (API) and they are used to expose server resources to be used by external

applications. These kinds of external applications can be mobile devices or other web

applications, as shown in Figure 7:

Figure 7. REST API architecture (Kearn, 2015)

Requests made to REST API services are routed based on the used HTTP verb and

URL parameters. Figure 8 shows examples on how the employee information is handled

by “workers” API:

21

Resource Verb Result

/workers GET Returns all the employees.

/workers/1 GET Returns an employee, whose id is 1.

/workers POST Creates a new employee, using the information sent

in a HTTP POST request body.

/workers/1 PUT Updates the employee, whose id is 1. Uses the infor-

mation sent in HTTP PUT request body.

/workers/1 DELETE Deletes an employee, whose id is 1.

Figure 8. Different kinds of REST API calls to “workers” resource

With the “workers” API shown on table above, it is possible to get, create, update and

delete employee information of the application created in the present study.

4.2.2 Node.js

Traditionally JavaScript has been used only in frontend side of the web application. Pre-

viously very common use case where JavaScript was needed was to change the hovered

image on the web page. JavaScript was also used to add other, rather simple, function-

ality to create a real application feeling to the web page.

Node.js is an exception to the traditional JavaScript use case. It is run in a server side

instead of a browser. This gives an advantage to the developer because he/she can

utilize the same code both in frontend and backend development.

4.2.3 MongoDB

Almost every information system or application has a need to save information and make

it available when needed. Very simple way to save information is to save it to the file

which could be enough for very simple solution and which is not targeted to multiple

users. The more efficient storage for the information is some kind of database where

traditional relational databases has usually been used.

One goal of this study was to study modern web application development and thus the

selected database system is MongoDB.

22

MongoDB is a database program which is classified as a NoSQL database. MongoDB

differs from the more common SQL database so that it is document oriented and it sup-

ports JSON data format. Because of the JSON-style data handling, MongoDB is widely

used with JavaScript based backend applications since utilizing the query results is very

straightforward.

To illustrate the other differences between MongoDB and regular relational databases,

Table 8 compares some of the significant features of very common MySQL database

and MongoDB (MongoDB, Inc, 2017).

MySQL MongoDB

Table Collection

Row Document

Column Field

Joins Embedded docu-

ments, linking

Table 8. Comparison of regular SQL database and MongoDB

MongoDB database does not contain SQL-like query language. Instead queries are for-

matted as JSON style structures. During the development, some kind of database man-

ager or query editor is indispensable to design and test database queries. The following

figures (Figures 9-12) show examples and explanations of MongoDB queries made in

the Robomongo database manager.

Find all the documents from the collection

Figure 9. Find all the documents from the worker collection

23

Figure 9 shows a basic example to find all the documents from the MongoDB database.

The query does not contain any conditions or field selectors. On the result dialog, there

is one employee document opened to show the contents of the returned results.

Find all the documents from the collection, using a condition.

Explanation: Finds all the employees, whose first name is “John”.

Figure 10. Find documents, using a condition

As an addition to the previous example, the above query presented in Figure 10 uses

now a condition to find all the employees whose first name is “John”. This query is mod-

ified on the next example shown in Figure 11 by selecting field which should be returned.

Returned fields are listed as a second parameter of the find method.

Find all the documents from the collection, using a condition, but selecting only three fields.

Figure 11. Find documents, using condition and selecting returned fields.

24

The last example shown in Figure 12 is a more complicated case where condition is used

in a sub-array inside a document.

Find all the documents from the collection, using a condition and aggregate framework.

Figure 12. Find the documents, using an aggregate framework.

The above query (Figure 12) finds an employee who is available at “2017-03-10”. Since

employee document contains an array of days where the employee is available, the

MongoDB aggregation must be used. Aggregate operator “$unwind” loops an array field

“available” and uses the last match filter to select event days. To be able to find a certain

day, omitting time, it is necessary to compare the selected day to the calculated yester-

day and tomorrow.

4.2.4 Mongoose

When database related software is developed, it is usually good practice to use some

kind of a database accessing layer between the application and the database. This layer

makes it easier to handle regular database calls so that the application developer can

concentrate mostly to the application logic. Moreover, this kind of database access layer

25

abstracts away the database from the application’s source level and thus reduces the

tight coupling of the source code and database.

Mongoose is such database modelling library designed for MongoDB, the database used

in the present study.

Mongoose is a Node.js module, developed for the Node.js backend applications. Like

other Node.js modules, Mongoose is installed by npm package manager with the follow-

ing command:

npm install mongoose

One benefit of using Mongoose for connecting to MongoDB is that it supports schemas

when handling database calls (Mongoose, 2017). Figure 13 shows an example of using

Mongoose in the resulting application of this study:

Create a Mongoose schema for the data model.

Figure 13. Creating the Mongoose schema.

To utilise Mongoose, it is first required to create a schema for the used data model. The

above example shows how the schema of the “worker” model is created. “Worker” model

has properties such as first name, last name, roles and available days when he/she can

work. Roles are used to distinguish whether the employee works as a cook or waiter.

The next step, after defining a schema, is to create an actual data model which is in this

case the “worker” model. All the database queries are now made by this “worker” model

where the example is shown in Figure 14.

26

Use a defined data model to create a new document to the database.

Figure 14. Inserting a new document to the database.

In the above example (Figure 14), the previously created “worker” model is used to cre-

ate a new document to the database. First the “worker” object is created from the JSON

formatted data received from the HTTP request. Then Mongoose method “save” is used

to insert this data to the database. In case of error an HTTP error 500 is returned so that

the frontend application is able to show the error message to the user. If saving is suc-

cessful the resulting object containing the created employee information is returned.

27

4.3 Other tools

This chapter introduces the other tools used in the implementation of the application

created in the present study. The introduced tools were not obligatory for the implemen-

tation, but they were used for automating the development process and for saving and

maintaining the results of the application development work.

4.3.1 Git

For serious software development, it is necessary to have a system for saving and main-

taining the created source code and other files. This system is called a version control

system (VCS).

The version control system used in this study was Git which is nowadays widely used

and which was familiar because it was used also in the author’s daily work. The devel-

opment of this study was done on both Linux and Windows environments and thus Git

was also selected because it works well on multiple platforms.

For hosting a Git repository, there are several cloud services available. For this study, a

service called “Bitbucket” was selected because it allows to create private repositories

and it is free for small teams (see Figure 15). Like Git as a version control system, Bit-

bucket has also been used in the author’s daily work.

28

Figure 15. The user interface if the Bitbucket service.

Figure 15 shows the example of a Bitbucket’s user interface together with the list of the

latest commits made to the frontend application of the present study.

4.3.2 Yeoman

To be able to develop software projects efficiently and to avoid repeating same tasks

again and again, it is valuable to have some kind of ready-made starting point when the

development is started. Usually this kind of starting point means a project template or

empty application which contains already some basic blocks of the application.

Depending on the platform where the development is done these kinds of project tem-

plates can be created by code editor (IDE) or with some dedicated tool. For instance,

when a new project is created with Visual Studio a user selects a project type and the

development environment creates an empty application which can already be compiled

but which does not yet contain any application logic. In this study, the second option, a

dedicated tool is used to reach to the same goal to save time and to avoid starting de-

velopment without any base.

29

The tool used in this study is called “Yeoman”. Yeoman is a language independent code

generation tool which can be used to create several kinds of projects. Yeoman itself does

not contain such a logic but instead it runs external plugins called generators which are

used to create a certain type of application project.

Yeoman’s documentation lists possible use cases where the tool can be used (Yeoman,

2017):

• Rapidly create a new project

• Create new sections of a project, like a new controller with unit tests

• Create modules or packages

• Bootstrapping new services

• Enforcing standards, best practices and style guides

• Promote new projects by letting users get started with a sample app

Yeoman contains generators to create for instance the following applications:

• AngularJS

• Ionic

• Chrome extension

• ASP.Net Core

• Django.

From the list above, the AngularJS generator was used in this study. The AngularJS

generator created an empty AngularJS application which contained a directory structure,

an example controller and view and a basic routing for these. After creating the empty

application, the development started by adding the required application logic.

30

5 Application Implementation

The application designed in the present study is divided into two different parts. The

administrator’s application is used by the management of the catering company. The

employee’s application respectively is used by the employees and it is meant to be quite

limited and simple to use.

Both of these applications are made with the AngularJS framework.

5.1 Administrator’s Application

The previous chapter introduced the different building blocks of the created system. This

chapter introduces the different parts of the manager’s application and how those parts

were developed.

5.1.1 Application Structure

The administrator’s application follows the structure shown in Figure 16.

31

Figure 16. The structure of the administrator's application

The application contains file types such as:

- images

- scripts

- styles

- views

The application structure follows the convention where views and controllers are saved

into their own folders. The other option would be to package views and controllers to the

folder corresponding to the functionality, like “orders” or “employees”.

Grouping views and controllers into their own folders makes it easier to maintain the

similar code and functionalities because files are located based on the technology used

on them. In addition to controllers, also other script files like services, are located under

the same script folder. When scripts folder contains JavaScript files, styles contains CSS

and views HTML files.

32

5.1.2 Login Screen

To be able to use the application, the user must log into the system first. This is done by

giving user name and password into the login screen shown in Figure 17.

Figure 17. Login screen of the administrator's application

The login functionality is implemented into its own AngularJS service “Authentication-

Service” which sends the authentication request to the backend system.

AngularJS services are independent objects which can be used to share information and

manage a common functionality inside an application (AngularJS developer guide,

2017). This same approach is used also in other parts of the application when the appli-

cation communicates to the backend system.

The current implementation uses a basic authentication which is considered to be secure

enough during the development phase. When transferring application to the production

phase, an SSL should be enabled and configured in a hosting environment.

5.1.3 Main Menu

The starting point of the application is the main menu which is shown after giving a cor-

rect user name and password. The main menu contains links for events and employees

as presented in Figure 18.

33

Figure 18. Main menu of the administrator's application

The main menu also shows the current user who is logged in and the link to log out.

Depending on the need, the user selects “Keikat” for opening orders or “Työntekijät” for

checking employees’ information.

5.1.4 Orders

Figure 19 presents the orders view which shows the orders of the customer events as a

list sorted by date. One row contains some basic information e.g. the date and the name

of the event so that it is easier to find an order. The order can be opened by clicking the

corresponding row. The order line contains also icons for editing and deleting existing

orders.

34

Figure 19. Orders view of the administrator's application

When there is a need to create a new order, it can be done at the orders view by pressing

the new order (“Uusi keikka”) button.

5.1.5 Adding New Order

A new order is created by pressing the new order button in orders view. After this an

empty order form is shown and the user can insert event details there as illustrated in

Figure 20. To be able to distinguish different orders, the user gives name for the order.

Usually this is a name of the customer event like “weddings”, “funerals” or “birthday cel-

ebration”.

The user also inserts contact person, date and time to the order. Contact person can be

for example a caretaker who has a key to the event place or he/she can be one of the

customer’s representative.

Event place is inserted to the order and this should be as accurate as possible, so that

employees can use their navigators to find the place in case it is not known beforehand.

35

The actual content of the order is inserted to the ”Sisältö” text area. This contains the

menu which is ordered by the customer and also other significant information such as

the number of guests, possible food allergies and time tables.

Figure 20. Creating new order.

When all the information is entered the order is saved by pressing the save button (”Tal-

leta”).

5.1.6 Editing Order

Figure 21 shows how the order is edited. Editing is done in the same way than inserting

a new order and when everything is done the edited order is saved by pressing the save

button (“Talleta”).

36

Figure 21. Editing an existing order.

After saving the order the application returns to the orders view which shows the orders

saved into the system including the recently updated order.

5.1.7 Assigning Employee to Event

The main goal of this study was to create the system for planning work shifts. A very

important part of the planning is managing customer orders and assigning employees to

them.

When the order is first created to the system it also needs employees. If an employee is

registered to be available in the same day as the customer event is arranged an em-

ployee’s icon is visible in the order editing view which was introduced in a previous chap-

ter.

37

To assign an available employee to the customer event, the employee icon is dragged

from the list of available employees (“Käytettävissä olevat työntekijät”) to the list of as-

signed employees (“Keikan työntekijät”) as shown in Figure 22. This also works to the

opposite direction if the employee must be removed, the corresponding icon can be

dragged back to the list of available employees.

Figure 22. Drag and drop employees to the order.

When the employee is assigned to the customer event the event is shown in highlighted

colour on the calendar view of the employee’s application. This way the employee is

aware of his/her upcoming work shifts.

Finally, when the needed employees are added into the event, the changes are saved

by pressing the save button.

38

5.1.8 Removing Order

If the order needs to be removed, it can be done from the orders view using the remove

order icon. The system does not show any kind of confirmation message box instead a

user must press a confirmation button shown next to the original remove icon as shown

in Figure 23.

Figure 23. Confirm deletion of the existing order.

When the order is removed, it will no longer be visible on the calendar view of the em-

ployee’s application. This way the calendar view is always up to date and employees

know exactly when they are assigned to work.

5.1.9 Employees

The list of employees is shown when selecting employees (“Työntekijät”) from the main

menu. Employees are shown as a list which is ordered on an alphabetical order accord-

ing to last name as shown in Figure 24.

39

Figure 24. Employees view of the administrator's application.

The employees’ view follows the same kind of logic as the previous orders view so that

the existing employee is opened by clicking the corresponding row and a new employee

is created by clicking the new employee button (“Uusi työntekijä”).

The employee can be edited by using the edit icon on the employees view or from the

opened employee.

5.1.10 Adding New Employee

A new employee is added at the employees view using the new employee button (”Uusi

työntekijä”). The needed information includes first and last name and also the user name

and password as shown in Figure 25. The username and password are used when log-

ging into the employee’s application.

40

Figure 25. Creating a new employee.

An important property of the employee is the role which tells what kind of work the em-

ployee is going to do. Currently the role can be cook, waiter, common employee or all of

these. The common employee is usually someone who can for example drive a van

which carries food and dishes. These employee roles are then shown together with the

employee’s name when adding employees to the customer event.

5.1.11 Editing Employee

An employee’s information can be edited in the same way as the order by using the edit

button in the employee list or in the opened employee view as presented in Figure 26.

41

Figure 26. Editing an existing employee.

Employee’s roles (“Roolit”) can be edited by enabling and disabling roles. When the em-

ployee’s password (“Salasana”) is changed, it is not saved as clear text, instead the

system calculates the MD5 hash for the password.

5.1.12 Removing Employee

The employee can be removed by clicking the delete icon on the employees list. The

deletion must also be confirmed by pressing a red delete button (“Poista”) as shown in

Figure 27.

Figure 27. Confirm deletion of the existing employee.

If the user does not confirm the deletion of the employee he/she can cancel the deletion

by pressing cancel button (“Peru”).

42

5.1.13 Logging Out

When the user has done all the needed work, he/she can log out from the system by

pressing log out button (“Uloskirjaus”) on the header line which is always visible.

5.2 Employee’s Application

The second part of this system is the employee’s application which is meant to be used

with a mobile device. The employee’s application is used by event employees when they

register days when they are available to work. Moreover, employees can check their

work shifts and the customer events where they are assigned.

The structure of the employee’s application is similar to the previously introduced admin-

istrator’s application. It was also implemented using AngularJS framework.

5.2.1 Login Screen

To be able to use the employee’s application the user must first authenticate. To do this,

the system shows the login screen as presented in Figure 28.

43

Figure 28. Login view of the employee's application.

The user enters his/her user name and password which were added by administrator in

the administrator’s application. If the user enters valid user name and password he/she

is given access to the application.

5.2.2 Calendar View

After successful login the calendar view, presented in Figure 29, is shown to the user.

The user can mark the days when he/she is available to work by touching the corre-

sponding day. The day is then marked as reserved (“Varaus”). The reservation can be

removed by touching it again. When all the dates are set in a desired way, they must be

44

sent to backend system by pressing send button (“Lähetä”). The application shows a

message whether the sending was successful or not.

Figure 29. Calendar view of the employee's application.

In case the user is already assigned to some customer event, the event day is shown in

the calendar. The event is marked with a red colour and with the event’s name. These

event days cannot be removed from the employee’s application, instead the employee

must inform the catering company if he/she has to cancel an already accepted participa-

tion.

45

5.2.3 Event Details

When the user wants to check some upcoming event details he/she can click the high-

lighted event. Figure 30 illustrates the opened screen which shows the event details

where the employee finds the place of the event and the common event information.

Figure 30. Details of the selected event.

When the user has checked the event details the event details screen is closed by press-

ing the close button on the right upper corner of the screen.

46

5.2.4 Logging Out

When the user stops using the application, he/she can log out by using logout link

(“Uloskirjaus”) which can be found from the header section shown in Figure 31.

Figure 31. Logout from the employee's application.

Depending on the screen size of the used device the logout link can be always visible or

it is located in a dropdown menu in the header section.

5.3 Backend system

As described in the previous chapter, the work shift planning system created in the study

consists of two applications: the administrator’s application and the mobile application

for the employees. Both of these utilise the same information which is provided by the

common backend system. This chapter describes the implementation of the backend

system.

5.3.1 REST API

Technically the backend system is a REST API service which is implemented as a

Node.JS application. The implemented REST API provides the resources for the order

and employee views shown in frontend applications.

The following tables (Tables 9-11) show the different resources, provided by the backend

system’s REST API.

Table 9 presents the authentication resource, which contains only one URL for receiving

authentication requests sent as HTTP POST requests.

47

Authentication

Resource Verb Result

/auth POST Receives an authentication request.

Table 9. Authentication API.

Table 10 lists the resources provided by the orders API. Orders API contains verbs for

getting, creating, updating and deleting orders.

Orders

Resource Verb Result

/orders GET Returns all the open orders.

/orders/id GET Returns an order with a given id.

/orders POST Creates a new order, using the information sent in

HTTP POST request body.

/orders/id PUT Updates the order with a given id. Uses the infor-

mation sent in HTTP PUT request body.

/orders/id DELETE Deletes an order with a given id.

Table 10. Orders API.

Employees’ information is served from the workers API which is presented in Table 11.

Employees

Resource Verb Result

/workers GET Returns all the employees.

/workers /id GET Returns the employee with the given id.

/workers /orders/id GET Returns employees assigned to the order with the

given id.

/workers /availa-

ble/date

GET Returns employees who are available on the given

date.

/workers POST Creates a new employee, using the information sent

in HTTP POST request body.

/workers /id PUT Updates the employee with the given id. Uses the in-

formation sent in HTTP PUT request body.

/workers /id DELETE Deletes the employee with the given id.

/workers _dates POST Adds dates where the employee is available to work.

Table 11. Workers API used for maintaining employee information.

48

Similar to the orders API, the workers API contains verbs for getting, creating, updating

and deleting employees. In addition, there is a need to make more complicated queries

to the employee data. For instance, when the system needs to show the list of the em-

ployees of the certain event, it is done using the query “/workers/orders/id”.

5.3.2 Database

The information handled in the system created in the present study is maintained in the

MongoDB database. To make database handling more fluent and reliable, the library

called Mongoose is used in the backend application. Since MongoDB does not contain

any schema handling, Mongoose provides the schema functionality for the application

developer.

MongoDB database does not contain tables, like more regular relational database would.

Instead of tables MongoDB uses collections to store the data. This backend system con-

tains two collections named “orders” and “workers”. Figure 32 shows the content of one

document saved into the “orders” collection:

Figure 32. Content of the order document.

The order information is saved into the fields matching to the real order document. The

relation between the order and the employee assigned to it is made by saving the em-

ployee’s id into the “worker_id” field in the “assigned_workers” subarray.

49

Employee information is saved into the “workers” collection as shown in Figure 33.

Figure 33. Content of the employee document.

In addition to regular information fields, “worker” document contains the field “_id” which

is created automatically by MongoDB. The “_id” field is used to map the employee to the

assigned employee on the order document shown in Figure 32.

50

6 Verification

The objective of the study was to improve the work shift planning process of the catering

company Blockfood. The work shift planning process contains a manual work to contact

the company’s freelance employees and assign them to the customer events. Previously

this was done manually by using phone and email and this required time and effort. To

avoid this manual work the work shift planning system was created.

The verification of the implemented system was done with the manager of the catering

company since the season time was not yet started. The purpose of this verification was

to go through the application and ensure that it fulfils the needs of the catering company

and its’ work shift planning process.

The verification was accomplished by using the following test cases. The test cases were

planned and created beforehand so that all the features of the application were covered.

The following test cases contain the needed steps, the data to be inserted and the result

of the test case.

The collection of the test cases starts by creating some employees to the system. Table

12 presents the steps required to create new employees. As a result of the test case,

there were two test employees created into the system. The role of the first employee is

waiter when the second one was created as cook.

Test case 1: Create employees

Test step Inserted data Result

Login to the adminis-

trator’s application

Käyttäjätunnus: admin

Salasana: admin1

Main view is shown.

Select employees

(“Työntekijät”) from

the main menu.

 List of employees is shown.

Select new employee

(“Uusi työntekijä”).

Roolit: tarjoilija

Etunimi: Matti

Sukunimi: Meikäläinen

Käyttäjätunnus: mattim

Salasana: matti123

51

Save the employee. New employee “Matti Meikäläinen” is

created.

Select new employee

(“Uusi työntekijä”).

Rooli: kokki

Etunimi: Maija

Sukunimi: Meikäläinen

Käyttäjätunnus: maijam

Salasana: maija456

 New employee “Maija Meikäläinen” is

created.

Table 12. Test case 1: Create employees

The next test case shown in Table 13 describes the steps needed to create a new order.

As a result of this test case, the new event “Hääjuhla” was created into the system.

Test case 2: Create an order

Test step Inserted data Result

Login to the adminis-

trator’s application

Käyttäjätunnus: admin

Salasana: admin1

Main view is shown.

Select orders

(“Keikat”) from the

main menu.

 List of events is shown.

Select new order

(“Uusi keikka”).

Tapahtuma: Hääjuhla

Yhteyshenkilö: Mäki-

nen/040112233

Paikka: Järvenperän

VPK, Tallimestarintie 59,

02940 ESPOO

Pvm.: 1.7.2017

Aika: 15:00

Sisältö: Patonki ja pesto-

levite. Pulled Pork. Jääte-

lövalikoima.

Aikuisia 40

Lapsi 5

Save the order. Event “Hääjuhla” is created.

Table 13. Test case 2: Create an order

52

The third test case presented in Table 14 shows how the previously created order doc-

ument is opened. This test case shows the user how the order document shows only the

event information without any assigned employees.

Test case 3: Open event “Hääjuhla 1.7.2017”

Test step Inserted data Result

Login to the adminis-

trator’s application

Käyttäjätunnus: admin

Salasana: admin1

Main view is shown.

Select orders

(“Keikat”) from the

main menu.

 List of events is shown.

Select order

“Hääjuhla 1.7.2017”.

 Event “Hääjuhla” is shown. There are

not available employees.

Return back to main

menu.

Table 14. Test case 3: Open event "Hääjuhla 1.7.2017"

To be able to add employees to the order created previously, there must be employees

who had reported to be available to work on the particular event date. The test case

shown in Table 15 presents the steps how the employee reports his/her available dates.

As a result of this test case the system now contains the event dates when the previously

created employee is available to work. Since the date of the “Hääjuhla” event is included

into these dates, the corresponding employee can be assigned to this event.

Test case 4: Set available days for employees “Matti Meikäläinen”

Test step Inserted data Result

Login to the mobile

view

Käyttäjätunnus: mattim

Salasana: matti123

Calendar view is shown.

Set days to calendar

by touching the cor-

responding day.

1.7.2017

2.7.2017

3.7.2017

4.7.2017

5.7.2017

Selected days are marked on a cor-

responding day.

Send the selected

days by pressing

send button.

53

Log off from the mo-

bile view.

Table 15. Test case 4: Set available days for the employee "Matti Meikäläinen"

The test case presented in Table 16 repeats the equal steps for the other employee as

made in the previous test case.

Test case 5: Set available days for the employee “Maija Meikäläinen”

Test step Inserted data Result

Login to the mobile

view

Käyttäjätunnus: maijam

Salasana: maija456

Calendar view is shown.

Set days to calendar

by touching the cor-

responding day.

1.7.2017

5.7.2017

Selected days are marked on a cor-

responding day.

Send the selected

days by pressing

send button.

Log off from the mo-

bile view.

Table 16. Test case 5: Set available days for the employee "Maija Meikäläinen"

The test case shown in Table 17 presents the steps needed to assign employees to the

event, which is the main purpose of the system created here. In the present test case

the previously created employees are assigned to the event “Hääjuhla”. As a result of

this test case the event “Hääjuhla” now contains the needed employees.

Test case 6: Assign employees to event “Hääjuhla 1.7.2017”

Test step Inserted data Result

Login to the adminis-

trator’s application

Käyttäjätunnus: admin

Salasana: admin1

Main view is shown.

Select orders

(“Keikat”) from the

main menu.

 List of events is shown.

Select order

“Hääjuhla 1.7.2017”.

 Event “Hääjuhla” is shown. Available

employees are: Matti Meikäläinen,

Maija Meikäläinen

54

Drag and drop “Matti

Meikäläinen” to the

event.

 Matti Meikäläinen is assigned as a

waiter to the event.

Drag and drop “Maija

Meikäläinen” to the

event.

 Maija Meikäläinen is assigned as a

waiter to the event.

Save the edited or-

der by pressing save

button.

 Event “Hääjuhla 1.7.2017” contains

now assigned employees.

Log off from the ad-

ministrator’s applica-

tion.

Table 17. Test case 6: Assign employees to event "Hääjuhla 1.7.2017".

The following test cases presented in Table 18 and Table 19 show how the employee

checks his/her upcoming dates when there is work assigned for them.

Test case 7: Check the event days of the employee “Matti Meikäläinen”

Test step Inserted data Result

Login to the mobile

view

Käyttäjätunnus: mattim

Salasana: matti123

Calendar view is shown. The event

“Hääjuhla 1.7.2017” is shown as a

red colour.

Check the event de-

tails of the event

“Hääjuhla 1.7.2017”

 Event details is shown for the se-

lected event.

Log off from the mo-

bile view.

Table 18. Test case 7: Check the event days of the employee "Matti Meikäläinen"

Test case 8: Check the event days of the employee “Maija Meikäläinen”

Test step Inserted data Result

Login to the mobile

view

Käyttäjätunnus: maijam

Salasana: maija456

Calendar view is shown. The event

“Hääjuhla 1.7.2017” is shown as a

red colour.

Check the event de-

tails of the event

“Hääjuhla 1.7.2017”

 Event details is shown for the se-

lected event.

55

Log off from the mo-

bile view.

Table 19. Test case 8: Check the event days of the employee "Maija Meikäläinen"

As a result of the verification the application was demonstrated to the catering company

and the predefined cases were successfully accomplished. During the verification, the

new development ideas and needs were found and they were recorded for the further

development phase. These new development needs are discussed in Chapter 7.1.

7 Discussion and Conclusions

The whole development process proved that this kind of application which enables the

catering company to maintain their customer events and planning work shifts for them

would facilitate the catering company’s daily work.

Before the development of the application the customer orders were written as Word

documents and they were saved locally on the owner’s laptop. Employees and their work

shifts were maintained manually using phone and email or other messages which re-

quired a significant amount of time and effort.

As the result of the study, the work shift planning application was created. The application

was deployed into a cloud service provider where it is accessible from the public internet

for the catering company and its employees.

The created application is already usable in a daily work of the catering company and

thus it fulfils the goal of the study. An advantage of this application is also its platform

independence because it is a web based application and can thus be used with a laptop

or mobile phone.

During the development and verification, the new ideas and needs were invented and

the further development ideas are introduced in the following chapter.

56

7.1 Further Development

Since this kind of a system would act as a central point of the company's work there is a

need for further development and maintaining since the new ideas and features are re-

quested when the system is used in a daily work.

The used technologies make it possible to expand the system with the new features with

a reasonable effort. The frontend application follows a model-view-controller design pat-

tern which separates the application logic and the user interface. This eases the devel-

opment of the new features to the frontend side. Since frontend and backend applications

are connected only by the REST interface they can be developed and tested individually.

During the development and verification some new features and ideas were introduced.

Most of them were related to the order document which is freely expandable, since Mon-

goDB database does not require schemas. The following list shows some of the new

fields and information which would be useful in the order document:

- Billing address of the customer since sometimes the event may be ordered and

paid by a different party

- Advance payment which contains the amount if a customer wants to pay before-

hand

- Timetable of the event which shows a detailed list of times and steps of the event.

This helps to coordinate the catering company’s work, like serving and preparing

the food on a right time.

Other features which could be implemented as an additional work were:

- To-do list on an administrator’s application. This could be used to make notes

about upcoming events or other daily tasks

- The event history which shows old events and their orders. Sometimes custom-

ers might ask about a menu of some old event if they liked something which they

want to order again

- Messaging from the application to employees. The system could send a message

to users when there is a new event which needs employees. This way employees

could log into their mobile application and report the day if they are available.

According to catering company, the email might not be the best choice for this

57

messaging since the large amount of their employees do not use email very fre-

quently. Instead of email, some kind on instant messaging would be a preferred

way. As a further development, there would be a need to investigate if there is

any interface available which can be used to send instant messages like

WhatsApp messages.

In addition to the further development ideas mentioned by the catering company, the

user interface and graphical design could be further developed. The frontend applica-

tions were created using Bootstrap styles and component so this will not require a mas-

sive effort or refactoring.

7.2 Used Technologies

The secondary objective in the study was to learn and utilise modern web development

technologies. Working with technologies such as AngularJS, Node.js, Git and MongoDB

was straightforward and efficient. There is also a multiple selection of editors and other

tools which support the technologies so the developer can choose the tools which suits

best to his/her preference. Atom editor is a good example of an editor which can be

expanded by installing modules to add the needed functionalities, such as pretty printing

JavaScript source code.

MongoDB on the other hand was a suitable selection for the database since the JSON

data format it uses, can be utilized in JavaScript code without any kind of transfor-

mations.

Node.js as the backend technology is not yet as common as for example PHP and

MySQL. This caused a small challenge when searching a reasonably and clearly priced

hosting environment since Node.js applications are not usually hosted on same servers

than PHP applications. Finally, the suitable Node.js service provider was found and the

application was made available for the catering company.

58

8 References

AngularJS developer guide, s., 2017. AngularJS developer guide, services. [Online]

Available at: https://docs.angularjs.org/guide/services

[Accessed 29 03 2017].

bower.io, 2017. bower.io. [Online]

Available at: https://bower.io/

[Accessed 24 03 2017].

getbootstrap.com, 2017. [Online]

Available at: http://getbootstrap.com/

[Accessed 15 01 2017].

Kearn, M., 2015. Introduction to REST and .net Web API. [Online]

Available at: https://blogs.msdn.microsoft.com/martinkearn/2015/01/05/introduction-to-

rest-and-net-web-api/

[Accessed 18 2 2017].

MongoDB, Inc, 2017. MongoDB and MySQL Compared. [Online]

Available at: https://www.mongodb.com/compare/mongodb-mysql

[Accessed 25 02 2017].

Mongoose, 2017. Mongoose - Getting started. [Online]

Available at: http://mongoosejs.com/docs/guide.html

[Accessed 26 02 2017].

nodejs.org, 2017. [Online]

Available at: https://nodejs.org/en/

[Accessed 15 01 2017].

Scott Chacon, B. S., 2016. Pro GIt. 2 ed. s.l.:Apress.

Yeoman, 2017. Getting started with Yeoman. [Online]

Available at: http://yeoman.io/learning/

[Accessed 26 02 2017].

