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The aim of this thesis was to design and implement a semivariance-based 
portfolio optimization model with application of shrinkage estimators. 
 
Harry Markowitz’ Modern Portfolio Theory served as a basic theoretical 
framework; it is further extended by using semivariance computational 
procedure proposed by Javier Estrada and adjusting the vector of expected 
returns with Bayes-Stein estimator, suggested by Philippe Jorion.  
 
Back testing was applied in order to check the performance of the suggested 
scheme. Investment strategy was tested on 30 stocks representing Dow Jones 
Industrial Average; minimum-risk mean-variance portfolio and S&P 500 index 
were used as performance benchmarks. Three sets of tests were conducted to 
check the model in various market conditions. 
 
Results indicate that the proposed framework is somewhat successful, 
outperforming both benchmarks in bullish and stagnant environments. However, 
further experiments under various conditions and parameters are necessary 
before utilizing the suggested approach in practice. Therefore, future work 
concerns mostly testing and evaluation routines.  
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1 INTRODUCTION AND OVERVIEW 

1.1 Introduction 

Portfolio optimization concerns the choice of various financial assets to be held 

in such a way as to make the portfolio more efficient than any other one according 

to some metrics. This problem resides on the intersection of various domains 

such as Investment Theory, Optimization and Statistics, making it rather complex 

and interesting at the same time. 

The aim of this thesis is to create an investment system by extending modern 

portfolio theory with enhanced risk and return measures. In order to test the 

suggested approach, back testing procedure is used. 

The approach taken in this paper seems to be a prospective addition to the area 

of portfolio optimization problems. The suggestion is that, with the right 

application of financial theories and statistical tools, it is possible to effectively 

boost mean-variance optimization framework based on modern portfolio theory. 

By employing semi-covariance computational procedures in conjunction with 

shrinkage, this paper aims to build a relatively simple yet powerful system that is 

able to outperform commonly accepted investing alternatives. It is worth noting 

that this work is engineer-oriented rather than rigorously scientific; however, 

scientific principles are still applied when prototyping and testing. 

1.2 Goals 

The main goal of this thesis is to design an optimization framework based on 

semivariance and Bayes-Stein shrinkage estimators, and then implement the 

proposed scheme in a programming language of interest. 

It is intended to be used as an investment tool to optimally allocate capital among 

the stock universe of interest. As such, the system was built to be easily 

extendable, computationally fast and robust. As this feat was the first and 

therefore educational attempt at constructing investment frameworks, the 

prototype is inherently simplistic as it employs a single-period investment scheme 

and assumes a number of constraints to simplify the design aspect. 
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1.3 Methodology 

A constructive researching method was adopted in order to reach the goals of 

the project. 

In order to build the necessary theoretical framework, numerous sources of 

information and search methods are used. Scientific databases and various 

publications were the main sources of information. Various e-journals, on-line 

books, hard-cover books, scientific journals and specialized forum are consulted. 

Some rather exotic sources of information such as GitHub code repositories and 

YouTube tutorial videos are conferred as well. 

With aim to test the proposed schemes historical data sources were used to 

collect the records needed. Yahoo Finance and Bloomberg L.P. are employed in 

this particular model, though this need not be the case. Historical data for US 

equities and US futures since 2002 is fetched via Quantopian Inc. 

 

1.4 Thesis Structure 

Chapter 2 gives a brief overview of financial and mathematical concepts needed 

to at least conceptually understand the rest of the thesis.  

 

Chapter 3 presents the high-level overview of the suggested model and explains 

some technical details.  

 

The results of backtesting are presented in Chapter 4. 

 

Finally, in Chapter 5 the whole project is summarized; the results are analyzed, 

constraints mentioned and directions for further research are given. 
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2 THEORETICAL BACKGROUND 

2.1 Financial and Investment Theory 

2.1.1 Financial Markets 

Financial market is a place which allows people to trade various securities and 

fungible assets: bonds, stocks, derivatives and money. Distinctive features of 

financial markets are regulation of trading process, low transaction costs and 

wide range of financial products. Financial markets provide channelling function 

between players of the market (those could be organizations or individuals with 

superfluity or deficit of available funds). Assets may be exchanged in two 

forms - direct finance, in which both parties meet directly for exchange process, 

and indirect finance, which involves some kind of intermediary. 

Stock market. Stocks are instruments that indicate and represent ownership of 

the company. Stocks are divided into common and preferred. Holders of preferred 

stocks have a higher number of earnings compare to common stockholders; in 

addition, preferred stocks grant priority during events such as bankruptcy and 

liquidation. Both types provide a voting opportunity at shareholders' meetings. 

After a company earns profit, owners may decide either to reinvest money back 

to the company or withdraw any amount. Companies can pay back to 

shareholders with buying back stocks or pay dividends. In case when a company 

pays dividend, it decreases the capital according to the amount paid out. 

The stock market is a public institution for trading companies’ stocks. The stock 

value cannot be called "stable" as it is in constant change owing to many reasons. 

Price swings generally reflect events that affect company or market, actual value 

of the company and expected future value. Stock market allows companies to 

attract investments as well as gives a chance for investors to find a suitable 

project. Major stock exchange markets are New York Stock Exchange (USA), 

NASDAQ (USA) and London Stock Exchange Group (UK). 
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Bond market. Bond is a debt investment, mostly used by governments, 

municipalities and companies. Conceptually, an entity borrows certain amount of 

money for a period of time (long-term) at a fixed interest rate. Bonds are 

considered an alternative to bank loan. Bond markets follow the same rules as 

other financial markets but is oriented on long-term deals with low return and risk. 

Forex. Market which provides trading of different currencies. Forex is an open 

market where usual participants are banks, financial organizations, investors and 

sole traders. This is one of the largest financial markets in the World with more 

than 1 trillion dollars in daily trading volume. 

Money Market. Money markets (MM) allow traders exchange financial 

instruments (such as cash, deposit, treasury bills, banker’s acceptances) with 

high liquidity and short-term maturity. Participants on money market are usually 

trading companies, banks, retailers and dealers focused on borrowing or lending. 

The money market plays a supporting role to financial industry as it offers short-

term trading operations and rapid loans. MM are closely connected to capital 

markets as interest rates influence long-term interest rates of the capital market.  

Investments and Trading. The goal of this part is to clarify the difference 

between two financial processes. Investments is a purchase of an asset or item 

with the idea of gaining income in long-term future. With the time moving forward, 

the assets’ value increases, thus creating perspective wealth. Stocks and bonds 

are most common financial products used for investment purposes. Production 

of goods may also be termed an investment. 

On the other hand, the goal of trading (sometimes called speculation) is to raise 

abnormal profits on market inefficiencies in short time spans. Speculation is hard 

to quantify and categorise, hence it presents high risk level. For this reason, 

market participants often choose investing as more attractive alternative. 
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2.1.2 Efficient Market Hypothesis 

Efficient Market Hypothesis (EMH) was introduced by Professor Eugene Fama in 

1960s. The hypothesis states that market is informatically effective as all relevant 

information reflected in price of asset. In other words, it is impossible to beat the 

market as the price already contains all information. The emergence of the theory 

was a statement that prices follow a "random walk", so they may not be predicted 

by means of technical analysis of past data. 

There are different views on relative efficiency of financial market, hence 

practitioners usually distinguish 3 forms of EMH. 

• Weak-form efficiency. Weak form of EMH states that current price of the 

assets already reflects all public information from the past (previous price 

and available data). In this case, future directions and excess return 

cannot be determined by technical analysis. 

• Semi-strong efficiency. Compared to weak-form efficient, price not only 

represents past information but uses currently available market and non-

market public information. There are a wide range of events that can 

affect the price, for example news, internet, financial reports, analytical 

forecast etc. Excess return cannot be achieved by fundamental analysis. 

• Strong efficiency. Price instantly reflects all market, non-market and 

"inside" information. Strong level of efficiency is considered a "perfect 

market" as it reflects a situation when private information cannot to be 

used for personal benefits. 
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Criticism. The major problem with the EMH is that it assumes that all market 

participants arrive at a rational expectation forecast. Seller would expect a fall of 

the price while buyer expects rising in price. Because of that, price of asset may 

not only contain the true value but also reflect psychological state of the market. 

One of the common economical phenomena is irrationality of human behaviour 

in situations when one makes economical decision. This irrationality leads to 

market anomalies e.g. economic bubble which is a good example how market 

can be driven by speculative operations. Bubble refers to fast asset price 

escalation with investors buying larger number of products, and then quick sharp 

price drop. Economic bubbles are rare events; most famous ones are dot-com 

bubble and 2007-2008 housing bubble. 

 

2.1.3 Modern Portfolio Theory 

Modern Portfolio Theory (MPT) was introduced by Harry Markowitz in 1952. The 

theory attempts to establish a portfolio of assets with the aim of maximizing 

expected return and minimizing the level of risk. MPT suggests that investors will 

likely prefer portfolio with lesser risk, if both portfolios offer same expected return, 

meaning they will take on increased risk only with higher return. Investors 

evaluate risk depending on their individual risk aversion characteristics. 

Return can be considered as capital appreciation of asset and dividends, for 

debts it may include interest payment or payment of principle. The expected 

return is calculated as a measured sum of the individual assets' returns. Expected 

return is usually based on past performance which means forecast cannot be 

certain. The formula for the expected return of a portfolio is: 

𝐸(𝑅𝑝) = ∑   
𝒊 𝑤𝑖𝐸(𝑅𝑖) . (1) 

The portfolio's risk is a complicated function of the variances of each asset and 

the correlations of each pair of assets. In order to measure the risk of portfolio 

assets’ variances and their pairwise covariance are needed. 
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Risk is strongly correlated to expected return, the higher risk, the higher return 

and vice versa. At the same time, risk can be reduced by holding diversified 

portfolio of assets. In addition, risk can be divided into systematic and specific. 

Systematic risk could be managed by using short and long-term position in one 

portfolio. Specific risk is tied to individual assets, those can be affected by 

external factors such as sudden news or new governmental regulations. The 

formula for the expected risk of a portfolio is: 

𝜎𝑝
2 = ∑ 𝑤𝑖

2𝜎𝑖
2 +𝑖 ∑ ∑ 𝑤𝑖

 𝜎𝑖
 

𝑗≠𝑖 𝑤𝑗
 𝜎𝑗

 𝜌𝑖𝑗𝑖  . (2) 

MPT is based on two main points: investors will always look for a higher number 

of return for any level of risk; level of risk can be reduced by assembling varied 

portfolio of unrelated assets. As large number of individuals holds risky assets in 

identical proportions to each other – risky assets and expected return ratios are 

adjusted to the ratio in which risky assets supplied to the market. 

 

Criticism. There is an ongoing debate whether MPT is a perfect financial 

instrument as it is not always applicable in practice. MPT based on the expected 

result which means forecast of future using analysis tools; in practice, some 

unexpected circumstances which never appear before in historical data are 

simply not taken into account. MPT effort to model the probability of losses 

looking back to past, but it does not clarify real reasons why losses may take 

place. Mathematical risk measurements are only helpful as long as they represent 

investors' true concerns. In reality, investors are only worried about the risk as 

the potential loss. 
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2.1.4 Semivariance 

Semivariance is a downside risk measure of dispersion of all observations falling 

below the target value in a data set. It quantifies the financial risk associated with 

losses – in other words, semivariance reflects the probability of the observed 

return being below the expected return and uncertainty about the degree of that 

difference. (Porter 1974; Markowitz 1991). 

One of the main shortcomings of the model introduced by Markowitz (1968) lies 

in the assumption of symmetry and normality of the underlying return 

distributions. However, as already mentioned, empirical evidence seriously 

questions such a hypothesis. 

Even minor change in return or risk estimates leads to a vastly different weight 

allocations in mean-variance framework (Chopra & Ziemba 1993; Ceria & Stubbs 

2016). The efficient frontier computed via Markowitz’ model usually 

overestimates the expected returns of portfolios (Broadie 1993). Ceria & Stubbs 

(2016) cite Michaud (1989) while referring to the ‘error-maximization effect’ and 

provide an intuitive example on how small estimation errors influence the final 

allocation in MPT framework. Simply speaking, if estimations are not precise, 

then the optimization procedure will fail to produce proper allocations. 

The other flaw of the MPT lies in the risk measure itself. The MV hypothesis 

simply assumes that a variance of returns is a correct risk indicator. According to 

the model, main investor’s concern is a volatility of a certain asset. That is, no 

matter the direction of the fluctuation, the higher the volatility – the greater the 

risk. Sharpe (1964) explicitly states that “under certain conditions the mean-

variance (MV) model can be shown to lead to unsatisfactory predictions of 

investor’s behaviour”. 

It has been recognized that investors usually do not perceive as risky those 

returns above the minimum they must earn in order to achieve their investment 

goals. To put it differently, the bad outcome happens when the observed return 

happens to be below some value and thus presents risk. 
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When the return is above this particular value, the individual does not view this 

fluctuation as risky. Estrada remarks that investors only dislike downside volatility; 

they do not shy away from stocks that experience large and frequent jumps above 

the mean; they avoid stocks that exhibit large and frequent fluctuations below the 

mean. Individuals are not afraid of obtaining more than their minimum acceptable 

return - they are afraid of obtaining less. (Estrada 2002, 2007.) 

The use of downside risk measurements like semivariance allows to solve some 

problems of the original framework (Estrada 2006). In fact, Markowitz himself 

makes a comment on superiority of semivariance as a risk quantity. He states 

that analysis based on semivariance tend to produce better portfolios than those 

based on variance (Markowitz 1968, p194). In the revised edition of his book 

(Markowitz 1991) Markowitz goes as far as to claim that “semivariance is the 

more plausible measure of risk”. 

Unfortunately, there were certain difficulties associated with using 

mean-semivariance in practice. Computational complexity of the calculations did 

not allow for widespread use of the technique back at time when Markowitz 

carried the research. On top of that, Markowitz’ hypothesis was pretty popular 

and well-studied piece of theory, a strong theoretical basis for future research 

(Tobin 1958; Hicks 1962; Sharpe 1963; 1964; Pogue 1970; Ledoit & Wolfe 2003; 

etc.). As for the semivariance, it only started to get attention later on in context of 

downside risk measures (Harlow 1991; Sortino & Van Der Meer 1991; Sortino & 

Price 1994). 

For the purposes of the following paper the mean-semivariance (MS) optimization 

approach proposed by Estrada (2007b) is adapted. In a series of articles (Estrada 

2002; 2006; 2007a) the author builds theoretical framework based on downside 

risk. He introduces alternative behavioural hypothesis based on downside risk 

approach as well as alternative pricing model - D-CAPM. He also makes a case 

for the alternative measure of risk for diversified investors (the downside beta) 

and, most importantly, suggests a heuristic optimization method in semivariance 

framework. 
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The mentioned method is of special interest for a number of reasons as it deals 

with all the inconveniences faced by previous researchers. First, it is very simple 

as it greatly simplifies the calculation problems. Second, it is fairly intuitive. Lastly, 

it provides a good level of approximation accuracy. 

Basics. Assume an asset 𝒊 with a series of returns 𝑹𝒊, where 𝑹𝒊𝒕 represents a 

return at time 𝒕. Remember that the variance of this asset’s returns is given by 

𝜎2 = 𝐸[(𝑅𝑖  − 𝜇𝑖)2] = (1/𝑇) ⋅ ∑  𝑻
𝒕 = 𝟏 (𝑅𝑖𝑡  −  𝜇𝑖)2 , (3) 

where 𝑻 denotes the number of observations and 𝝁𝒊 is the mean return. The 

covariance between two assets 𝒊 and 𝒋 is then 

𝜎𝑖𝑗 = 𝐸[(𝑅𝑖  −  𝜇𝑖)(𝑅𝑗  − 𝜇𝑗)] = (1/𝑇) ⋅ ∑  𝑇
𝑡 = 1 (𝑅𝑖  −  𝜇𝑖)(𝑅𝑗  − 𝜇𝑗) . (4) 

The semivariance of asset 𝒊’s return with respect to a benchmark 𝑩 (𝜮𝒊𝑩
𝟐)is 

defined as 

𝛴𝑖𝐵
2  =  𝐸{[𝑀𝑖𝑛(𝑅𝑖  −  𝐵, 0)]2}  =  (1/𝑇) ⋅ ∑  𝑇

𝑡 = 1 [𝑀𝑖𝑛(𝑅𝑖𝑡 − 𝐵, 0)]𝟐 , (5) 

where 𝑩 is any benchmark return chosen by investor. The square root of (5) is 

the semi-deviation of asset 𝒊 with respect to a benchmark 𝑩. 

The semi-covariance between assets 𝒊 and 𝒋 (𝜮𝒊𝒋)with respect to a benchmark 𝑩, 

as defined by Estrada (2007), is 

𝛴𝑖𝑗𝐵  =  𝐸{[𝑀𝑖𝑛(𝑅𝑖  −  𝐵, 0)] ⋅ [𝑀𝑖𝑛(𝑅𝑗  −  𝐵, 0)]} , (6) 

or, equivalently, can be expressed as 

𝛴𝑖𝑗𝐵 = (1/𝑇) ⋅ ∑  𝑇
𝑡 = 1 [𝑀𝑖𝑛(𝑅𝑖𝑡 − 𝐵, 0) ⋅ 𝑀𝑖𝑛(𝑅𝑗𝑡 − 𝐵, 0)] . (7) 

Such a definition allows to compute for any desired 𝑩 and generate a symmetric 

(𝜮𝒊𝒋𝑩 = 𝜮𝒋𝒊𝑩) and exogenous matrix.  

Symmetry simply means that after the transposition (switching the row and 

column indices of the matrix) the “new” transposed matrix is the same as the 

“old”, pre-transposed version. By definition of symmetry the matrix has equal 

number of dimensions as well (said to be quadratic). 
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An exogenous variable is “a factor in a causal model or causal system whose 

value is independent from the states of other variables in the system” (Bryman, 

Lewis-Back, Liao 2004). Thus, matrix is said to be exogenous if each variable 

stored inside is independent of the values of other variables. 

Finally, the expected return 𝑬𝒑 and variance 𝝈𝟐 of a portfolio are given by 

𝐸𝑝  =  ∑  𝑛
𝑖 = 1 𝑥𝑖𝐸𝑖  , (8) 

𝜎2  =  ∑  𝑛
𝑖 = 1 ∑  𝑛

𝑗 = 1 𝑥𝑖𝑥𝑗𝜎𝑖𝑗 , (9) 

where 𝒙𝒊 represents the proportion of the portfolio invested in asset 𝒊, 𝑬𝒊 is the 

expected return of asset 𝒊, and 𝒏 is the number of assets in the portfolio. 

Estrada argues that the semivariance of the portfolio with respect to a benchmark 

can be approximated with 

𝛴𝑝𝐵
2 ≈ ∑  𝑛

𝑖 = 1 ∑  𝑛
𝑗 = 1 𝑥𝑖𝑥𝑗𝛴𝑖𝑗𝐵  , (10) 

where 𝜮𝒊𝒋𝑩 is defined as in (7).  

Note that the expression above approximates true semi-covariance matrix rather 

than computes it explicitly. There is a different definition of semi-covariance 

matrix given by Markowitz (1968) which, indeed, provides us with an exact result. 

The main problem of the latter formula lies in endogeneity of the resulting matrix: 

its elements (pairwise assets’ semi-covariance) depend on whether a portfolio 

underperforms the benchmark which, in turn, depends on the weights of the 

assets in such a portfolio, forming a circular dependence of a kind. 

In this way, in order to find optimal portfolio using conventional methods one has 

to go through the following process: first, compute a set of all feasible portfolios, 

second, from their returns calculate exact semi-deviations and finally choose the 

one with the lowest value. However, to find a truly optimal solution this set has to 

contain every possible combination of assets, which is computationally 

intractable. 
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Instead, Estrada suggests estimating the matrix in a way that would not depend 

on portfolio performance. Take note that with Markowitz’ (1959) definition one 

has to know if a portfolio underperforms the benchmark. In turn, with (7) one has 

to know if an asset performs less well than the benchmark. 

Recall that the expression (10) returns a symmetric and exogenous semi-

covariance matrix, which then could replace the original covariance matrix in the 

solution of mean-variance problems. There are several possible descriptions of 

such tasks which depend on the particular investor: some may aim to minimize 

risk, others may aim to minimize risk subject to a target return or maximize return 

subject to a target level of risk. The solution proposed by Estrada is suited for all 

kinds of definitions. 

For the sake of example consider the problem of maximizing risk-adjusted return. 

Substituting for semi-covariance matrix estimated using (10) the optimization 

objective becomes: 

Minimize ∑  𝑛
𝑖 = 1 ∑  𝑛

𝑗 = 1 𝑥𝑖𝑥𝑗𝛴𝑖𝑗𝐵  − ∑  𝑛
𝑖 = 1 𝑥𝑖𝜇𝑖   (11) 

subject to ∑  𝑛
𝑖 = 1 𝑥𝑖 = 1 , 

 𝑥𝑖 ≥ 0 , (12) 

where 𝜮𝒊𝒋𝑩 is a semi-covariance between asset 𝒊 and 𝒋 with respect to a 

benchmark 𝑩 as in (7). Notice the constraints: all weights of assets in a portfolio 

must be non-negative (greater than or equal to zero) and sum to one. This way, 

short-selling of a security is restricted to protect from additional risk and 

uncontrollable losses. 

This form of expression allows us to minimize expected risk while simultaneously 

maximizing the expected return. For this expression to be minimal, the risk 

measurement should be as small as possible and return measurement should be 

as large as possible. 
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In a vector form, one is presented with a general quadratic expression of a kind 

Minimize 𝑥𝑇𝛴 𝑥 − 𝑞 ∗ 𝑅𝑇𝑥  (13) 

subject to 𝑥𝑇1 = 1 

 𝑥 ≥ 0 , (14) 

where once again 𝜮 is a semi-covariance matrix of returns estimated with (10), 

𝒙𝑻 and 𝑹𝑻 are transposed column vectors of weights and returns respectively, 

𝒙𝑻𝟏 is a dot product of column vector of weights and row vector of ones. 

An Assessment. Although an estimate, it is a reasonably close one. Estrada 

puts his model through various evaluation routines and comes with an assuring 

evidence. 

In order to test the accuracy, exact and approximate semi-deviations were 

calculated for over 1,100 portfolios, some containing stocks, some – markets, 

and some – other asset classes. While comparing true and approximate values 

of semi-deviations the author observes high levels of correlation between them. 

Further, in all cases when the approximation errs it does so on the side of caution 

by overestimating the true risk of a portfolio. (Estrada 2007, 13-18.) 

Despite the fact that outcomes are persuasive, one has to accept certain 

imperfections that come with the adopted approach and account for the possibility 

of moderate errors in computations. Taking a closer look at the results concerning 

emerging markets (EMs) and DJIA stocks (Estrada 2007, 14, Exhibit 4, Panel B 

& C) one might point out the magnitude of a difference between true and 

estimated portfolio semi-deviations: it ranges from 0.68 to 2.10 percent for EMs 

and 2.07 to 2.67 percent for DJIA stocks. These errors are quite large even for 

annual values of an asset. Moreover, a keen reader would probably question the 

representativeness of the sample as, firstly, 30 securities is considered to be the 

least amount to form a properly diversified portfolio (Statman 1987) and, 

secondly, DJIA itself might be quite biased in depicting the dynamics of stock 

market (Mueller, Padmaraj, St-John 1999; Cerin & Dobers 2001; Platt, Cai, Platt 

2014). 
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It might be tempting to compare the performance of a classic MV framework with 

SM. Doing so is senseless to a degree. By definition, the objective of MV 

optimizer is to maximize the expected return per unit of volatility, while MS will 

maximize the expected return per unit of volatility below the chosen benchmark. 

“In the end, it all comes down to what any given investor perceives as the more 

appropriate measure of risk” (Estrada 2007, 18). 

 
2.1.5 Shrinkage Estimators and Bayes-Stein 

In statistics, an estimator is a rule for calculating an estimate of a given quantity 

based on observed data. Think of it as a function employed to infer or guess the 

value of an unknown parameter in a statistical model. As a matter of fact, there 

is no restrictions on which functions of the data can be called “estimators”.  

A shrinkage estimator is the one that, either explicitly or implicitly, applies the 

effects of shrinkage - reduction in distance of some sort. The term “shrinkage” 

indicates that the transformed estimate is made closer to some predetermined 

value than the raw estimate. Simply put, this implies that a naive or raw 

approximation is enhanced by combining it with some other information. An 

interesting fact is that many standard estimators can be enhanced, in terms of 

mean squared error (MSE), by shrinking them towards some fixed constant value. 

The performance of this new modified estimator is sometimes better, but never 

worse than that of an original one. 

Application in finance. In context of portfolio theory and optimization vectors of 

future returns of a security are of special interest. There is no acknowledged way 

to predict these exactly, so one has to be content with various approximations. 

However, an investor usually wants forecasts to be as accurate as possible. 

Coupled together, these facts present a considerable challenge for anyone 

interested in portfolio-related problems as they introduce uncertainty and 

additional risk of losses when being wrong on a guess. This estimation risk stems 

from the fact that roughly calculated returns might simply not contain any useful 

information about the asset as they did not capture true moments of underlying 

distribution, thus rendering optimization pointless.  
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Ceria and Stubbs emphasize that most of the estimation risk in optimal portfolios 

come from errors in approximations of expected returns more so than those of 

risk (Frankfurter, Phillips & Seagle 1971; Dickinson 1979; Jobson, Korkie & Ratti 

1979; Ceria & Stubbs 2006, 1-2). Further, the authors revisit possible approaches 

to tackling such a task (Black & Litterman 1991; Michaud 1999; Horst, de Roon, 

Werker 2002; Cavadini, Sbuelz, Trojani 2001). 

One of the more common techniques mentioned is the utilization of James-Stein 

estimators (Jobson & Korkie 1980). These methods allow shrinking prospective 

returns towards the average expected return based on the volatility of an asset 

and the distance of its expected return from the average. Jorion (1986) developed 

a similar technique that brings future return estimates closer towards the 

minimum variance portfolio. 

In this paper, the route of shrinkage estimators was taken for a few simple 

reasons. First, these techniques are fairly intuitive - the reader will be able to get 

the idea of the process without knowing complex statistical theory and 

mathematical derivations behind those concepts. Secondly, the techniques 

themselves are quite simple in a computational sense relative to the existing 

alternatives (Efron & Morris 1975; Scherer 2002, Ceria & Stubbs 2006). Lastly, 

shrinkage estimators are directly applicable to our mean-semivariance framework 

as they adjust the estimates of expected return directly and do not interfere with 

either semi-covariance matrix computation procedure or actual optimization 

routine. 

While considerable efforts have been made to correct approximations of 

expected returns, there will always be errors in these estimates because of the 

inherent random nature of the asset return process. Even those employing 

Bayesian procedures such as James-Stein or Black-Litterman methods admit 

that estimation error remains a factor in the enhanced estimates of expected 

returns, even if it is significantly less than that obtained without the use of these 

methods (Ceria & Stubbs 2006). 
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James-Stein Paradox. The “James-Stein Paradox” paper by Efron & Morris 

(1997) serves as a respectable introductory example into the world of shrinkage 

estimators. Their work thoroughly discusses properties of James-Stein 

estimators and gives a solid understanding without rigorous math and many 

technical. 

Stein's paradox concerns the use of observed averages to estimate underlying 

moments of distribution. Consider a baseball example from the paper. A baseball 

player who gets 7 hits in 20 official times at bat is said to have a batting average 

of .350 (. 350 ==  7/20). By computing this statistic, an estimate of the player's 

true batting ability in terms of his observed average rate of success is 

constructed. Asked how well the player will do in his next 100 trials, one would 

probably predict 35 more hits. In traditional statistics, it can be proved that no 

other estimation rule is uniformly better than the observed average. 

The paradoxical element in Stein's result is that it sometimes contradicts the 

elementary law of statistical theory stated above. If one has three or more 

baseball players, and if one is interested in predicting future batting averages for 

each of them, then there is a procedure that is more efficient than simply 

generalizing from three separate simple averages. The statistician who employs 

Stein's method can expect to predict the future averages more accurately no 

matter what the true batting abilities of the players may be. 

The example considered in the article relates to the batting averages of baseball 

players. Stein used the shrinking adjustment procedure in order to get new 

estimates for player’s true batting averages for the following season.  For 16 out 

18 players the James-Stein adjusted average turned out to be more accurate 

than “simple” average; when later comparing with the results over the whole 

season, adjusted averages turned out to be closer to the “true”, or seasonal, 

averages than the counterpart. By applying total-squared error as a comparison 

metrics Stein showed that his method was 3.5 times more accurate than 

commonly used simple means estimation.  
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Next, the authors offer an interesting thought experiment. To the pool of 18 

variables (player’s batting averages) the 19th was added - the proportion of 

imported Cars in Chicago. While being somewhat unreasonable, the entire 

procedure happened to work just fine. The theorem applies as well to the new 19 

random variables as it did to the 18 original ones. The same confusing difference 

could be displayed another way: why should a success or lack of success of one 

player influence the estimation for another player? 

To understand why shrinkage behaves better than simple maximum likelihood 

estimation let us get back to taking averages as a statistical procedure. It might 

not be that obvious why the average is so often used in estimating the central 

tendency of an unknown parameter. The explanation lies in the distribution of 

random variables. 

In statistics, the most common distribution is the “normal” one, described by bell-

shaped curve. It was first studied by Gauss and it is specified by the use of 2 

parameters: the mean (central tendency or the most typical value) and the 

standard deviation (the variation or dispersion of observations). In practice, one 

often has to infer the mean and the standard deviation of the underlying 

distribution from the collection of observed values.  

Theoretically, mean can take any value, but some are more likely than others. 

Gauss showed that among all possible choices the average of the observed data 

maximizes the probability of obtaining the underlying mean. Further, Fischer 

proved that all the information about the mean that could be possibly found in 

data is contained in the average of the observed values. (Efron & Morris 1975). 

In 1950s Blyth, Lehmann and Hodges proved that the average is admissible when 

it is applied to one series of observations for the purpose of estimating unknown 

mean (Blyth 1951; Hodges & Lehmann 1951). In other words, for a set of 

observations of one random variable no better estimator exists. 

Stein’s theorem applies to estimating several unknown means. James-Stein’s 

paradox is simply their proof (Stein 1956; James & Stein 1961) that when the 

number of unknown means happens to be more than two, there exists a better 

estimator than simple averages of those series. James and Stein not only proved 

the existence of such estimators but also provided an example. 
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James-Stein estimator is defined as 

𝑧 =  𝑦 +  𝑐(𝑦 − 𝑦) , (15) 

where 𝒚 is the average of a single set of observations, 𝒚 is the average of 

averages and 𝒄 is the shrinking factor 

𝑐 = 1 −
(𝑘−3)𝜎2

𝛴(𝑦−𝑦)2 .  (16) 

The 𝒌 is the number of unknown means and 𝜎2 is the common variance. 

The procedure makes a guess that all the unobservable means are near the 

certain value 𝒚. If the data supports that guess, the estimates are shrunk further 

towards the 𝒚. If the assumption does not hold, the magnitude of shrinkage is 

less drastic. Calculated this manner, the precision of James-Stein estimator is 

more than that of the sample averages irrespective of what the true values of the 

means end up being. 

The accuracy is greatest when all the means come near the same value and 

gradually decreases as they depart from each other. The surprising finding is that 

this accuracy is always better than or equal to the one of simple averaging 

approach. Even in cases when the procedure does not significantly increase the 

accuracy, there is little penalty for using it; shrinkage cannot produce larger total 

mean squared error than the maximum-likelihood estimation. The rules 

discussed above are also robust to the assumption of the normal distribution. 

(Efron & Morris 1975.) 

It is important to understand the limitations of the James-Stein procedure. When 

the means have unconventional values, James-Stein estimator is not guaranteed 

to work. In fact, it can create serious errors and degrade the estimation of 

seriously atypical mean. Recall cars and baseball statistics example. Now one 

can see why the idea of adding them together is a bad decision: there exists 

considerable probability that the automobiles would be irregular. When estimating 

the mean of just one random variable from the observed series of values or when 

the observed random values have little to do with each other, one is better off 

using simple average. (Efron & Morris 1977.) 
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Jorion’s Bays-Stein estimator. Jorion (1986) presents an application of 

shrinkage to portfolio selection problems. It provides the necessary theoretical 

basis and illustrates the extent of possible gains over classical estimators. Jorion 

builds upon previous studies by Barry (1974), Brown (1976) and Klein & Bawa 

(1976). He puts the estimation procedure in the portfolio context, where the main 

objective is to minimize the impact of estimation risk on optimal portfolio choice. 

Further, Jorion proposes a shrinkage estimator which brings the means towards 

the common value; this leads to decreased estimation error with more than two 

securities in a portfolio. The effect of estimation error for all assets is summarized 

into one loss function, which is minimized as a whole.  

In a one-period model, investor usually wants to maximize the expected utility of 

his or her end-of-period wealth. In terms of rates of return, the task is to choose 

a set of weights 𝒒 in order to maximize the expected utility 𝑼(𝒛) of return on the 

portfolio 𝒛 = 𝒒𝑻𝒓, where 𝒓 is the vector of future observations, 

𝐸𝑈(𝑧) = ∫  
 

 
𝑈(𝑧)𝑝(𝑧 | 𝜃)𝑑𝑧 , (17) 

subject to a feasibility constraints. It contains a utility function 𝑼(𝒛), which can be 

different across investors, and the conditional distribution of rates of return 

𝒑(𝒛 | 𝜽), dependent on a set of parameters 𝜽, unknown for all practical purposes. 

In a certainty equivalent model, where simple averages are believed to be 

equivalent to the true parameters, one assumes that true underlying parameters 

𝜽 are equal to their estimated ones 𝜽(𝒚), based on some estimator defined as a 

function of the observations 𝒚. Thus, the optimization objective is to maximize the 

expected utility given that the estimated parameters are same as their true 

counterparts: 

Maximize 𝐸𝑦[𝑈(𝑧) | 𝜃  =  𝜃(𝑦)] . (18) 
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This approach clearly disregards the problem of estimation risk, or parameter 

uncertainty; by definition it does not care how accurate the estimates are. The 

Bayesian solution is to express this uncertainty in terms of the predictive density 

function (Zellner & Chetty 1965). Such a function describes the distribution of 

possible unobserved values conditional on the observed values. To simplify, it 

allows to account for estimation error explicitly and thus minimize it. 

If the parameters of the returns distribution are known, it is trivial to express a 

utility function and optimize it (Jorion 1986, 282). On the other hand, if the 

parameters are unknown, which is the case in finance, the choice would be made 

on a basis of some estimate. Therefore, the choice would be non-optimal. The 

value of utility function based on estimates, however precise, will necessarily be 

lower than the value of one based on true underlying moments. Such a loss in 

utility can be expressed as a function of the data.  

Jorion shows (1986, 285) that the predictive density function 𝒑(𝒓 | 𝒚, 𝜮, 𝝀) of the 

future returns vector, conditional on 𝜮 and 𝝀, is multivariate normal, with mean 

𝐸[𝑟] = (1 − 𝑤)𝑌 + 𝑤1𝑌0 , (19) 

where 

𝑤 =
𝜆

𝑇 + 𝜆
 ,  (20) 

𝑌0 =
1𝑇 𝛴−1

1𝑇 𝛴−1 1
𝑌 ,  (21) 

and covariance matrix 

𝑉[𝑟] = 𝛴(1 +
1

𝑇  +  𝜆
) +

𝜆

𝑇(𝑇 + 1 + 𝜆)

1𝑇 1

1𝑇𝛴−1 1
 , (22) 

where 𝑻 is the number of observations, or time periods, 𝒘 is the shrinkage 

coefficient, 𝒀 is the vector of observed averages, 𝜮−𝟏 is the inverse of the sample 

covariance matrix, 𝟏 is the column vector of ones. 

For more details and rigorous derivations, the reader is referred to Jorion’s 

original paper (1986, appendix). An interesting observation is that the grand mean 

𝒀𝟎 happens to be the average return for the minimum variance portfolio. 
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The richness of the Bayes approach is that 𝝀 is estimated directly from the data. 

The PDF 𝒑 (𝝀 | 𝝁, 𝜼, 𝜮) is a gamma distribution with mean 𝑵 + 𝟐 / 𝒅, where 𝒅 is 

defined as (𝝁 − 𝟏 𝜼)𝑻 𝜮−𝟏 (𝝁 − 𝟏 𝜼) and is replaced by its sample estimate (𝒀 −

𝟏 𝒀𝟎)𝑻 𝜮−𝟏 (𝒀 − 𝟏 𝒀𝟎). The shrinkage coefficient is then 

𝑤 =
𝑁 + 2

(𝑁 + 2) + (𝑌−1 𝑌0)𝑇 𝑇𝛴−1 (𝑌−1 𝑌0)
 ,  (23) 

where 𝑵 is the number of assets in a portfolio. 

In practice, 𝜮 is said to be unknown, and the author suggests replacing it, as in 

Zellner & Chetty (1965), with 

𝛴 =
𝑇 − 1

𝑇 − 𝑁 − 2
𝑆 ,  (24) 

where 𝑺 is the usual unbiased sample covariance matrix.  

An Assessment. The performance of various estimators is measured by the loss 

of utility due to estimation error, averaged over repeated samples. Since the risk 

function is intractable in this particular case, Jorion resorts to simulation analysis. 

He uses sample estimates from stock market returns for seven major countries, 

calculated over 60-month period. Observe that standard deviations are not too 

different across assets, although they are somehow large relative to sample 

means (Jorion 1986, 287, table 1). 

For each drawing 𝒌, the optimal portfolio was computed for each possible 

estimator tested, leading to different values of the derived expected utility. The 

experiment was repeated K = 1000 independent times and the risk function was 

defined as the average loss of expected utility. To account for effect of sample 

size, the previous operations were repeated for various time periods T ranging 

from 25 to 200. 
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Bayes-Stein estimator is shown to always have lower risk than both the certainty 

equivalence and the Bayes diffuse prior estimators. The improvement is 

noticeable and significant: the measured difference ranges from 8 to 0.2 percent 

per annum. Bayes-Stein is shown to always outperform the sample mean no 

matter the true parameter value. Jorion notes that the test results might still 

provide conservative estimates of gains of the former procedure. In studies 

conducted further, he evaluated the out-of-sample performance of various 

estimators, based on actual stock return data, and found that shrinkage 

significantly outperformed the classical sample means.  
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2.1.6 Portfolio Return Measurements 

Although expected levels of risk and return are already fairly informative 

indicators of a portfolio performance, potential investors would still like to know 

more. For this reason, number of other measurements were introduced to study 

the portfolio in detail and make various evaluations. Different performance 

measures allow to compare the performance of different portfolios as well as 

better understand the dynamics. The following chapter includes some widely 

used indicators and ratios as well as some less common types. 

Table 2.1.1: Performance Measures 

  

Measure Description 

Expected Return Mean of a return series 

Variance Variance of a return series 

Alpha Excess abnormal return earned over a market 

Beta Relative volatility of a portfolio to a market 

Sharpe ratio The ratio of excess returns over risk-free asset adjusted for 

portfolio risk 

Treynor measure The ratio of excess returns over risk-free asset per unit of 

market risk 

Jensen’s alpha Excess abnormal return over the theoretical expected 

return  

Sortino ratio The ratio of excess returns over specified target return 

adjusted for downside portfolio risk 

Max DD Maximum Drawdown is the difference between the highest 

and the lowest value the portfolio reached over a time 

period 
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Rates of return. In finance, a return is a gain or loss on an investment. It involves 

any change in value including interest, dividends and other such cash flows. The 

return could be measured either in absolute terms (e.g., euros) or as a 

percentage of the initial amount invested. A loss is described as a negative return.  

Rate of return is a profit on an investment over a period of time, expressed as a 

proportion of the original investment. The return over a single period is: 

𝑟 =
𝑉1−𝑉0

𝑉0
 ,  (25) 

where 𝑉0 is the initial investment and 𝑉1 is the value at the end of a time period. 

The time period is typically a year, in which case the rate of return is referred to 

as annual return. 

In order to compare returns over time periods of different lengths on an equal 

basis, it is useful to convert each return into an annual equivalent rate of return, 

or annualised return. This conversion process is called annualization: 

𝑅𝑎𝑛𝑛𝑢𝑎𝑙 = (𝑟𝑐𝑢𝑚𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 + 1)
365

𝑑𝑎𝑦𝑠 ℎ𝑒𝑙𝑑⁄
− 1 (26) 

For example, given the monthly return of 3% the annualized returns are then 

(0.03 + 1)12 − 1 = 43%. 

Alpha and Beta. Alpha is a measure of the return of an investment compared to 

the chosen market index. An alpha of 5% means the return on investment over a 

selected period of time was 5% better than the benchmark during that same 

period; a negative alpha signifies the investment behaved worse than the index. 

The ones using alpha in measuring the performance usually assume that a 

portfolio of interest is already diversified enough to eliminate unsystematic, 

company- or industry-specific risk. Because alpha demonstrates the relative 

performance of a portfolio, it is often considered to represent, as in our case, the 

value that a particular model adds to or subtracts from investor’s return. To 

rephrase, alpha is the return on an investment that is not a result of general 

movement in the greater financial market.  
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In efficient markets, the alpha value is exactly zero. Therefore, the alpha 

coefficient indicates how an investment has performed after accounting for the 

risk it involved. If the alpha is less than zero, the investment earned too little for 

the risk taken. If the alpha is more than zero, the investment earned return on top 

of the adequate reward for the assumed risk. An alpha of 0 would indicate that 

the portfolio is tracking the benchmark perfectly and that there is no added or lost 

value. 

Beta (β or beta coefficient) is a measure of the relative volatility, or systematic 

risk; it shows whether the investment is more or less volatile than the market as 

a whole. Usually a beta less than 1 is a sign that the investment is less volatile 

than the market, while a beta more than 1 states that the investment is more 

volatile than the market. This variability is measured in the form of standard 

deviation. It is used in the CAPM to calculate the return premium of an asset. 

Beta is a measure of the risk arising from exposure to general market movements 

as opposed to idiosyncratic, local factors. The portfolio of all the assets investable 

has a beta of exactly 1 and is called market portfolio. It is important to understand 

that a beta is computed through a regression and therefore is a measure of 

correlation. As such, beta close to zero can indicate either an investment with 

lower variability than the market, or a volatile investment whose price movements 

are not highly correlated with the market. An example of the first is a US treasury 

bill: the price does not normally experience fluctuations, hence a low beta. An 

example of the second is gold. The price of gold is substantially volatile, but not 

in the same direction or at the same time as the one of the market portfolio. 

A beta greater than one generally signifies that the asset’s price is rather volatile 

and tends to follow the movement of the market. An example is a stock in a 

technology company. Negative betas are possible for investments that somehow 

oppose market’s movement: these go up when the market goes down, and vice 

versa. There are few fundamental investments with stable and significant 

negative betas, but some derivatives can have large negative betas. 
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Beta is crucial because it measures the risk that cannot be reduced by means of 

diversification. It does not measure the risk of an investment held on a stand-

alone basis, but the amount of risk the investment adds to an already-diversified 

portfolio. In the CAPM, beta is the only kind of risk for which investors should 

receive an expected return higher than the risk-free rate of interest. 

The beta and alpha coefficients are essentially parameters in the CAPM. Recall 

the formula of an expected return of a security 𝑖: 

𝐸(𝑅𝑖) = 𝑅𝑓  +  𝛽𝑖𝑀(𝐸(𝑅𝑚)  −  𝑅𝑓) , (27) 

where 𝑅𝑓 is a risk-free rate, 𝛽𝑖𝑀 is a beta of a security and 𝐸(𝑅𝑀) is expected 

market return. 

The Security Characteristics Line pretty much graphs the performance of a 

particular asset or portfolio against that of the market portfolio at every point in 

time: 

𝑆𝐶𝐿: 𝑅𝑖,𝑡 − 𝑅𝑓 = 𝛼𝑖 + 𝛽𝑖 (𝑅𝑀,𝑡 − 𝑅𝑓) + 𝜖𝑖 , (28) 

where alpha is the intercept and beta is the slope of a fitted line. 

Alphas and betas can be computed by linear regression analysis of the excess 

return over the risk-free one of a portfolio versus the excess returns of a 

benchmark portfolio. 

Sharpe ratio. The Sharpe ratio (also Sharpe index, or reward-to-variability ratio) 

is a way to examine the relative performance of an investment by adjusting for its 

risk. It measures the excess average return (or risk premium) per unit of deviation 

in an asset or an investment model, often dubbed as risk. 

The Sharpe measurement shows how well the return of compensates the investor 

for the risk taken. The intuition is that a portfolio with “zero risk” investment, such 

as US treasury bills, has a Sharpe of exactly zero. When comparing two assets 

or portfolios versus a common reference, the one with a higher Sharpe ratio 

provides better return for the same amount of risk (or the same return for lower 

risk). To simplify, the greater the value of Sharpe ratio, the more attractive the 

investment. 
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Since its revision by the original author, William Sharpe, in 1994, the Sharpe ratio 

is defined as: 

𝑆𝑖 =
𝐸[𝑅𝑖 − 𝑅𝑓]

𝜎𝑖
 ,  (29) 

where 𝜎𝑖 is a deviation of asset’s returns. 

Treynor ratio. The Treynor ratio (sometimes called reward-to-volatility ratio) is a 

measurement of the returns earned in excess of that which could be earned on 

an investment that has no diversifiable risk (e.g., US treasury bills), per unit of 

market risk. 

The Treynor ratio ties excess return over the risk-free rate to the additional risk 

taken; however, unlike in Sharpe’s method, systematic risk is used instead of total 

risk. By the same logic though, the higher the Treynor ratio, the better the 

performance of the portfolio under analysis. 

Treynor ratio is defined as 

𝑇𝑖 =
𝐸[𝑅𝑖 − 𝑅𝑓]

𝛽𝑖
 .  (30) 

Jensen’s alpha. In finance, Jensen's alpha (or ex-post alpha) is used to 

determine the abnormal return of a security or portfolio over the theoretical 

expected return. It is much like the standard alpha but based on a theoretically 

predicted performance of the index instead of a market index. 

Usually such a performance, given investment’s beta and the average market 

return, is predicted using CAPM. In this context, calculating alpha requires the 

following inputs: 

• the realized return 𝑹𝒊 

• the market return 𝑹𝑴 

• the risk-free rate of return 𝑹𝑭 

• the beta of the portfolio 𝜷𝒊𝑴 relative to the market return 

 

https://en.wikipedia.org/wiki/United_States_Treasury_security#Treasury_bill
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To better understand the Jensen’s alpha, consider an expression 

𝑗 = (𝑅𝑖 − 𝑅𝑓) − 𝛽𝑖𝑀(𝑅𝑀 − 𝑅𝑓) . (31) 

Sortino ratio. The Sortino ratio measures the risk-adjusted return of an asset, 

portfolio, or investment model. It is reminiscent of the Sharpe ratio but penalizes 

only those returns falling below a specified target or required rate of return, while 

the former penalizes both upside and downside volatility evenly. Though either 

ratio measures an investment's risk-adjusted return, they do so in considerably 

different ways that very often lead to varying conclusions as to the true nature of 

the investment's return-generating efficiency. 

The ratio is calculated as follows: 

𝑆 =
𝑅−𝑇

𝐷𝑅
,  (32) 

where 𝑹 is the average realized return, 𝑻 is the target value and 𝑫𝑹 is the 

downside risk. 

  

https://en.wikipedia.org/wiki/Trading_strategy
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2.2 Technology Methods 

2.2.1 Mathematical Notation and Concepts 

The following chapter contains a brief review of mathematical concepts and 

notations used throughout the paper. The assumption is that the reader is at least 

familiar with some of them and provide the review for reference purposes.  

The paper heavily relies on linear algebra and touches upon topics such as 

multivariable calculus, optimization and probability theory. For further discussion 

of linear algebra and exhaustive details the reader is referred to Linear Algebra 

(Cherney, Denton, Thomas & Waldron 2013) and other math-related resources.  

Vectors. Essentially, vectors are things one can add and multiply. They serve as 

a handy tool to summarize and express the data in a readable and 

understandable format. A vector 𝒗 ∈ 𝑹𝒏 represents ordered series of individual 

variables 𝒗𝒊 ∈ 𝑹. The index 𝒊 ∈ {𝟏,⋅⋅⋅ , 𝒏} indicates the position of a particular in a 

vector. 

The orientation of a vector matters when performing various operations. By 

default, the variables are considered to be listed vertically as in (7.1) and are 

called column vectors. Equation (7.2) illustrates the transpose operation T, 

where 𝑣 is flattened; the flattened vector is sometimes called row vector. A neat 

way to represent a column vector is thus 𝒗 = [𝑣1  ⋅⋅⋅ 𝑣𝑛 ]𝑇. 

 𝒗 = [

𝑣1

⋮

𝑣𝑛

] (2.2.1) 

 𝒗𝑻 = [𝑣1 ⋯ 𝑣𝑛] (2.2.2) 

Vectors are well characterized by their dimension, which, simply put, specifies 

the number of variables in a vector. For example, (2.2.1) and (2.2.2) both have 𝑛 

variables, thus, they are called 𝒏-dimensional vectors.  
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To add a vector to another one, they both must satisfy a certain condition: their 

dimensions should be the same. Assuming equal number of dimensions, vector 

addition is just adding values of corresponding dimensions. 

A vector can be multiplied, or rescaled, by a real number 𝒓. To scale a vector, 

one has to scale each of his dimensions by that same number. 

In mathematics, the dot product is an operation that, given two sequences of 

numbers of equal length, returns a single number. Algebraically, the dot product 

of two vectors (sometimes called inner product) is defined as follows: 

𝑎 ⋅ 𝑏 = ∑  𝑛
𝑖=1 𝑎𝑖𝑏𝑖 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋅⋅⋅  +𝑎𝑛𝑏𝑛. (33) 

The intuitions behind scalar multiplication (2.2.3), vector addition (2.2.4) and inner 

product (2.2.5) are given below. 

 5 ∗ 𝒗 = 5 [

1

2

3

] = [

5 ∗ 1

5 ∗ 2

5 ∗ 3

] (2.2.3) 

 𝒂 ± 𝒃 = [

1

2

3

] ± [

4

5

6

] = [

1 ± 4

2 ± 5

3 ± 6

] (2.2.4) 

 𝒄 ∙ 𝒅 = 𝒄𝑻𝒅 = [1 2] [
4

5
] = 1 ∗ 4 + 2 ∗ 5 (2.2.5) 

Matrices and vectors have a lot in common. In fact, matrices are extensions of 

vectors: a matrix is a rectangular array of numbers, symbols, or expressions, 

arranged in rows and columns, for which operations such as addition and 

multiplication are defined.  
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As an example, consider an 𝒎 × 𝒏 matrix (2.2.6): the individual item 𝒂𝒊𝒋is called 

an element or an entry, where 𝑚𝑎𝑥 𝒊 = 𝒎, 𝑚𝑎𝑥 𝒋 = 𝒏. The size of this matrix is 

defined by the number of rows and columns and equals 𝒎 𝑥 𝒏; m and n are called 

dimensions of the matrix.  

 𝑴 = [

𝑚11 ⋯ 𝑚1𝑛

⋮ ⋱ ⋮

𝑚𝑛1 ⋯ 𝑚𝑛𝑛

] (2.2.6) 

To transpose a matrix is to turn its rows into columns and vice versa: 

 𝑴𝑻 = [
1 2 3

4 5 6
]

𝑻

= [

1 4

2 5

3 6

] (2.2.7) 

A matrix is composed of multiple vectors representing either rows or columns. 

Somewhat Pythonic notation is utilized to reference row or column vectors. For 

example, first row in 𝑴 would be expressed as 𝑴[𝟎][: ]. Conversely, the first 

column would be mentioned as 𝑴[: ][𝟎]. First [ ] represents the row axis, the 

second – the columns axis. The index inside the brackets marks the position of a 

cell in a container. To obtain the range of indices a colon is used - a slice. 

Provided that they have the same size (each of them has the same number of 

rows and the same number of columns), two matrices can be added or subtracted 

element by element as in (2.2.8) 

 𝑨 ± 𝑩 = [
1 2

3 4
] ± [

5 6

7 8
] = [

1 ± 5 2 ± 6

3 ± 7 4 ± 8
] . (2.2.8) 

Any matrix can be multiplied element-wise by a scalar, much like a vector. The 

rule for matrix multiplication of two matrices, or a matrix and a vector, however, 

is that two matrices can be multiplied only when the number of columns in the 

first equals the number of rows in the second (i.e., the inner dimensions are the 

same, n for 𝑨𝒎,𝒏×𝑩𝒏,𝒑).  
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Using the dot product rule for vectors, each row vector of matrix 𝑨 is multiplied by 

every column vector of matrix 𝑩 

 𝑨𝑩 = [
1 2

3 4
] [

5 6

7 8
] = [

1 ∗ 5 + 2 ∗ 7 1 ∗ 6 + 2 ∗ 8

3 ∗ 5 + 4 ∗ 7 3 ∗ 6 + 4 ∗ 8
] .(2.2.9) 

A special case of matrix multiplication is multiplication of a matrix 𝑨 ∈ 𝑹𝒎×𝒏 by a 

vector 𝒃 ∈ 𝑹𝒏 (7.8). The output is the matrix where an entry is a dot product of 

vector 𝒃 and each row vector 𝑨: 

 𝑪𝒂 = [

1 2 3

4 5 6

7 8 9

] [

1

2

3

] = [

1 ∗ 1 + 2 ∗ 2 + 3 ∗ 3

4 ∗ 1 + 5 ∗ 2 + 6 ∗ 3

7 ∗ 1 + 8 ∗ 2 + 9 ∗ 3

] (2.2.10) 

Very often while working with vectors and matrices one wants to perform an 

operation on each element. For instance, one might want to multiply 

corresponding elements of two matrices. For this purpose, the element-wise 

operations are usually defined in various numerical processing environments. 

Observe the following expressions to see the examples. 

 𝑨 .∗ 𝑩 = [
1 2

3 4
] .∗ [

5 6

7 8
] = [

1 ∗ 5 6 ∗ 2

3 ∗ 7 4 ∗ 8
](2.2.11) 

 𝑚𝑖𝑛(𝑨, 0) = [
𝑚𝑖𝑛 (𝟏, 0) 𝑚𝑖𝑛 (𝟐, 0)

𝑚𝑖𝑛 (𝟑, 0) 𝑚𝑖𝑛 (𝟒, 0)
] (2.2.12) 

2.2.2 Linear and Quadratic Equations 

As mentioned earlier, a major application of matrices is to represent linear 

transformations, that is, generalizations of linear functions such as 𝑓(𝑥) = 25𝑥 +

3. Consider an equation 

 25𝒙 +  15𝒚 = 65 . (2.2.13) 
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Reordering and representing coefficients as elements of a matrix, one can rewrite 

an equation as (2.2.14) 

 [25 15] ∙ [
𝒙

𝒚
] = 65 . (2.2.14) 

On top of that, matrix notation allows to easily represent systems of linear 

equations. As an example, systems of linear equations 

 
25𝒙 + 15𝒚 = 65
15𝒙 − 30𝒚 = 0

 (2.2.15) 

could easily be expressed as 

 [
25 15

15 30
] [

𝒙

𝒚
] = [

65

0
] . (2.2.16) 

The nature of such a representation allows to easily extend to higher dimensions. 

For example, the system of a kind 

 

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑦 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑦 = 𝑑2

𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑦 = 𝑑3

 (2.2.17) 

could be efficiently rewritten in a matrix form as 

 [

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

] [

𝒙

𝒚

𝒛

] = [

𝑑1

𝑑2

𝑑3

] . (2.2.18) 

Matrix format enables usage of computing power and various specialized 

methods to solve such systems of equations quickly. Moreover, the former 

scheme can be modified to express quadratic equations as well. 

As an example, consider an expression 1𝑥2 + 2 ∙ 2𝑥𝑦 + 3𝑦2. The quadratic form 

of such an expression is 

 1𝒙2 + 2 ∙ 2𝒙𝒚 + 3𝒚2 = [𝒙 𝒚] [
1 2

2 3
] [

𝒙

𝒚
] . (2.2.19) 
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2.2.3 Optimization Routines 

Here a brief introduction to conic optimization is provided and software solutions 

used in practice are discussed. 

Conic optimization is a subfield of convex optimization that studies a class of 

structured convex optimization problems called conic. Without delving into too 

much details, conic optimization is a field of mathematics applicable to solving 

portfolio optimization problems: the functions of interest usually satisfy the criteria 

of convexity. 

To be precise, one is usually interested in convex optimization problem of the 

form 

Minimize (1/2) 𝑥𝑇𝑃𝑥 +  𝑞𝑇𝑥 (34) 

subject to 𝐺𝑥 ⪯  ℎ , (i) 

 𝐴𝑥 =  𝑏 , (ii) 

where the first part represents the equation to minimize, and the second part 

represents (i) inequality constraints and (ii) equality constraints. There is nothing 

special about vector 𝒒 or matrices 𝑷, 𝑮 or 𝑨: they contain coefficients of the 

variables of interest. 

In practice, the expression studied can be solved using various free (CVXOPT, 

SciPy, YALMIP) or commercial (Microsoft Excel, MATLAB, R) optimization 

packages. The CVXOPT package used for the purposes of this work will be 

covered later in Programming Concepts section. 

However, in-depth description of specific methods and the math behind them 

does not fall under the scope of the paper. For detailed overview of optimization 

routines and cone programming specifically the reader is referred to various 

papers on mathematical optimization. 
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2.2.4 Quantopian and Backtesting 

Quantopian is a crowd-sourced quantitative investment firm. It provides data, a 

research environment and a development platform to algorithm authors. 

Quantopian allows to create, share and test trading algorithms using pre-

programmed tools and market data supplied (Quantopian 2017). 

The platform provides minute-level price and fundamental data of all US stocks 

from January 2002 for backtesting. The bar data consists of the high, low, open, 

close, and volume for each minute that a stock is traded. The price data includes 

all companies that were traded, including companies that have subsequently 

gone out of business.  

As noted earlier, Quantopian comes in handy when one aims to backtest a certain 

trading algorithm. Although trading has little to do with investing, the tools 

developed for traders are convenient for evaluation and testing of investment 

models. 

The advantages of using Quantopian are pretty straightforward. Most importantly, 

Quantopian supplies specialized trading environment built upon Zipline trading 

library (Quantopian Inc. 2017b) free-of-charge. Thus, there is no need to 

purchase or code one. The environment is flexible, highly customizable and 

comes with a variety of helpful functions. 

Moreover, accessing data is easy – Quantopian contains stock records which are 

adjusted for splits, mergers and dividends as of the simulation date. There is no 

need to manually clean, configure, setup or store data on a local machine. 

Third, the performance measurements and detailed summary of an algorithm 

efficiency allow for thorough research and analysis of an investment strategy. An 

important and helpful detail is that the algorithms can easily be shared and 

replicated should anyone be interested in implementations. 
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There is a significant academic population using Quantopian today and there are 

certain reasons for that: 

• Quantopian is backed by Zipline, and open-source project which has been 

reviewed by dozens of authors (Quantopian Inc. 2017b) 

• Quantopian is handy for presenting replicable research. Once an account 

is set, the user can share his/her code, and anyone can copy that code 

and verify the results  

• Quantopian has been already cited in a handful of academic papers  

• Quantopian is implemented in Python, which enables the user to leverage 

the mentioned advantages of the language 

• Zipline permits to use an event-based simulation that significantly reduces 

the risk of look-ahead bias 

• Quantopian is used in several universities as a teaching tool (Quantopian 

Inc. 2017a). 

(Dunn 2015.) 

 

2.2.5 Programming Languages and Concepts 

Python. Python is a high-level general-purpose programming language that can 

be applied to many different classes of problems. It is an interpreted, interactive, 

object-oriented programming language which incorporates modules, exceptions, 

dynamic typing, very high level dynamic data types, and classes. 

Python combines a fair amount of computational power with very clear syntax. It 

has interfaces to many system calls and libraries, as well as to various window 

systems, and is extensible in C or C++. It is also usable as an extension language 

for applications that need a programmable interface. (Python 2017b.) 
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Advantages. Two very important facts make Python the optimal choice for our 

work: simplicity and the availability of numerical processing libraries. As stated 

earlier, the syntax is very brief and intuitive which makes for quick prototyping. 

Even complicated systems can be assembled and brought on-line relatively fast. 

Moreover, there are various scientific and financial packages already available 

(Zipline, NumPy, pandas) – hence no need to code them manually. (Python 

2017a.) 

Disadvantages. There is an ongoing debate on whether Python is fast. On the 

one hand, it is interpreted language which makes it somewhat slow compared to 

compiled counterparts like C++ or C#. On the other hand, a lot of standard library 

methods in Python are highly optimized; most of the data containers are 

implemented in C, which makes operations very fast and efficient. 

The other limitation is lack of true multithreading - Python is not very suitable 

language for such a task. Even though there are standard libraries that imitate 

running multiple threads, the inherent nature of Python (global interpreter lock) 

does not allow for running multiple processes at the same time. 

Pandas package. pandas is an open-source Python package which provides 

fast, flexible, and expressive data structures designed to make working with 

various data both easy and intuitive. It supplies various specialized methods and 

data structures fundamental for doing practical data analysis in Python. (Pandas 

2017a.) 

pandas is well suited for many different kinds of data: 

• Tabular data with heterogeneously-typed columns, as in an SQL table or 

Excel spreadsheet 

• Ordered and unordered (not necessarily fixed-frequency) time series data 

• Arbitrary matrix data (homogeneously typed or heterogeneous) with row 

and column labels 

• Any other form of observational / statistical data sets 
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The two primary data structures of pandas, Series (1-dimensional) and 

DataFrame (2-dimensional), handle the vast majority of typical use cases in 

finance, statistics, social science, and many areas of engineering. pandas 

module is built on top of NumPy and is intended to integrate well within a scientific 

computing environment with many other 3rd party libraries. (Pandas 2017a.) 

Among the many, there are some things useful to us which pandas does well: 

• Easy handling of missing data (represented as NaN) in floating point as 

well as non-floating-point data 

• Automatic and explicit data alignment: objects can be explicitly aligned to 

a set of labels, or the user can simply ignore the labels and let Series, 

DataFrame, etc. automatically align the data in computations 

• Make it easy to convert ragged, differently-indexed data in other Python 

and NumPy data structures into DataFrame objects 

• Intelligent label-based slicing, fancy indexing, and subsetting of large data 

sets 

• Robust IO tools for loading data from flat files (CSV and delimited), Excel 

files and 3rd party databases 

• Time series-specific functionality: date range generation and frequency 

conversion, moving window statistics, moving window linear regressions, 

date shifting and lagging, etc. 

Many of these principles are there to address the shortcomings frequently 

experienced while using other languages / scientific research environments. As 

is the case, the introduced procedure shall consist of multiple stages: getting the 

data, munging and cleaning it, transforming some attributes and processing the 

results, then organizing the output of the task into a form suitable for plotting or 

tabular display. pandas is a convenient tool for all of these tasks. (Pandas 2017b.) 

 

http://www.numpy.org/
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Some other favourable features: 

• pandas is fast. Many of the low-level algorithmic bits have been 

extensively tweaked in Cython code 

• pandas is a dependency of statsmodels, making it an important part of the 

statistical computing ecosystem in Python 

• pandas has been used extensively in production in financial applications 

 

Numpy package. NumPy is the fundamental package for scientific computing 

with Python. It contains among other things: 

• a powerful N-dimensional array object 

• sophisticated (broadcasting) functions 

• tools for integrating C/C++ and Fortran code 

• useful linear algebra, Fourier transform, and random number capabilities 

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data. 

Cvxopt package. CVXOPT is a free software package for convex optimization 

based on the Python programming language. Its main purpose is to make the 

development of software for convex optimization applications straightforward and 

easy. The other good thing about the package is relatively simple syntax and the 

abundance of practical examples with code available. (CVXOPT 2017.) 
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3 THE MODEL 

3.1 Overview 

In this chapter, the actual process of getting the information, transforming it and 

finding optimal portfolio weights is illustrated and inspected in detail. First, a 

high-level overview of the developed approach is depicted. As the reader 

acquires general understanding, nitty-gritty details are presented and a closer 

look is taken at the little intricacies of the framework. 

First step in the procedure is getting and processing financial data. In theory, the 

data could come in various different forms (Excel tables, csv. files, SQL query 

response, etc.). The exact format does not really matter so long as the records 

contain ‘close’ or ‘adj. close’ fields with respective dates, which can be extracted 

and processed accordingly. The implemented framework of interest assumes that 

the data comes in pandas’ DataFrame format (with rows as time observations 

and columns as securities, see Picture 1) but this can be easily tailored to the 

concrete implementation case. 

If the data comes from different sources, it must be joined on dates to avoid the 

overlaps and incorrect alignment. Resulting structure must be cleared of non-

existing values, which might be the side effect of joining on dates when one 

security either was not traded or was withdrawn from the trade all together. 

 

 

Picture 1: pandas DataFrame 
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What to do with missing values is usually up to a user. There are numerous 

techniques which range from dropping the observations to forward filling the 

gaps. The reader, should he or she implement the described procedure, is 

suggested to exercise caution and adhere to a particular situation and 

requirements of his / her own case.  

After the records are aligned and missing values are dealt with, the data is 

checked and processed according to the format needed for following estimation 

and optimization procedures. The rolling returns are necessary for further 

procedures; they can be calculated in different ways. As the Quantopian upper 

period limit is daily frequency, the rolling daily returns are calculated, checked for 

missing values and then fed into the optimization module. The prices could also 

be recorded on a monthly or yearly basis. If that is the case, the format of the 

prices should either be propagated through the framework or changed at the very 

beginning to meet the requirements of function discussed further. 

Our approach is to compute return distributions and semi-covariance matrices 

based on daily data and then adjust the result to reflect yearly values. After the 

values are summarized in a DataFrame with dates as index, securities as 

columns and ‘adj. close’ or ‘close’ prices as values inside the structure. 

The next step is invocation of the optimization subroutine. It consists of three 

small modules: the function computing of the semi-covariance matrix, the function 

adjusting the expected returns vector and the routine minimizing second-order 

cone expression. Keep in mind that the matrix evaluation and shrinking 

procedures do not conflict with each other and therefore their order is of no 

significance. 

The semi-covariance computation method requires a series of asset returns and 

a benchmark. The benchmark can be chosen according to the particular 

investor’s needs and beliefs. However, Estrada (2007) proposes to use minimum-

variance portfolio expected return value as a benchmark. The mean return of 

S&P 500 stock universe is utilized. 
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The Bayes-Stein procedure needs mentioned data structure as well. Once 

acquired, the simple averages, inverse of covariance matrix and common value 

are computed and vector of maximum-likelihood expected returns is calibrated. 

The resulting semi-covariance matrix and vector of adjusted expected returns is 

then supplied to the optimization function imported from the CVXOPT 

optimization package. The resulting vector of weights is optimal and then passed 

elsewhere. At this point the specifics of the ordering procedure determine the use 

of the mentioned information. 

In our case, the Quantopian built-in function orders the securities and retains their 

values in a shared data structure to retain its state throughout the lifetime of the 

simulation. After the simulation is done, the Quantopian automatically computes 

the number of common performance measures and outputs a statistic on the 

trading algorithm tested. 

 

3.2 Implementation Details 

The following section contains informal high-level description of the operating 

principles of the presented model. See the Appendix 1 (1-6) for the actual Python 

implementation. 

The specifications are expressed using pseudocode.  Check the Appendix 2(1) 

to observe pseudocode conventions used.  

3.2.1 Semi-Covariance Matrix Estimation 

The former procedure heavily relies on language capabilities and libraries for 

efficient vector and matrix computations. The curious reader willing to test the 

model and experiment with the code is strongly suggested to make use of 

numerical computing packages of his/her language of preference.  
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The function itself is pretty simple. 

FUNCTION Semi-Covariance 

    Input: A matrix of returns M, a benchmark b 

    Output: The semi-covariance matrix out 

     

    FOR each value in a matrix M 

        DECREMENT the value by the benchmark b amount 

        SET the value to be the result of min(value, 0) 

    ENDFOR 

     

    SET new_M to the transpose of M 

     

    COMPUTE out as linear product of two matrices new_M and M 

        so that the value at the position out[0][0] equals to the dot 

product of  

        row vector new_M[0][:] and column vector M[:][0] 

     

    RETURN out 

 

The execution begins with a matrix update. First, the interpreter iterates over all 

values in a given matrix. During the process of iteration, each value is 

decremented by the benchmark amount supplied at the beginning of a procedure. 

Then the reduced value is compared to zero. If the resulting value is more than 

zero, such a value is replaced with zero; otherwise, if the value is negative, 

nothing is done. 

Next, the transpose of a resulting matrix is acquired. When completed, this allows 

to get the semi-covariance matrix using the properties of matrix multiplication. 

The reader might find another implementation which turn out to be faster. In fact, 

he is encouraged to do so as high efficiency of computations was not our top 

priority while writing the thesis. In fact, various languages might be better suited 

for computing. 

 

3.2.2 Bayes-Stein Estimation Procedure 

The following implementation relies on numerical processing libraries as well as 

the former counterparts. As it includes covariance matrix estimation and 

inversion, which could be pretty expensive in terms of time and resources 

depending on the size of the dataset, the reader is once again advised to use the 

tools available in his / her language of choice. 
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FUNCTION Bayes-Stein: 

    Input: A matrix of returns M with (t_periods, n_assets) dimensions 

    Output: The vector of shrunk estimates of the expected returns out 

     

    COMPUTE the vector means_sample as means along the rows of the 

matrix M 

        such that means_sample[0] equals to the mean of series M[:][0] 

        and means_sample is m-dimensional 

     

    SET ones to be m-dimensional vector of ones 

    COMPUTE the E as matrix of pairwise covariances of columns of M 

     

    FOR each value in a matrix E 

        MULTIPLY the value by the (t_periods - 1)/(t_periods - n_assets 

- 2) 

    ENDFOR 

     

    SET the I to be the inverse of matrix E 

     

    COMPUTE the scalar mean_grand as the result of a division, where 

        the numerator is the linear product of transposed ones,  

            matrix I and vector means_sample,  

        and the denominator equals the linear product of transposed ones, 

            matrix I and ones 

      

    COMPUTE the vector diff as means_sample - mean_grand 

     

    COMPUTE the scalar denom to be the result of 

        (linear product of transposed diff, matrix I and diff)*2 + n + 

2 

     

    COMPUTE the scalar w to be the result of  

        (n + 2) / denom     

    COMPUTE the out as  

        (1 - w) * means_sample + w * mean_grand 

     

    RETURN out 

 

The procedure of interest is somewhat involved. First, the vector of sample 

means is computed. The idea is to get the mean return for each asset in a matrix. 

The described implementation assumes that the rows in the matrix represent 

points in time, while columns represent separate securities. Therefore, the 

column means of interest are computed along the rows of the matrix and put in a 

vector. 

Second, the n_assets-dimensional vector of ones is instantiated to assist in future 

calculations. After that the algorithm computes a new matrix of pairwise 

covariance of assets so that the entry at [𝒂][𝒃] of the new covariance matrix is a 

covariance between column vector of returns of asset 𝒂 at [: ][𝒂] and the asset 𝒃 

at [: ][𝒃]. 
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After the covariance matrix is adjusted as in Zellner & Chetty (1965) and inversed, 

the grand mean is computed as in (21). Then, after the differences between the 

sample means and grand mean are found and put into a vector, the denominator 

value is computed as in (2123). Further, the weighting coefficient is computed 

and applied as in (19) to get the vector of adjusted means. 

 

3.2.3 Optimization Procedure 

The concrete implementation of the optimization procedure highly depends on a 

particular software package or module one decides to use. There are pros and 

cons and modules vary to a large degree, but in order to give at least the feel for 

how everything will happen, please see the code snippet below. 

    FUNCTION Find_optimal_portfolio 

    Input: A matrix of returns M, a benchmark b, investor's tolerance 

tol 

    Output: The vector of optimal weights out 

     

    IMPORT function OPTIMIZE from external library 

    IMPORT function Semi-Covariance 

    Import function Bayes-Stein 

     

    COMPUTE matrix P as the result of Semi-Covariance( M, b) 

    COMPUTE vector q as the result of Bayes-Stein( M) 

     

    SET UP the procedure for OPTIMIZE function: 

        initialize the equality and inequality constraints as 

        G, h, A, b accordingly 

     

    COMPUTE out as a result of OPTIMIZE( P, tol*q, G, h, A, b) 

         

    RETURN out 

 

First the user should import the optimization function of his/her choice; the only 

requirement is that the procedure is suitable for convex optimization. Semi-

covariance and Bayes-Stein procedures are imported as well. Then, the semi-

covariance matrix 𝑷 and adjusted vector of returns 𝒒 are computed. 

Usually the optimizers need the equality and inequality constraints – hence 

setting them in appropriate way. The out is then the result of optimization function 

called with 𝑷, 𝒒 and constraints respectively.  
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4 EXPERIMENTS AND RESULTS 

In order to test the efficacy of the suggested method the authors employed a 

backtesting procedure. The purpose of the backtest is to check the performance 

of the proposed theoretical prototype on relevant historical data. When done 

correctly, the results would be a good indicator of whether to utilize an investment 

strategy or not. Exceptional attention was given to the choice of time periods and 

sample sizes to ensure the statistical significance and robustness. Although 

backtesting is not the only or even best way to guarantee the viability of the model 

in and of itself, it is a good starting point and a powerful tool at our disposal. 

4.1 Setup 

The tests were conducted for varying risk tolerance levels and different 

semivariance function parameters using historical data of the stocks constituting 

the DJIA 30 index (Appendix 3). For simple minimum-variance portfolio the 

expected returns are calculated as simple means of securities return series, while 

for the model of interest they are adjusted as in (19). There are three main sets 

of experiments, each run using the data of specific time period. Different time 

periods were employed with an aim to test the framework in varying market 

environments - bullish (Jan-Dec/2014), bearish (Jan-Dec/2008) and stagnant 

(Jan-Dec/2015) respectively. 

In order to inspect the performance of the suggested framework in a bearish 

market (when the prices are falling and the market is spiralling down in general) 

the year 2008 was chosen; during that time period, the S&P 500 lost almost 35% 

of its value and fell from 1378.60 to 902.99 points (NYSEArca 2017). The Jan-

Dec/2008 period’s universe contains all but 2 securities (Visa Inc. and The 

Travelers Companies Inc.) as the data on companies is not available for analysis 

and backtesting, hence no way to train the model before that date. The Jan-

Dec/2014 was chosen to represent bullish market conditions (13.5% S&P gain 

over the year) and Jan-Dec/2015 to represent stagnant market respectively 

(0.01% S&P 500 yearly gain). 
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S&P 500 is assumed to be a reasonable approximation of a U.S. stock market 

and thus treat SPDR S&P 500 Trust ETF’s as a proxy for the market’s 

performance. Essentially, same fund’s statistics was used to gauge the efficiency 

of MV- and MS-based portfolios. Risk-free rate level is accepted at 1.09% - 

current US 12-Month Treasury Bill yield (Bloomberg L.P. 2017). As for the model 

parameters, preliminary tests were conducted with various cut-off values for 

semi-covariance matrix benchmark; the results presented here contain only those 

with 6.9% threshold as the difference between weights resulting from different 

cut-off values and thus different optimal weight allocations are extremely small. 

Consequently, the cut-off value used in computations was set to be 6.9%, the 

YTD return of SPDR S&P 500 Trust ETF (NYSEArca 2017).  

Table 4.1.1 contains brief overview of an experimental setup; the results are 

summarized in tables 4.2.1, 4.2.2 and 4.2.3. 

 

 
 
 
 
 
 
 
Table 4.1.1: The experimental setup 

Testing periods Bearish Jan-Dec/2008, 

bullish Jan-Dec/2014  

and stagnant Jan-Dec/2015 

Market portfolio SPDR S&P 500 Trust ETF 

Risk-free rate 1.09% (US 12-Month Treasury Yield) 

Reference portfolio Zero-risk optimized MV portfolio 

Model parameters for Mean-Semivariance  

with Bayes-Stein estimators 

Risk tolerance values 0.0, 0.25, 0.75, 1.0 

Benchmark for semivariance 

matrix 

6.9% (mean return of SPDR S&P 500 Trust 

ETF) 
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4.2 Results 

Bullish market. Table 4.2.1 presents the results over the Jan-Dec/2014 testing 

period. Consider the benchmark S&P 500 first. Passive strategy of buying and 

holding the S&P 500 ETF fund would generate a mean return of 13.5% with a 

standard deviation of 11.3% and Sharpe ratio at acceptable value of 1.09. 

Looking at the sets of variously parametrized MV and MS with shrinkage 

portfolios, notice that the minimum-risk MV turned out somewhat lacklustre. 

Although with decent expected return of 15.8% and 10.9% expected variance, 

the results in general are inferior to all the alternatives.  

On the contrary, the MS w. Bayes-Stein framework achieved consistently better 

scores across the board. No matter the risk tolerance parameter, it fares 

efficiently through the year of 2014 with returns being 11.7%, 24.3% and 30.2% 

for risk tolerance parameters 0.0, 0.25 and 0.75 respectively. With moderately 

high betas and positive alphas, the strategy ranks fairly high according to Sortino 

ratio, which is expected and welcomed. 

 
 
 
 
Table 4.2.1: Results for simulation in a bullish market; testing period Jan - Dec/2014 

  Risk tolerance levels of MS w. B-S. MV SPY 

  0.0 0.25 0.75 1.0*     

Return, % 11.7 24.3 30.2 - 9.6 13.5 

Volatility 0.10 0.13 0.17 - 0.09 0.113 

Alpha 0.03 0.12 0.17 - 0.01 ~0.0 

Beta 0.66 0.83 0.82 - 0.60 ~1.0 

Sharpe 1.15 1.76 1.67 - 1.05 1.09 

Treynor 0.16 0.27 0.35 - 0.14   

Jensen’s alpha 0.06 0.18 0.24 - 0.05   

Sortino 1.72 2.72 2.62 - 1.57   

Max DD, % -7.4 -8.4 -8.6 - -6.3   
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The Maximum Drawdown of a strategy is on a weaker side - even for aversion 

parameter set at 0.0 the drawdown is -7.4%, which is higher than the MV 

counterpart. Though the loss does not exceed 10% yearly or even monthly. 

Bearish market. Portfolios’ dynamics through the year 2008 is shown in Table 

2.3. Again, take a look at a market performance first. Those with investments in 

SPY would lose 36.9% of their wealth with volatility being 39.6%. For the 

reference, market’s Sharpe being -0.94. 

Observing the optimized models, note that this time the conservative approach 

of MV works well: the -16.7% realized return is almost half the market’s one with 

volatility at 28%. As for the new framework, the results are contrasting. The run 

parametrized by tolerance of 0.0 is a clear winner among the alternatives beating 

others in every metric listed. On the other hand, for tolerance values differing from 

0.0 the performance degenerates at a quick pace. With losses around -50%, high 

volatilities and almost 60% drawdowns the suggested strategy fails completely. 

A curious remark is that at risk tolerance levels of 0.75 and 1.0  MS allocates 

100% of the capital to the Apple Inc. security. Even though the projected 

 

 

Table 4.2.2: Results for simulation in a bearish market; testing period Jan - Dec/2008 

Risk tolerance levels of MS w. B-S. MV SPY 

  0.0 0.25 0.75 1.0*     

Return, % -15.1 -52.8 -57.3 - -16.7 -36.9 

Volatility 0.27 0.47 0.58 - 0.28 0.396 

Alpha 0.09 -0.28 -0.31 - 0.10 ~0.0 

Beta 0.57 0.93 0.96 - 0.63 ~1 

Sharpe -0.46 -1.35 -1.18 - -0.52 -0.94 

Treynor -0.28 -0.57 -0.60 - -0.28   

Jensen’s alpha -0.19 -0.59 -0.63 - -0.21   

Sortino -0.69 -1.80 -1.56 - -0.76   

Max DD, % -24.1 -58 -58.7 - -25.4   
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returns of Apple Inc. were substantially shrunk, it seems that, given the risk-return 

trade-offs and semi-covariance matrix, the most optimal allocation is the one 

above, at least theoretically. 

Stagnant market. Table 2.2 shows the performance metrics over the Jan-

Dec/2015 time period. Yearly realized market returns are at 1.3% with 15% 

standard deviation. 

On average, both shrunk MS and MV showed better performance than the global 

benchmark S&P 500. With the exception of strategy parametrized by 0.0 

parameter, the performance of the proposed prototype is remarkable: 23.1%, 

25.8% and 27.2% for 0.25, 0.75 and 1.0 risk aversion parameters. Alphas and 

Treynor are moderate with Sortino being high at around 2.0; somewhat high betas 

at around 1.0 are the only drawback. 

The minimum-risk (parameter 0.0) shrunk MS system is the worst among the 

counterparts with realized loss at -0.9% and high volatility of 27%. A fact worth 

noting is that the weight allocations of MV and 0.0 tolerance MS differ drastically. 

 
 
 

 

Table 4.2.3: Results for simulation in a stagnant market; testing period Jan - Dec/2015 

  Risk tolerance levels MV SPY 

  0.0 0.25 0.75 1.0     

Return, % -0.9 23.1 25.8 27.2 0.8 0.013 

Volatility 0.27 0.18 0.19 0.19 0.14 0.15 

Alpha -0.02 0.20 0.22 0.23 0.0 ~0.0 

Beta 0.80 0.95 0.97 0.98 0.83 ~1.0 

Sharpe -0.93 1.23 1.32 1.35 0.12 0.01 

Treynor -1.13 0.23 0.25 0.26 0.08   

Jensen’s alpha -0.95 0.16 0.19 0.20 0.02   

Sortino 0.00 1.86 2.05 2.12 0.18   

Max DD, % -14.4 -11.5 -9.7 -9.6 -12.7   
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5 SUMMARY AND CONCLUDING REMARKS 

5.1 Summary 

In this paper, the mean-semivariance optimization scheme that employs Bayes-

Stein estimators is proposed, implemented and studied. The model is examined 

through empirical experiments with 30 U.S. stocks representing DJIA and is 

compared to zero-risk mean-variance scheme and S&P 500 benchmark under 

variant parameters and time periods. 

The results in general support the superiority of the MS framework employing 

Bayes-Stein estimators while being somehow mixed: based on the outcomes of 

backtests, the prototype fared substantially better than the Markowitz’ MV and 

SPY ETF in the bullish and stagnant market settings, but was considerably worse 

in the bearish market case for the majority of risk tolerance parameters. Most 

probably such an outcome originates from the improved expected returns and 

downside risk measure introduced into the model. In addition, the experiments 

suggest that (1) the performance of the MS does not vary too greatly with the 

choice of benchmark and (2) the allocations are less sensitive for the risk 

tolerance values above the certain threshold. 

The results generally support the findings of the previous studies - the mean-

semivariance model with shrinkage does indeed produce superior results. 

However, it is fairly difficult to pinpoint the concrete feature which gives us the 

edge over the conventional methods; it is unclear whether downside framework 

or shrinkage bring/s is the source of the additional alpha. 

Although promising, the performance of the model needs to be put under 

additional tests and research. Various testing conditions as well as parameters 

and testing methods must be applied before using the proposed method in 

practice. In particular, the recommendation would be to stress-test the approach 

with Monte Carlo simulation employing stochastic asset model. 
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5.2 Discussion 

Experiments conducted provide useful information for an efficient MS portfolio 

scheme. The realized returns were greater when using proposed system. The 

reasons for this are, firstly, improved accuracy of projections of expected returns 

and, secondly, different risk estimate introduced with semivariance. By 

introducing Bayes-Stein procedure the estimation error stemming from the 

randomness and uncertainty about future returns are reduced. With semivariance 

as risk measure relative riskiness of the assets is changed, thus expanding the 

pool of available optimal investment options. Indeed, in general, the framework 

of interest shows an improved performance over the benchmarks in certain 

market conditions, namely, the bearish and bullish environments. The 

performance measures strongly suggest the effectiveness of the MS with Bayes-

Stein estimators. 

However, the situation is somewhat different in a declining market state: except 

for the minimum-risk case the realized returns and volatilities are twice as bad as 

the S&P 500. The key to understanding such a performance lies in the 

characteristics of the positions opened. With less aversion, the model took the 

riskier approach. The assets purchased could have been affected by market 

crash the most; high betas are the evidence. 

An interesting note is that during some periods the system assigns 100% weight 

to a particular security or a couple at most. On the one hand, by doing this the 

best risk-return ratio can be achieved. On the other hand, the concept of 

diversification does not apply to such a portfolio composition, hence the 

susceptibility to the company-specific risk. 

Further, MS with shrinkage is almost insensitive to changes in the semi-

covariance cut-off value above zero: the results between 0.0%, 1.09% and 6.97% 

do vary, but the weight differences in final allocations are insignificant. As the 

testing capital was set to be $100.000, assets whose optimal weights fell below 

certain threshold could not be purchased. 
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5.3 Constraints and Future Work 

With lack of knowledge and expertise being the case, certain limitations are 

accepted and a number of constraints imposed on the research. 

Constraints. Some common research assumptions used in finance were made. 

While testing the prototype short-selling scenarios are completely excluded; 

short-selling brings additional risk and is a fairly delicate tool to use. Further, the 

absence of friction costs is accepted as they partly depend on choice of a broker. 

The assets of interest were deemed to be always available for purchase. In our 

tests, the performance of S&P 500 was accepted as a proxy for the U.S. stock 

market; the U.S. 12-Month Treasury Bill rate was taken as a risk-free rate. 

Limitations. The system itself is based on a single-period investment strategy 

without rebalancing. Only one testing scheme was used to assess the efficiency 

of the suggested approach. Backtesting was conducted in U.S. stock market 

environment, hence lack of international diversification. Stock universe selection 

might be debatable: disturbingly often both MV and MS chose a small number of 

stocks to assign weights to, leading to the lack of diversification. Moreover, the 

presence of certain performance outliers might have influenced the weight 

allocations; for example, at some point AAPL was assigned a 1.00 weight by both 

MV and MS models. Training and testing periods were fixed to be rather small in 

order to reflect latest information about the asset; although, this could have led to 

insufficient amount of data to base the analysis on. 

Future work. This chapter contains some possible ways to proceed with the 

investment strategy of interest. There are numerous paths to take and the 

majority of them lies in a realm of further testing. Many possible tests, adaptations 

and experiments have been left for the future due to lack of time and knowledge. 

Future work concerns deeper analysis of the capabilities, new test runs or simple 

curiosity.  
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The following is just a handful of ideas to apply when pursuing the suggested 

approach: 

• Test using different benchmark values in MS matrix computation (risk-free 

asset, value of zero, etc.) 

• Choose richer range of tolerance parameters for MV and MS 

• Test with Bayes-Stein and without Bayes-Stein adjustment 

• Pick various ranges of data to train and test on 

• Enrich the universe of assets: check different industry sectors, various 

countries (not only US), sort by liquidity; throw more stocks in a mix 

• Employ more testing schemes to use (Grauer & Hakansson 1995, 55) - 

Monte Carlo Simulation 
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Appendix 1.  Model representation in Python 

Appendix 2 Pseudocode Conventions 

Appendix 3. DJIA 30 components 
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Appendix 1: Quantopian implementation 

Recall that Quantopian is built on top of Zipline, so some function calls might 

appear strange and out-of-nowhere; such function are marked with red color and 

are built-ins. However, they are pretty self-explanatory; treat them as if they were 

defined somewhere else and imported automatically.  

""" 

Mean-semivcovariance optimization routine (Bachelor's thesis). 

 

Adjust expected return vectors via Jorion's Bayes-Stein technique 

(1986), compute Estrada's semi-covariance matrix (2007) and then use 

it to find optimal portfolio. 

""" 

 

import numpy as np 

import cvxopt as opt 

from cvxopt import blas, solvers 

 

# to pretty-print the numbers 

np.set_printoptions(formatter={'float_kind':'{:0.3f}'.format}) 

 

def initialize(context): 

    dow_jones = [ 

        sid(4922), 

        sid(679), 

        sid(24), 

        sid(698), 

        sid(1267), 

        sid(23112), 

        sid(1900), 

        sid(4283), 

        sid(2119), 

        sid(8347), 

        sid(3149), 

        sid(20088), 

        sid(3496), 

        sid(3766), 

        sid(3951), 

        sid(4151), 

        sid(25006), 

        sid(4707), 

        sid(5029), 

        sid(5061), 

        sid(5328), 

        sid(5923), 

        sid(5938), 

        sid(7792), 

        sid(7883), 

        sid(21839), 

        sid(8229), 

        sid(2190) 

        ] 

         

    context.securities = dow_jones 

     

    context.counter = 1 
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    schedule_function(my_rebalance, date_rules.month_start(), 

time_rules.market_open(hours=1))      

 

    # Record tracking variables at the end of each day. 

    # uncomment to call recording procedure 

    """schedule_function(my_record_vars, date_rules.every_day(), 

time_rules.market_close())""" 

 

 

def my_record_vars(context, data): 

    """ 

    Plot variables at the end of each day. 

    """ 

 

    record('Portfolio risk (monthly)', context.risk, 

          'Portfolio expected return (monthly)', 

context.portfolio_return) 

 

 

def my_rebalance(context, data): 

    """ Called once on the first month's trading day, 1 hour after 

market is open; constructs the model and orders securities. 

 

    Manually set up the length_years for length of the training period  

    and pass freq={'d'/'m'/'y'} to the find_optimal_portfolio training 

    function. 

    Uncomment the logs for the log output.""" 

 

    # parameters 

    bench = 0.07  # benchmark for the semicov procedure 

    freq = 'y'  # frequency of data we are interested in 

    tol = 1.  # risk rolerance 

    length_years = 2  # the length of a training period 

     

    if context.counter != 1: 

        return 0 

     

    df = data.history(context.securities, 'close', 365*length_years, 

'1d') 

    #log.info('The dimensions of the dataframe: {} \nNumber of missing 

values: {}'.format(df.shape, df.isnull().sum())) 

    df.dropna(inplace=True) 

    returns = df.pct_change() 

    returns.dropna(inplace=True) 

     

    #log.info('The length of the training period: {} 

year/s.\nDimensions of the returns vector after dropnas: 

{}\n'.format(length_years, returns.shape)) 

     

    # get optimal weights, portfolio return and portfolio risk 

    optimal_weights, context.portfolio_return, context.risk  =  

find_optimal_portfolio(returns, benchmark=bench, freq=freq, 

tolerance=tol) 

    sharpe = (context.portfolio_return - 0.0275) / context.risk 

     

    #log.info('Portfolio expected return: {} \nRisk: {} \nSharpe: {} 

\nWeights:{} \n\n'.format(context.portfolio_return, context.risk, 

sharpe,optimal_weights)) 

    order_securities(context.securities, optimal_weights) 

     

    context.counter += 1 

    return 1 
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def order_securities(securities, weights):  

    open_orders = get_open_orders() 

    for stock, target in zip(securities, weights): 

        if stock not in open_orders: 

            order_target_percent(stock, target) 

    return 1 

             

 

 

def semicov(matrix, benchmark=0.0): 

    """Estimate semi-covariance matrix, given data. 

     

    Semi-covariance indicates the level to which two variables vary 

together, given that 

    these variables are less than the benchmark. If we look at N-dim 

samples, X = [x_1, x_2, ... x_N], 

    then the semicov matrix element SC_{ij} is the semi-covariance of 

x_i and x_j. The element 

    C_{ii} is the semivariance of x_i 

     

    Parameters 

    ---------- 

    matrix : ndarray 

        Matrix is a 1-D or 2-D array_like containing multiple 

variables and observations. 

        Each column represent a variable, and each row a single 

observation of all those variables. 

        [ 

        [a1, b1, c1, d1, ...], 

        [a2, b2, c2, d2, ...],  

        [a3, b3, c3, d3, ...], 

        ... 

        ] 

    benchmark: float64 (default 0.0) 

        Benchmark return is an arbitrary value for the semicov matrix 

estimation. Return percentage in decimals. 

         

    Returns 

    ------- 

    semicov_matrix : ndarray 

        The 2-D semi-covariance matrix of the variables. 

     

    """ 

     

    if matrix.ndim > 2: 

        raise ValueError("matrix has more than 2 dimensions") 

     

    newM = np.array(matrix, ndmin=2) 

    shape = newM.shape 

    newM -= benchmark  # compute the difference between asset and 

benchmark returns     

    zero = np.zeros(shape) 

    newM = np.fmin(newM, zero)  #  apply min(observation, 0) to 

observations     

    t_periods = shape[0]  # get total number of observations 
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    newM_T = newM.T 

    semicov_matrix = newM_T.dot(newM) # first goes the transposed 

matrix! 

    semicov_matrix *= 1. / np.float64(t_periods)  # divide to get 

expected semicovs 

     

    return semicov_matrix   

 

 

def estimate_bayes_stein(matrix, adjust=True): 

    """Return a vector of Jorion's Bayes-Stein estimates for columns 

in matrix. 

        

    Parameters 

    ---------- 

    matrix : array_like 

        2-dimensional numpy array of a kind 

        [ 

        [a1, b1, c1, d1, ...], 

        [a2, b2, c2, d2, ...],  

        [a3, b3, c3, d3, ...], 

        ... 

        ], where each columns represents a varaible, and row 

represents observation 

     

    Returns 

    ------- 

    adjusted_means : ndarray 

        1-dimensional np.array of a kind [a_shrunk, b_shrunk, 

c_shrunk, d_shrunk, ...]. 

         

    """ 

     

    t, n = matrix.shape  # (number of observations, number of assets) 

tuple 

    sample_means = matrix.mean(axis=0) 

    #log.info('Non-adj:{}'.format( (sample_means + 1)**251-1)) 

    ones = np.ones_like(sample_means) 

     

    E = np.cov(matrix, rowvar=False) 

    adj_Z_C = (float(t) - 1) / (t - n - 2) 

    E *= round(adj_Z_C, 4)  # Zellner & Chetty adjustment of sample 

cov matrix 

 

    I = np.linalg.inv(E) 

    grand_mean = sample_means.dot(I).dot(ones.T) / 

ones.dot(I).dot(ones.T) 

    diff = sample_means - grand_mean 

    denominator = n + 2 + diff.dot(t*I).dot(diff.T) 

    w = round((n + 2) / denominator, 4) 

    #log.info('The weighting coefficient in Bayes-Stein shrinkage : 

{}'.format(w)) 

    adjusted_means = (1 - w)*sample_means + w*grand_mean 

     

    return adjusted_means 
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def find_optimal_portfolio(df, benchmark=0.0, freq='y', 

tolerance=0.0): 

    """Given the matrix of returns, a benchmark and a frequency, 

compute and return a tuple (ndarray of optimized weights, expected 

portfolio return, expected risk). 

     

    Parameters 

    ---------- 

    df: pandas DataFrame 

    benchmark: float 64 (default 0.0) 

    freq: string (default 'y') 

        Specify the adjustment frequency of observations.  

        'd' for daily returns and semicovs, 'm' for monthly and 'y' 

for yearly. 

    tolerance: float64 -- [0, 1] (default 0.0) 

        Investor's risk tolerance. Arbitrary value which specifies a 

degree to which an investor is risk-averse. 0 for no tolerance 

(minimal risk), 1 for full tolerance. 

         

    Returns 

    ------- 

    out: tuple of form (ndarray, ndarray, ndarray) 

        Function returns (optimal_weights, portfolio_return, 

portfolio_risk) tuple. 

     

    """ 

     

    trading_days = {'d': 1, 

                  'm': 25, 

                  'y': 251} 

    benchmark = round((benchmark + 1)**(1./trading_days[freq]) - 1, 6)  

# convert yearly benchmark to daily one 

     

    solvers.options['show_progress'] = False     

    n = df.shape[1]  # number of assets 

    values = df.values 

     

    # semi-covariance matrix estimation 

    S = semicov(values, benchmark)  # daily semi-covariance matrix 

    S *= trading_days[freq]  # daily / monthly / yearly semicov matrix 

     

    # bayes-stein adjustment 

    r_adj = estimate_bayes_stein(values)  # vector of adjusted 

expected returns 

    r_adj = (r_adj + 1)**trading_days[freq] - 1  # daily / monthly / 

yearly expected returns 

     

    P = opt.matrix(S)   

    q = opt.matrix(r_adj)          

    G = - opt.matrix(np.eye(n))  # left side of inequality constraints 

- weights' coefficients 

    h = opt.matrix(0.0, (n,1))  # right side - the constraint itself - 

all weights >= 0 

    A = opt.matrix(1.0, (1,n))  # left side of equality constraints 

    b = opt.matrix(1.0)  # right side - sum of weights equal to 1 

     

    """log.info('Passed arguments: \nAdjsuted for daily values 

Benchmark = {},  

    #\nFreq = {}, \nTolerance = {}\nAdjusted Returns vector: {}\n  

    #Optimizing ...\n\n\n'.format(benchmark, freq, tolerance, 

r_adj))""" 
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    # optimization procedure 

    weights = solvers.qp(2*P, tolerance*(-q), G, h, A, b)['x']  # note 

the tolerance parameter 

    portfolio_return = blas.dot(q, weights) 

    risk = np.sqrt(blas.dot(weights, P*weights)) 

    out = np.array(weights), np.array(portfolio_return), 

np.array(risk) 

     

    return out 
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Appendix 2: Pseudocode Conventions 

 

Pseudocode is an artificial and informal language that helps to develop 

algorithms. It allows to focus on the logic of the algorithm without being distracted 

by details of language syntax. The rules are reasonably straightforward. 

 

The sequential progression (linear path from the beginning till the end of 

execution) of an algorithm is indicated by writing one action after another, each 

on a distinct line, and all of them aligned by the same indent. They are performed 

in the order (from top to bottom) they are written.  

 

  

Keyword Description 

COMPUTE Perform an operation and initialize a result 

DECREMENT,MULTIPLY Perform in-place arithmetic on a certain variable 

FOR … ENDFOR Show the beginning and the end of a “counting 

loop”, allowing repeated execution of the code 

in the main body  

IMPORT Import external module or a class 

Input: … / 

Output: … 

Indicate the parameters passed as function 

arguments 

SET Initialize the variable in a specified way 

SET UP Initialize required parameters for a function 
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Appendix 3: DJIA components 

3M: MMM 

American Express: AXP 

Apple: AAPL 

Boeing: BA 

Caterpillar: CAT 

Chevron: CVX 

Cisco Systems: CSCO 

Coca-Cola: KO 

DuPont: DD 

ExxonMobil: XOM 

General Electric: GE 

Goldman Sachs: GS 

The Home Depot: HD 

IBM: IBM 

Intel: INTC 

Johnson & Johnson: JNJ 

JPMorgan Chase: JPM 

McDonald's: MCD 

Merck: MRK 

Microsoft: MSFT 

Nike: NKE 

Pfizer: PFE 

Procter & Gamble: PG 

Travelers: TRV 

UnitedHealth Group: UNH 

United Technologies: UTX 

Verizon: VZ 

Visa: V 

Wal-Mart: WMT 

Walt Disney: DIS 

 


