
	

Siheng Liu

Question answering system of a specific
domain and its implementation on a NAO

humanoid robot

Technology and Communication
2018

2	

FOREWORD

This is my final thesis for the Degree Program in Information Technology in Vaasan

Ammattikorkeakoulu (Vaasa University of Applied Science). I have studied in this

school for almost two years and during this period, I have come to know many

friends and teachers who have helped me a lot. It was a chance of a lifetime for me

to have a such memorable experience in Finland.

First of all, I would like to thank my supervisor, Dr. Yang Liu. He spent a lot of

time working on my thesis and provided many useful suggestions. Without him, I

may not had the opportunity to study here and got a better platform to make pro-

gress.

I would take the opportunity to thank the whole IT department of VAMK, especially

Dr. Chao Gao, Dr. Ghodrat Moghadampour, Mr. Santiago Chavez Vega, Dr. Seppo

Mäkinen, Dr. Smail Menani. You guided me and encouraged me during these two

years of studying at VAMK and provided us with high quality courses.

Also, I want to express my deep gratitude to my parents who always support my

decision financially and emotionally. I love them. And I am thankful all my friends

at the Botnia RoboCup laboratory, I wish you all good luck.

Siheng Liu

Vaasa, Finland

24.03.2018

3	

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Degree Program in Information Technology

ABSTRACT
Author Siheng Liu
Title Question answering system of a specific domain and its im-

plementation on a NAO humanoid robot
Year 2018
Language English
Pages 52
Name of Supervisor Yang Liu

This thesis introduces the development of a question-answer system in a specific
domain and its implementation on the Nao robot. The goal of this paper is to build
a limited domain, high-performance and speech supported automatic question-
answering system based on NAO, the humanoid robot for hospital information.

This thesis is divided into four parts, web information extraction, the construction
of the knowledge base, natural language processing and speech recognition. The
data used for building a knowledge base is gathered from the official website of the
hospitals by using web crawler. Then the data is stored in a database and converted
to RDF type. In the second part, the questions which are asked by the users need to
be converted into SPARQL to search the answer from the knowledge base. The last
part is connected with the Nao robot, a recorder on Nao is used to record the voice
of the users and the Google Cloud Speech API is used in this thesis for speech
recognition to transfer the voice file into text. After getting the answer, the speech
is synthesized by the Nao robot to interact with the user.

This thesis has achieved to use the Nao robot to answer users’ question about the
some aspects of hospitals in Finland. The location, telephone number, open time
can be queried.

Python is the programming language used to develop this project. The code testing
is done under macOS 10.13.1, Python version 2.7, and Nao robot vision 5.

Keywords Question Answering System, NAO robot, Question analysis

4	

CONTENTS

ABSTRACT

LIST OF ABBREVIATIONS .. 6

LIST OF FIGURES AND TABLES .. 7

1 INTRODUCTION ... 9

1.1 Background .. 9

1.2 Introduction to question answer system ... 9

1.3 Purpose ... 11

1.4 Overview Structure .. 12

2 TOOLS AND TECHNOLOGIES .. 13

2.1 Programming Tools .. 13

2.1.1 Python .. 13

2.1.2 MySQL .. 13

2.2 Web crawler ... 13

2.3 RDF & OWL.. 14

2.4 Tools used to build a Knowledge Graph .. 15

2.4.1 Protégé ... 15

2.4.2 D2RQ ... 15

2.4.3 Apache Jena ... 15

2.5 Natural Language Toolkit .. 16

2.6 Speech Recognition ... 17

2.7 NAO Robot .. 18

2.7.1 Introduction to Nao Robot ... 18

2.7.2 NAOqi .. 20

3 OVERALL DESIGN ... 22

3.1 Structure of the whole project .. 22

3.2 Flowchart of the whole project .. 22

4 WEB INFORMATION EXTRACTION ... 24

4.1 Web Crawler .. 24

4.1.1 Preparation ... 24

5	

4.1.2 Libraries ... 24

4.2 Information Extraction ... 25

4.3 Insert into Database .. 30

5 KNOWLEDGE BASE CONSTRACTION ... 32

5.1 Ontology modeling .. 32

5.2 Relational database to RDF ... 35

5.3 Apache Jena SPARQL endpoint and reasoning 37

6 QUESTION TO SPARQL ... 40

6.1 Natural Language Parsing .. 40

6.2 Query Generation & DSL .. 41

7 IMPLEMENTATION ON NAO ROBOT ... 44

7.1 Speech Recognition ... 44

7.2 Result ... 47

8 RECOMMONDATION FOR FUTURE RESEARCH 49

9 CONCLUSION .. 50

REFERENCES .. 51	

6	

LIST OF ABBREVIATIONS

NLP

QA

SPARQL

KB

RDF

OWL

RDFS

API

NLTK

POS

ASR

STT

TTS

HTML

DOM

GMO

HTTP

URL

W3C

REFO

DSL

FTP

Natural Language Processing

Question Answering

SPARQL Protocol and RDF Query Language

Knowledge Base

Resource Description Framework

Web Ontology Language

RDF Schema

Application Programming Interface

Natural Language Toolkit

Part of Speech

Automatic Speech Recognition

Speech to Text

Text to Speech

Hypertext Markup Language

Document Object Model

Genetically Modified Organism

Hypertext Transfer Protocol

Uniform Resource Locator

The World Wide Web Consortium

Regular Expressions for Objects

Domain Specific Language

File Transfer Protocol

7	

LIST OF FIGURES AND TABLES

Figure 1. QA System p.11

Figure 2. Web Crawler/4/ p.14

Figure 3. Structure of RDF p.14

Figure 4. Apache Jena/5/ p.16

Figure 5. Parse tree generated with NLTK p.17

Figure 6. Speech Recognition Comparison /8/ p.18

Figure 7. Nao Robot /14/ p.19

Figure 8. Specifications of NAO/15/ p.20

Figure 9. The NAOqi process/17/ p.21

Figure 10. Whole structure p.22

Figure 11. Flowchart p.23

Figure 12. HTML Example of Website p.26

Figure 13. HTML Element List p.27

Figure 14. HTML p.28

Figure 15. HTML DOM Tree p.28

Figure 16. Information on the Website p.29

Figure 17. Sample HTML p.30

Figure 18. Database p.31

Figure 19. ER Figure of Database p.32

Figure 20. IRI p.33

Figure 21. Classes p.33

Figure 22. Object Property p.34

Figure 23. Data Properties p.34

8	

Figure 25. NT file p.36

Figure 26. RDF to TDB p.37

Figure 27. Fuseki Sever p.38

Figure 28. Browser access to Fuseki Sever p.39

Figure 29. Connect Fuseki Sever p.39

Figure 30. Semantic matching p.41

Figure 31. Domain Specific Language p.42

Figure 32. Interpret Method p.42

Figure 33. Control Process of NAO Robot/16/ p.44

Figure 34. Audio Recorder p.45

Figure 35. Transfer wav File p.45

Figure 36. Google Cloud Speech API p.46

Figure 37. Google Could Speech API Code p.47

Figure 38. Nao Robot p.48

Figure 39. Result p.48

	

9	

1 INTRODUCTION

1.1 Background

Since entering the 21st century, the Internet has entered every aspect of people's lives. By

connecting to the Internet, everyone can publish their own viewpoints, inquire about de-

sired information, and learn to use knowledge. With more and more people using the

internet, the amount of information is growing rapidly, and we really enter the era of

information explosion. It becomes easy for people to search almost everything through

major search engines such as Google, Bing, and Baidu.

However, the current search engine is mainly based on keyword matching, for example,

the question “How long is the great wall of China?”, a traditional search engine searches

a web page with corresponding information based on a few keywords to a large number

of web pages and then presents the user with a list of related links. The users have to read

and analyze themselves which information is useful for them. And even if the information

found on the website is related, the correctness of this information is still difficult to guar-

antee. The Question Answering System solves this problem. It provides the only and cor-

rect answer based on its knowledge base.

The current intelligent question answering system is mainly divided into two aspects:

Open Domain QA, and Limited Domain QA. Open Domain QA requires a large-scale

knowledge base and it needs a large amount of human and financial resources to establish

a comprehensive knowledge base. In contrast to the open system of question and answer,

the use of limited areas of question and answer system is more extensive and mature.

Among them, there are representative systems such as expert systems, which limit the

scope of questions, and are usually restricted to specific areas such as medical treatment,

physical education, culture, education, etc./1/

1.2 Introduction to question answer system

The question answering system is a computer science discipline in the field of information

retrieval and natural language processing (NLP). It focuses on establishing a system that

automatically answers questions raised by humans in natural language.

10	

A QA implementation, usually a computer program, can construct answers by querying

a structured knowledge or information database, usually a knowledge base. More com-

monly, QA systems can extract answers from unstructured sets of natural language doc-

uments.

QA research attempts to deal with a variety of problem types, including facts, lists, defi-

nitions, methods, causes, assumptions, semantic limitations, and cross-linguistic issues.

Closed domain question answering is a much easier task to deal with in specific domains,

such as medicine or vehicle maintenance, because NLP system can use the domain-spe-

cific knowledge that is often formalized in an ontology. Or, the closed domain may mean

that only a limited type of problem is accepted, such as the question of asking for descrip-

tive rather than procedural information/2/.

Intelligent question answering system is a very popular research direction in the field of

natural language processing and machine learning. The use of implementation processes

and technologies varies according to the sources of data and knowledge in different areas.

In general, there are many differences. It can be divided into question analysis, infor-

mation extraction and answer sorting. Question analysis is mainly to analyze the user

input query, classify it correctly, know the user's intention, extract the keywords of a

query, and expand the keywords.

Information extraction is after the above question analysis completed, then the corre-

sponding knowledge base, document retrieval, find the corresponding contents para-

graphs, if the question answering system is based on the Web, it is through the traditional

search algorithm using the specific model of the calculation of each candidate answer

these as a basis for the next step of the engine to retrieve the answer ranking to document

relevant information. Figure 1 shows the normal processes of a QA system.

11	

Figure 1. QA System

1.3 Purpose

Based on the research background, current situation and challenging questions of the

above QA system, the goal of this paper is to build a limited domain, high-performance

and speech support automatic question answering system based on the NAO humanoid

robot for hospital information in Finland. In order to achieve this purpose, a list of works

is done to complete the system. First of all, the automatic crawling technology is used to

get hospitals’ information from their websites such as unit name, location, telephone num-

ber and open time. Secondly, we extract knowledge and extract data from page infor-

mation, and complete a relatively complete knowledge base as the basis for future re-

search. Then, the automatic question answering system based on the knowledge base,

including the analysis of questions and the retrieval of the answers. In this step, the natural

language is converted to SPARQL to query. Finally, based on the automatic question and

answer of the text, further utilized speech recognition, and speech synthesis techniques

are added on Nao robot. This paper proposes to use the cloud speech recognition method

to overcome the limitation of Nao’s own insertion recognition engine.

12	

1.4 Overview Structure

This thesis mainly consists of nine chapters. The First chapter is an introduction to this

paper and it introduces relevant background knowledge, the purpose and structure of this

thesis. In chapter two, tools and technologies which are used to complete this project are

introduced briefly, including the programming language, web crawler, NLTK, speech

recognition and the Nao robot. Chapter three gives an overall design of the whole project,

it shows the structure and sequence of the whole project which is quite clear. The fourth

chapter is mainly about web crawler, it introduces how can we use beautiful soup and a

regular expression to extract information from a webpage and store them in a database.

Knowledge about how to construct a knowledge base is written in chapter five, several

tools are used to modeling and configure the knowledge base. Chapter six introduces how

to convert a natural language question into SPARQL to search an answer from the

knowledge base. The seventh chapter describes the connection with the Nao robot and

how to use the speech recognition API. Chapter eight briefly describes the limitation of

this project and give some recommendations and expectancies for future research. The

last chapter is the summary and conclusion of the thesis.

13	

2 TOOLS AND TECHNOLOGIES

2.1 Programming Tools

2.1.1 Python

Python is an easy to learn, powerful programming language. It has efficient high-level

data structures and a simple but effective approach to object-oriented programming. Py-

thon’s elegant syntax and dynamic typing, together with its interpreted nature, make it an

ideal language for scripting and rapid application development in many areas on most

platforms. In this thesis python version 2.7 is used to program/3/. PyCharm is the Python

IDE used in this thesis to manage a python project.

2.1.2 MySQL

MySQL is one of the most popular relational database management systems, in the WEB

application MySQL is one of the best Relational Database Management System

(RDBMS) application software. The RDBMS can be used to store and manage huge

volume of data. Those data can be stored into different tables and these tables can be

related by primary keys or other keys known as foreign keys. Also, MySQL can be

allowed on multiple systems and supports multiple languages. These programming

languages include C, C ++, Python, Java, Perl, PHP, Eiffel, Ruby and Tcl.

2.2 Web crawler

A web crawler starts with a list of URLs to visit, called the seeds. Figure 2 shows how it

works. As the crawler visits these URLs, it identifies all the hyperlinks in the page and

adds them to the list of URLs to visit, called the crawl frontier. URLs from the frontier

are recursively visited according to a set of policies. If the crawler is performing archiving

of websites it copies and saves the information as it goes. The archives are usually stored

in such a way they can be viewed, read and navigated as they were on the live web, but

are preserved as ‘snapshots'. /4/

Beautiful Soup is a Python library for pulling data out of HTML and XML files. It works

to provide idiomatic ways of navigating, searching, and modifying the parse tree. It com-

monly saves programmers hours or days of work. Compared with other tools, beautiful

soup is more convenient and time-saving.

14	

Figure 2. Web Crawler/4/

2.3 RDF & OWL

RDF (Resource Description Framework) is essentially a data model. It provides a unified

standard for describing entities / resources. Simply speaking, it is a way and means to

express things. RDF is represented as SPO three tuple, sometimes called a sentence (state-

ment). In knowledge map, we call it knowledge.

Figure 3. Structure of RDF

The Web Ontology Language (OWL) is a semantic Web language, which is used to ex-

press rich and complex knowledge about things, groups of things and relations between

objects. OWL is a language based on computational logic, so the knowledge represented

in OWL can be used by computer programs, for example, OWL documents, called ontol-

ogy, can be published on the world wide web, and can be referenced or referenced from

another OWL ontology. /12/

15	

2.4 Tools used to build a Knowledge Graph

2.4.1 Protégé

Protégé is a free, open-source platform that provides a growing user community with a

suite of tools to construct domain models and knowledge-based applications with ontol-

ogies.

2.4.2 D2RQ

The D2RQ Platform is a system for accessing relational databases as virtual, read-

only RDF graphs. It offers RDF-based access to the content of relational databases

without having to replicate it into an RDF store. Using D2RQ you can:

• query a non-RDF database using SPARQL

• access the content of the database as Linked Data over the Web

• create custom dumps of the database in RDF formats for loading into an RDF store

• access information in a non-RDF database using the Apache Jena API

D2RQ is Open Source software and published under the Apache license.

2.4.3 Apache Jena

Apache Jena is an open source semantic web framework for java. Figure 4 illustrates the

structure of a project using this framework. It provides APIs for extracting and writing

data from RDF graphs. These diagrams are represented as abstract "models." Models can

get data from files, databases, URLs, or a combination of them. /5/ In Apache Jena the

users can configure their own inference rules or use the built-in OWL and RDFS reason-

ers.

Jena supports serialization of RDF graphs to:

• A relational database

• RDF/XML

16	

• Turtle

• Notation 3

Fuseki is an HTTP interface to RDF data. It supports SPARQL for querying and updat-

ing. The project is a sub-project of Jena and is developed as servlet. Fuseki can also be

run stand-alone server as it ships preconfigured with the Jetty web server.

Figure 4. Apache Jena/5/

2.5 Natural Language Toolkit

Natural Language Toolkit is a leading platform for building Python programs to work

with human language data. It was developed by Steven Bird and Edward Loper. /6/

NLTK is intended to support research and teaching in NLP or closely related areas, in-

cluding empirical linguistics, cognitive science, artificial intelligence, information re-

trieval, and machine learning. NLTK not only be used as a teaching tool but also as an

individual study tool. It is a platform for prototyping and building research systems. More

than 32 universities in US and 25 countries using NLTK in their courses. NLTK supports

17	

classification, tokenization, stemming, tagging, parsing, and semantic reasoning function-

alities. /9/

The process of classifying words into word classes and labeling them accordingly is called

part-of-speech tagging, POS tagging, or simple tagging. Word classes are also referred to

as part of speech or vocabulary. The set of tags for a particular task is called a set of tags.

Figure 5. Parse tree generated with NLTK

2.6 Speech Recognition

Speech recognition is a cross-disciplinary field in computational linguistics, developing

methods and techniques to enable computers to recognize and translate spoken language

into text. It is also known as "automatic speech recognition" (ASR), "computer speech

recognition", or just "voice to text" (STT). It combines knowledge and research in the

field of linguistics, computer science, and electronic engineering.

This technology has a long history and has gone through several waves of innovation.

Recently, this technology has deeply benefited from deep learning and big data. These

advancements not only reflect the explosion of academic papers published in this field

but more importantly, various industries around the world have adopted various deep

learning methods when designing and deploying speech recognition systems.

18	

Nowadays many companies provide their own speech recognition API for developers to

use in their own application such as Bing, Google, Microsoft and Google. However, com-

pared with other API, Google Cloud Speech API is performed better. /8/ So, in this thesis

Google Cloud Speech API is used to convert speech to text.

Figure 6. Speech Recognition Comparison /8/

2.7 NAO Robot

2.7.1 Introduction to Nao Robot

The humanoid robot Nao is developed by a French company named Aldebaran Robotics,

which was acquired by SoftBank Group in 2015 and rebranded as SoftBank Robotics.

The Nao robot is widely used in academic institutions. By the end of 2014, more than

5,000 Nao robots were in use with educational and research institutions in 70 countries

/10/. Nao can be used as a research robot in schools, universities and universities. It is

responsible for teaching programming and developing human-machine interaction/11/.

Figure 6 shows the construction and functions of the Nao Robot

19	

Figure 7. Nao Robot /14/

It has 25 degrees of freedom and human shape, it can move and adapt to the surrounding

environment. Many sensors are used in several parts of the body, such as head, head and

foot, so that robots can do this. In addition, Nao's vision comes from two cameras, cap-

turing environment and helping Nao identify projects. In addition, Nao can connect to the

Internet through different ways of connection (Wi-Fi and Ethernet). Specifications of the

robot is shown in Figure 8.

20	

Figure 8. Specifications of NAO/15/

2.7.2 NAOqi

NAOqi is a main software used to run on the robot and control it. The NAOqi framework

is the programing framework used to program NAO. The framework allows uniform

communication between different modules (motion, audio and video), isomorphic pro-

gramming and uniform information sharing.

NAOqi is cross-platform. This framework is able to develop on Windows, Mac or Linux.

And it also cross-language, which means it has an identical API for both C++ and Python.

It gives developer a lot room to program with.

Figure 9 shows the process of NAOqi. The NAOqi executable running on the robot is a

broker. When it starts, it loads a preference file named autoload.ini, which defines the

library that it should load. Each library contains one or more modules that use agents to

propagate its methods. The agent provides lookup service so that any module in the tree

or in the whole network can find any published methods. The loading module forms the

method tree attached to the module and the module attached to the agent.

21	

Figure 9. The NAOqi process/17/

22	

3 OVERALL DESIGN

3.1 Structure of the whole project

The whole structure of the system is shown in Figure 10. First of all, by using the web

crawler technology, the information of the hospital was gathered from their official web-

sites such as department name, location, telephone number and open time. These data

were stored into the database. Secondly, based on the relationship between these data,

ontology was defined, combined with which the data was converted to RDF type. Then

RDF is deployed on Jena, the data can be queried by SPARQL language.

When the user asks a question to Nao robot, the question will be recorded as a wav file

and be uploaded to the Google Cloud Speech API to recognize, after which the question

text will be returned. By analyzing the question text, the keywords will be extracted and

the natural language will be transferred into SPARQL language. Then through Apache

Jena SPARQL endpoint, the answer can be queried from the RDF. Finally, Nao robot can

speak the answer by using its TTS module.

Figure 10. Whole structure

3.2 Flowchart of the whole project

As shown in Figure 11, the user asks question and the voice file is sent for speech recog-

nition. Then the text of the question will be processed to search in the knowledge base to

get the answer. Finally, speech is synthesized to answer the question.

23	

Figure 11. Flowchart

24	

4 WEB INFORMATION EXTRACTION

4.1 Web Crawler

Web information extraction starts from a web crawler, which can also be called Spider or

Robot. The Internet includes endless web information and this information is stored on

the server over the word. Users go through the different websites and find the content that

they are interested in by a hyperlink. The web crawler can download information from

the website automatically. In order to gather the information that used as the answer in

this system, the web crawler is used to craw data from the website. However different

websites have a different structure and some even have the different language, for exam-

ple, some website contains not only English but also Finnish, which led to some problem

for the web crawler.

4.1.1 Preparation

In this thesis, we mainly analyze the official website of hospitals in Finland. The contact

information of hospitals in Helsinki and detail information about outpatient clinics and

wards of Vaasa center hospital, Turku university hospital (main hospital), and Tampere

university hospital (central hospital) was gathered for the system. Below is a list of the

websites.

l https://www.vaasankeskussairaala.fi/en/

l https://www.pshp.fi/

l http://www.vsshp.fi/en/toimipaikat/tyks/osastot-ja-poliklinikat/Pages/default.aspx

4.1.2 Libraries

Python is the programing language used in this project, and there are many libraries in

that can be used to achieve our purpose.

l Requests

Requests is the only Non-GMO HTTP library for Python. Requests allows user to

send organic, grass-fed HTTP/1.1 requests without manually add query strings to

URLs, or from-encode POST data.

25	

l BeautifulSoup

BeautifulSoup is a Python library that can extract data from HTML or XML files.

It can be used to navigate, find, and modify documents by your favourite converter.

BeautifulSoup not only supports HTML parser, but also supports some third-party

parser, such as lxml, XML, html5lib, but needs to install corresponding library.

l Regular expression

A regular expression (or RE) specifies a set of strings that match it; the function in

this module allows you to check whether a particular string matches a given regular

expression (or whether a given regular expression matches a particular string, the

string can be attributed to the same thing). It can be used for screening information.

4.2 Information Extraction

According to the content above, the related information can be extracted from the HTML

file which was crawled from websites. Figure 12 is an example of a website. In this chap-

ter, we analyze the methods to extract information from a HTML file.

26	

Figure 12. HTML Example of Website

As shown in Figure 12, an HTML page mainly contain two parts, head part and body part.

Information is usually written in the body part with relative tags. Figure 13 lists the com-

mon tags that the developer always uses in HTML.

27	

Figure 13. HTML Element List

Figure 14 is a part of the HTML of the website. It can be seen that information is written

in the middle of the HTML tags. In order to get the needed information, the whole

webpage information should be divided into corresponding blocks according to the logic

of the content, each part is a separate theme. It is the HTML DOM tree. HTML DOM

tree is a normal structure of a HTML document, it is like a tree which has a lot of leaves

and the information is written layer by layer.

28	

Figure 14. HTML

BeautifulSoup 4 in Python is used for pulling data out of HTML files. It provides some

methods to find the specific tag by its attributes like class name. Firstly, from the seed

URL, the home page is retrieved and a list of department URLs were found as hyperlinks

and they will be stored in a list. As it is shown in Figure 15, the HTML DOM Tree of the

sub-websites and HTML structure are almost the same, it is easy extract the data in a loop.

Figure 15. HTML DOM Tree

29	

Figure 16. Information on the Website

Below it shows the example code of how to extract data from the website. However, in

some websites, the HTML DOM Tree is not so normative, which makes it difficult to

parse the HTML file with BeautifulSoup by an finding element through the element class

name. In this situation, the regular expression is used to match the string and get the data

we needed. For example, in the sample HTML file shown below, the information is sep-

arated by the tag <p> without any attributes. In order to solve this problem, RE is used to

match the content of <h3> and according to the text in <h3> get the data respectively.

content = requests.get(url).content
soup1 = BeautifulSoup(content, 'html.parser', from_encoding='utf-8')
content1 = soup1.find(name='div', attrs={"class": "contact-box hidden-xs hidden-sm"})
content2 = content1.find(name='div', attrs={"class": "contact"})
content3 = content2.find_all(name='div')
location.append(content3[0].get_text())
time.append(content3[1].get_text())
phone.append(content3[2].get_text())

30	

Figure 17. Sample HTML

4.3 Insert into Database

By using BeatifulSoup and Regular expression, we get the data which is the answer of

our system. The next step is to store this data in the database for the next usage. MySQL

is the database used in this project and MySQL Workbench is a unified visual tool for

manage the database.

Pymysql is the library used to connect the database from python application. “Pip install

pymysql” is the command used to install this package in the terminal. The code below is

about how to create tables in the database and insert data into the table.

Import pymysql

conn = pymysql.Connect(
 host='localhost',
 port=3306,
 user='root',
 password='****',
 db='***',
 charset='utf8'

31	

)

try:
 with conn.cursor() as cur:

 create_sql = """
 CREATE TABLE Department
 (department_id INT(11) PRIMARY KEY NOT NULL,
 department_name VARCHAR(100),
 department_location VARCHAR(45),
 department_time VARCHAR(200),
 department_phone VARCHAR(45))
 """

 insert_sql = """
 INSERT INTO Department(department_id, department_name, department_loca-
tion, department_time, department_phone)
 VALUES('%s', '%s', '%s', '%s', '%s')"""
 cur.execute(create_sql)
 for i in range(0,len(dName)-1):
 insert_data = (i, dName[i-1], location[i-1], time[i-1], phone[i-1])

 cur.execute(insert_sql%tuple(insert_data))

 conn.commit()

finally:
 conn.close()

Figure 18 is part of the screenshot of the database. The unit name, location, open time and

telephone number have been gathered as the answer.

Figure 18. Database

32	

5 KNOWLEDGE BASE CONSTRACTION

According to the data about hospital that we get from their official website, some data

about diseases were added manually to the database in order to make the structure of the

knowledge base complete.

There are totally three tables, one table about departments of the hospital and one table

containing information about disease. They are then combined with each other by the

unique id in the third table Disease to Department. Figure 19 is the ER figure of the data-

base.

Figure 19. ER Figure of Database

5.1 Ontology modeling

There are basically two ways to build an ontology: top-down and bottom-up.

The ontology construction of knowledge base in an open domain usually adopts the bot-

tom-up approach to extract concepts, concept hierarchy, and concept relations automati-

cally from knowledge map. It is also well understood that the open domain is too compli-

cated to be considered in a top-down way, and the corresponding concept is growing as

the world changes.

Limited domain knowledge maps mostly use the top-down method to build an ontology.

On the one hand, the concept and scope of domain knowledge maps are fixed or control-

lable relative to the open domain knowledge map; on the other hand, we require higher

accuracy for the domain knowledge atlas. Most of the knowledge atlas behind some of

the voice aides we have come into contact with is domain knowledge maps, such as music

knowledge atlas, sports knowledge atlas, cooking knowledge atlas, and so on. It is pre-

cisely because of these domains that knowledge maps satisfy most of the needs of users,

but also need to ensure their accuracy. This example is a knowledge map in the medical

33	

field. We use the top-down approach to build ontology structure. Protégé is the tool used

to build ontology.

1. Open protégé, the interface is shown below. Fill in the IRI of our new ontology

resource in Ontology IRI in the red frame.

Figure 20. IRI

2. In the “Entities” tab, “Classes” is chosen. In this page, the classes of this knowledge

base are created and there are all the sub-class of “Thing”. As shown in Figure 21,

department class and disease class are defined.

Figure 21. Classes

34	

3. In “Object properties” tag, the relationship between the classes was created, which

means the object property. Here two relationships were defined, “hasBelong” means

the disease belong to a department and its domain is disease and rang is department.

This relationship is inverse of “hasDiseas”.

Figure 22. Object Property

4. Finally, in “Data properties” tag in this interface the data attributes were defined. The

data attribute is equivalent to the leaf node of the tree, and it only goes in, but not out.

Figure 23. Data Properties

35	

Protégé also supports the visualization of ontology structure. Clicking on the "Window"

option, select "OntoGraf" in “Tabs”. Moving elements in the right window one can di-

rectly observe the relationship between ontologies.

Figure 24. OntoGraf

5.2 Relational database to RDF

D2RQ can access the database as a virtual RDF Graph. Its mechanism is to translate RDF

queries and other operations into SQL statements through mapping files, and finally

achieve corresponding operations on RDB. When we do a knowledge map project, we

can flexibly choose the way of data access. When external services are provided and query

operations are frequent, it is better to directly convert RDB data to RDF, which will save

a lot of time to convert SPARQL to SQL.

D2RQ provides its own mapping language, which is similar to R2RML. D2RQ has re-

leased r2rml-kit to support the two mapping standards formulated by W3C. D2RQ has a

more convenient place to automatically generate a predefined mapping file based on your

database, which users can modify on this file to map the data to their own ontology. In

this project, data relationship is relatively simple, editing R2RML files or modifying ef-

ficiency on D2RQ generated mapping files. When data relations are very complex, it

saves a lot of time to modify directly on the mapping files generated by D2RQ. D2RQ's

mapping language is also very concise, and also supports mapping the SQL results, whose

36	

SQL is expressed implicitly with condition keywords, unlike R2RML as an explicit SQL

statement.

Download D2RQ, enter its directory in terminal, run the following command to generate

the default mapping file:

generate-mapping –u root –p pass -o mapping.ttl jdbc:mysql:///medical

Root is the username of MySQL, pass is the password of the database,

“jdbc:mysql:///medical” is the database we want to convert. Next, change the default map-

ping vocabulary into the words in our ontology. When dealing with foreign keys, we

should pay attention to the domain and range of the current editing properties, be-

longsToClassMap is the domain and refersToClassMap is the range.

Use the following command to transform data to RDF:

Dump-rdf –o mapping.nt mapping.ttl

Mapping.ttl is the modified mapping file. It supports the exported RDF format with

"TURTLE", "RDF/XML", "RDF/XML-ABBREV", "N3" and "N-TRIPLE". "N-TRI-

PLE" is the default output format. Below showing a part of data in the N-TRIPLE file.

Figure 25. NT file

37	

5.3 Apache Jena SPARQL endpoint and reasoning

In this part, there three components of Jena are used: TDB, rule reasoner and Fuseki.

1. TDB is Jena's component used to store RDF, and it belongs to the technology of

storage level. In a single machine case, it can provide very high RDF storage

performance. At present, the latest version of TDB is TDB2, and it is not compatible

with TDB1.

2. Jena provides RDFS, OWL, and general rule reasoning machines. In fact, Jena's

RDFS and OWL inference engine is also implemented by Jena's own general rule

inference machine.

3. Fuseki is the SPARQL server provided by Jena, that is SPARQL endpoint. It provides

four modes of operation: single machine operation, running as a service of the system,

running as and web application, or running as an embedded server.

First of all, apache-jena and apache-jena-fuseki need to be download from their websites.

Then, creating a directory to store TDB data. Entering the bat directory of the "apache-

jena-X.X.X" folder, you can see a lot of batch files, and we use "tdbloader.bat" to store

our RDF data in the TDB way. The command is as follows:

Figure 26. RDF to TDB

"--loc" specifies the location of TDB storage and the second parameter is RDF data trans-

formed from MySQL data.

38	

Since Jena provides general rule reasoning machines, it the allows user to define their

own rules. In Fuseki’s folder, creating a new text file under the folder “databases” named

“rules.ttl”. OWL's reasoning function can also be implemented in a regular reasoning

machine, so we define "ruleInverse" to represent the opposite relationship between

"hasBelong" and "hasDisease".

Besides the rule file, the ontology.owl file which is exported from protégé is also needed

to be added into the folder “databases and change the "owl" suffix name to "ttl".

In the "run" folder under the "configuration", the configuration file should be created to

mapping the TDB and rules. Part of this file can be checked in the appendix.

Then running “Fuseki-server” in the terminal, the result can be seen in Figure 27:

Figure 27. Fuseki Sever

The default port of Fuseki is 3030, and the browser access "http://localhost:3030/".

39	

Figure 28. Browser access to Fuseki Sever

In Python, SPARQLWrapper is used to send query requests to the Fuseki server. The

results are returned in JSON format. Figure 28 shows a part code of jena-sarql-endpint

about how to connect to the server and get result.

Figure 29. Connect Fuseki Sever

40	

6 QUESTION TO SPARQL

Since the question is asked as in sentence of natural language, libraries are needed to

complete the initial Natural Language Processing (participle, entity recognition), and then

use the library which supports regular matching to complete the subsequent semantic

matching.

Quepy is a Python framework to transform natural language questions into queries in a

database query language. It can be easily customized to different kinds of questions in

natural language and database queries. It can be installed with the command:

pip install quepy

6.1 Natural Language Parsing

NLTK is the library used to process the question sentence which provides methods to tag

words in a text. After translating natural language into a word based basic unit, we use

REFO (Regular Expressions for Objects) to complete the semantic matching. According

to the specific tag of words, it will be matched with regex of the question template to

extract the entity which is needed.

For example, the question “where is the presurgical clinic?” can be tagged as the

following, and “presurgical clinic” is the entity and “where” is the relationship that needs

to be queried.

(S where/WRB is/VBZ presurgical/JJ clinic/NN)

Since most of the entities that we want to get are nouns and adjectives, it can be expressed

as the group of words with specific pos. As the code shown in figure 30, “thing” is the

entity that is extracted from the sentence. And “regex” is the template of the question

which should be matched. However, one kind of question may have several question

templates to match and it makes the system more flexible.

41	

Figure 30. Semantic matching

This regular expression matches questions of the form “where is X?”, but also “where

was X?”, “where were X?” and other variants of the verb to be because it is using the

lemma of the verb in the regular expression.

In this system, there are totally seven type of question that are pre-defined.

1. Where is (hospital/department)?

2. The opening time of (hospital/department)? / When is (hospital/department) open?

3. How to contact (hospital/department)? / The phone number of (hospital/department)?

4. The symptom of (disease)?

5. How to prevent (disease)?

6. Department of (disease)?

7. Diseases in (department)?

6.2 Query Generation & DSL

In quepy framework, the domain is mainly defined in the DSL file. Quepy uses an abstract

semantics as a language-independent representation that is then mapped to a query lan-

guage. This allows questions to be mapped to different query languages in a transparent

manner. In Figure 31, it is an example of domain specific language for the information of

hospital department.

42	

Figure 31. Domain Specific Language

After defining the domain specific language of the system, if a regex has a successful

match with an input question, the interpret method will be called with the match to gen-

erate the query. Below is shown the interpret method for the example question “Where is

XXX?”.

Figure 32. Interpret Method

In the main.py file there are some lines of code to use this application and the generated

query.

import quepy

dbpedia = quepy.install("dbpedia")

target, query, metadata = dbpedia.get_query ("where is a blowtorch?")

print query

43	

PREFIX: <http://www.semanticweb.org/eva66/ontologies/2018/2/helsinki#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT? x1 WHERE {

 ? x0: departmentName "women ' s hospital".

 ? x0: departmentLocation? x1.

}

The method used to generate SPARQL is almost the same, the entity and relationship will

be extracted from the question sentences and when the question is matched with any tem-

plate, the query language will be generated and sent to Jena endpoint for searching.

44	

7 IMPLEMENTATION ON NAO ROBOT

In this thesis, the Nao Robot is the platform used to implement this QA system. Nao is a

humanoid robot which can interact with user. The core control of NAO is NAOqi.

Through NAOqi, NAO is able to do all kinds of actions and actions. At the same time, it

is also the tool used to program with different programming languages. Figure 33 shows

the control process of the NAO Robot.

Figure 33. Control Process of NAO Robot/16/

7.1 Speech Recognition

The sound file acts as input of the system. The robot needs to hear what a user says in

order to answer questions. The Nao Robot provides “ALAudioRecorder” module from

ALProxy to record a wav file when the user is speaking. Figure 34 is the code of how to

use this module:

45	

Figure 34. Audio Recorder

As the code in Figure 35 shows, the wav file is saved in “/home/nao” path when the sound

recorded by the microphone of the NAO robot. By using FTP (File Transfer Protocol),

Nao robot is connected with our computer and transfer the wav file to computer. Figure

below shows sample code to transfer file between the robot and computer:

Figure 35. Transfer wav File

After getting the voice file, Google Cloud Speech API is used as an engine to transform

voice into text. The ability to convert speech to text is based on deep neural networks,

and the latest machine learning algorithm recently proved to be particularly effective for

pattern detection in video and audio signals. As Google collects new voice samples, the

neural network will be updated to learn new terms and improve recognition accuracy.

46	

Figure 36. Google Cloud Speech API

In order to use this API, firstly an account of Google cloud platform is needed. After

creating a new project in Google cloud platform, Google Cloud Speech API should be

enabled in the API Manager. A Speech API request JSON file will be download automat-

ically when a API Key is created and this file should be configured as an environment

file in this project. The wav file is sent to the cloud platform and it will be transferred into

text which is the return value. The returned text is used for checking whether the robot

gets the right question from the user. The code which is shown in Figure 37 shows how

the API is used in this project.

47	

Figure 37. Google Could Speech API Code

7.2 Result

After recognizing the voice, the text of the question will be sent for processing before it

is confirmed by the user. And then, the question will be converted to SPAROL to search

from the knowledge base. The Answer will be returned to the Nao Robot.

"ALTextToSpeech" module in ALProxy is used to a synthetic speech and answer to the

question. Figure 38 is the humanoid NAO robot in laboratory and Figure 39 is part of the

print result. When a user asks a question, it will be converted to text. If the text is right, a

query will be generated according to this question. After getting the answer, the NAO

robot will talk to the user and complete an interaction.

48	

Figure 38. Nao Robot

Figure 39. Result

49	

8 RECOMMONDATION FOR FUTURE RESEARCH

l IMPROVING WEB CRAWLER TECHNOLOGY

In this project, the web crawler technology is used to gather data from a HTML of

the web page. However, for some pages whose structure is not so clear and standard,

it will be difficult to process it. Maybe in the future, with the development of this

technology, it will be much easier to get the data that we need from the web page.

Another problem is when there are many pages need to be crawled, it takes time to

process it one by one. The speed of the web crawler can be improved in future

research.

l THE SIZE OF KNOWLEDGE BASE

Limited to the author's ability, many works still fail to achieve the desired results.

For example, the scale of the knowledge base is not large enough, and the coverage

is not wide enough. It just contains information of a few hospitals in Finland and

about such things as the location of the department, opening time, telephone number

and some data of diseases that we add manually. In future research, the data should

be more detailed and authentic, the information about the doctors in a hospital could

be added.

l QUESTION TYPE

Currently, there are only seven types of questions can be answered in this system.

Each of them has their own question template. For some questions, we cannot give

satisfactory results. And the complexity of the problem is not high enough to answer

the first and two other problems. In future research, a classification algorithm for

machine learning can be used to process text from the website and question directly.

Understanding semantic information would be more flexible than just matching the

question with a regular expression. Due to the limitation of the author’s ability, much

of the work fails to achieve the desired results.

50	

9 CONCLUSION

In the open domain (open domain) the automatic question answering system is facing a

lot of difficulties, the automatic question answering system in the limited field is indeed

being commercialized. Many enterprises, schools, scientific research units, and even parts

of websites, such as e-commerce, establish their own question and answer system, which

saves a lot of human costs and many common problems can be answered by the machine

itself, it is in other words labor-saving.

For the platform of the QA system, there is no doubt that the humanoid robot is the best

choice. With the continuous progress of technology, humanoid robots will gradually enter

into thousands of families, helping people to deal with many daily things, such as house-

work, electrical appliances, services, chatting and so on.

In this thesis, the process and history of automatic question answering is introduced, and

also the whole process of building automatic question answering system. The process of

how to build a question answering system on a humanoid robot is introduced in detail.

Crawling of data, information extraction, and the construction of the knowledge base are

described. Finally, the question answering system is implemented on the Nao robot and

online speech recognition is introduced. At the same time, in order to make NAO more

intelligent, it has many human's characteristics, such as "reasoning" and other functions.

51	

REFERENCES

/1/ Z. Zheng, “AnswerBus Question Answering System,” In Proceedings of Second

International Conference on Human Language Technology Research， San Fran-
cisco, CA，USA 2002.

/2/ Question Answering

https://en.wikipedia.org/wiki/Question_answering/

/3/ Python

 https://www.python.org/doc/

/4/ Masanès, Julien (February 15, 2007). Web Archiving. Springer. p. 1. ISBN 978-
3-54046332-0. Retrieved April 24, 2014.

/5/ Apache Jena

https://en.wikipedia.org/wiki/Jena_(framework)

/6/ "Preface". www.nltk.org. Retrieved 2016-06-15.

/7/ Yu Tiecheng. The current development of speech recognition [J]. Communication
World, 2005.

/8/ Comparing Speech Recognition Systems (Microsoft API, Google API And CMU
Sphinx), March, 2017

/9/ "NLTK Courses". Google Docs. Retrieved 2016-06-15.

https://docs.google.com/document/d/1eYubSwLkpB7ZgfQVxxAw-
gsmAqS__BRfbMyP9qV6ngD8/edit/

/10/ "Unveiling of NAO Evolution: a stronger robot and a more comprehensive oper-
ating system". Aldebaran Robotics. 2014. Retrieved 1 February 2015.

/11/ "For education & research". SoftBank Robotics. Retrieved 2016-09-30

https://www.ald.softbankrobotics.com/en/solutions/education-research.

/12/ Web Ontology Language

 https://www.w3.org/OWL/

/13/ Requests: HTTP for Humans

 http://docs.python-requests.org/en/master/

/14/ Gigabotics Robotics and Development and Research

52	

http://gigabotics.com/robotics/features-of-nao-robot/

/15/ Nao(robot)

 https://en.wikipedia.org/wiki/Nao_(robot)

/16/ Software in and out of the robot

http://doc.aldebaran.com/1-14/getting_started/software_in_and_out.html

/17/ NAOqi Framework

 http://doc.aldebaran.com/1-14/dev/naoqi/index.html

